WO2020011242A1 - Pdsch时域资源分配方法、终端及计算机可读存储介质 - Google Patents

Pdsch时域资源分配方法、终端及计算机可读存储介质 Download PDF

Info

Publication number
WO2020011242A1
WO2020011242A1 PCT/CN2019/095715 CN2019095715W WO2020011242A1 WO 2020011242 A1 WO2020011242 A1 WO 2020011242A1 CN 2019095715 W CN2019095715 W CN 2019095715W WO 2020011242 A1 WO2020011242 A1 WO 2020011242A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
time domain
time
pdcch
configuration value
Prior art date
Application number
PCT/CN2019/095715
Other languages
English (en)
French (fr)
Inventor
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217000548A priority Critical patent/KR102591571B1/ko
Priority to EP19833910.3A priority patent/EP3809776B1/en
Priority to JP2021500292A priority patent/JP7259002B2/ja
Priority to ES19833910T priority patent/ES2958812T3/es
Priority to SG11202013255QA priority patent/SG11202013255QA/en
Publication of WO2020011242A1 publication Critical patent/WO2020011242A1/zh
Priority to US17/147,264 priority patent/US20210136759A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a PDSCH time domain resource allocation method, a terminal, and a computer-readable storage medium.
  • the 5G NR system supports the configuration of one or more component carriers (CCs) or cells for user equipment (User Equipment).
  • CCs component carriers
  • User Equipment User Equipment
  • each CC or cell can be configured with multiple control-resource sets (CORESET) and multiple search space sets.
  • CORESET control-resource sets
  • Including common search space common search space, CSS
  • UE-specific search space UE-specific search space, USS.
  • the network can flexibly configure the number of blind detections for each search space set, and there can be flexible association between CORESET and the search space set.
  • the network can configure cross-carrier scheduling for the UE, that is, configure the control channel in other cells with better channel quality (for example, the primary cell) to perform cross-carrier scheduling.
  • Data of other cells for example, secondary cells.
  • the sub-carrier bandwidth (SCS) of the scheduling cell and the scheduled cell may be the same or different.
  • the scheduling cell can be in a self-scheduling mode. At this time, the scheduling cell only schedules itself. If the scheduling cell is configured for cross-carrier scheduling, the scheduling cell may also schedule one or more scheduled cells other than itself.
  • the scheduled cell does not have its own physical downlink control channel (PDCCH), and the scheduling operation can only be performed by the scheduling cell.
  • PDCCH physical downlink control channel
  • the UE monitors the PDCCH to receive downlink control information (downlink control information, DCI), and demodulates the physical layer downlink shared channel (PDSCH) scheduled by the base station according to the indication of the DCI.
  • DCI downlink control information
  • the DCI can flexibly indicate the resource allocation of the PDSCH, for example, a cell or a bandwidth part (BWP) where the PDSCH is located, a frequency domain resource, and a time domain resource.
  • the time domain resource may indicate a slot offset of the PDSCH, that is, a slot offset, a starting OFDM symbol, and a symbol length.
  • the starting OFDM symbol of the PDSCH cannot be earlier than the starting OFDM symbol of the PDCCH.
  • the UE Since the starting symbol of the PDSCH may be the same as the starting OFDM symbol of the PDCCH, while the UE receives and blindly detects the PDCCH, it must first buffer the entire BWP data of the scheduled cell. For self-scheduling or cross-carrier scheduling and the SCS of the scheduling cell (ie, the SCS of the PDCCH) is the same as the SCS of the scheduled cell (the SCS of the PDSCH), the UE needs to buffer the entire BWP data of the scheduled cell until the PDCCH demodulation is completed.
  • the UE receives the PDCCH for a longer time than the SCS of the PDCCH is less than the SCS of the PDSCH. Accordingly, the duration of the data buffered by the UE will become longer. The amount of data will increase compared to the case of the same SCS, and the data buffer load of the UE will increase.
  • Embodiments of the present disclosure provide a PDSCH time domain resource allocation method, a terminal, and a computer-readable storage medium to solve the problem that the cache load of the UE increases in a case where the SCS of the PDCCH is less than the SCS of the PDSCH in the related art.
  • an embodiment of the present disclosure provides a PDSCH time domain resource allocation method applied to a terminal.
  • the method includes: the terminal starts buffering or receiving the PDSCH no earlier than a time domain restricted position of the PDSCH, where: When the SCS of the PDCCH is smaller than the SCS of the PDSCH, the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • an embodiment of the present disclosure further provides a PDSCH time domain resource allocation terminal, where the terminal includes: a processor configured to start buffering or receiving the PDSCH no earlier than a time domain restricted position of the PDSCH, wherein the PDSCH The time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • an embodiment of the present disclosure further provides a terminal, including: a memory, a processor, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor Steps of implementing the PDSCH time domain resource allocation method as described above.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, including: the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the foregoing PDSCH time domain resource Steps in the distribution method.
  • the terminal starts to buffer or receive the PDSCH no earlier than the time domain restricted position of the PDSCH, where the time domain position of the PDSCH is no earlier than the time domain of the PDSCH when the SCS of the PDCCH is less than the SCS of the PDSCH.
  • Limiting the position compared to data caching started when the PDCCH is received in the related art, can reduce the amount of data caching and reduce energy consumption.
  • FIG. 1 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a PDSCH time domain resource allocation method according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural diagram of a PDSCH time domain resource allocation terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • GSM Global System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Global Interoperability for Microwave Access
  • the terminal device may include, but is not limited to, a mobile station (MS), a mobile terminal (Mobile), a mobile phone (Mobile), a user equipment (User Equipment, UE), and a mobile phone (handset).
  • MS mobile station
  • Mobile mobile terminal
  • Mobile mobile phone
  • User Equipment User Equipment
  • UE user equipment
  • handset mobile phone
  • portable equipment portable equipment, vehicles
  • the terminal equipment can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal equipment can be a mobile phone (or (Referred to as a "cellular" phone), a computer with wireless communication functions, etc.
  • the terminal device may also be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device.
  • a network device is a device that is deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the names of devices with base station capabilities may vary.
  • eNB Evolved NodeB
  • 3G 3rd Generation
  • Node B Node B
  • Network equipment, etc. but the wording does not constitute a limitation.
  • FIG. 1 there is shown a flowchart of steps in a time domain resource allocation method for a PDSCH provided by some embodiments of the present disclosure.
  • Step 101 The terminal starts buffering or receiving the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain limit position of the PDSCH, that is, the time domain position of the PDSCH is equal to or later than the time domain limit position of the PDSCH.
  • the PDSCH time domain position includes one or more of a PDSCH slot offset, a PDSCH starting OFDM symbol, and correspondingly, a time domain limit position is a restriction on a slot offset and / or a starting OFDM symbol. Location restrictions.
  • the time domain restricted position of the PDSCH can be the first SCS configuration value of the PDCCH, the second SCS configuration value of the PDSCH, the PDCCH processing time, the PDCCH time domain length, the PDCCH start symbol position, the PDCCH end symbol position, and the reference OFDM.
  • One or more factors in the symbol are related.
  • the relationship between the time-domain restriction location of the PDSCH and one or more of the factors may be predefined by a protocol or configured by a network device or determined by a terminal.
  • the specific manner of determining the time domain restricted position of the PDSCH can be set by those skilled in the art according to actual needs, and it can be ensured that the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • the PDSCH time domain resource allocation method provided in the embodiment of the present disclosure is applicable to a terminal such as user equipment UE.
  • the time domain limit position is 5, the BWP data of the scheduled cell can be cached from the fifth unit position, and the BWP data of the scheduled cell can be cached from the fourth, third, or second unit position.
  • the time domain location allocation of the PDSCH it is possible to avoid the terminal from buffering more data.
  • a terminal starts to buffer or receive a PDSCH no earlier than the time domain position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is no earlier than PDSCH.
  • FIG. 2 a flowchart of the steps of a time domain resource allocation method for a PDSCH provided by some embodiments of the present disclosure is shown.
  • Step 201 Determine a first intermediate value according to the second SCS configuration value of the PDSCH and the first SCS configuration value of the PDCCH.
  • the configuration value of the SCS is represented by, and the corresponding ⁇ f, that is, the subcarrier frequency interval is different if the configuration value is different.
  • ⁇ ⁇ f 2 ⁇ ⁇ 15 [kHz] 0 15 1 30 2 60 3 120 4 240
  • the network device configures the terminal with two cells A and B through Radio Resource Control (RRC), where A is the primary cell that is the scheduling cell, B is the secondary cell that is the scheduled cell, and A cross-carrier schedules B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • ⁇ PDCCH is a first configuration value
  • ⁇ PDSCH is a second configuration value
  • the first intermediate value is a value calculated according to the first configuration value and the second configuration value according to a first preset rule.
  • the first intermediate value may be a difference between the second configuration value and the second configuration, or a preset multiple of the difference between the first configuration value and the second configuration value, and may also be a weighting of the first configuration value and the second configuration.
  • the average value, etc. can be set by those skilled in the art according to actual needs for the first preset rule, which is not specifically limited in the embodiments of the present disclosure.
  • a difference between the first intermediate value and the second configuration value is used as an example for description.
  • the second configuration value is 2 and the first configuration value is 0.
  • Step 202 Determine the time domain restricted position corresponding to the first intermediate value as the time domain restricted position of the PDSCH according to the preset relationship between the time domain restricted position and the first intermediate value in the system.
  • the time-domain limitation position is used as an example to describe the limitation on the time slot offset K0.
  • the corresponding relationship between the preset time domain limit position and the first intermediate value in the system may be specifically set by those skilled in the art according to actual requirements. Since there can be multiple first configuration values and multiple second configuration values, there are also multiple first intermediate values between the first configuration value and the second configuration value. The system can preset different first intermediate values and time domains. Limit the correspondence between locations. An exemplary example is shown in Table 2:
  • L is the time domain limit position.
  • the time domain limitation position of the PDSCH is determined based on the first configuration value and the second configuration value as an example for description.
  • the time domain limit position of the PDSCH may be a time domain limit position preset in the system, that is, a fixed constant preset in the L system, K0 ⁇ L.
  • time-domain restriction position preset in the system can be set by a person skilled in the art according to actual requirements, for example, it is set to 1, 2, or 3, etc., which is not specifically limited in the implementation of the present disclosure.
  • Step 203 The terminal starts buffering or receiving the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • a terminal starts to buffer or receive a PDSCH no earlier than a time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is earlier than Compared to the time-domain limitation position of the PDSCH, compared to data caching started when the PDCCH is received in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 3 a flowchart of steps in a PDSCH time domain resource allocation method provided by some embodiments of the present disclosure is shown.
  • Step 301 Determine a second intermediate value according to the second SCS configuration value of the PDSCH and the first SCS configuration value of the PDCCH.
  • the network device configures two cells A and B for the terminal through a radio resource control (Radio Resource Control, RRC), where A is a primary cell that is a scheduling cell, B is a secondary cell that is a scheduled cell, and A cross-carrier scheduling B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • ⁇ PDCCH is a first configuration value
  • ⁇ PDSCH is a second configuration value
  • the second intermediate value is a value calculated according to the second preset rule according to the first configuration value and the second configuration value.
  • the second intermediate value may be a difference between the second configuration value and the second configuration, or a preset multiple of the difference between the first configuration value and the second configuration value, or may be a weighted value of the first configuration value and the second configuration.
  • the average value, etc. can be set by those skilled in the art according to actual needs for the first preset rule, which is not specifically limited in the embodiments of the present disclosure.
  • the difference between the second intermediate value and the first configuration value is used as an example for description.
  • the second configuration value is 2, and the first configuration value is 0.
  • Step 302 Determine, according to the correspondence between the time-domain restricted position reported by the terminal and the second intermediate value, the time-domain restricted position corresponding to the second intermediate value as the time-domain restricted position of the PDSCH.
  • the time-domain limitation position is still used as an example to describe the limitation on the time slot offset K0. K0 ⁇ L instant domain limit position.
  • the correspondence between the time domain limit position and the second intermediate value can be reported by the terminal. Since there can be multiple first configuration values and multiple second configuration values, the second intermediate value between the first configuration value and the second configuration value There are also multiple, and the terminal may report the corresponding relationship between the different second intermediate value and the time domain restricted position.
  • Table 3 exemplarily shows the correspondence between the time-domain restriction positions reported by a group of terminals and the second intermediate value:
  • solt unit is used as an example in Table 3, and the OFDM symbol unit may also be used in the specific implementation process.
  • L can also be reported by the terminal through its capabilities, and the terminal directly or indirectly informs the network of the time domain restricted location L that it supports.
  • Step 303 The terminal starts buffering or receiving the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • a terminal starts to buffer or receive a PDSCH no earlier than a time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is earlier than Compared to the time-domain limitation position of the PDSCH, compared to data caching started when the PDCCH is received in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 4 a flowchart of steps in a PDSCH time domain resource allocation method provided by some embodiments of the present disclosure is shown.
  • Step 401 Determine a first processing time corresponding to the first configuration value according to a correspondence relationship between a configuration value preset in the system or reported by the terminal.
  • the correspondence between the configuration value and the processing time can be preset by the system or reported by the terminal.
  • the network device configures the terminal with two cells A and B through Radio Resource Control (RRC), where A is the primary cell that is the scheduling cell, B is the secondary cell that is the scheduled cell, and A cross-carrier schedules B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • the ⁇ PDCCH is the first configuration value of the SCS of the PDCCH
  • the ⁇ PDSCH is the second configuration value of the SCS of the PDSCH.
  • the first configuration value is 0 and the second configuration value is 2.
  • the time-domain limitation position is used as an example to describe the limitation on the time slot offset K0.
  • Table 4 exemplarily shows the correspondence between the configuration values reported by a group of terminals and the processing time:
  • the first configuration value that can be determined through the above configuration is 0, and according to Table 4, it can be determined that the corresponding processing time S is 4.
  • Step 402 Determine a time domain limit position of the PDSCH according to the first configuration value, the second configuration value, and the first processing time.
  • the time domain limit position of the PDSCH can be determined by Formula 1:
  • M in formula one is a time-domain limit position, K0 ⁇ M, and the value of M can be calculated by substituting the values of the first configuration value, the second configuration value, and the first processing time into the first formula.
  • Step 403 The terminal starts to buffer or receive the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • a terminal starts to buffer or receive a PDSCH no earlier than a time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is earlier than Compared to the time-domain limitation position of the PDSCH, compared to data caching started when the PDCCH is received in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 5 there is shown a flowchart of steps in a PDSCH time domain resource allocation method provided by some embodiments of the present disclosure.
  • Step 501 Determine a first configuration value of the SCS of the PDCCH and a second configuration value of the SCS of the PDSCH, respectively.
  • the network device configures two cells A and B for the terminal through a radio resource control (Radio Resource Control, RRC), where A is a primary cell that is a scheduling cell, B is a secondary cell that is a scheduled cell, and A cross-carrier scheduling B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • ⁇ PDCCH is a first configuration value
  • ⁇ PDSCH is a second configuration value
  • the first configuration value is 0, and the second configuration value is 2.
  • Step 502 Determine the starting symbol position of the PDCCH.
  • the time-domain limitation position is used as an example to describe the limitation on the time slot offset K0.
  • the PDCCH occupies one, two, or three OFDM symbols per subframe in the time domain.
  • the starting symbol position occupied by the PDCCH is determined.
  • the starting symbol position can be represented by R.
  • R 3 As an example.
  • Step 503 Determine a second processing time corresponding to the first configuration value according to a correspondence relationship between the configuration value preset in the system or reported by the terminal.
  • the correspondence between the configuration value and the processing time can be preset in the system or reported by the terminal.
  • Table 5 exemplarily shows the correspondence between the configuration values reported by a group of terminals and the processing time:
  • the first configuration value determined in step 501 is 0, and according to Table 5, it can be determined that the corresponding processing time S is 3.
  • Step 504 Determine the time domain limit position of the PDSCH according to the first configuration value, the second configuration value, the second processing time, and the starting symbol position.
  • the time domain restricted position of the PDSCH can be determined by formula 2:
  • M in formula 2 is a time-domain limit position, K0 ⁇ M, and the value of M can be obtained by substituting the first configuration value, the second configuration value, the starting symbol position of the PDCCH, and the second processing time into formula 2.
  • the end symbol position of the PDCCH may also be determined, and the time domain restricted position of the PDSCH may be determined according to the first configuration value, the second configuration value, the second processing time, and the end symbol position.
  • Step 505 The terminal starts to buffer or receive the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • a terminal starts to buffer or receive a PDSCH no earlier than a time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is earlier than Compared to the time-domain limitation position of the PDSCH, compared to data caching started when the PDCCH is received in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 6 there is shown a flowchart of steps in a PDSCH time domain resource allocation method provided by some embodiments of the present disclosure.
  • the time domain limit position of the PDSCH is determined based on the first configuration value of the SCS of the PDCCH, the second configuration value of the SCS of the PDSCH, and the time domain length of the PDCCH as examples.
  • the PDSCH time domain resource allocation method according to the embodiment of the present disclosure includes the following steps:
  • Step 601 Determine a first configuration value of the SCS of the PDCCH and a second configuration value of the SCS of the PDSCH, respectively.
  • the network device configures two cells A and B for the terminal through a radio resource control (Radio Resource Control, RRC), where A is a primary cell that is a scheduling cell, B is a secondary cell that is a scheduled cell, and A cross-carrier scheduling B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • ⁇ PDCCH is a first configuration value
  • ⁇ PDSCH is a second configuration value
  • the first configuration value is 0, and the second configuration value is 2.
  • Step 602 Determine the time domain length of the PDCCH.
  • Step 603 Determine the third processing time corresponding to the first configuration value according to the correspondence between the configuration value preset in the system or the terminal and the processing time.
  • the correspondence between the configuration value and the processing time can be preset in the system or reported by the terminal.
  • Table 6 exemplarily shows the correspondence between the configuration values reported by a group of terminals and the processing time:
  • step 601 If the first configuration value determined in step 601 is 0, it can be determined from Table 6 that the corresponding third processing time S is 3.
  • Step 604 Determine a time domain limit position of the PDSCH according to the first configuration value, the second configuration value, the third processing time, and the time domain length.
  • the time-domain limitation position is used as an example to describe the limitation on the time slot offset K0.
  • the time domain restricted position of the PDSCH can be determined by Formula 3:
  • M in formula three is the time-domain limit position, K0 ⁇ M.
  • Substituting the first configuration value, the second configuration value, D determined in step 602, and S determined in step 603 into formula three can obtain the value of M. .
  • Step 605 The terminal starts buffering or receiving the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • a terminal starts to buffer or receive a PDSCH no earlier than a time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is earlier than Compared to the time-domain limitation position of the PDSCH, compared to data caching started when the PDCCH is received in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 7 there is shown a flowchart of steps in a PDSCH time domain resource allocation method provided by some embodiments of the present disclosure.
  • the first configuration value of the SCS based on the PDCCH, the second configuration value of the SCS of the PDSCH, the reference OFDM symbol, and the time domain length of the PDCCH are used to determine the time domain restricted position of the PDSCH as an example for description.
  • the PDSCH time domain resource allocation method according to the embodiment of the present disclosure includes the following steps:
  • Step 701 Determine a first configuration value of the SCS of the PDCCH and a second configuration value of the SCS of the PDSCH, respectively.
  • the network device configures two cells A and B for the terminal through a radio resource control (Radio Resource Control, RRC), where A is a primary cell that is a scheduling cell, B is a secondary cell that is a scheduled cell, and A cross-carrier scheduling B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • ⁇ PDCCH is a first configuration value
  • ⁇ PDSCH is a second configuration value
  • Step 702 Determine the time domain length of the reference OFDM symbol and the PDCCH.
  • the reference OFDM symbol may be represented by P, and the time domain length may be represented by D.
  • P equal to 2 indicates that the reference OFDM symbol is the second OFDM symbol.
  • Step 703 Determine a time domain restriction position of the PDSCH based on the first configuration value, the second configuration value, the reference OFDM symbol, and the time domain length.
  • the time domain limitation position is used as an example to describe the limitation on the starting OFDM symbol of the PDSCH.
  • the time domain restricted position of the PDSCH can be determined by formula four:
  • T in formula 4 is a time-domain limit position, K0 ⁇ T, and the value of T can be obtained by substituting the first configuration value, the second configuration value, D determined in step 702, and P into formula 4.
  • Step 704 The terminal starts buffering or receiving the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the terminal when the terminal blindly detects the PDCCH, the terminal may only buffer data from the 10th symbol after the start position of the PDCCH until demodulation to DCI, and receive PDSCH according to the actual instruction of DCI.
  • a terminal starts to buffer or receive a PDSCH no earlier than a time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is earlier than Compared to the time-domain limitation position of the PDSCH, compared to data caching started when the PDCCH is received in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 8 a flowchart of steps in a PDSCH time domain resource allocation method provided by some embodiments of the present disclosure is shown.
  • the correlation between the PDSCH time-domain restricted position and the first configuration value, the second configuration value, and the relative position of the PDCCH and the time boundary of each sub-unit is taken as an example for description.
  • the relationship between the PDSCH time domain restricted position and the relative position of the first configuration value, the second configuration value, and the PDCCH and the time boundary of each sub-unit may be predefined by the protocol or configured by the network device or determined by the terminal.
  • the unit time where the PDCCH is located includes a preset number of sub-unit times.
  • Step 801 When the SCS of the PDCCH is less than the SCS of the PDSCH, determine the first SCS configuration value of the PDCCH and the second SCS configuration value of the PDSCH.
  • the network device configures two cells A and B for the terminal through a radio resource control (Radio Resource Control, RRC), where A is a primary cell that is a scheduling cell, B is a secondary cell that is a scheduled cell, and A cross-carrier scheduling B.
  • RRC Radio Resource Control
  • the network side is configured with the PDCCH on the BWP of cell A.
  • Step 802 Divide the unit time where the PDCCH is located into a preset number of sub-unit times.
  • the unit time may be a slot, and the preset number may be 4.
  • the preset number can also be set to 3 or 5.
  • the PDCCH where the slot is divided into four sub-slot, sub-slot ⁇ k 0,1,2,3 ⁇ S k number of symbol boundaries were 0,4,7,11. Among them, sub-slot is sub-unit time.
  • Step 803 Determine the time domain restricted position of the PDSCH according to the first configuration value, the second configuration value, and the relative position of the PDCCH and the time boundary of each sub-unit.
  • the time-domain limitation position is used as an example to describe the limitation on the time slot offset K0.
  • the specific manner of determining the time domain restricted position of the PDSCH is as follows:
  • the earliest PDSCH start symbol offset O is determined.
  • Step 804 The terminal starts to buffer or receive the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • a terminal starts to buffer or receive a PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is no earlier than the PDSCH.
  • FIG. 9 there is shown a schematic structural diagram of a PDSCH time domain resource allocation terminal provided by some embodiments of the present disclosure.
  • a PDSCH time domain resource allocation terminal 100 provided in an embodiment of the present disclosure includes a processor 1001.
  • the processor 1001 is configured to start buffering or receiving the PDSCH no earlier than the time domain restricted position of the PDSCH, where the SCS on the PDCCH is In the case of an SCS smaller than the PDSCH, the time domain position of the PDSCH is not earlier than the time domain restricted position of the PDSCH.
  • the time domain restricted position of the PDSCH and the first SCS configuration value of the PDCCH, the second SCS configuration value of the PDSCH, the PDCCH processing time, the time domain length of the PDCCH, the The start symbol position of the PDCCH, the end symbol position of the PDCCH, and one or more factors in the reference OFDM symbol are related.
  • the time domain restricted position of the PDSCH and the first SCS configuration value of the PDCCH, the second SCS configuration value of the PDSCH, the PDCCH processing time, the time domain length of the PDCCH, the The relationship between the start symbol position of the PDCCH, the end symbol position of the PDCCH, and one or more factors in the reference OFDM symbol is predefined by a protocol or configured by a network device or determined by the terminal.
  • the time domain limit position of the PDSCH is determined by: determining a first intermediate value according to the second configuration value and the first configuration value; and according to a preset time domain limit position in the system and the The correspondence relationship between the first intermediate values determines that the time domain restricted position corresponding to the first intermediate value is the time domain restricted position of the PDSCH.
  • the time domain limit position of the PDSCH is determined by: determining a second intermediate value according to the second configuration value and the first configuration value; and according to the time domain limit position reported by the terminal and the second The correspondence between the intermediate values determines that the time-domain limitation position corresponding to the second intermediate value is the time-domain limitation position of the PDSCH.
  • the time-domain restricted position of the PDSCH is determined by: determining a first processing time corresponding to the first configuration value according to a correspondence between a configuration value preset in the system or a reporting value of the terminal. Determining a time-domain limitation position of the PDSCH according to the first configuration value, the second configuration value, and the first processing time.
  • the time-domain restricted position of the PDSCH is determined by: determining a second processing time corresponding to the first configuration value according to a correspondence relationship between a configuration value preset in the system or reported by the terminal and the processing time. Determining the time-domain restricted position of the PDSCH according to the first configuration value, the second configuration value, the second processing time, and the position of the start symbol or end symbol.
  • the time-domain restricted position of the PDSCH is determined by: determining a third processing time corresponding to the first configuration value according to a correspondence between a configuration value preset in the system or a reporting value reported by the terminal. Determining a time-domain restriction position of the PDSCH according to the first configuration value, the second configuration value, the third processing time, and a time-domain length of the PDCCH.
  • the time domain restricted position of the PDSCH is a preset time domain restricted position in the system.
  • the time domain restricted position of the PDSCH is related to a first SCS configuration value of the PDCCH, a second SCS configuration value of the PDSCH, and a relative position of the PDCCH and a time boundary of each sub-unit;
  • the unit time where the PDCCH is located includes a preset number of sub-unit times.
  • the PDSCH time domain resource allocation terminal starts to buffer or receive the PDSCH no earlier than the time domain restricted position of the PDSCH.
  • the SCS of the PDCCH is less than the SCS of the PDSCH
  • the time domain position of the PDSCH is no earlier than PDSCH Compared with the time-domain limitation position in the related art, compared with data caching from the start of receiving the PDCCH in the related art, the amount of data caching can be reduced and power consumption can be reduced.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal that implements various embodiments of the present disclosure.
  • the terminal 900 includes, but is not limited to, a radio frequency unit 901, a network module 902, an audio output unit 903, an input unit 904, a sensor 905, a display unit 906, The user input unit 907, the interface unit 908, the memory 909, the processor 910, and the power supply 911 and other components.
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, a pedometer, and the like.
  • the processor 910 is configured to start buffering or receiving the PDSCH no earlier than the time-domain restricted position of the PDSCH, where the time-domain position of the PDSCH is not earlier than the SCS of the PDCCH less than the SCS of the PDSCH The time domain limited position of the PDSCH.
  • the time domain restricted position of the PDSCH and the first SCS configuration value of the PDCCH, the second SCS configuration value of the PDSCH, the PDCCH processing time, the time domain length of the PDCCH, the The start symbol position of the PDCCH, the end symbol position of the PDCCH, and one or more factors in the reference OFDM symbol are related.
  • the time domain restricted position of the PDSCH and the first SCS configuration value of the PDCCH, the second SCS configuration value of the PDSCH, the PDCCH processing time, the time domain length of the PDCCH, the The relationship between the start symbol position of the PDCCH, the end symbol position of the PDCCH, and one or more factors in the reference OFDM symbol is predefined by a protocol or configured by a network device, or determined by the terminal.
  • the time domain limit position of the PDSCH is determined by: determining a first intermediate value according to the second configuration value and the first configuration value; and according to a preset time domain limit position in the system and the The correspondence relationship between the first intermediate values determines that the time domain restricted position corresponding to the first intermediate value is the time domain restricted position of the PDSCH.
  • the time domain limit position of the PDSCH is determined by: determining a second intermediate value according to the second configuration value and the first configuration value; and according to the time domain limit position reported by the terminal and the The correspondence relationship between the second intermediate values determines that the time-domain restricted position corresponding to the second intermediate value is the time-domain restricted position of the PDSCH.
  • the time-domain restricted position of the PDSCH is determined by: determining a first processing time corresponding to the first configuration value according to a correspondence between a configuration value preset in the system or a reporting value of the terminal. Determining a time-domain limitation position of the PDSCH according to the first configuration value, the second configuration value, and the first processing time.
  • the time-domain restricted position of the PDSCH is determined by: determining a second processing time corresponding to the first configuration value according to a correspondence relationship between a configuration value preset in the system or reported by the terminal and the processing time. Determining the time-domain restricted position of the PDSCH according to the first configuration value, the second configuration value, the second processing time, and the position of the start symbol or end symbol.
  • the time-domain restricted position of the PDSCH is determined by: determining a third processing time corresponding to the first configuration value according to a correspondence between a configuration value preset in the system or a reporting value reported by the terminal. Determining a time-domain restriction position of the PDSCH according to the first configuration value, the second configuration value, the third processing time, and a time-domain length of the PDCCH.
  • the time domain restricted position of the PDSCH is a preset time domain restricted position in the system.
  • the time domain restricted position of the PDSCH is related to a first SCS configuration value of the PDCCH, a second SCS configuration value of the PDSCH, and a relative position of the PDCCH and a time boundary of each sub-unit;
  • the unit time where the PDCCH is located includes a preset number of sub-unit times.
  • the terminal provided in the embodiment of the present disclosure starts to buffer or receive PDSCH no earlier than the time domain restricted position of the PDSCH, where the time domain position of the PDSCH is no earlier than the time domain restricted position of the PDSCH when the SCS of the PDCCH is less than the SCS of the PDSCH, Compared with the related art, data buffering is started when the PDCCH is received, which can reduce the amount of data buffering and reduce energy consumption.
  • the radio frequency unit 901 may be used to receive and send signals during the process of transmitting and receiving information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 910; The uplink data is sent to the base station.
  • the radio frequency unit 901 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 901 can also communicate with a network and other devices through a wireless communication system.
  • the terminal provides users with wireless broadband Internet access through the network module 902, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 903 may convert audio data received by the radio frequency unit 901 or the network module 902 or stored in the memory 909 into audio signals and output them as sound. Also, the audio output unit 903 may also provide audio output (for example, call signal reception sound, message reception sound, etc.) related to a specific function performed by the terminal 900.
  • the audio output unit 903 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 904 is used to receive audio or video signals.
  • the input unit 904 may include a graphics processing unit (GPU) 9041 and a microphone 9042.
  • the graphics processor 9041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 906.
  • the image frames processed by the graphics processor 9041 may be stored in the memory 909 (or other storage medium) or transmitted via the radio frequency unit 901 or the network module 902.
  • the microphone 9042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 901 in the case of a telephone call mode.
  • the terminal 900 further includes at least one sensor 905, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 9061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 9061 and / when the terminal 900 moves to the ear. Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the attitude of the terminal (such as horizontal and vertical screen switching, related games, Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc .; sensor 905 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 906 is configured to display information input by the user or information provided to the user.
  • the display unit 906 may include a display panel 9061, and the display panel 9061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 907 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 907 includes a touch panel 9071 and other input devices 9072.
  • Touch panel 9071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 9071 or near touch panel 9071 operating).
  • the touch panel 9071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 910, receive the command sent by the processor 910 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 9071.
  • the user input unit 907 may further include other input devices 9072.
  • other input devices 9072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 9071 may be overlaid on the display panel 9061.
  • the touch panel 9071 detects a touch operation on or near the touch panel 9071, the touch panel 9071 transmits the touch operation to the processor 910 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 9061.
  • the touch panel 9071 and the display panel 9061 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 9071 and the display panel 9061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 908 is an interface through which an external device is connected to the terminal 900.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 908 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal 900 or may be used between the terminal 900 and an external device. Transfer data.
  • the memory 909 may be used to store software programs and various data.
  • the memory 909 may mainly include a storage program area and a storage data area, where the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 909 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 910 is a control center of the terminal, and uses various interfaces and lines to connect various parts of the entire terminal.
  • the processor 910 executes or executes software programs and / or modules stored in the memory 909 and calls data stored in the memory 909 to execute.
  • Various functions and processing data of the terminal so as to monitor the terminal as a whole.
  • the processor 910 may include one or more processing units; optionally, the processor 910 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 910.
  • the terminal 900 may further include a power source 911 (such as a battery) for supplying power to various components.
  • a power source 911 such as a battery
  • the power source 911 may be logically connected to the processor 910 through a power management system, thereby implementing management of charging, discharging, and power consumption management through the power management system. And other functions.
  • terminal 900 includes some functional modules that are not shown, and details are not described herein again.
  • an embodiment of the present disclosure further provides a terminal including a processor 910, a memory 909, and a computer program stored on the memory 909 and executable on the processor 910.
  • a terminal including a processor 910, a memory 909, and a computer program stored on the memory 909 and executable on the processor 910.
  • the computer program is executed by the processor 910
  • the processes of the PDSCH time domain resource allocation method embodiment described above are implemented, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the processes of the PDSCH time-domain resource allocation method embodiment described above are implemented, and The same technical effects are omitted here to avoid repetition.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本公开实施例提供了一种PDSCH时域资源分配方法、终端及计算机可读存储介质,所述PDSCH时域资源分配方法,所述方法应用于终端,包括:终端不早于PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。

Description

PDSCH时域资源分配方法、终端及计算机可读存储介质
相关申请的交叉引用
本申请主张在2018年7月13日在中国提交的中国专利申请No.201810771945.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种PDSCH时域资源分配方法、终端及计算机可读存储介质。
背景技术
5G NR系统支持为用户设备(User Equipment,UE)配置一个或多个载波(component carrier,CC)或小区。当UE配置为单载波模式或载波聚合(carrier aggregation,CA)下的自调度模式时,每个CC或小区可配置多个控制资源集(control-resource set,CORESET)以及多个搜索空间集,包括公共搜索空间(common search space,CSS)以及UE特定搜索空间(UE-specific search space,USS)。网络可以为每个搜索空间集灵活配置盲检数目,CORESET与搜索空间集之间可以灵活关联。
如果某些小区的信道质量不够好或信道阻塞概率较高时,网络可以为UE配置跨载波调度,即把控制信道配置在其他信道质量较好的小区(例如,主小区),来跨载波调度其他小区(例如,辅小区)的数据。调度小区与被调度小区的子载波带宽(sub-carrier spacing,SCS)可以相同也可以不同。调度小区可以为自调度模式,此时调度小区仅调度自己。如果调度小区被配置为跨载波调度,则调度小区还可以调度一个或多个自己以外的被调度小区。被调度小区没有自己的物理下行控制信道(physical downlink control channel,PDCCH),只能由调度小区来执行调度操作。
UE监听PDCCH来接收下行控制信息(downlink control information,DCI),根据DCI的指示来解调基站调度的物理层下行共享信道(physical downlink shared channel,PDSCH)。DCI可以灵活指示PDSCH的资源分配,例如, PDSCH的所在的小区或带宽部分(bandwidth part,BWP),频域资源以及时域资源等。其中,时域资源可以指示PDSCH的时隙偏移即slot offset,起始OFDM符号以及符号长度等。PDSCH的起始OFDM符号不能早于PDCCH的起始OFDM符号。
由于PDSCH的起始符号可能跟PDCCH的起始OFDM符号相同,因此UE在接收并盲检测PDCCH的同时,必须把被调度小区的整个BWP的数据先缓存起来。对于自调度或跨载波调度且调度小区的SCS(即PDCCH的SCS)与被调度小区的SCS(PDSCH的SCS)相同时,UE需要缓存被调度小区的整个BWP数据一直到PDCCH解调完毕为止。但PDCCH的SCS小于PDSCH的SCS时,UE接收PDCCH的时长远大于PDCCH的SCS小于PDSCH的SCS的情况下UE接收PDCCH的时长,相应地UE所缓存的数据的时长将变长,UE所缓存的数据量较相同SCS的情况下将增大,UE数据缓存负荷增大。
可见,目前迫切需要本领域技术人员解决的技术问题为,在PDCCH的SCS小于PDSCH的SCS的情况下,如何能够降低UE的数据缓存负荷。
发明内容
本公开实施例提供一种PDSCH时域资源分配方法、终端及计算机可读存储介质,以解决相关技术中在PDCCH的SCS小于PDSCH的SCS的情况下,UE的缓存负荷增大的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开实施例提供了一种PDSCH时域资源分配方法,应用于终端,所述方法包括:所述终端不早于PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,在PDCCH的SCS小于所述PDSCH的SCS情况下,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。
第二方面,本公开实施例还提供一种PDSCH时域资源分配终端,其中,所述终端包括:处理器用于不早于PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。
第三方面,本公开实施例还提供一种终端,包括:存储器、处理器及存 储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如前述的PDSCH时域资源分配方法的步骤。
第四方面,本公开实施例还提供一种计算机可读存储介质,包括:所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如前述的PDSCH时域资源分配方法中的步骤。
本公开实施例提供的技术方案,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图2是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图3是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图4是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图5是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图6是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图7是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图8是本公开实施例提供的PDSCH时域资源分配方法的流程图;
图9是本公开实施例提供的PDSCH时域资源分配终端的结构示意图;
图10是本公开实施例提供的终端的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是 全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应理解,本说明书实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新无线(New Radio,NR)系统,或者为后续演进通信系统。
在本说明书实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本说明书实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(Evolved NodeB,eNB或eNodeB),在第三代(3rd Generation,3G)网络中,称为节点B(Node B),或者后续演进通信系统中的网络设备等等,然用词并不构成限制。
参照图1,示出了本公开一些实施例提供的PDSCH的时域资源分配方法的步骤流程图。
本公开实施例的PDSCH时域资源分配方法包括如下步骤:
步骤101:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。其中,PDSCH的时域位置不早于PDSCH的时域限制位置即PDSCH的时域位置等于或者晚于PDSCH的时域限制位置。
PDSCH时域位置包括:PDSCH的时隙偏移、PDSCH的起始OFDM符号中的一个或多个,相对应地,时域限制位置为对时隙偏移的限制和/或对起始OFDM符号位置的限制。
PDSCH的时域限制位置可以与PDCCH的SCS第一配置值、PDSCH的SCS第二配置值、PDCCH的处理时间、PDCCH的时域长度、PDCCH的起始符号位置、PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子相关。PDSCH的时域限制位置与上述一个或多个因子的关系可由协议预定义或网络设备所配置或由终端确定。对于PDSCH的时域限制位置与上述一个或多个因子的具体相关关系可参照后续实施例中的相关描述。对于确定PDSCH的时域限制位置的具体方式,可由本领域技术人员根据实际需求进行设置,能够保证PDSCH时域位置不早于PDSCH的时域限制位置即可。
本公开实施例提供的PDSCH时域资源分配方法,适用于终端如用户设备UE。
例如时域限制位置为5,则可从第五个单位位置处开始缓存被调度小区BWP数据,也可以从第四个、第三个或者第二个单位位置处开始缓存被调度小区的BWP数据,本公开实施例中通过限制PDSCH的时域位置分配,可以避免终端额外缓存更多数据。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图2,示出了本公开一些实施例提供的PDSCH的时域资源分配方法的步骤流程图。
本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤201:依据PDSCH的SCS第二配置值与PDCCH的SCS第一配置值确定第一中间值。
SCS的配置值用表示,配置值不同则其对应的Δf即子载波频率间隔不同。
具体地,SCS的配置值与Δf二者的对应关系如表1所示:
表1
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
网络设备通过RRC(Radio Resource Control,无线资源控制)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,(即15kHz),B的SCS为μ PDSCH=2(即60kHz)。
μ PDCCH为第一配置值,μ PDSCH为第二配置值。
第一中间值为依据第一配置值与第二配置值按照第一预设规则计算所得到的值。第一中间值可以为第二配置值与第二配置的差值,也可以为第一配置值与第二配置值差值的预设倍数,还可以为第一配置值与第二配置的加权平均值等,对于第一预设规则可以由本领域技术人员根据实际需求进行设置,本公开实施例中对此不做具体限制。
本公开实施例中以第一中间值为第二配置值与第一配置值的差值为例进行说明。本公开实施例中第二配置值为2,第一配置值为0,则PDSCH的SCS第二配置值与PDCCH的SCS第一配置值的差值则为2-0=2。
步骤202:依据系统中预设的时域限制位置与第一中间值的对应关系,将第一中间值对应的时域限制位置,确定为PDSCH的时域限制位置。
本公开实施例中以时域限制位置为对时隙偏移K0的限制为例进行说明。
系统中预设的时域限制位置与第一中间值的对应关系具体可由本领域技术人员根据实际需求进行设置。由于第一配置值可以有多个,第二配置值也可以有多个,第一配置值与第二配置值的第一中间值也有多个,系统可以预 设不同第一中间值与时域限制位置之间的对应关系。一种示例性的举例如表2所示:
表2
μ PDSCHPDCCH L(slot)
0 0
1 1
2 2
3 3
表2中,L则为时域限制位置。
由于步骤201中所确定的第一差值为2,则其对应的时域限制位置L则为2。
本公开实施例中以基于第一配置值、第二配置值确定PDSCH的时域限制位置为例进行说明。在具体实现过程中,PDSCH的时域限制位置可以为系统中预设的时域限制位置,即L系统中预设的固定常量,K0≥L。
对于系统中预设的时域限制位置的具体值,可以由本领域技术人员根据实际需求进行设置,例如:设置为1、2或者3等,本公开实施中对此不做具体限制。
步骤203:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。
在确定PDSCH的时域限制位置后,终端在盲检测PDCCH时,可以只从时域限制位置指示的时间即K0=L开始缓存数据,直到解调到DCI,根据DCI实际指示的时域位置K0接收PDSCH。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图3,示出了本公开一些实施例提供的PDSCH时域资源分配方法的步骤流程图。
本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤301:依据PDSCH的SCS第二配置值与PDCCH的SCS第一配置值的确定第二中间值。
网络设备通过无线资源控制(Radio Resource Control,RRC)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,(即15kHz),B的SCS为μ PDSCH=2(即60kHz)。
μ PDCCH为第一配置值,μ PDSCH为第二配置值。第二中间值为依据第一配置值与第二配置值按照第二预设规则计算所得到的值。第二中间值可以为第二配置值与第二配置的差值,也可以为第一配置值与第二配置值差值的预设倍数,还可以为第一配置值与第二配置的加权平均值等,对于第一预设规则可以由本领域技术人员根据实际需求进行设置,本公开实施例中对此不做具体限制。
本公开实施例中以第二中间值为第二配置值与第一配置值的差值为例进行说明。本公开实施例中第二配置值为2,第一配置值为0,则第二配置值与第一配置值的差值则为2-0=2,即第二中间值为2。
步骤302:依据终端上报的时域限制位置与第二中间值的对应关系,确定所述第二中间值对应的时域限制位置为PDSCH的时域限制位置。
本公开实施例中仍以时域限制位置为对时隙偏移K0的限制为例进行说明。K0≥L即时域限制位置。
时域限制位置与第二中间值的对应关系可由终端上报,由于第一配置值可以有多个,第二配置值也可以有多个,第一配置值与第二配置值的第二中间值也有多个,终端可以上报不同第二中间值与时域限制位置之间的对应关系。表3中示例性的给出了一组终端上报的时域限制位置与第二中间值的对应关系:
表3
μ PDSCHPDCCH L(slot)
0 0
1 0
2 1
3 2
需要说明的是,表3中以solt单位为例进行说明,在具体实现过程中也 可以以OFDM符号为单位。
由于步骤301中所确定的第二中间值为2,通过表3可知,其对应的时域限制位置L为2。
在具体实现过程中,L也可以由终端通过能力上报,终端直接或者间接的方式通知网络其支持的时域限制位置L。
步骤303:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。
终端在盲检测PDCCH时,可以只从时域限制位置指示的时间即K0=L开始缓存数据,直到解调到DCI,根据DCI实际指示的时域位置K0接收PDSCH。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图4,示出了本公开一些实施例提供的PDSCH时域资源分配方法的步骤流程图。
本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤401:依据系统中预设或终端上报的配置值与处理时间的对应关系,确定第一配置值对应的第一处理时间。
配置值与处理时间的对应关系可以由系统预设,也可以由终端上报。
网络设备通过RRC(Radio Resource Control,无线资源控制)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,(即15kHz),B的SCS为μ PDSCH=2(即60kHz)。
μ PDCCH为PDCCH的SCS的第一配置值,μ PDSCH为PDSCH的SCS的第二配置值,第一配置值为0,第二配置值为2。
本公开实施例中以时域限制位置为对时隙偏移K0的限制为例进行说明。
表4中示例性的给出了一组终端上报的配置值与处理时间的对应关系:
表4
μ PDCCH S(symbols)
0 4
1 7
2 14
3 27
通过上述配置可确定的第一配置值为0,则通过表4可确定其对应的处理时间S为4。
步骤402:依据第一配置值、第二配置值以及第一处理时间,确定PDSCH的时域限制位置。
具体地,可以通过公式一确定PDSCH的时域限制位置:
Figure PCTCN2019095715-appb-000001
其中公式一中的M为时域限制位置,K0≥M,将第一配置值、第二配置值以及第一处理时间的值代入第一公式即可计算得到M的值。
步骤403:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。
确定PDSCH的时域限制位置后,终端在盲检测PDCCH时,可以只从时域限制位置指示的时间即K0=M开始缓存数据,直到解调到DCI,根据DCI实际指示的时域位置K0接收PDSCH。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图5,示出了本公开一些实施例提供的PDSCH时域资源分配方法的步骤流程图。
本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤501:分别确定PDCCH的SCS的第一配置值以及PDSCH的SCS的第二配置值。
网络设备通过无线资源控制(Radio Resource Control,RRC)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,(即15kHz),B的SCS为μ PDSCH=2(即60kHz)。
μ PDCCH为第一配置值,μ PDSCH为第二配置值,第一配置值为0,第二配置值为2。
步骤502:确定PDCCH的起始符号位置。
本公开实施例中以时域限制位置为对时隙偏移K0的限制为例进行说明。
PDCCH在时域上占用每个子帧的1个、2个或3个OFDM符号,本步骤中确定PDCCH占用的起始符号位置,起始符号位置可用R表示,本公开实施例中以R=3为例进行说明。
步骤503:依据系统中预设或终端上报的配置值与处理时间的对应关系,确定第一配置值对应的第二处理时间。
配置值与处理时间的对应关系可预设在系统中,也可由终端上报。
表5中示例性的给出了一组终端上报的配置值与处理时间的对应关系:
表5
μ PDCCH S(symbols)
0 3
1 6
2 12
3 24
步骤501中确定的第一配置值为0,则通过表5可确定其对应的处理时间S为3。
步骤504:依据第一配置值、第二配置值、第二处理时间以及起始符号位置,确定PDSCH的时域限制位置。
具体地,可以通过公式二确定PDSCH的时域限制位置:
Figure PCTCN2019095715-appb-000002
其中公式二中的M为时域限制位置,K0≥M,将第一配置值、第二配置值、PDCCH的起始符号位置以及第二处理时间代入公式二即可得到M的值。
在具体实现过程中,还可以确定PDCCH的结束符号位置,依据第一配置值、第二配置值、第二处理时间以及结束符号位置,确定PDSCH的时域 限制位置。
步骤505:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。
确定PDSCH的时域限制位置后,终端在盲检测PDCCH时,可以只从时域限制位置指示的时间即K0=M开始缓存数据,直到解调到DCI,根据DCI实际指示的时域位置K0接收PDSCH。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图6,示出了本公开一些实施例提供的PDSCH时域资源分配方法的步骤流程图。
本公开实施例中以基于PDCCH的SCS的第一配置值、PDSCH的SCS的第二配置值、PDCCH的时域长度确定PDSCH的时域限制位置为例进行说明。本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤601:分别确定PDCCH的SCS的第一配置值以及PDSCH的SCS的第二配置值。
网络设备通过无线资源控制(Radio Resource Control,RRC)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,(即15kHz),B的SCS为μ PDSCH=2(即60kHz)。
μ PDCCH为第一配置值,μ PDSCH为第二配置值,第一配置值为0,第二配置值为2。
步骤602:确定PDCCH的时域长度。
本公开实施例中以PDCCH的时域长度D为3个OFDM符号为例进行说明,即D=3。
步骤603:依据系统中预设或终端上报的配置值与处理时间的对应关系, 确定第一配置值对应的第三处理时间。
配置值与处理时间的对应关系可预设在系统中,也可由终端上报。
表6中示例性的给出了一组终端上报的配置值与处理时间的对应关系:
表6
μ PDCCH S(symbols)
0 3
1 6
2 12
3 24
步骤601中确定的第一配置值为0,则通过表6可确定其对应的第三处理时间S为3。
步骤604:依据第一配置值、第二配置值、第三处理时间以及时域长度,确定PDSCH的时域限制位置。
本公开实施例中以时域限制位置为对时隙偏移K0的限制为例进行说明。
具体地,可以通过公式三确定PDSCH的时域限制位置:
Figure PCTCN2019095715-appb-000003
其中公式三中的M为时域限制位置,K0≥M,将第一配置值、第二配置值、步骤602中确定的D以及步骤603中确定的S代入公式三中即可得到M的值。
步骤605:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。
在确定PDSCH的时域限制位置后,终端在盲检测PDCCH时,可以只从时域限制位置指示的时间即K0=M开始缓存数据,直到解调到DCI,根据DCI实际指示的时域位置K0接收PDSCH。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图7,示出了本公开一些实施例提供的PDSCH时域资源分配方法的 步骤流程图。
本公开实施例中以基于PDCCH的SCS的第一配置值、PDSCH的SCS的第二配置值、参考OFDM符号以及PDCCH的时域长度确定PDSCH的时域限制位置为例进行说明。本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤701:分别确定PDCCH的SCS的第一配置值以及PDSCH的SCS的第二配置值。
网络设备通过无线资源控制(Radio Resource Control,RRC)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,(即15kHz),B的SCS为μ PDSCH=2(即60kHz)。
μ PDCCH为第一配置值,μ PDSCH为第二配置值。
步骤702:确定参考OFDM符号和PDCCH的时域长度。
参考OFDM符号可用P表示,时域长度可用D表示,本公开实施例中以P=2,D=3为例进行说明。P等于2则表示参考OFDM符号为第二个OFDM符号。
步骤703:基于第一配置值、第二配置值、参考OFDM符号以及时域长度,确定PDSCH的时域限制位置。
本公开实施例中以时域限制位置为对PDSCH的起始OFDM符号的限制为例进行说明。
具体地,可以通过公式四确定PDSCH的时域限制位置:
Figure PCTCN2019095715-appb-000004
其中,其中公式四中的T为时域限制位置,K0≥T,将第一配置值、第二配置值、步骤702中确定的D以及P代入公式四中即可得到T的值。
本公开实施例中将上述参数对应的值带入公式四可得到T=10,因此,DCI指示的PDSCH的起始符号位置与PDCCH的起始符号位置之间的间隔不能小于T个OFDM符号。
步骤704:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在T=10的情况下,终端在盲检测PDCCH时,可以只从PDCCH起始位 置之后的第10个符号开始缓存数据,直到解调到DCI,根据DCI实际指示接收PDSCH。
本公开实施例提供的PDSCH时域资源分配方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图8,示出了本公开一些实施例提供的PDSCH时域资源分配方法的步骤流程图。
本公开实施例中以PDSCH时域限制位置与第一配置值、第二配置值、PDCCH与各子单位时间边界的相对位置相关为例进行说明。PDSCH时域限制位置与第一配置值、第二配置值、PDCCH与各子单位时间边界的相对位置的关系可以由协议预定义或网络设备所配置或由终端确定。其中,PDCCH所在的单位时间包含预设数量个子单位时间。
本公开实施例的PDSCH时域资源分配方法包括以下步骤:
步骤801:在PDCCH的SCS小于PDSCH的SCS情况下,分别确定PDCCH的SCS第一配置值与PDSCH的SCS第二配置值。
网络设备通过无线资源控制(Radio Resource Control,RRC)为终端配置了两个小区A与B,其中A是主小区即调度小区,B是辅小区即被调度小区,A跨载波调度B。网络侧配置了A小区的BWP上的PDCCH。A的SCS为μ PDCCH=0,B的SCS为μ PDSCH=2,μ PDCCH小于μ PDSCH,即PDCCH的SCS小于PDSCH的SCS,μ PDCCH为第一配置值,μ PDSCH为第二配置值。
步骤802:将PDCCH所在的单位时间划分成预设数量各子单位时间。
在具体实现过程中,单位时间可以为slot,预设数量可以为4。当然并不局限于此,预设数量还可以设置为3或5等。
根据PDCCH的SCS,将PDCCH所在的slot分为4个sub-slot,sub-slot{k=0、1、2、3}的边界符号编号S k依次为0、4、7、11。其中,sub-slot则为子单位时间。
步骤803:根据第一配置值、第二配置值以及PDCCH与各子单位时间边 界的相对位置,确定PDSCH的时域限制位置。
本公开实施例中以时域限制位置为对时隙偏移K0的限制为例进行说明。
在具体实现过程中,根据第一配置值、第二配置值以及PDCCH与各子单位时间边界的相对位置,确定PDSCH的时域限制位置的具体方式如下:
首先,通过PDCCH的最后一个符号的编号,确定PDCCH所在的sub-slot j
本公开实施例中以j=1为例进行说明,j=1则表示PDCCH在第一sub-slot上。
其次,根据PDCCH所在的sub-slot,确定最早的PDSCH的起始符号偏移O。本公开实施例中以O=1为例进行说明。
再次,根据sub-slot j与偏移O,确定最早的PDSCH的起始符号P
k=(j+O)=2,
S k=7,S 2对应的边界符号为7,因此S k=7。
基于公式五
Figure PCTCN2019095715-appb-000005
确定早的PDSCH的起始符号P,即时域限制位置,K0≥P。
将μ PDCCH第一配置值,μ PDSCH第二配置值以及S k代入上述公式五得P值。
步骤804:终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH。
在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置。
在确定PDSCH的时域限制位置后,终端在盲检测PDCCH时,可以只从时域限制位置指示的时间即K0=P开始缓存数据,直到解调到DCI,根据DCI实际指示的时域位置K0接收PDSCH。
本公开实施例提供的PDSCH调度方法,终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图9,示出了本公开一些实施例提供的PDSCH时域资源分配终端结构示意图。
本公开实施例中提供的一种PDSCH时域资源分配终端100包括:处理 器1001,处理器1001用于不早于PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子有关。
可选地,所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子之间的关系由协议预定义或网络设备所配置或由所述终端确定。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据所述第二配置值与所述第一配置值确定第一中间值;依据系统中预设的时域限制位置与所述第一中间值的对应关系,确定所述第一中间值对应的时域限制位置为所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据所述第二配置值与所述第一配置值确定第二中间值;依据终端上报的时域限制位置与所述第二中间值的对应关系,确定所述第二中间值对应的时域限制位置为所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第一处理时间;依据所述第一配置值、所述第二配置值以及所述第一处理时间,确定所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第二处理时间;依据所述第一配置值、所述第二配置值、所述第二处理时间以及所述起始符号或结束符号位置,确定所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第三处理时间;依据所述第一配置值、所述第二配置值、所述第三处理时间以及所述PDCCH的时域长度,确定所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置为系统中预设的时域限制位置。
可选地,所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH与各子单位时间边界的相对位置有关;其中,所述PDCCH所在的单位时间包含预设数量个子单位时间。
本公开实施例提供的PDSCH时域资源分配终端,不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
参照图10,示出了本公开一些实施例提供的终端的结构框图。
图10为实现本公开各个实施例的一种终端的硬件结构示意图,该终端900包括但不限于:射频单元901、网络模块902、音频输出单元903、输入单元904、传感器905、显示单元906、用户输入单元907、接口单元908、存储器909、处理器910、以及电源911等部件。本领域技术人员可以理解,图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,处理器910,用于不早于所述PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以 及参考OFDM符号中的一个或多个因子有关。
可选地,所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子之间的关系由协议预定义或网络设备所配置,或由所述终端确定。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据所述第二配置值与所述第一配置值确定第一中间值;依据系统中预设的时域限制位置与所述第一中间值的对应关系,确定所述第一中间值对应的时域限制位置为所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据所述第二配置值与所述第一配置值确定第二中间值;依据所述终端上报的时域限制位置与所述第二中间值的对应关系,确定所述第二中间值对应的时域限制位置为所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第一处理时间;依据所述第一配置值、所述第二配置值以及所述第一处理时间,确定所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第二处理时间;依据所述第一配置值、所述第二配置值、所述第二处理时间以及所述起始符号或结束符号位置,确定所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置通过如下方式确定:依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第三处理时间;依据所述第一配置值、所述第二配置值、所述第三处理时间以及所述PDCCH的时域长度,确定所述PDSCH的时域限制位置。
可选地,所述PDSCH的时域限制位置为系统中预设的时域限制位置。
可选地,所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置 值、所述PDSCH的SCS第二配置值、所述PDCCH与各子单位时间边界的相对位置相关;其中,所述PDCCH所在的单位时间包含预设数量个子单位时间。
本公开实施例提供的终端不早于PDSCH的时域限制位置开始缓存或接收PDSCH,其中,在PDCCH的SCS小于PDSCH的SCS情况下,PDSCH的时域位置不早于PDSCH的时域限制位置,相较于相关技术中从开始接收PDCCH时便开始进行数据缓存,可以减少数据缓存量,降低能耗。
应理解的是,本公开实施例中,射频单元901可用于收发信息或通话过程中,信号的接收和发送,具体地,将来自基站的下行数据接收后,给处理器910处理;另外,将上行的数据发送给基站。通常,射频单元901包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元901还可以通过无线通信系统与网络和其他设备通信。
终端通过网络模块902为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元903可以将射频单元901或网络模块902接收的或者在存储器909中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元903还可以提供与终端900执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元903包括扬声器、蜂鸣器以及受话器等。
输入单元904用于接收音频或视频信号。输入单元904可以包括图形处理器(Graphics Processing Unit,GPU)9041和麦克风9042,图形处理器9041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元906上。经图形处理器9041处理后的图像帧可以存储在存储器909(或其它存储介质)中或者经由射频单元901或网络模块902进行发送。麦克风9042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元901发送到移动通信基站的格式输出。
终端900还包括至少一种传感器905,比如光传感器、运动传感器以及 其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板9061的亮度,接近传感器可在终端900移动到耳边时,关闭显示面板9061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器905还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元906用于显示由用户输入的信息或提供给用户的信息。显示单元906可包括显示面板9061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板9061。
用户输入单元907可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元907包括触控面板9071以及其他输入设备9072。触控面板9071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板9071上或在触控面板9071附近的操作)。触控面板9071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器910,接收处理器910发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板9071。除了触控面板9071,用户输入单元907还可以包括其他输入设备9072。具体地,其他输入设备9072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步地,触控面板9071可覆盖在显示面板9061上,当触控面板9071检测到在其上或附近的触摸操作后,传送给处理器910以确定触摸事件的类型,随后处理器910根据触摸事件的类型在显示面板9061上提供相应的视觉输出。虽然在图10中,触控面板9071与显示面板9061是作为两个独立的部 件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板9071与显示面板9061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元908为外部装置与终端900连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元908可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端900内的一个或多个元件或者可以用于在终端900和外部装置之间传输数据。
存储器909可用于存储软件程序以及各种数据。存储器909可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器909可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器910是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器909内的软件程序和/或模块,以及调用存储在存储器909内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器910可包括一个或多个处理单元;可选地,处理器910可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器910中。
终端900还可以包括给各个部件供电的电源911(比如电池),可选地,电源911可以通过电源管理系统与处理器910逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端900包括一些未示出的功能模块,在此不再赘述。
可选地,本公开实施例还提供一种终端,包括处理器910,存储器909,存储在存储器909上并可在所述处理器910上运行的计算机程序,该计算机程序被处理器910执行时实现上述PDSCH时域资源分配方法实施例的各个 过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述PDSCH时域资源分配方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (22)

  1. 一种PDSCH时域资源分配方法,应用于终端,包括:
    所述终端不早于PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,在PDCCH的SCS小于所述PDSCH的SCS情况下,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。
  2. 根据权利要求1所述的方法,其中:
    所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子有关。
  3. 根据权利要求2所述的方法,其中:
    所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子之间的关系由协议预定义或网络设备所配置,或由所述终端确定。
  4. 根据权利要求3所述的方法,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据所述第二配置值与所述第一配置值确定第一中间值;
    依据系统中预设的时域限制位置与所述第一中间值的对应关系,确定所述第一中间值对应的时域限制位置为所述PDSCH的时域限制位置。
  5. 根据权利要求3所述的方法,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据所述第二配置值与所述第一配置值确定第二中间值;
    依据所述终端上报的时域限制位置与所述第二中间值的对应关系,确定所述第二中间值对应的时域限制位置为所述PDSCH的时域限制位置。
  6. 根据权利要求3所述的方法,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第一处理时间;
    依据所述第一配置值、所述第二配置值以及所述第一处理时间,确定所述PDSCH的时域限制位置。
  7. 根据权利要求3所述的方法,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第二处理时间;
    依据所述第一配置值、所述第二配置值、所述第二处理时间以及所述起始符号或结束符号位置,确定所述PDSCH的时域限制位置。
  8. 根据权利要求3所述的方法,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第三处理时间;
    依据所述第一配置值、所述第二配置值、所述第三处理时间以及所述PDCCH的时域长度,确定所述PDSCH的时域限制位置。
  9. 根据权利要求1所述的方法,其中:
    所述PDSCH的时域限制位置为系统中预设的时域限制位置。
  10. 根据权利要求1所述的方法,其中:
    所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH与各子单位时间边界的相对位置相关;其中,所述PDCCH所在的单位时间包含预设数量个子单位时间。
  11. 一种PDSCH时域资源分配终端,包括:处理器,用于不早于PDSCH的时域限制位置开始缓存或接收所述PDSCH,其中,在PDCCH的SCS小于所述PDSCH的SCS情况下,所述PDSCH的时域位置不早于所述PDSCH的时域限制位置。
  12. 根据权利要求11所述的终端,其中:
    所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域 长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子相关。
  13. 根据权利要求11所述的终端,其中:
    所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH的处理时间、所述PDCCH的时域长度、所述PDCCH的起始符号位置、所述PDCCH的结束符号位置以及参考OFDM符号中的一个或多个因子之间的关系由协议预定义或网络设备所配置或由所述终端确定。
  14. 根据权利要求13所述的终端,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据所述第二配置值与所述第一配置值确定第一中间值;
    依据系统中预设的时域限制位置与所述第一中间值的对应关系,确定所述第一中间值对应的时域限制位置为所述PDSCH的时域限制位置。
  15. 根据权利要求13所述的终端,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据所述第二配置值与所述第一配置值确定第二中间值;
    依据所述终端上报的时域限制位置与所述第二中间值的对应关系,确定所述第二中间值对应的时域限制位置为所述PDSCH的时域限制位置。
  16. 根据权利要求13所述的终端,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第一处理时间;
    依据所述第一配置值、所述第二配置值以及所述第一处理时间,确定所述PDSCH的时域限制位置。
  17. 根据权利要求13所述的终端,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第二处理时间;
    依据所述第一配置值、所述第二配置值、所述第二处理时间以及所述起 始符号或结束符号位置,确定所述PDSCH的时域限制位置。
  18. 根据权利要求13所述的终端,其中,所述PDSCH的时域限制位置通过如下方式确定:
    依据系统中预设或所述终端上报的配置值与处理时间的对应关系,确定所述第一配置值对应的第三处理时间;
    依据所述第一配置值、所述第二配置值、所述第三处理时间以及所述PDCCH的时域长度,确定所述PDSCH的时域限制位置。
  19. 根据权利要求11所述的终端,其中:
    所述PDSCH的时域限制位置为系统中预设的时域限制位置。
  20. 根据权利要求11所述的终端,其中:
    所述PDSCH的时域限制位置与所述PDCCH的SCS第一配置值、所述PDSCH的SCS第二配置值、所述PDCCH与各子单位时间边界的相对位置相关;其中,所述PDCCH所在的单位时间包含预设数量个子单位时间。
  21. 一种终端,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述的PDSCH时域资源分配方法的步骤。
  22. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至10中任一项所述的PDSCH时域资源分配方法的步骤。
PCT/CN2019/095715 2018-07-13 2019-07-12 Pdsch时域资源分配方法、终端及计算机可读存储介质 WO2020011242A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217000548A KR102591571B1 (ko) 2018-07-13 2019-07-12 Pdsch 시간 영역 자원 분배 방법, 단말 및 컴퓨터 판독 가능 저장 매체
EP19833910.3A EP3809776B1 (en) 2018-07-13 2019-07-12 Pdsch time domain resource allocation method, terminal and computer readable storage medium
JP2021500292A JP7259002B2 (ja) 2018-07-13 2019-07-12 Pdsch時間領域リソース割り当て方法、端末及びコンピュータ読み取り可能な記憶媒体
ES19833910T ES2958812T3 (es) 2018-07-13 2019-07-12 Método de asignación de recursos en el dominio de tiempo del PDSCH, terminal y medio de almacenamiento legible por ordenador
SG11202013255QA SG11202013255QA (en) 2018-07-13 2019-07-12 Method and terminal for allocating pdsch time domain resources, and computer-readable storage medium
US17/147,264 US20210136759A1 (en) 2018-07-13 2021-01-12 Method and terminal for allocating pdsch time domain resources, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810771945.1A CN110719634B (zh) 2018-07-13 2018-07-13 Pdsch时域资源分配方法、终端及计算机可读存储介质
CN201810771945.1 2018-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/147,264 Continuation US20210136759A1 (en) 2018-07-13 2021-01-12 Method and terminal for allocating pdsch time domain resources, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2020011242A1 true WO2020011242A1 (zh) 2020-01-16

Family

ID=69143204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095715 WO2020011242A1 (zh) 2018-07-13 2019-07-12 Pdsch时域资源分配方法、终端及计算机可读存储介质

Country Status (10)

Country Link
US (1) US20210136759A1 (zh)
EP (1) EP3809776B1 (zh)
JP (1) JP7259002B2 (zh)
KR (1) KR102591571B1 (zh)
CN (1) CN110719634B (zh)
ES (1) ES2958812T3 (zh)
HU (1) HUE063630T2 (zh)
PT (1) PT3809776T (zh)
SG (1) SG11202013255QA (zh)
WO (1) WO2020011242A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11751193B2 (en) * 2021-01-14 2023-09-05 Qualcomm Incorporated Scheduling order for a scheduled cell having downlink control information from multiple scheduling cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087442A (zh) * 2014-11-07 2017-08-22 三星电子株式会社 用于向用户设备(ue)发送组消息的方法和装置
US20180019843A1 (en) * 2016-07-18 2018-01-18 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998681B (zh) * 2009-08-15 2014-07-09 华为技术有限公司 信令处理方法、基站以及用户设备
US9191943B2 (en) * 2012-09-13 2015-11-17 Kt Corporation Reception and configuration of downlink control channel
KR20200090973A (ko) * 2012-10-04 2020-07-29 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
WO2016018125A1 (ko) * 2014-07-31 2016-02-04 엘지전자 주식회사 비면허대역을 지원하는 무선접속시스템에서 전송 기회 구간을 설정하는 방법 및 장치
CN105682243B (zh) * 2016-03-25 2017-12-12 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
EP3603266A4 (en) * 2017-03-23 2021-05-26 Apple Inc. PLANNING, HYBRID AUTOMATIC REPEAT REQUEST OPERATION AND CODE BOOK DESIGN FOR NEW RADIO CARRIER AGGREGATION
US10945277B2 (en) * 2018-01-11 2021-03-09 Huawei Technologies Co., Ltd. Methods and apparatus for switching between bandwidth parts
KR20220089716A (ko) * 2018-01-13 2022-06-28 주식회사 윌러스표준기술연구소 무선 통신시스템의 자원 할당 방법, 장치 및 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107087442A (zh) * 2014-11-07 2017-08-22 三星电子株式会社 用于向用户设备(ue)发送组消息的方法和装置
US20180019843A1 (en) * 2016-07-18 2018-01-18 Samsung Electronics Co., Ltd. Carrier aggregation with variable transmission durations

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "Remaining issues in carrier aggregation", 3GPP TSG RAN WGI MEETING #93 R1-1806776, 20 May 2018 (2018-05-20), XP051441978 *
QUALCOMM INCORPORATED: "CA with mixed numerology", 3GPP TSG RAN WGI MEETING #90 R1 -1713456, 20 August 2017 (2017-08-20), XP051316258 *

Also Published As

Publication number Publication date
EP3809776A4 (en) 2021-09-01
CN110719634B (zh) 2020-10-23
KR20210016466A (ko) 2021-02-15
ES2958812T3 (es) 2024-02-15
JP2021523654A (ja) 2021-09-02
CN110719634A (zh) 2020-01-21
HUE063630T2 (hu) 2024-01-28
JP7259002B2 (ja) 2023-04-17
US20210136759A1 (en) 2021-05-06
EP3809776B1 (en) 2023-08-30
EP3809776A1 (en) 2021-04-21
SG11202013255QA (en) 2021-01-28
PT3809776T (pt) 2023-09-26
KR102591571B1 (ko) 2023-10-19

Similar Documents

Publication Publication Date Title
EP3813420B1 (en) Method for monitoring pdcch, and terminal and network device
WO2020164593A1 (zh) 混合自动重传请求harq反馈方法、终端及网络设备
CN110022197B (zh) 参考信号的处理方法、网络设备和终端
EP3826387B1 (en) Paging indication method, apparatus and system
WO2020063241A1 (zh) 信息传输方法及终端
US20210168834A1 (en) Determining method, terminal, and network device
US20220141690A1 (en) Transmission method and communication device
WO2021147761A1 (zh) 上行传输处理方法及装置、终端
CN111835489B (zh) 一种传输方法、配置方法、终端及网络侧设备
WO2021068876A1 (zh) 信息传输、接收方法、终端及网络侧设备
WO2021155787A1 (zh) Bwp切换方法、终端和网络侧设备
US20220377779A1 (en) Scheduling method, terminal, and network side device
CN114641077B (zh) 数据传输方法、通信设备及存储介质
CN111615197B (zh) 资源调整方法及设备
WO2019214420A1 (zh) 业务调度方法、终端及网络设备
WO2020029783A1 (zh) Pusch和sr处理方法及设备
CN113543345B (zh) 资源确定方法、指示方法及设备
CN111836311B (zh) 能力协商方法、终端及网络设备
CN110868760B (zh) 一种传输方法及终端设备
WO2020011242A1 (zh) Pdsch时域资源分配方法、终端及计算机可读存储介质
US20220124742A1 (en) Sending method, interference handling method, terminal, and network-side device
CN113163502B (zh) 一种通信处理方法及相关设备
CN111263427B (zh) 功率调整方法、终端设备及网络设备
WO2023164806A1 (zh) 监听方法、通信设备及存储介质
WO2021057657A1 (zh) 资源配置方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500292

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217000548

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019833910

Country of ref document: EP

Effective date: 20210114