WO2023164806A1 - 监听方法、通信设备及存储介质 - Google Patents

监听方法、通信设备及存储介质 Download PDF

Info

Publication number
WO2023164806A1
WO2023164806A1 PCT/CN2022/078617 CN2022078617W WO2023164806A1 WO 2023164806 A1 WO2023164806 A1 WO 2023164806A1 CN 2022078617 W CN2022078617 W CN 2022078617W WO 2023164806 A1 WO2023164806 A1 WO 2023164806A1
Authority
WO
WIPO (PCT)
Prior art keywords
control channel
information
control
optionally
tci
Prior art date
Application number
PCT/CN2022/078617
Other languages
English (en)
French (fr)
Inventor
朱荣昌
黄伟
黄钧蔚
Original Assignee
深圳传音控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳传音控股股份有限公司 filed Critical 深圳传音控股股份有限公司
Priority to PCT/CN2022/078617 priority Critical patent/WO2023164806A1/zh
Publication of WO2023164806A1 publication Critical patent/WO2023164806A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a monitoring method, communication equipment and a storage medium.
  • the terminal needs to monitor at the PDCCH (Physical Downlink Control Channel, Physical Downlink Control Channel) monitoring opportunity determined by high-level signaling or configured by RRC (Radio Resource Control, Radio Resource Control) and within the control resource set (CORESET) PDCCH:
  • the base station determines whether to send the PDCCH in the control resource set at the corresponding PDCCH monitoring opportunity according to the scheduling algorithm.
  • the inventor found at least the following problems: Considering that the base station transmits information in the form of beams in a specific direction after successful directional LBT (listen before talk, listen before talk). The base station may fail LBT in some directions, so that the base station cannot transmit information in this direction. At this time, if the terminal continues to monitor the control channel in this direction, it is doing useless work.
  • the present application provides a monitoring method, communication equipment and storage medium. Through the technical solution of the present application, the frequency of terminal blind detection is reduced and/or the monitoring efficiency of the control channel is improved.
  • the present application provides a monitoring method, which can be applied to a terminal device, and includes the following steps:
  • S20 Determine to monitor a second control channel according to the first control channel.
  • step S10 also includes at least one of the following:
  • the first control information includes at least one beam information and/or at least one first transmission configuration indication.
  • step S20 includes:
  • the second control channel is not monitored.
  • step S20 includes:
  • the second control channel is not monitored.
  • step S20 includes:
  • the second control channel is not monitored.
  • step S10 also includes:
  • the method also includes at least one of the following:
  • the TCI information of the second control channel is not updated.
  • the first control channel and the second control channel belong to the same COT.
  • the TCI information of the first control channel includes at least one reference signal information, at least one quasi-co-site QCL status; and/or, the TCI information of the second control channel includes at least one reference signal information, at least one A QCL status.
  • the present application also provides a monitoring method, which can be applied to a terminal device, including the following steps:
  • the second control channel satisfies preset conditions, including at least one of the following:
  • the beam used by the second control channel is indicated by the first control information
  • the activated TCI information of the second control channel and the first transmission configuration indicate that there is at least one same TCI state
  • the beam used by the second control channel is within the coverage of the beam of the first control channel.
  • the method also includes at least one of the following:
  • the second control channel In response to the activated TCI information of the second control channel and the first transmission configuration indicating that the same TCI state does not exist, the second control channel is not monitored;
  • the second control channel In response to the beam used by the second control channel being outside the coverage of the beam of the first control channel, the second control channel is not listened to.
  • the method also includes at least one of the following:
  • the method also includes at least one of the following:
  • the first control information includes at least one beam information
  • the first control information includes at least one first transmission configuration indication
  • the first control channel and the second control channel belong to the same COT
  • the TCI information of the first control channel includes at least one reference signal information and at least one quasi-co-site QCL state;
  • the TCI information of the second control channel includes at least one reference signal information and at least one quasi-co-sited QCL state.
  • the method also includes at least one of the following:
  • the present application also provides a monitoring device, including:
  • a first determining module configured to determine a first control channel
  • the second determining module is configured to determine to monitor a second control channel according to the first control channel.
  • the first determining module further includes at least one of the following:
  • an information determining unit configured to determine first control information of the first control channel;
  • the signaling determination unit is configured to determine the control signaling.
  • the first control information includes at least one beam information and/or at least one first transmission configuration indication.
  • the second determination module includes:
  • a monitoring unit configured to determine whether the beam used by the second control channel is indicated by the first control information
  • the second control channel is not monitored.
  • the second determination module includes:
  • the monitoring unit is further configured to determine that the active transmission configuration indication TCI information of the second control channel has at least one same TCI state as the first transmission configuration indication, then monitor the second control channel; and/or,
  • the monitoring unit is further configured to determine that the activated TCI information of the second control channel does not have the same TCI state as the first transmission configuration indication, and then not monitor the second control channel.
  • the second determination module includes:
  • the monitoring unit is further configured to determine that the beam used by the second control channel is within the coverage of the beam of the first control channel, then monitor the second control channel; and/or,
  • the monitoring unit is further configured to determine that the beam used by the second control channel is outside the coverage of the beam of the first control channel, and then not monitor the second control channel.
  • the first determination module also includes:
  • An updating unit configured to update the TCI information of the first control channel according to the control signaling.
  • the monitoring device also includes at least one of the following:
  • An update module configured to determine that the TCI information of the first control channel is consistent with the TCI information of the second control channel, then update the TCI information of the second control channel;
  • the update module is further configured to determine that the TCI information of the first control channel is inconsistent with the TCI information of the second control channel, and then not update the TCI information of the second control channel;
  • the update module is further configured to determine that the first control channel and the second control channel are quasi-colocated, and then update the TCI information of the second control channel;
  • the update module is further configured to determine that the first control channel and the second control channel are not allowed to co-site, then not update the TCI information of the second control channel.
  • the first control channel and the second control channel belong to the same COT.
  • the TCI information of the first control channel includes at least one reference signal information, at least one quasi-co-site QCL status; and/or, the TCI information of the second control channel includes at least one reference signal information, at least one A QCL status.
  • the present application also provides a monitoring device, including:
  • a response module configured to monitor the second control channel in response to the second control channel meeting a preset condition.
  • the second control channel satisfies preset conditions, including at least one of the following:
  • the beam used by the second control channel is indicated by the first control information
  • the activated TCI information of the second control channel and the first transmission configuration indicate that there is at least one same TCI state
  • the beam used by the second control channel is within the coverage of the beam of the first control channel.
  • the response module also includes at least one of the following:
  • the first response unit is configured to not monitor the second control channel in response to the fact that the beam used by the second control channel is not indicated by the first control information
  • the second response unit is configured to respond to the activated TCI information of the second control channel not having the same TCI state as the first transmission configuration indication, then not monitoring the second control channel;
  • the third response unit is configured to not monitor the second control channel in response to the fact that the beam used by the second control channel is outside the coverage of the beam of the first control channel.
  • the monitoring device also includes at least one of the following:
  • a channel determination module configured to determine the first control channel
  • an information determining module configured to determine first control information of the first control channel
  • the signaling determining module is used to determine the control signaling.
  • the first control information further includes at least one of the following:
  • the first control information includes at least one beam information
  • the first control information includes at least one first transmission configuration indication
  • the first control channel and the second control channel belong to the same COT
  • the TCI information of the first control channel includes at least one reference signal information and at least one quasi-co-site QCL state;
  • the TCI information of the second control channel includes at least one reference signal information and at least one quasi-co-sited QCL state.
  • the monitoring device also includes at least one of the following:
  • An update module configured to determine that the TCI information of the first control channel is consistent with the TCI information of the second control channel, then update the TCI information of the second control channel;
  • the update module is further configured to determine that the TCI information of the first control channel is inconsistent with the TCI information of the second control channel, and then not update the TCI information of the second control channel;
  • the update module is further configured to determine that the first control channel and the second control channel are quasi-colocated, and then update the TCI information of the second control channel;
  • the update module is also used to determine that the first control channel and the second control channel are not allowed to co-site, then not update the TCI information of the second control channel;
  • the updating module is further configured to update the TCI information of the first control channel according to the control signaling.
  • the present application also provides a communication device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is used for invoking program instructions in the memory to execute the listening method described in any one of the above items.
  • the communication device in this application may be a terminal device (such as a mobile phone, etc.), or a network device (such as a base station, etc.), and the specific reference needs to be determined in conjunction with the context.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored; when the computer program is executed, the monitoring method described in any one of the above items is realized.
  • the present application provides a computer program product, where the computer program product includes a computer program; when the computer program is executed, the monitoring method described in any one of the above items is implemented.
  • the frequency of terminal blind detection can be reduced and/or the monitoring efficiency of the control channel can be improved.
  • FIG. 1 is a schematic diagram of a hardware structure of a mobile terminal implementing various embodiments of the present application
  • FIG. 2 is a system architecture diagram of a communication network provided by an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a monitoring method according to the first embodiment
  • Fig. 4 is a schematic flowchart of a monitoring method according to an eighth embodiment
  • Fig. 5 is a schematic flowchart of a monitoring method according to a tenth embodiment
  • Fig. 6 is an interactive interface diagram of a monitoring method according to a nineteenth embodiment.
  • first, second, third, etc. may be used herein to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of this document, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • the word “if” as used herein may be interpreted as “at” or “when” or “in response to a determination”.
  • the singular forms "a”, “an” and “the” are intended to include the plural forms as well, unless the context indicates otherwise.
  • A, B, C means “any of the following: A; B; C; A and B; A and C; B and C; A and B and C
  • A, B or C or "A, B and/or C” means "any of the following: A; B; C; A and B; A and C; B and C; A and B and C”. Exceptions to this definition will only arise when combinations of elements, functions, steps or operations are inherently mutually exclusive in some way.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” could be interpreted as “when determined” or “in response to the determination” or “when detected (the stated condition or event) )” or “in response to detection of (a stated condition or event)”.
  • step codes such as S10 and S20 are used, the purpose of which is to express the corresponding content more clearly and concisely, and does not constitute a substantive limitation on the order.
  • S20 will be executed first, followed by S10, etc., but these should be within the scope of protection of this application.
  • the communication device in this application may be a terminal device (such as a mobile phone) or a network device (such as a base station), which needs to be determined in conjunction with the context.
  • a terminal device such as a mobile phone
  • a network device such as a base station
  • Terminal devices may be implemented in various forms.
  • the terminal equipment described in this application may include mobile phones, tablet computers, notebook computers, palmtop computers, personal digital assistants (Personal Digital Assistant, PDA), portable media players (Portable Media Player, PMP), navigation devices, Mobile terminals such as wearable devices, smart bracelets, and pedometers, and fixed terminals such as digital TVs and desktop computers.
  • PDA Personal Digital Assistant
  • PMP portable media players
  • Navigation devices Mobile terminals such as wearable devices, smart bracelets, and pedometers
  • Mobile terminals such as wearable devices, smart bracelets, and pedometers
  • fixed terminals such as digital TVs and desktop computers.
  • a mobile terminal will be taken as an example, and those skilled in the art will understand that, in addition to elements specially used for mobile purposes, the configurations according to the embodiments of the present application can also be applied to fixed-type terminals.
  • FIG. 1 is a schematic diagram of the hardware structure of a mobile terminal implementing various embodiments of the present application.
  • the mobile terminal 100 may include: an RF (Radio Frequency, radio frequency) unit 101, a WiFi module 102, an audio output unit 103, an A /V (audio/video) input unit 104, sensor 105, display unit 106, user input unit 107, interface unit 108, memory 109, processor 110, and power supply 111 and other components.
  • RF Radio Frequency, radio frequency
  • the radio frequency unit 101 can be used for sending and receiving information or receiving and sending signals during a call. Specifically, after receiving the downlink information of the base station, it is processed by the processor 110; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through wireless communication.
  • the above wireless communication can use any communication standard or protocol, including but not limited to GSM (Global System of Mobile communication, Global System for Mobile Communications), GPRS (General Packet Radio Service, General Packet Radio Service), CDMA2000 (Code Division Multiple Access 2000 , Code Division Multiple Access 2000), WCDMA (Wideband Code Division Multiple Access, Wideband Code Division Multiple Access), TD-SCDMA (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access), FDD-LTE (Frequency Division Duplexing-Long Term Evolution, frequency division duplex long-term evolution), TDD-LTE (Time Division Duplexing-Long Term Evolution, time-division duplex long-term evolution) and 5G, etc.
  • GSM Global System of Mobile communication, Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA2000 Code Division Multiple Access 2000
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access, Time Division Synchro
  • WiFi is a short-distance wireless transmission technology.
  • the mobile terminal can help users send and receive emails, browse web pages, and access streaming media through the WiFi module 102, which provides users with wireless broadband Internet access.
  • Fig. 1 shows the WiFi module 102, it can be understood that it is not an essential component of the mobile terminal, and can be completely omitted as required without changing the essence of the invention.
  • the audio output unit 103 can store the audio received by the radio frequency unit 101 or the WiFi module 102 or stored in the memory 109 when the mobile terminal 100 is in a call signal receiving mode, a call mode, a recording mode, a voice recognition mode, a broadcast receiving mode, or the like.
  • the audio data is converted into an audio signal and output as sound.
  • the audio output unit 103 can also provide audio output related to a specific function performed by the mobile terminal 100 (eg, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 may include a speaker, a buzzer, and the like.
  • the A/V input unit 104 is used to receive audio or video signals.
  • the A/V input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processing unit 1041 is used for still pictures or The image data of the video is processed.
  • the processed image frames may be displayed on the display unit 106 .
  • the image frames processed by the graphics processor 1041 may be stored in the memory 109 (or other storage media) or sent via the radio frequency unit 101 or the WiFi module 102 .
  • the microphone 1042 can receive sound (audio data) via the microphone 1042 in a phone call mode, a recording mode, a voice recognition mode, and the like operating modes, and can process such sound as audio data.
  • the processed audio (voice) data can be converted into a format transmittable to a mobile communication base station via the radio frequency unit 101 for output in case of a phone call mode.
  • the microphone 1042 may implement various types of noise cancellation (or suppression) algorithms to cancel (or suppress) noise or interference generated in the process of receiving and transmitting audio signals.
  • the mobile terminal 100 also includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light, and the proximity sensor can turn off the display when the mobile terminal 100 moves to the ear. panel 1061 and/or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (generally three axes), and can detect the magnitude and direction of gravity when it is stationary, and can be used for applications that recognize the posture of mobile phones (such as horizontal and vertical screen switching, related Games, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tap), etc.; as for mobile phones, fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, Other sensors such as thermometers and infrared sensors will not be described in detail here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (Liquid Crystal Display, LCD), an organic light-emitting diode (Organic Light-Emitting Diode, OLED), or the like.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • the user input unit 107 can be used to receive input numbers or character information, and generate key signal input related to user settings and function control of the mobile terminal.
  • the user input unit 107 may include a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 also referred to as a touch screen, can collect touch operations of the user on or near it (for example, the user uses any suitable object or accessory such as a finger or a stylus on the touch panel 1071 or near the touch panel 1071). operation), and drive the corresponding connection device according to the preset program.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device and converts it into contact coordinates , and then sent to the processor 110, and can receive the command sent by the processor 110 and execute it.
  • the touch panel 1071 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072 .
  • other input devices 1072 may include, but are not limited to, one or more of physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, etc., which are not specifically described here. limited.
  • the touch panel 1071 may cover the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it transmits to the processor 110 to determine the type of the touch event, and then the processor 110 determines the touch event according to the touch event.
  • the corresponding visual output is provided on the display panel 1061 .
  • the touch panel 1071 and the display panel 1061 are used as two independent components to realize the input and output functions of the mobile terminal, in some embodiments, the touch panel 1071 and the display panel 1061 can be integrated.
  • the implementation of the input and output functions of the mobile terminal is not specifically limited here.
  • the interface unit 108 serves as an interface through which at least one external device can be connected with the mobile terminal 100 .
  • an external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) ports, video I/O ports, headphone ports, and more.
  • the interface unit 108 can be used to receive input from an external device (for example, data information, power, etc.) transfer data between devices.
  • the memory 109 can be used to store software programs as well as various data.
  • the memory 109 can mainly include a storage program area and a storage data area.
  • the storage program area can store an operating system, at least one function required application program (such as a sound playback function, an image playback function, etc.) etc.
  • the storage data area can be Store data (such as audio data, phone book, etc.) created according to the use of the mobile phone.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the mobile terminal, and uses various interfaces and lines to connect various parts of the entire mobile terminal, by running or executing software programs and/or modules stored in the memory 109, and calling data stored in the memory 109 , execute various functions of the mobile terminal and process data, so as to monitor the mobile terminal as a whole.
  • the processor 110 may include one or more processing units; preferably, the processor 110 may integrate an application processor and a modem processor.
  • the application processor mainly processes operating systems, user interfaces, and application programs, etc.
  • the demodulation processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the mobile terminal 100 can also include a power supply 111 (such as a battery) for supplying power to various components.
  • a power supply 111 (such as a battery) for supplying power to various components.
  • the power supply 111 can be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. and other functions.
  • the mobile terminal 100 may also include a Bluetooth module, etc., which will not be repeated here.
  • the following describes the communication network system on which the mobile terminal of the present application is based.
  • FIG. 2 is a structure diagram of a communication network system provided by an embodiment of the present application.
  • the communication network system is an LTE system of general mobile communication technology.
  • 201 E-UTRAN (Evolved UMTS Terrestrial Radio Access Network, Evolved UMTS Terrestrial Radio Access Network) 202, EPC (Evolved Packet Core, Evolved Packet Core Network) 203 and the operator's IP service 204.
  • E-UTRAN Evolved UMTS Terrestrial Radio Access Network
  • EPC Evolved Packet Core, Evolved Packet Core Network
  • the UE 201 may be the mobile terminal 100 described above, which will not be repeated here.
  • E-UTRAN 202 includes eNodeB 2021 and other eNodeB 2022 and so on.
  • the eNodeB2021 can be connected to other eNodeB2022 through a backhaul (for example, X2 interface), the eNodeB2021 is connected to the EPC203, and the eNodeB2021 can provide access from the UE201 to the EPC203.
  • a backhaul for example, X2 interface
  • EPC203 may include MME (Mobility Management Entity, Mobility Management Entity) 2031, HSS (Home Subscriber Server, Home Subscriber Server) 2032, other MME2033, SGW (Serving Gate Way, Serving Gateway) 2034, PGW (PDN Gate Way, packet data Network Gateway) 2035 and PCRF (Policy and Charging Rules Function, Policy and Charging Functional Entity) 2036, etc.
  • MME2031 is a control node that processes signaling between UE201 and EPC203, and provides bearer and connection management.
  • HSS2032 is used to provide some registers to manage functions such as home location register (not shown in the figure), and save some user-specific information about service features and data rates.
  • PCRF2036 is the policy and charging control policy decision point of service data flow and IP bearer resources, it is the policy and charging execution function A unit (not shown) selects and provides available policy and charging control decisions.
  • the IP service 204 may include Internet, Intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem) or other IP services.
  • IMS IP Multimedia Subsystem, IP Multimedia Subsystem
  • LTE system is used as an example above, those skilled in the art should know that this application is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as GSM, CDMA2000, WCDMA, TD-SCDMA and future new wireless communication systems.
  • the network system (such as 5G), etc., is not limited here.
  • the monitoring method of the present application can be applied to the process of terminal equipment monitoring the control channel.
  • the application scenario of the monitoring method of the present application can be a wireless communication system.
  • the wireless communication system can be a communication system based on cellular mobile communication technology.
  • the wireless communication system can be Including: several terminal devices and several network devices, the network devices are generally base stations.
  • a terminal device may be a device that provides voice and/or data connectivity to a user.
  • the terminal device can communicate with one or more core networks through a radio access network (Radio Access Network, RAN), and the terminal device can also be an IoT terminal, such as a sensor device, a mobile terminal, and a computer with an IoT terminal, for example, It may be a fixed, portable, pocket, hand-held, built-in computer, or vehicle-mounted device.
  • RAN Radio Access Network
  • Station For example, Station (Station, STA), Subscriber Unit (Subscriber Unit), Subscriber Station (Subscriber Station), Mobile Station (MobileStation), Mobile Station (Mobile), Remote Station (Remote Station), Access Point, Remote Terminal (Remote Station) Terminal), an access terminal (Access Terminal), a user device (User Terminal), a user agent (User Agent), a user device (User Device), or a user terminal (User Equipment, UE).
  • the terminal device may also be a device of an unmanned aerial vehicle.
  • the terminal device may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected externally to the trip computer.
  • the terminal device may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the base station may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (4th generation mobile communication, 4G) system, also known as Long Term Evolution (LTE). system; or, the wireless communication system may also be a 5G system, also known as a new air interface (new radio, NR) system or a 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system may be called NG-RAN (New Generation-Radio Access Network, new generation radio access network).
  • the base station may be an evolved base station (eNB) used in a 4G system.
  • the base station may also be a base station (gNB) adopting a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, radio link layer control protocol (Radio Link Control, RLC) layer, media access control (Media Access Control, MAC) layer protocol stack;
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a physical (Physical, PHY) layer protocol stack is set in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station.
  • a wireless connection can be established between the base station and the terminal device through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth-generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a technical standard of a next-generation mobile communication network.
  • an E2E (End to End, end-to-end) connection can also be established between terminal devices.
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P Vehicle to Pedestrian, vehicle-to-person communication in Vehicle to everything (V2X) communication Wait for the scene.
  • the foregoing wireless communication system may further include a network management device.
  • the network management device may be a core network device in the wireless communication system, for example, the network management device may be a mobility management entity (Mobility Management Entity, MME).
  • MME Mobility Management Entity
  • the network management device can also be other core network devices, such as Serving GateWay (SGW), Public Data Network Gateway (Public Data Network GateWay, PGW), Policy and Charging Rules Function Unit (Policy and Charging Rules Function , PCRF) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • LBT listen before talk, listen before talk
  • the radio transmitter Before starting to transmit, the radio transmitter will first listen to its radio environment to detect whether the channel is idle. If the channel is busy Then wait for the channel to be idle before transmitting, avoiding channel access conflicts and realizing channel spectrum sharing.
  • RRC Radio Resource Control, Radio Resource Control
  • RRM Radio Resource Management
  • RRA Radio Resource Allocation
  • SSS Search Space set, search space set
  • a search space is a group of candidate control channels composed of CCEs with the same aggregation level, and multiple search spaces form a search space set.
  • a set of search spaces is a set of search spaces of different aggregation levels associated with the same CORESET.
  • CORESET (Control resource set, control resource set), which is a set of physical resources in a specific area in the downlink resource grid, used to bear PDCCH (DCI).
  • the NR PDCCH is specifically designed to be sent in a configurable control resource set (CORESET).
  • CORESET is similar to the control region in LTE, but in a sense it can be summarized as follows: CORESET can configure its RB set and OFDM symbol set through the corresponding PDCCH search space. This configuration flexibility of the control area (including time, frequency, digital and operating point) enables NR to address various use cases.
  • PDCCH Physical Downlink Control Channel
  • PDCCH carries scheduling and other control information, including transmission format, resource allocation, uplink scheduling permission, power control, and uplink retransmission information.
  • DCI Downlink Control Information, downlink control information
  • PDCCH Physical Downlink Control Channel
  • the downlink control information sent by the eNB to the UE including uplink and downlink resource allocation, HARQ information, power control, etc.
  • TCI Transmission configuration Indicator, transmission configuration indicator
  • the TCI transmission configuration instruction is sent to the UE by the serving cell through the specific PDCCH MAC CE of the downlink shared channel (DL-SCH), and the LCID identified by the MAC subheader is fixed at 16 bits.
  • COT (ChannelOccupationTime, channel occupancy time), the channel occupancy is because multiple sites use the same or adjacent channels, there will be channel occupancy conflicts, and the channel occupancy time is the time when the channel is occupied.
  • SSB (Sychronization Signal Block, Synchronization Signal Block), which includes Primary Synchronization Signal (PSS), Secondary Synchronization Signal (Secondary Synchronization Signal, SSS) and Physical Broadcast Channel (Physical Broadcast Channel, PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the synchronization signal block is mainly used for synchronization between the terminal and the base station, and may also be used for the base station to indicate beam information to the terminal.
  • CSI-RS (Channel State Information-Reference Signal, channel state information reference signal), it is mainly used for the terminal to measure the characteristics of the wireless channel between the base station and the terminal.
  • QCL (Quasi-co location, quasi-co-site)
  • two signals transmitted from the same antenna port should experience the same wireless channel, and when signals are transmitted from two different antenna ports, they should experience different wireless conditions.
  • sending signals from two different antenna ports encounters a wireless channel with common characteristics.
  • the antenna port is called QCL.
  • PDSCH Physical Downlink Shared Channel, physical downlink shared channel
  • PDSCH is a kind of LTE/NR physical downlink channel, it is the downlink channel for LTE/NR to carry the main user data, all user data can be used, and Including system broadcast messages and paging messages not transmitted in PBCH.
  • MAC CE Media Access Control Control Element, control layer control unit
  • the hardware address is also called physical address or MAC address
  • the special MAC structure carrying control information is called MAC CE.
  • DMRS (Demodulation Reference Signal, demodulation reference signal), DMRS is used in LTE/NR for related demodulation of control channels and data channels. That is, the related demodulation of PDSCH channel and PDSCH channel and PUSCH and PUCCH channel.
  • Executors involved in the disclosed embodiments of the present application include, but are not limited to: terminal devices supporting cellular mobile communications, and/or network devices such as base stations.
  • the network device may be a base station.
  • the inventors of the present application found the following problem or defect: Considering that the base station transmits information in a specific direction in the form of a beam after the directional LBT is successful.
  • the base station may fail LBT in some directions, so that the base station cannot transmit information in this direction. At this time, if the terminal continues to monitor the control channel in this direction, it is doing useless work.
  • the present application proposes a monitoring method, by determining a first control channel; and determining to monitor a second control channel according to the first control channel.
  • the technical solution of the present application can reduce the frequency of terminal blind detection and/or improve the monitoring efficiency of the control channel.
  • Fig. 3 is a schematic flowchart of the monitoring method provided in the first embodiment of the present application, which can be applied to terminal devices. As shown in Fig. 3, the method may include:
  • the terminal device determines the first control channel.
  • the terminal device monitors the first control channel at the first monitoring opportunity of the PDCCH based on the search space set and the control resource set configured by the system message or the RRC message and the association relationship between them.
  • the terminal device determines the first control channel according to the search space set, the control resource set and the association between them, which provides a factual basis for determining the first control channel and reduces the complexity of blind detection of the terminal device.
  • the terminal device determines the first control channel monitoring opportunity in the time domain based on the search space set and the control resource set configured by the system message or the RRC message and the relationship between the two, and determines the required monitoring time in the frequency domain.
  • S20 Determine to monitor a second control channel according to the first control channel.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information.
  • the first control information includes at least one beam information, and/or at least one first transmission configuration indication.
  • the terminal device determines to monitor the second control channel according to at least one beam information of the first control information.
  • the terminal device determines to monitor the second control channel according to at least one first transmission configuration indication of the first control information.
  • the terminal device determines the second control channel that needs to be monitored according to the information included in the first control channel, instead of blindly monitoring the control channel, which reduces the complexity of blind detection of the terminal device and determines the second control channel to be monitored for the terminal device.
  • the control channel provides a judgment basis and improves the monitoring efficiency of the control channel.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S10 includes:
  • First control information of a first control channel is determined.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information.
  • the first control information includes at least one piece of beam information, where the beam information is used to indicate whether the beam can be transmitted.
  • the first control information includes a bitmap, and one or more bits in the bitmap correspond to a beam; setting the bit to "0" indicates that the beam is unavailable, and/or setting the bit to "1" ” indicates that the beam is available.
  • the correspondence between the above-mentioned bitmap and the above-mentioned beam is predefined; optionally, the predefined correspondence between the above-mentioned bitmap and the above-mentioned beam is determined by RRC signaling configuration.
  • the above-mentioned first control channel is a PDCCH.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the first control information included in the first control information can transmit, monitor the first control channel, and determine the first control information of the first control channel; and/or, if the first control information includes If the beam information indicates that the beam cannot be propagated, the first control channel is not monitored.
  • the monitoring of the first control channel is determined based on the first control information, so as to improve the monitoring efficiency of the control channel, reduce the resource waste of monitoring the control channel, and improve the accuracy of identifying the control channel that needs to be monitored.
  • the beam information included in the first control information it is judged whether the beam can be transmitted, and further, whether to monitor the first control channel is judged according to whether the beam is transmitted.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the terminal device determines whether the beam used by the second control channel to be received is indicated by the first control information; if indicated, the terminal device monitors the beam of the second control channel. a second control channel; and/or, if not indicated, the terminal device does not listen to the second control channel.
  • the foregoing beam may be determined by a beam used by an associated reference signal (SSB or CSI-RS).
  • SSB associated reference signal
  • CSI-RS CSI-RS
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S10 includes: determining first control information of the first control channel.
  • step S10 for the relevant description of step S10, reference may be made to the description of the second embodiment, and details are not repeated here.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the terminal device determines whether it is on the second listening time according to the beam information indicated by the first control information. If it is determined that the beam information is at the second listening time of the corresponding second control channel unit, monitor the second control channel; and/or, if it is determined that the beam information is not at the second listening time of the corresponding second control channel unit, then The second control channel is not monitored.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the monitoring time of the beam information it is determined to monitor the second control channel, which provides a judgment basis for determining to monitor the second control channel, and improves the monitoring efficiency of the control channel.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S10 includes: determining first control information of the first control channel.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information.
  • the first control information includes at least one first TCI
  • the first TCI includes beam information used by a control channel in the current COT.
  • each TCI includes a reference signal (SSB or CSI-RS) information, at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D), and a specific downlink transmission ( PDCCH or PDSCH) association.
  • SSB or CSI-RS reference signal
  • QCL type A, QCL type B, QCL type C, QCL type D QCL type D
  • PDCCH or PDSCH specific downlink transmission
  • a specific downlink transmission uses the same beam (or spatial filter) as the reference signal associated with the TCI.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the terminal device After the terminal device receives the first control information of the first control channel, if the activated TCI information of the second control channel that the terminal device needs to monitor is not in the same TCI state as the first TCI, the terminal device does not need to monitor The second control channel; and/or, if the activated TCI information of the second control channel that the terminal device needs to monitor and the first TCI have at least one same TCI status, the terminal device needs to monitor the second control channel.
  • the above activated TCI information configures at least one candidate TCI state through RRC, and activates at least one of the TCI states through MAC CE.
  • the above-mentioned first transmission configuration indicates configuring at least one candidate TCI state through RRC, and activating at least one of the TCI states through MAC CE.
  • the status of the above QCL is QCL type D.
  • the beam of the downlink signal is determined by at least one of DMRS port information of the downlink control channel, TCI information indicated by the downlink control channel, and DMRS port information of the downlink data channel.
  • the status of the aforementioned QCL is QCL typeD.
  • the above QCL means that the large-scale parameter of the channel experienced by the symbols on a certain antenna port can be inferred from the channel experienced by the symbols on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the TCI states are jointly activated and/or deactivated, reducing the overhead of the MAC CE.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, reduces MACCE overhead, and reduces the complexity of monitoring.
  • step S10 includes: determining first control information of the first control channel.
  • step S10 for the relevant description of step S10, reference may be made to the description of the second embodiment, and details are not repeated here.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the terminal device determines that the beam used by the second control channel is within the beam coverage of the first control channel, and then the terminal device monitors the second control channel; and /or, if it is determined that the beam used by the second control channel is outside the beam coverage of the first control channel, then the terminal device does not monitor the second control channel.
  • the terminal device judges whether the beam used by the second control channel is in the same spatial filter as the DMRS port information of the first control channel by comparing the DMRS port information of the second control channel with the DMRS port information of the first control channel. within the beam coverage.
  • the terminal device judges whether the same spatial filter is used by comparing the TCI information of the second control channel with the TCI information of the first control channel, that is, judges whether the beam used by the second control channel is in the same position as that of the first control channel. within beam coverage.
  • the second control channel uses the same spatial filter as the first control channel, it is considered that the beam used by the second control channel is within the beam coverage of the first control channel; and/or, if the second control channel and the first control channel If a control channel uses a different spatial filter, it is considered that the beam used by the second control channel is outside the beam coverage of the first control channel.
  • the beam may be determined by the beam used by the associated reference signal (SSB or CSI-RS).
  • a specific downlink transmission (PDCCH or PDSCH) uses the same beam (or spatial filter) as the reference signal associated with the TCI.
  • each TCI includes a reference signal (SSB or CSI-RS) information, at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D), by associating the TCI with a specific downlink transmission (PDCCH or PDSCH), optionally, the network informs the terminal that the same beam (or spatial filter) as the reference signal associated with the TCI is used for downlink transmission, and the network informs the terminal that RRC and MAC CE are included.
  • SSB or CSI-RS reference signal
  • QCL state QCL type A, QCL type B, QCL type C, QCL type D
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries common control information.
  • the first control information is carried by DCI 2_0.
  • the inclusion relationship between the control channels is determined through multiple dimensions, so as to determine the monitoring control channel, improve the monitoring efficiency of the control channel, and reduce the complexity of terminal blind detection.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S10 includes: determining control signaling.
  • the terminal device receives the control signaling, and the control signaling is sent by the base station.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • the terminal device Based on the search space set and control resource set configured by the system message or RRC message, and the associated information between the two, the terminal device monitors the first physical downlink control channel on the corresponding first control channel unit at the first monitoring opportunity.
  • control channel carries first control information
  • the first control information is used to indicate at least one beam information.
  • the terminal device determines whether to monitor the second control channel on the corresponding second control channel unit during the second listening time according to the indicated beam information.
  • RRC signaling assigns to each configured set of control resources a subset of configured alternate states.
  • MAC CE signaling dynamically indicate that a specific TCI state is valid from the candidate state subset corresponding to each CORESET.
  • the terminal device monitors the PDCCH of a certain CORESET, the terminal device will think that the PDCCH will use the beam used by the reference signal associated with the TCI specified by the MAC CE (that is, the same spatial filter). It can be understood that if the terminal device determines in advance a suitable receiving end beam for the downlink reference signal, it considers that this beam can be used to receive the PDCCH.
  • the TCI state corresponding to the PDCCH on the CORESET is updated.
  • the TCI state corresponding to the first control channel on the CORESET is updated.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the terminal device monitors the second control channel in the COT; and/or, if the TCI information of the second control channel is inconsistent with that of the first control channel, Then the terminal device no longer monitors the second control channel in the COT.
  • the TCI information of the first control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • the TCI information of the second control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • At least one reference signal in the TCI information of the second control channel and the first control channel is the same and/or the QCL state is the same.
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries public control information.
  • the first control information is carried by DCI 2_0.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S10 includes: determining control signaling.
  • the terminal device receives the control signaling, and the control signaling is sent by the base station.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • steps S10 and S30 reference may be made to the description of the fifth embodiment, and details are not repeated here.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the terminal device monitors the second control channel in the COT; and/or, if the second control channel is not quasi-co-sited with the first control channel address, the terminal device will no longer monitor the second control channel in the COT.
  • the status of the QCL is QCL type D.
  • QCL means that a large-scale parameter of a channel experienced by a symbol on a certain antenna port can be inferred from a channel experienced by a symbol on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • the above QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries public control information.
  • the first control information is carried by DCI 2_0.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • Fig. 4 is a schematic flow diagram of the monitoring method provided in the eighth embodiment of the present application, as shown in Fig. 4, including the following steps:
  • the terminal device according to the search space set and control resource set configured based on the system message or RRC message, and the associated information between the two, at the first listening opportunity of the physical downlink control channel, on the corresponding first control channel unit Listen to a first control channel.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information.
  • the terminal device determines whether to monitor the second control channel on the corresponding second control channel unit during the second listening time according to the indicated beam information.
  • RRC signaling assigns to each configured core set a subset of configured candidate states.
  • MAC signaling dynamically indicate that a specific TCI state is valid from the candidate state subset corresponding to each CORESET.
  • the terminal device monitors the PDCCH of a certain CORESET, the terminal device will think that the PDCCH will use the beam used by the reference signal associated with the TCI specified by the MAC (ie, the same spatial filter). It can be understood that if the terminal device determines in advance a suitable receiving end beam for the downlink reference signal, it considers that this beam can be used to receive the PDCCH.
  • the TCI state corresponding to the PDCCH on the CORESET is updated.
  • the TCI state corresponding to the first control channel on the CORESET is updated.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • step S30 that is, before updating the TCI information of the first control channel
  • the TCI information of the second control channel is consistent with the TCI information of the first control channel
  • update according to the control signaling The update result of the TCI state corresponding to the second control channel is consistent with the update result of the TCI state corresponding to the first control channel, and the first control channel is monitored in the COT. If the TCI information of the second control channel is inconsistent with the TCI information of the first control channel before step S30, that is, before updating the TCI information of the first control channel, the TCI state corresponding to the second control channel is not updated. The terminal device no longer monitors the second control channel in the COT.
  • the TCI information of the first control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • the TCI information of the second control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • QCL type A that is, quasi-co-site type A includes (Doppler offset, Doppler spread, average delay, delay spread), if two signals QCL type A, that is two The above parameters of the signal are the same
  • QCL type B includes (Doppler shift, Doppler spread), if two signals are QCL type B, it means that the above parameters of the two signals are the same
  • QCL type C includes (Doppler shift, average delay), if the two signals are QCL type C, it means that the above parameters of the two signals are the same
  • QCL type D includes (Doppler shift, spatial RX parameter), if say The two signals are QCL type D, which means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • the first control information is updated, based on the consistency of the TCI information of the second control channel and the first control channel, it is determined to monitor and update the second control channel, so as to facilitate subsequent monitoring of the second control channel and improve control Channel listening efficiency.
  • the monitoring method provided in the embodiment of the present application is based on determining a first control channel; determining to monitor a second control channel according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S30 includes: updating the TCI information of the first control channel according to the control signaling.
  • step S30 for the relevant description of step S30, reference may be made to the description of the eighth embodiment, and details are not repeated here.
  • the corresponding step S20 includes: determining to monitor the second control channel according to the first control channel.
  • the second control channel is quasi-colocated with the first control channel before step S30, that is, before updating the TCI information of the first control channel, update the second control channel according to the control signaling
  • the update result of the TCI state corresponding to the channel is consistent with the update result of the TCI state corresponding to the first control channel, and the first control channel is monitored in the COT.
  • the second control channel is not allowed to co-site with the first control channel before step S30, that is, before updating the TCI information of the first control channel, the TCI state corresponding to the second control channel is not updated.
  • the terminal device no longer monitors the second control channel within the COT.
  • At least one reference signal in the TCI information of the second control channel and the first control channel is the same and/or the QCL state is the same.
  • the status of the QCL is QCL type D.
  • QCL means that a large-scale parameter of a channel experienced by a symbol on a certain antenna port can be inferred from a channel experienced by a symbol on another antenna port.
  • the large-scale parameters may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter, etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • the above QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • the first control information is updated, based on whether the second control channel and the first control channel are quasi-colocated, it is determined to monitor and update the second control channel, so as to facilitate subsequent monitoring of the second control channel and improve control Channel listening efficiency.
  • the monitoring method provided in the embodiment of the present application is based on determining a first control channel; determining to monitor a second control channel according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • FIG. 5 is a schematic flow diagram of a monitoring method provided in the tenth embodiment of the present application. As shown in FIG. 5, it is applied to a terminal device, and the method may include:
  • the second control channel is monitored in response to the second control channel meeting a preset condition.
  • the second control channel meeting preset conditions includes at least one of the following:
  • the beam used by the second control channel is indicated by the first control information
  • the activated TCI information of the second control channel and the first transmission configuration indicate that there is at least one same TCI state
  • the beam used by the second control channel is within the coverage of the beam of the first control channel.
  • the foregoing preset conditions may also be set as required, which is not limited in the present application.
  • monitoring the second control channel provides a judgment basis for monitoring the second control channel, and improves the monitoring efficiency of the control channel.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S100 includes: monitoring the second control channel in response to the second control channel meeting a preset condition.
  • the second control channel is not monitored
  • the first control channel carries first control information, where the first control information is used to indicate at least one beam information.
  • the first control information includes at least one piece of beam information, and the beam information is used to indicate whether the beam can be transmitted.
  • the above-mentioned first control information includes a bitmap, and one or more bits in the above-mentioned bitmap correspond to one beam; setting the above-mentioned bit to "0" indicates that the beam is unavailable, and setting the bit to "1" indicates that the beam is not available. Beam available.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is determined by RRC signaling configuration.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is predefined.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S100 includes: in response to the second control channel meeting a preset condition, monitoring the second control channel.
  • the second control channel is not monitored
  • the above activated TCI information configures at least one candidate TCI state through RRC, and activates at least one of the TCI states through MAC CE.
  • the above-mentioned first transmission configuration indicates configuring at least one candidate TCI state through RRC, and activating at least one of the TCI states through MAC CE.
  • the status of the above QCL is QCL type D.
  • the beam of the downlink signal is determined by at least one of DMRS port information of the downlink control channel, TCI information indicated by the downlink control channel, and DMRS port information of the downlink data channel.
  • the status of the aforementioned QCL is QCL typeD.
  • the above QCL means that the large-scale parameter of the channel experienced by the symbols on a certain antenna port can be inferred from the channel experienced by the symbols on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the TCI states are jointly activated and/or deactivated, reducing the overhead of the MAC CE.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S100 includes: in response to the second control channel meeting a preset condition, monitoring the second control channel.
  • the second control channel is not monitored
  • the DMRS port information of the second control channel and the DMRS port information of the first control channel use the same spatial filter, it is judged whether the beam used by the second control channel is in the beam of the first control channel within coverage.
  • the same spatial filter is used by comparing the TCI information of the second control channel with the TCI information of the first control channel, that is, it is judged whether the beam used by the second control channel is covered by the beam of the first control channel within range.
  • the beam may be determined by the beam used by the associated reference signal (SSB or CSI-RS).
  • a specific downlink transmission (PDCCH or PDSCH) uses the same beam (or spatial filter) as the reference signal associated with the TCI.
  • each TCI includes a reference signal (SSB or CSI-RS) information, at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D), by associating the TCI with a specific downlink transmission (PDCCH or PDSCH), optionally, the network informs the terminal that the same beam (or spatial filter) as the reference signal associated with the TCI is used for downlink transmission, and the network informs the terminal that RRC and MAC CE are included.
  • SSB or CSI-RS reference signal
  • QCL state QCL type A, QCL type B, QCL type C, QCL type D
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries common control information.
  • the first control information is carried by DCI 2_0.
  • the inclusion relationship between the control channels is determined through multiple dimensions, so as to determine the monitoring control channel, improve the monitoring efficiency of the control channel, and reduce the complexity of terminal blind detection.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S100 includes: in response to the second control channel meeting a preset condition, monitoring the second control channel.
  • the TCI information of the first control channel before updating the TCI information of the first control channel, it is determined that the TCI information of the first control channel is consistent with the TCI information of the second control channel, updating the TCI information of the second control channel, and monitoring the second control channel;
  • the TCI information of the second control channel Before updating the TCI information of the first control channel, if it is determined that the TCI information of the first control channel is inconsistent with the TCI information of the second control channel, the TCI information of the second control channel is not updated, and the second control channel is not monitored.
  • the TCI information of the first control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • the TCI information of the second control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • At least one reference signal in the TCI information of the second control channel and the first control channel is the same and/or the QCL state is the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the terminal device receives control signaling, and the foregoing control signaling is sent by the base station.
  • the TCI information of the first control channel and the second control channel is updated according to the control signaling.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • the first control information is updated, based on the consistency of the TCI information of the second control channel and the first control channel, it is determined to monitor and update the second control channel, so as to facilitate subsequent monitoring of the second control channel and improve control Channel listening efficiency.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S100 includes: in response to the second control channel meeting a preset condition, monitoring the second control channel.
  • the TCI information of the second control channel is not updated, and the second control channel is not monitored.
  • the status of the QCL is QCL type D.
  • QCL means that a large-scale parameter of a channel experienced by a symbol on a certain antenna port can be inferred from a channel experienced by a symbol on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries common control information.
  • the first control information is carried by DCI 2_0.
  • the TCI information of the first control channel and the second control channel is updated according to the control signaling.
  • the terminal device receives control signaling, and the foregoing control signaling is sent by the base station.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • the first control information is updated, based on whether the second control channel and the first control channel are quasi-colocated, it is determined to monitor and update the second control channel, so as to facilitate subsequent monitoring of the second control channel and improve control Channel listening efficiency.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • step S100 further includes at least one of the following:
  • the terminal device receives control signaling, and the foregoing control signaling is sent by the base station.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • the terminal device determines the first control channel, and determines a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • the network device configures the search space set and the control resource set through a system message or an RRC message. Then, according to the configured search space set and control resource set and the association relationship between them, at the first monitoring opportunity of the PDCCH, determine the first control channel, and monitor the first control channel unit corresponding to the first control channel. a control channel.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information.
  • the first control information includes at least one piece of beam information, and the beam information is used to indicate whether the beam can be transmitted.
  • the beam information included in the first control information it is judged whether the beam can be transmitted, and further, whether to monitor the first control channel is judged according to whether the beam is transmitted.
  • the first control channel is determined based on the first control information, so as to improve the monitoring efficiency of the control channel, reduce the resource waste of monitoring the control channel, and improve the accuracy of identifying the control channel that needs to be monitored.
  • the first control information includes a bitmap, and one or more bits in the bitmap correspond to a beam; setting the bit to "0" indicates that the beam is unavailable, and/or setting the bit to "1" Indicates that the beam is available.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is predefined.
  • the predefined corresponding relationship between the foregoing bitmap and the foregoing beam is determined by RRC signaling configuration.
  • the first control information includes at least one first TCI
  • the first TCI includes beam information used by a control channel in the current COT.
  • each TCI includes at least one reference signal (SSB or CSI-RS) information, at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D), the TCI and a specific downlink transmission (PDCCH or PDSCH) association.
  • SSB reference signal
  • QCL state QCL type A, QCL type B, QCL type C, QCL type D
  • the TCI is associated with a specific downlink transmission, and each TCI has its corresponding downlink transmission, which improves the accuracy of determining the monitoring control channel according to the TCI information, and improves the efficiency of monitoring the control channel.
  • the network notifies the terminal to use the same beam (or spatial filter) as the reference signal associated with the TCI during downlink transmission, and the network notifies the terminal to include RRC and MAC CE.
  • the second control channel is monitored.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, and reduces the complexity of monitoring.
  • a seventeenth embodiment of the present application is proposed, which is applied to a network device, and the method may include:
  • the first control channel and the second control channel are sent.
  • the network device configures the search space set and the control resource set for the terminal device through the system message or the RRC message, so that the terminal device configures the search space set and the control resource set based on the system message or the RRC message and the association between the two relationship, at the first monitoring opportunity of the PDCCH, the first control channel is monitored.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information, so that the terminal device determines to monitor the second control channel according to the beam information of the first control information.
  • the first control information includes at least one piece of beam information, and the beam information is used to indicate whether the beam can be transmitted.
  • the above-mentioned first control information includes a bitmap, and one or more bits in the above-mentioned bitmap correspond to one beam; the above-mentioned bit is set to "0" to indicate that the beam is unavailable, and/or, the bit is set to " 1" means the beam is available.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is determined by RRC signaling configuration.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is predefined.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the first control information includes at least one first TCI
  • the TCI includes beam information used by a control channel in the current COT.
  • each TCI includes at least one reference signal (SSB or CSI-RS) information, at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D), associated TCI and a specific downlink transmission (PDCCH or PDSCH).
  • SSB reference signal
  • QCL state QCL type A, QCL type B, QCL type C, QCL type D
  • PDCH or PDSCH specific downlink transmission
  • the activated TCI information configures at least one candidate TCI state through the RRC, and activates at least one of the TCI states through the MAC CE, so that the terminal device activates the TCI based on the second control channel and the first TCI of the first control channel. Determine to monitor the second control channel.
  • the above-mentioned first TCI configures at least one candidate TCI state through RRC, and activates at least one TCI state through MAC CE.
  • the status of the aforementioned QCL is QCL typeD.
  • the beam of the downlink signal is determined by at least one of DMRS port information of the downlink control channel, TCI information indicated by the downlink control channel, and DMRS port information of the downlink data channel.
  • the above QCL means that the large-scale parameter of the channel experienced by the symbols on a certain antenna port can be inferred from the channel experienced by the symbols on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • the above QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the monitoring method provided by the embodiment of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, reduces MACCE overhead, and reduces the complexity of monitoring.
  • an eighteenth embodiment of the present application is proposed, which is applied to a network device, and the method may include:
  • the first control channel, the second control channel, and control signaling are sent.
  • the network device configures the search space set and the control resource set for the terminal through a system message or an RRC message. So that the terminal monitors the first control channel on the corresponding first control channel unit at the first monitoring opportunity of the physical downlink control channel according to the configured search space set and control resource set and the associated information therebetween.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information. so that the terminal determines whether to monitor the second control channel on the corresponding second control channel unit during the second listening time according to the indicated beam information.
  • the first control channel is updated.
  • the RRC signaling assigns each configured CORESET a subset of configured alternative states.
  • the network can dynamically indicate that a specific TCI state is valid from the candidate state subset corresponding to each CORESET.
  • the network device dynamically updates a specific TCI state from the candidate state subset corresponding to a CORESET to be valid, the TCI state corresponding to the PDCCH on the CORESET is updated.
  • control signaling is carried in an RRC message.
  • control signaling is carried in the MAC CE.
  • control signaling is carried in a physical downlink data channel.
  • sending the first control channel, and sending a corresponding data channel according to the first control channel, the control signaling being carried in the data channel includes the following methods:
  • the TCI state corresponding to the first control channel on the CORESET is updated.
  • the TCI state corresponding to the first control channel on the CORESET is updated.
  • the TCI information of the first control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • the TCI information of the second control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • At least one reference signal in the TCI information of the second control channel and the first control channel is the same and/or the QCL state is the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the TCI state corresponding to the above-mentioned second control channel is consistent.
  • the TCI state corresponding to the second control channel is not updated.
  • the status of the aforementioned QCL is QCL typeD.
  • the above QCL means that the large-scale parameter of the channel experienced by the symbols on a certain antenna port can be inferred from the channel experienced by the symbols on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • the above QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the monitoring method provided by the embodiment of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, reduces MACCE overhead, and reduces the complexity of monitoring.
  • FIG. 6 is an interactive interface diagram of a monitoring method according to a nineteenth embodiment. As shown in the figure, the method may include:
  • the network device configures the search space set and the control resource set for the terminal device through a system message or an RRC message.
  • the terminal device determines the first control channel at the first monitoring opportunity of the PDCCH according to the configured search space set and control resource set and the association between them, and monitors the first control channel unit corresponding to the first control channel first control channel.
  • the first control channel carries first control information, and the first control information is used to indicate at least one beam information.
  • the first control information includes at least one piece of beam information, where the beam information is used to indicate whether the beam can be transmitted.
  • the beam information included in the first control information it is judged whether the beam can be transmitted, and then it is judged whether to monitor the first control channel through the terminal device according to whether the beam is transmitted or not.
  • the first control channel is determined based on the first control information, so as to improve the monitoring efficiency of the control channel, reduce the resource waste of monitoring the control channel, and improve the accuracy of identifying the control channel that needs to be monitored.
  • determining to monitor the second control channel according to the first control channel includes the following methods:
  • the terminal device determines whether the beam used by the second control channel transmitted by the network device to be received is indicated by the first control information; if If indicated, the terminal device monitors the second control channel; and/or, if not indicated, the terminal device does not monitor the second control channel.
  • the first control channel carries first control information, where the first control information is used to indicate at least one beam information.
  • the first control information includes at least one piece of beam information, and the beam information is used to indicate whether the beam can be transmitted.
  • the above-mentioned first control information includes a bitmap, and one or more bits in the above-mentioned bitmap correspond to one beam; the above-mentioned bit is set to "0" to indicate that the beam is unavailable, and/or, the bit is set to " 1” means the beam is available.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is determined by RRC signaling configuration.
  • the corresponding relationship between the foregoing bitmap and the foregoing beam is predefined.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the terminal device After the terminal device receives the first control information of the first control channel sent by the network device, if the activated TCI information of the second control channel that the terminal device needs to monitor is not in the same TCI state as the first TCI, the terminal The device does not need to monitor the second control channel; and/or, if the activated TCI information of the second control channel that the terminal device needs to monitor and the first TCI have at least one same TCI state, the terminal device needs to monitor the second control channel.
  • the above activated TCI information configures at least one candidate TCI state through RRC, and activates at least one of the TCI states through MAC CE.
  • the above-mentioned first transmission configuration indicates configuring at least one candidate TCI state through RRC, and activating at least one of the TCI states through MAC CE.
  • the status of the above QCL is QCL type D.
  • the beam of the downlink signal is determined by at least one of DMRS port information of the downlink control channel, TCI information indicated by the downlink control channel, and DMRS port information of the downlink data channel.
  • the status of the above QCL is QCL typeD.
  • the above QCL means that the large-scale parameter of the channel experienced by the symbols on a certain antenna port can be inferred from the channel experienced by the symbols on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the above-mentioned first control channel and second control channel are PDCCHs.
  • the above-mentioned first control channel carries public control information.
  • the above-mentioned first control information is carried by DCI 2_0.
  • the TCI states are jointly activated and/or deactivated, reducing the overhead of the MAC CE.
  • the terminal device determines that the beam used by the second control channel is within the beam coverage of the first control channel, and then the terminal device monitors the second control channel. a control channel; and/or, if it is determined that the beam used by the second control channel is outside the beam coverage of the first control channel, then the terminal device does not monitor the second control channel.
  • the DMRS port information of the second control channel and the DMRS port information of the first control channel use the same spatial filter, it is judged whether the beam used by the second control channel is in the beam of the first control channel within coverage.
  • the same spatial filter is used by comparing the TCI information of the second control channel with the TCI information of the first control channel, that is, it is judged whether the beam used by the second control channel is covered by the beam of the first control channel within range.
  • the beam may be determined by the beam used by the associated reference signal (SSB or CSI-RS).
  • a specific downlink transmission (PDCCH or PDSCH) uses the same beam (or spatial filter) as the reference signal associated with the TCI.
  • each TCI includes a reference signal (SSB or CSI-RS) information, at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D), by associating the TCI with a specific downlink transmission (PDCCH or PDSCH), the network informs the terminal that the same beam (or spatial filter) as the reference signal associated with the TCI is used for downlink transmission, and the network informs the terminal that it includes RRC and MAC CE.
  • SSB or CSI-RS reference signal
  • QCL state QCL type A, QCL type B, QCL type C, QCL type D
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries public control information.
  • the first control information is carried by DCI 2_0.
  • the inclusion relationship between the control channels is determined through multiple dimensions, so as to determine the monitoring control channel, improve the monitoring efficiency of the control channel, and reduce the complexity of terminal blind detection.
  • control signaling is determined.
  • the network device sends the control signaling, and the terminal device receives the control signaling.
  • the terminal device updates the TCI information of the first control channel according to the control signaling.
  • the network device sends the first control channel, and sends a corresponding data channel according to the first control channel, and the control signaling is carried in the data channel.
  • RRC signaling assigns to each configured core set a subset of configured candidate states.
  • the network device dynamically indicates that a specific TCI state is valid from the candidate state subset corresponding to each CORESET.
  • the terminal device monitors the PDCCH of a certain CORESET, the terminal device will think that the PDCCH will use the beam used by the reference signal associated with the TCI specified by the MAC (ie, the same spatial filter). It can be understood that if the terminal device determines in advance a suitable receiving end beam for the downlink reference signal, it considers that this beam can be used to receive the PDCCH.
  • the network device dynamically updates a specific TCI state from the candidate state subset corresponding to a CORESET according to the control signaling to be valid, the TCI state corresponding to the PDCCH on the CORESET is updated.
  • the TCI state corresponding to the first control channel on the CORESET is updated.
  • the TCI information of the second control channel is consistent with the TCI information of the first control channel before updating the TCI information of the first control channel, update the corresponding The update result of the TCI state is consistent with the update result of the TCI state corresponding to the above-mentioned first control channel, and the above-mentioned first control channel is monitored in the COT. If the TCI information of the second control channel is inconsistent with the TCI information of the first control channel before updating the TCI information of the first control channel, the TCI state corresponding to the second control channel is not updated. The terminal device no longer monitors the second control channel in the COT.
  • the TCI information of the first control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • the TCI information of the second control channel includes at least one reference signal (SSB or CSI-RS) information, and at least one QCL state (QCL type A, QCL type B, QCL type C, QCL type D).
  • SSB reference signal
  • CSI-RS CSI-RS
  • At least one reference signal in the TCI information of the second control channel and the first control channel is the same and/or the QCL state is the same.
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries public control information.
  • the first control information is carried by DCI 2_0.
  • the first control information is updated, based on the consistency of the TCI information of the second control channel and the first control channel, it is determined to monitor and update the second control channel, so as to facilitate subsequent monitoring of the second control channel and improve control Channel listening efficiency.
  • the second control channel if the second control channel is quasi-co-sited with the first control channel before updating the TCI information of the first control channel, update the TCI state corresponding to the second control channel according to the control signaling, The update result is consistent with the update result of the TCI state corresponding to the first control channel, and the first control channel is monitored in the COT. And/or, if the second control channel is not allowed to co-site with the first control channel before updating the TCI information of the first control channel, the TCI state corresponding to the second control channel is not updated. The terminal device no longer monitors the second control channel within the COT.
  • the status of the QCL is QCL type D.
  • QCL means that a large-scale parameter of a channel experienced by a symbol on a certain antenna port can be inferred from a channel experienced by a symbol on another antenna port.
  • the large-scale parameter may be delay spread, average delay, Doppler spread, Doppler offset, average gain, and spatial RX parameter (spatial reception parameter), etc.
  • the spatial RX parameter can be at least one of parameters such as channel correlation matrix, transmit beam, receive beam, transmit/receive beam equivalence, etc.
  • the above spatial RX parameter is used to define the large scale of the channel caused by the change of analog beamforming parameter difference. If the two antenna ports are QCL in the sense of the spatial RX parameter, it can generally be understood that the same beam can be used to receive two ports or send two ports or receive and send two ports separately.
  • QCL typeD means that the spatial RX parameters of the two antenna ports are the same.
  • the first control channel and the second control channel belong to the same COT.
  • the first control channel and the second control channel are PDCCHs.
  • the first control channel carries common control information.
  • the first control information is carried by DCI 2_0.
  • the first control information is updated, based on whether the second control channel and the first control channel are quasi-colocated, it is determined to monitor and update the second control channel, so as to facilitate subsequent monitoring of the second control channel and improve control Channel listening efficiency.
  • the first control channel is determined; and the second control channel is determined according to the first control channel.
  • the technical solution of the present application reduces the frequency of terminal blind detection and/or improves the monitoring efficiency of the control channel, reduces MACCE overhead, and reduces the complexity of monitoring.
  • An embodiment of the present application further provides a communication device, the communication device includes a memory and a processor, and a monitoring program is stored in the memory, and when the monitoring program is executed by the processor, the steps of the monitoring method in any of the foregoing embodiments are implemented.
  • An embodiment of the present application further provides a computer-readable storage medium, on which a monitoring program is stored, and when the monitoring program is executed by a processor, the steps of the monitoring method in any of the foregoing embodiments are implemented.
  • the embodiments of the communication device and the computer-readable storage medium provided in this application may contain all the technical features of any of the above embodiments of the monitoring method. Let me repeat.
  • An embodiment of the present application further provides a computer program product, the computer program product includes computer program code, and when the computer program code is run on the computer, the computer is made to execute the methods in the above various possible implementation manners.
  • the embodiment of the present application also provides a chip, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the device installed with the chip executes the above various possible implementation modes. Methods.
  • Units in the device in the embodiment of the present application may be combined, divided and deleted according to actual needs.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in other words, the part that contributes to the prior art, and the computer software product is stored in one of the above storage media (such as ROM/RAM, magnetic CD, CD), including several instructions to make a terminal device (which may be a mobile phone, computer, server, controlled terminal, or network device, etc.) execute the method of each embodiment of the present application.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • a computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, special purpose computer, a computer network, or other programmable apparatus.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g. Coaxial cable, optical fiber, digital subscriber line) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, etc. integrated with one or more available media.
  • Usable media may be magnetic media, (eg, floppy disk, memory disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), among others.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出了一种监听方法、通信设备及存储介质,该监听方法包括以下步骤:确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率。

Description

监听方法、通信设备及存储介质 技术领域
本申请涉及无线通信技术领域,具体涉及一种监听方法、通信设备及存储介质。
背景技术
一些实现中,终端需要在高层信令确定的或者RRC(Radio Resource Control,无线资源控制)配置的PDCCH(Physical Downlink Control Channel,物理下行控制信道)监听时机上、在控制资源集合(CORESET)内监听PDCCH;在授权频谱上,基站根据调度算法确定是否在对应的PDCCH监听时机上,在控制资源集合内发送PDCCH。
在构思及实现本申请过程中,发明人发现至少存在如下问题:考虑到基站在定向LBT(listen before talk,先听后说)成功之后,在特定的方向上以波束形式传输信息。基站可能会在某些方向上LBT失败,这样基站就不可能在这个方向上传输信息,此时如果终端继续监听这个方向上的控制信道就是在做无用功。
前面的叙述在于提供一般的背景信息,并不一定构成现有技术。
发明内容
针对上述技术问题,本申请提供一种监听方法、通信设备及存储介质,通过本申请技术方案,降低了终端盲检的频率和/或提高了控制信道的监听效率。
第一方面,本申请提供一种监听方法,可应用于终端设备,包括以下步骤:
S10:确定第一控制信道;
S20:根据所述第一控制信道确定监听第二控制信道。
可选地,所述步骤S10还包括以下至少一种:
确定所述第一控制信道的第一控制信息;和/或,
确定控制信令。
可选地,所述第一控制信息包括至少一个波束信息和/或至少一个第一传输配置指示。
可选地,所述步骤S20包括:
确定所述第二控制信道所使用的波束是否被所述第一控制信息指示;
若被指示,则监听所述第二控制信道;和/或,
若未被指示,则不监听所述第二控制信道。
可选地,所述步骤S20包括:
确定所述第二控制信道的激活传输配置指示TCI信息与所述第一传输配置指示存在至少一个相同的TCI状态,则监听所述第二控制信道;和/或,
确定所述第二控制信道的激活TCI信息与所述第一传输配置指示不存在相同的TCI状态,则不监听所述第二控制信道。
可选地,所述步骤S20包括:
确定所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围内,则监听所述第二控制信道;和/或,
确定所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围外,则不监听所述第二控制信道。
可选地,所述步骤S10还包括:
根据所述控制信令更新所述第一控制信道的TCI信息。
可选地,所述方法还包括以下至少一种:
确定所述第一控制信道与所述第二控制信道的TCI信息一致,则更新所述第二控制信道的TCI信息;
确定所述第一控制信道与所述第二控制信道的TCI信息不一致,则不更新所述第二控制信道的TCI 信息;
确定所述第一控制信道与所述第二控制信道准共站址,则更新所述第二控制信道的TCI信息;
确定所述第一控制信道与所述第二控制信道不准共站址,则不更新所述第二控制信道的TCI信息。
可选地,所述第一控制信道与所述第二控制信道属于同一个COT。
可选地,所述第一控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态;和/或,所述第二控制信道的TCI信息包括至少一个参考信号信息、至少一个QCL状态。
第二方面,本申请还提供一种监听方法,可应用于终端设备,包括以下步骤:
S100,响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,所述第二控制信道满足预设条件,包括以下至少一种:
所述第二控制信道所使用的波束被第一控制信息指示;
所述第二控制信道的激活TCI信息与第一传输配置指示存在至少一个相同的TCI状态;
所述第二控制信道使用的波束在第一控制信道的波束的覆盖范围内。
可选地,所述方法还包括以下至少一种:
响应于所述第二控制信道所使用的波束未被所述第一控制信息指示,则不监听所述第二控制信道;
响应于所述第二控制信道的激活TCI信息与所述第一传输配置指示不存在相同的TCI状态,则不监听所述第二控制信道;
响应于所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围外,则不监听所述第二控制信道。
可选地,所述方法还包括以下至少一种:
确定所述第一控制信道;
确定所述第一控制信道的第一控制信息;
确定控制信令。
可选地,所述方法还包括以下至少一种:
所述第一控制信息包括至少一个波束信息;
所述第一控制信息包括至少一个第一传输配置指示;
所述第一控制信道与所述第二控制信道属于同一个COT;
所述第一控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态;
所述第二控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态。
可选地,所述方法还包括以下至少一种:
确定所述第一控制信道与所述第二控制信道的TCI信息一致,则更新所述第二控制信道的TCI信息;
确定所述第一控制信道与所述第二控制信道的TCI信息不一致,则不更新所述第二控制信道的TCI信息;
确定所述第一控制信道与所述第二控制信道准共站址,则更新所述第二控制信道的TCI信息;
确定所述第一控制信道与所述第二控制信道不准共站址,则不更新所述第二控制信道的TCI信息;
根据所述控制信令更新所述第一控制信道的TCI信息。
第三方面,本申请还提供一种监听装置,包括:
第一确定模块,用于确定第一控制信道;
第二确定模块,用于根据所述第一控制信道确定监听第二控制信道。
可选地,所述第一确定模块还包括以下至少一种:
信息确定单元,用于确定所述第一控制信道的第一控制信息;和/或,
信令确定单元,用于确定控制信令。
可选地,所述第一控制信息包括至少一个波束信息和/或至少一个第一传输配置指示。
可选地,所述第二确定模块包括:
监听单元,用于确定所述第二控制信道所使用的波束是否被所述第一控制信息指示;
若被指示,则监听所述第二控制信道;和/或,
若未被指示,则不监听所述第二控制信道。
可选地,所述第二确定模块包括:
监听单元,还用于确定所述第二控制信道的激活传输配置指示TCI信息与所述第一传输配置指示存在至少一个相同的TCI状态,则监听所述第二控制信道;和/或,
监听单元,还用于确定所述第二控制信道的激活TCI信息与所述第一传输配置指示不存在相同的TCI状态,则不监听所述第二控制信道。
可选地,所述第二确定模块包括:
监听单元,还用于确定所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围内,则监听所述第二控制信道;和/或,
监听单元,还用于确定所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围外,则不监听所述第二控制信道。
可选地,所述第一确定模块还包括:
更新单元,用于根据所述控制信令更新所述第一控制信道的TCI信息。
可选地,所述监听装置还包括以下至少一种:
更新模块,用于确定所述第一控制信道与所述第二控制信道的TCI信息一致,则更新所述第二控制信道的TCI信息;
更新模块,还用于确定所述第一控制信道与所述第二控制信道的TCI信息不一致,则不更新所述第二控制信道的TCI信息;
更新模块,还用于确定所述第一控制信道与所述第二控制信道准共站址,则更新所述第二控制信道的TCI信息;
更新模块,还用于确定所述第一控制信道与所述第二控制信道不准共站址,则不更新所述第二控制信道的TCI信息。
可选地,所述第一控制信道与所述第二控制信道属于同一个COT。
可选地,所述第一控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态;和/或,所述第二控制信道的TCI信息包括至少一个参考信号信息、至少一个QCL状态。
第四方面,本申请还提供一种监听装置,包括:
响应模块,用于响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,所述第二控制信道满足预设条件,包括以下至少一种:
所述第二控制信道所使用的波束被第一控制信息指示;
所述第二控制信道的激活TCI信息与第一传输配置指示存在至少一个相同的TCI状态;
所述第二控制信道使用的波束在第一控制信道的波束的覆盖范围内。
可选地,所述响应模块还包括以下至少一种:
第一响应单元,用于响应于所述第二控制信道所使用的波束未被所述第一控制信息指示,则不监听所述第二控制信道;
第二响应单元,用于响应于所述第二控制信道的激活TCI信息与所述第一传输配置指示不存在相同的TCI状态,则不监听所述第二控制信道;
第三响应单元,用于响应于所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围外,则不监听所述第二控制信道。
可选地,所述监听装置还包括以下至少一种:
信道确定模块,用于确定所述第一控制信道;
信息确定模块,用于确定所述第一控制信道的第一控制信息;
信令确定模块,用于确定控制信令。
可选地,所述第一控制信息还包括以下至少一种:
所述第一控制信息包括至少一个波束信息;
所述第一控制信息包括至少一个第一传输配置指示;
所述第一控制信道与所述第二控制信道属于同一个COT;
所述第一控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态;
所述第二控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态。
可选地,所述监听装置还包括以下至少一种:
更新模块,用于确定所述第一控制信道与所述第二控制信道的TCI信息一致,则更新所述第二控制信道的TCI信息;
更新模块,还用于确定所述第一控制信道与所述第二控制信道的TCI信息不一致,则不更新所述第二控制信道的TCI信息;
更新模块,还用于确定所述第一控制信道与所述第二控制信道准共站址,则更新所述第二控制信道的TCI信息;
更新模块,还用于确定所述第一控制信道与所述第二控制信道不准共站址,则不更新所述第二控制信道的TCI信息;
更新模块,还用于根据所述控制信令更新所述第一控制信道的TCI信息。
本申请还提供一种通信设备,包括:存储器和处理器;
所述存储器用于存储程序指令;
所述处理器用于调用所述存储器中的程序指令以执行如上任一项所述的监听方法。
本申请中的通信设备可以是终端设备(如手机等),也可以是网络设备(如基站等),具体所指,需要结合上下文加以确定。
本申请还提供一种计算机可读存储介质,所述存储介质上存储有计算机程序;所述计算机程序被执行时,实现如上任一项所述的监听方法。
本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序;所述计算机程序被执行时,实现如上任一项所述的监听方法。
通过本申请技术方案,可降低终端盲检的频率和/或提高控制信道的监听效率。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为实现本申请各个实施例的一种移动终端的硬件结构示意图;
图2为本申请实施例提供的一种通信网络系统架构图;
图3是根据第一实施例示出的监听方法的流程示意图;
图4是根据第八实施例示出的监听方法的流程示意图;
图5是根据第十实施例示出的监听方法的流程示意图;
图6是根据第十九实施例示出的监听方法的交互界面图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。通过上述附图,已示出本申请明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本申请构思的范围,而是通过参考特定实施例为本领域技术人员说明本申请的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方 面相一致的装置和方法的例子。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素,此外,本申请不同实施例中具有同样命名的部件、特征、要素可能具有相同含义,也可能具有不同含义,其具体含义需以其在该具体实施例中的解释或者进一步结合该具体实施例中上下文进行确定。
应当理解,尽管在本文可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本文范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语"如果"可以被解释成为"在……时"或"当……时"或"响应于确定"。再者,如同在本文中所使用的,单数形式“一”、“一个”和“该”旨在也包括复数形式,除非上下文中有相反的指示。应当进一步理解,术语“包含”、“包括”表明存在所述的特征、步骤、操作、元件、组件、项目、种类、和/或组,但不排除一个或多个其他特征、步骤、操作、元件、组件、项目、种类、和/或组的存在、出现或添加。本申请使用的术语“或”、“和/或”、“包括以下至少一个”等可被解释为包括性的,或意味着任一个或任何组合。例如,“包括以下至少一个:A、B、C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”,再如,“A、B或C”或者“A、B和/或C”意味着“以下任一个:A;B;C;A和B;A和C;B和C;A和B和C”。仅当元件、功能、步骤或操作的组合在某些方式下内在地互相排斥时,才会出现该定义的例外。
应该理解的是,虽然本申请实施例中的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
需要说明的是,在本文中,采用了诸如S10、S20等步骤代号,其目的是为了更清楚简要地表述相应内容,不构成顺序上的实质性限制,本领域技术人员在具体实施时,可能会先执行S20后执行S10等,但这些均应在本申请的保护范围之内。
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或者“单元”的后缀仅为了有利于本申请的说明,其本身没有特定的意义。因此,“模块”、“部件”或者“单元”可以混合地使用。
本申请中的通信设备,可以是终端设备(如手机),也可以是网络设备(如基站),需要结合上下文加以确定。
终端设备可以以各种形式来实施。例如,本申请中描述的终端设备可以包括诸如手机、平板电脑、笔记本电脑、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、便捷式媒体播放器(Portable Media Player,PMP)、导航装置、可穿戴设备、智能手环、计步器等移动终端,以及诸如数字TV、台式计算机等固定终端。
后续描述中将以移动终端为例进行说明,本领域技术人员将理解的是,除了特别用于移动目的的元件之外,根据本申请的实施方式的构造也能够应用于固定类型的终端。
请参阅图1,其为实现本申请各个实施例的一种移动终端的硬件结构示意图,该移动终端100可以包括:RF(Radio Frequency,射频)单元101、WiFi模块102、音频输出单元103、A/V(音频/视频)输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图1中示出的移动终端结构并不构成对移动终端的限定,移动终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1对移动终端的各个部件进行具体的介绍:
射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将基站的下行信息接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信与网络和其他设备通信。上述无线通信可以使用任一通信标准或协议,包括但不限于GSM(Global System of Mobile communication,全球移动通讯系统)、GPRS(General Packet Radio Service,通用分组无线服务)、CDMA2000(Code Division Multiple Access 2000,码分多址2000)、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)、FDD-LTE(Frequency Division Duplexing-Long Term Evolution,频分双工长期演进)、TDD-LTE(Time Division Duplexing-Long Term Evolution,分时双工长期演进)和5G等。
WiFi属于短距离无线传输技术,移动终端通过WiFi模块102可以帮助用户收发电子邮件、浏览网页和访问流式媒体等,它为用户提供了无线的宽带互联网访问。虽然图1示出了WiFi模块102,但是可以理解的是,其并不属于移动终端的必须构成,完全可以根据需要在不改变发明的本质的范围内而省略。
音频输出单元103可以在移动终端100处于呼叫信号接收模式、通话模式、记录模式、语音识别模式、广播接收模式等等模式下时,将射频单元101或WiFi模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与移动终端100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103可以包括扬声器、蜂鸣器等等。
A/V输入单元104用于接收音频或视频信号。A/V输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或WiFi模块102进行发送。麦克风1042可以在电话通话模式、记录模式、语音识别模式等等运行模式中经由麦克风1042接收声音(音频数据),并且能够将这样的声音处理为音频数据。处理后的音频(语音)数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。麦克风1042可以实施各种类型的噪声消除(或抑制)算法以消除(或抑制)在接收和发送音频信号的过程中产生的噪声或者干扰。
移动终端100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。可选地,光传感器包括环境光传感器及接近传感器,可选地,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在移动终端100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机还可配置的指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与移动终端的用户设置以及功能控制有关的键信号输入。可选地,用户输入单元107可包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作),并根据预先设定的程式驱动相应的连接装置。触控面板1071可包括触摸检测装置和触摸控制器两个部分。可选地,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,并能接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。可选地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种,具体此处不做限定。
可选地,触控面板1071可覆盖显示面板1061,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图1中,触控面板1071与显示面板1061是作为两个独立的部件来实现移动终端的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现移动终端的输入和输出功能,具体此处不做限定。
接口单元108用作至少一个外部装置与移动终端100连接可以通过的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到移动终端100内的一个或多个元件或者可以用于在移动终端100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,可选地,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是移动终端的控制中心,利用各种接口和线路连接整个移动终端的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行移动终端的各种功能和处理数据,从而对移动终端进行整体监控。处理器110可包括一个或多个处理单元;优选的,处理器110可集成应用处理器和调制解调处理器,可选地,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
移动终端100还可以包括给各个部件供电的电源111(比如电池),优选的,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
尽管图1未示出,移动终端100还可以包括蓝牙模块等,在此不再赘述。
为了便于理解本申请实施例,下面对本申请的移动终端所基于的通信网络系统进行描述。
请参阅图2,图2为本申请实施例提供的一种通信网络系统架构图,该通信网络系统为通用移动通信技术的LTE系统,该LTE系统包括依次通讯连接的UE(User Equipment,用户设备)201,E-UTRAN(Evolved UMTS Terrestrial Radio Access Network,演进式UMTS陆地无线接入网)202,EPC(Evolved Packet Core,演进式分组核心网)203和运营商的IP业务204。
可选地,UE201可以是上述移动终端100,此处不再赘述。
E-UTRAN202包括eNodeB2021和其它eNodeB2022等。可选地,eNodeB2021可以通过回程(backhaul)(例如X2接口)与其它eNodeB2022连接,eNodeB2021连接到EPC203,eNodeB2021可 以提供UE201到EPC203的接入。
EPC203可以包括MME(Mobility Management Entity,移动性管理实体)2031,HSS(Home Subscriber Server,归属用户服务器)2032,其它MME2033,SGW(Serving Gate Way,服务网关)2034,PGW(PDN Gate Way,分组数据网络网关)2035和PCRF(Policy and Charging Rules Function,政策和资费功能实体)2036等。可选地,MME2031是处理UE201和EPC203之间信令的控制节点,提供承载和连接管理。HSS2032用于提供一些寄存器来管理诸如归属位置寄存器(图中未示)之类的功能,并且保存有一些有关服务特征、数据速率等用户专用的信息。所有用户数据都可以通过SGW2034进行发送,PGW2035可以提供UE 201的IP地址分配以及其它功能,PCRF2036是业务数据流和IP承载资源的策略与计费控制策略决策点,它为策略与计费执行功能单元(图中未示)选择及提供可用的策略和计费控制决策。
IP业务204可以包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)或其它IP业务等。
虽然上述以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本申请不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如GSM、CDMA2000、WCDMA、TD-SCDMA以及未来新的网络系统(如5G)等,此处不做限定。
基于上述移动终端硬件结构以及通信网络系统,提出本申请各个实施例。
本申请监听方法可应用于终端设备监听控制信道的过程,本申请的监听方法的应用场景可以是一种无线通信系统,无线通信系统可以是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个终端设备和若干个网络设备,网络设备一般为基站。
可选地,终端设备可以是向用户提供语音和/或数据连通性的设备。终端设备可以经过无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,终端设备也可以是物联网终端,如传感器设备、移动终端和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(Subscriber Unit)、订户站(Subscriber Station)、移动站(MobileStation)、移动台(Mobile)、远程站(Remote Station)、接入点、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户终端(User Equipment,UE)。或者,终端设备也可以是无人飞行器的设备。或者,终端设备也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,终端设备也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站可以是无线通信系统中的网络侧设备,可选地,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。可选地,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
可选地,基站可以是4G系统中采用的演进型基站(eNB)。或者,基站也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站的具体实现方式不加以限定。
基站和终端设备之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于下一代移动通信网络技术标准的无线空口。
在一些实施例中,终端设备之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(Vehicle to everything,V2X)中的V2V(Vehicle to Vehicle,车对车)通信、V2I(Vehicle to Infrastructure,车对路边设备)通信和V2P(Vehicle to Pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备。
若干个基站分别与网络管理设备相连。可选地,网络管理设备可以是无线通信系统中的核心网设备,比如,该网络管理设备可以是演进的数据分组核心网(Evol vedPacket Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy andCharging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备的实现形态,本公开实施例不做限定。
本申请实施例涉及的技术术语:
LBT:(listen before talk,先听后说),是无线电通信中使用较为广泛的一种技术,无线电发射机在开始传输之前首先会侦听其无线电环境,检测信道是否空闲,若信道处于繁忙状态则等待信道空闲时再传输,避免信道访问冲突,实现信道频谱共享。
RRC:(Radio Resource Control,无线资源控制),又称为无线资源管理(RRM)或者无线资源分配(RRA),是指通过一定的策略和手段进行无线资源管理、控制和调度,在满足服务质量的要求下,尽可能地充分利用有限的无线网络资源,确保到达规划的覆盖区域,尽可能地提高业务容量和资源利用率。
SSS:(Search Space set,搜索空间集合),一个搜索空间是一组拥有相同聚合等级的由CCE构成的候选控制信道,多个搜索空间构成搜索空间集合。一个搜索空间集合是关联到同一个CORESET的不同聚合等级的搜索空间的集合。
CORESET:(Control resource set,控制资源集合),它是下行资源网格中特定区域内的一组物理资源,用于承载PDCCH(DCI)。NR PDCCH被专门设计为在可配置的控制资源集(CORESET)中发送。CORESET类似于LTE中的控制区域,但是在某种意义上被概括为:CORESET可以通过对应的PDCCH搜索空间来配置它的RB集合和OFDM符号集合。控制区域的这种配置灵活性(包括时间,频率,数字和操作点)使NR能够解决各种用例。
PDCCH:(Physical Downlink Control Channel,物理下行控制信道),PDCCH承载调度以及其他控制信息,具体包含传输格式、资源分配、上行调度许可、功率控制以及上行重传信息等。
DCI:(Downlink Control Information,下行控制信息),由下行物理控制信道PDCCH承载,eNB发给UE的下行控制信息,包括上下行资源分配、HARQ信息、功率控制等。
TCI:(Transmission configuration Indicator,传输配置指示),TCI传输配置指示用于指示波束。TCI传输配置指示是服务小区通过下行共享信道(DL-SCH)特定的PDCCH MAC CE发给UE,其MAC子标头标识的LCID固定为16位bits。
COT:(ChannelOccupationTime,信道占用时间),信道占用是因为多个站点使用了相同或相邻的信道,就会出现信道占用冲突,信道占用时间为信道被占用的时间。
SSB:(Sychronization Signal Block,同步信号块),它包含主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS)以及物理广播信道(Physical Broadcast Channel,PBCH)。同步信号块主要用于终端与基站之间的同步,也可以用于基站向终端指示波束信息。
CSI-RS:(Channel State Information-Reference Signal,信道状态信息参考信号),它主要用于终端测量基站与终端之间的无线信道的特性。
QCL:(Quasi-co location,准共站址),从同一天线端口发射的两个信号应经历相同的无线信道,从两个不同的天线端口发射信号时,应经历不同的无线条件。但是,在某些情况下,从两个不同的天线端口发送信号会遇到具有共同特性的无线信道。在这种情况下,天线端口称为QCL。
PDSCH:(Physical Downlink Shared Channel,物理下行共享信道),PDSCH是LTE/NR物理下 行信道中的一种,是LTE/NR承载主要用户数据的下行链路通道,所有的用户数据都可以使用,还包括没有在PBCH中传输的系统广播消息和寻呼消息。
MAC CE:(Media Access ControlControl Element,控制层控制单元),在局域网中,硬件地址又称为物理地址或MAC地址,携带控制信息的特殊的MAC结构叫做MAC CE。
DMRS:(Demodulation Reference Signal,解调参考信号),DMRS在LTE/NR中用于控制信道和数据信道的相关解调。即PDSCH信道和PDSCH信道以及PUSCH和PUCCH信道的相关解调。
本申请公开实施例涉及的执行主体包括但不限于:支持蜂窝移动通信的终端设备,和/或基站等网络设备。
为辅助理解本申请的各实施例技术方案,在部分或全部实施例中,网络设备可为基站。
在终端设备监听基站的控制信道的过程中,本申请发明人发现以下问题或缺陷:考虑到基站在定向LBT成功之后,在特定的方向上以波束形式传输信息。基站可能会在某些方向上LBT失败,这样基站就不可能在这个方向上传输信息,此时如果终端继续监听这个方向上的控制信道就是在做无用功。
为解决此问题,本申请提出一种监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案可降低终端盲检的频率和/或提高控制信道的监听效率。
为了使终端设备有效监听控制信道,提高控制信道的监听效率,降低在不需要监听的控制信道上的无用功,本申请提供一种监听方法。图3为本申请第一实施例提供的监听方法的流程示意图,可应用于终端设备,如图3所示,该方法可以包括:
S10:确定第一控制信道。
可选地,终端设备确定第一控制信道。
终端设备基于系统消息或者RRC消息配置的搜索空间集合和控制资源集合以及两者之间的关联关系,在PDCCH第一监听时机上,监听第一控制信道。
由此,终端设备根据搜索空间集合和控制资源集合以及两者之间的关联关系确定第一控制信道,为确定第一控制信道提供了事实依据,降低了终端设备盲检的复杂度。
可选地,终端设备基于系统消息或者RRC消息配置的搜索空间集合和控制资源集合以及两者之间的关联关系,在时域上确定第一控制信道监听时机,在频域上确定所需要监听的资源。
S20:根据所述第一控制信道确定监听第二控制信道。
可选地,根据第一控制信道确定监听第二控制信道。
可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。第一控制信息包括至少一个波束信息,和/或至少一个第一传输配置指示。
可选地,终端设备根据第一控制信息的至少一个波束信息确定监听第二控制信道;和/或,
终端设备根据第一控制信息的至少一个第一传输配置指示确定监听第二控制信道。
由此,终端设备根据第一控制信道包括的信息,确定需要监听的第二控制信道,而不是盲目的对控制信道进行监听,降低了终端设备盲检的复杂度,为终端设备确定监听第二控制信道提供了判断依据,提高了控制信道的监听效率。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第一实施例,提出本申请的第二实施例,在第二实施例中,步骤S10包括:
确定第一控制信道的第一控制信息。
可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。
可选地,第一控制信息包括至少一个波束信息,上述波束信息用于指示波束是否可以传输。
可选地,第一控制信息包括一个比特位图,上述比特位图内的一个或者多个比特对应一个波束;上述比特置“0”表示该波束不可用,和/或,上述比特置“1”表示该波束可用。
可选地,上述比特位图和上述波束之间的对应关系是预定义的;可选地,上述比特位图和上述波束之间预定义的对应关系由RRC信令配置确定的。
可选地,上述第一控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
若第一控制信息包括的波束信息的指示波束中,至少一个波束可以传输,则监听第一控制信道,并确定第一控制信道的第一控制信息;和/或,若第一控制信息包括的波束信息的指示波束无法传播,则不监听第一控制信道。基于第一控制信息确定监听第一控制信道,以此提高控制信道的监听效率,降低监听控制信道的资源浪费,提高辨别需要监听的控制信道的准确率。
由此,根据第一控制信息包括的波束信息,判断波束是否可以进行传输,进而根据波束的传输与否判断是否对第一控制信道进行监听。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,终端设备接收到第一控制信道的第一控制信息之后,确定所需要接收地第二控制信道所使用的波束是否被第一控制信息所指示;如果被指示,则终端设备监听第二控制信道;和/或,如果没有被指示,则终端设备不监听第二控制信道。
可选地,上述波束可以通过关联的参考信号(SSB或者CSI-RS)所使用的波束确定。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据波束信息判断PDCCH是否需要监听,降低了终端盲检的复杂度。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第一实施例,提出本申请的第三实施例,在第三实施例中,步骤S10包括:确定第一控制信道的第一控制信息。
可选地,步骤S10的相关描述可参照第二实施例的描述,在此不再赘述。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,终端设备根据第一控制信息指示的波束信息确定是否在第二监听时间上。若确定波束信息在对应的第二控制信道单元的第二监听时间上,则监听第二控制信道;和/或,若确定波束信息不在对应的第二控制信道单元的第二监听时间上,则不监听第二控制信道。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据波束信息的监听时间,确定监听第二控制信道,为确定监听第二控制信道提供了判断依据,提高了控制信道的监听效率。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第一实施例,提出本申请的第四实施例,在第四实施例中,步骤S10包括:确定第一控制信道的第一控制信息。
可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。
可选地,上述第一控制信息包括至少一个第一TCI,上述第一TCI包括当前COT内控制信道所使用的波束信息。
可选地,每一个TCI包括一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D),将TCI和一个特定下行传输(PDCCH或者PDSCH)关联。一个特定的下行传输(PDCCH或者PDSCH)使用了与TCI关联的参考信号相同的波束(或者说空间 滤波器)。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,终端设备接收到第一控制信道的第一控制信息之后,如果终端设备需要监听的第二控制信道的激活TCI信息和第一TCI不存在相同的TCI状态,则终端设备不需要监听第二控制信道;和/或,如果终端设备需要监听的第二控制信道的激活TCI信息和第一TCI存在至少一个相同的TCI状态,则终端设备需要监听第二控制信道。
可选地,上述激活TCI信息通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述第一传输配置指示通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述QCL的状态是QCL type D。
可选地,上述下行信号的的波束至少由下行控制信道的DMRS端口信息,下行控制信道指示的TCI信息,下行数据信道的DMRS端口信息之一确定。
可选地,上述QCL的状态是QCL typeD。
可选地,上述QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据不同CORESET(控制资源集合)的TCI状态之间的关联关系,联合激活和/或去激活TCI状态,降低了MAC CE的开销。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,减少了MACCE开销,降低了监听的复杂度。
基于本申请的第一实施例,提出本申请的第五实施例,在第五实施例中,步骤S10包括:确定第一控制信道的第一控制信息。
可选地,步骤S10的相关描述可参照第二实施例的描述,在此不再赘述。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,终端设备接收到第一控制信道的第一控制信息之后,确定第二控制信道所使用的波束在第一控制信道的波束覆盖范围之内,则终端设备监听第二控制信道;和/或,确定第二控制信道所使用地波束在第一控制信道的波束覆盖范围之外,则终端设备不监听第二控制信道。
可选地,终端设备根据比较第二控制信道的DMRS端口信息和第一控制信道的DMRS端口信息是否使用了相同的空间滤波器,来判断第二控制信道使用的波束是否在第一控制信道的波束的覆盖范围之内。
可选地,终端设备根据比较第二控制信道的TCI信息和第一控制信道的TCI信息来判断是否使用了相同的空间滤波器,即判断第二控制信道使用的波束是否在第一控制信道的波束覆盖范围之内。
如果第二控制信道与第一控制信道使用了相同的空间滤波器,则认为第二控制信道使用的波束在第一控制信道的波束覆盖范围之内;和/或,如果第二控制信道与第一控制信道使用了不同的空间滤波器,则认为第二控制信道使用的波束在第一控制信道的波束覆盖范围之外。
可选地,波束可以通过关联的参考信号(SSB或者CSI-RS)所使用的波束确定。一个特定的下行传输(PDCCH或者PDSCH)使用了与TCI关联的参考信号相同的波束(或者说空间滤波器)。
可选地,每一个TCI包括一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D),通过关联TCI和一个特定下行传输(PDCCH或者PDSCH),可选地,网络通知终端在下行传输使用了与TCI关联的参考信号相同的波束(或者说空间滤波器),网络通知终端包括RRC、MAC CE。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
由此,根据控制信道的波束的覆盖范围,通过多个维度确定控制信道间的包含关系,以此确定监听控制信道,提高控制信道的监听效率,降低终端盲检的复杂度。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第一实施例,提出本申请的第六实施例,在第六实施例中,步骤S10包括:确定控制信令。
可选地,终端设备接收所述控制信令,所述控制信令由基站发送。
可选地,所述控制信令承载在RRC消息中。
可选地,所述控制信令承载在MAC CE中。
可选地,所述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
S30:根据所述控制信令更新所述第一控制信道的TCI信息。
终端设备基于系统消息或者RRC消息配置的搜索空间集合和控制资源集合,及两者之间的关联信息,在物理下行控制信道第一监听时机上,在对应的第一控制信道单元上监听第一控制信道。可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。终端设备根据指示的波束信息确定是否在第二监听时间上,确定在对应的第二控制信道单元上监听第二控制信道。
RRC信令对每个配置的控制资源集合指派配置的备选状态的一个子集。通过MAC CE信令,动态地从每个CORESET对应的备选状态子集中指示一个特定的TCI状态为有效。当终端设备监听某个CORESET的PDCCH时,终端设备会认为该PDCCH会采用MAC CE指定的TCI相关联的参考信号使用的波束(即相同的空间滤波器)。可以理解地,如果终端设备事先决定了对下行参考信号合适的接收端波束,就认为可以用这个波束来接收PDCCH。当根据控制信令从一个CORESET对应的备选状态子集中动态地更新一个特定的TCI状态为有效,上述CORESET上的PDCCH对应的TCI状态更新。
可选地,当一个CORESET对应的备选状态子集中根据控制信令动态地更新一个特定的TCI状态为有效,上述CORESET上的第一控制信道对应的TCI状态更新。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,如果第二控制信道与第一控制信道的TCI信息一致,则终端设备在COT内监听第二控制信道;和/或,如果第二控制信道与第一控制信道的TCI信息不一致,则终端设备在COT内不再监听第二控制信道。
可选地,第一控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,第二控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,第二控制信道与第一控制信道的TCI信息中的至少一个参考信号相同和/或QCL状态相同。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第一实施例,提出本申请的第七实施例,在第七实施例中,步骤S10包括:确定控制信令。
可选地,终端设备接收所述控制信令,所述控制信令由基站发送。
可选地,所述控制信令承载在RRC消息中。
可选地,所述控制信令承载在MAC CE中。
可选地,所述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
S30:根据所述控制信令更新所述第一控制信道的TCI信息。
可选地,步骤S10、S30的相关描述可参照第五实施例的描述,在此不再赘述。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,如果第二控制信道与第一控制信道准共站址,则终端设备在COT内监听第二控制信道;和/或,如果第二控制信道与上述第一控制信道不准共站址,则终端设备在COT内不再监听第二控制信道。
可选地,QCL的状态是QCL type D。
可选地,QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,上述QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
图4为本申请第八实施例提供的监听方法的流程示意图,如图4所示,包括以下步骤:
S30:根据所述控制信令更新所述第一控制信道的TCI信息。
终端设备根据基于系统消息或者RRC消息配置的搜索空间集合集合和控制资源集合集合,及两者之间的关联信息,在物理下行控制信道第一监听时机上,在对应的第一控制信道单元上监听第一控制信道。可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。终端设备根 据指示的波束信息确定是否在第二监听时间上,确定在对应的第二控制信道单元上监听第二控制信道。
对控制信道的波束指示,RRC信令对每个配置的核心集指派配置的备选状态的一个子集。通过MAC信令,动态地从每个CORESET对应的备选状态子集中指示一个特定的TCI状态为有效。当终端设备监听某个CORESET的PDCCH时,终端设备会认为该PDCCH会采用MAC指定的TCI相关联的参考信号使用的波束(即相同的空间滤波器)。可以理解地,如果终端设备事先决定了对下行参考信号合适的接收端波束,就认为可以用这个波束来接收PDCCH。当根据控制信令从一个CORESET对应的备选状态子集中动态地更新一个特定的TCI状态为有效,上述CORESET上的PDCCH对应的TCI状态更新。
可选地,当一个CORESET对应的备选状态子集中根据控制信令动态地更新一个特定的TCI状态为有效,上述CORESET上的第一控制信道对应的TCI状态更新。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,如果在步骤S30之前,即更新所述第一控制信道的TCI信息之前,所述第二控制信道的TCI信息与所述第一控制信道的TCI信息一致,则根据控制信令更新第二控制信道对应的TCI状态,更新结果和上述第一控制信道对应的TCI状态的更新结果一致,并在COT内监听上述第一控制信道。如果在步骤S30之前,即更新所述第一控制信道的TCI信息之前,上述第二控制信道与上述第一控制信道的TCI信息不一致,则上述第二控制信道对应的TCI状态不更新。终端设备在COT内不再监听上述第二控制信道。
可选地,上述第一控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,上述第二控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,QCL type A即准共站址类型A包含了(多普勒偏移、多普勒扩展、平均时延、时延扩展),如果说两个信号QCL type A,就是说两个信号的以上参数都相同,QCL type B包含了(多普勒偏移、多普勒扩展),如果说两个信号QCL type B,就是说两个信号的以上参数都相同;QCL type C包含了(多普勒偏移、平均时延),如果说两个信号QCL type C,就是说两个信号的以上参数都相同;QCL typeD包括了(多普勒偏移、spatial RX parameter),如果说两个信号QCL type D,就是说两个天线端口的spatial RX parameter相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
可选地,所述控制信令承载在RRC消息中。
可选地,所述控制信令承载在MAC CE中。
可选地,所述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
由此,当第一控制信息更新时,基于第二控制信道与第一控制信道TCI信息的一致性,确定对第二控制信道进行监听、更新,便于后续对第二控制信道进行监听,提高控制信道的监听效率。
本申请实施例提供的监听方法,基于确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第八实施例,提出本申请的第九实施例,在第九实施例中,步骤S30包括:根据所述控制信令更新所述第一控制信道的TCI信息。
可选地,步骤S30的相关描述可参照第八实施例的描述,在此不再赘述。
对应的步骤S20包括:根据第一控制信道确定监听第二控制信道。
可选地,如果在步骤S30之前,即更新所述第一控制信道的TCI信息之前,所述第二控制信道与 所述第一控制信道准共站址,则根据控制信令更新第二控制信道对应的TCI状态,更新结果和第一控制信道对应的TCI状态的更新结果一致,并在COT内监听第一控制信道。如果在步骤S30之前,即更新所述第一控制信道的TCI信息之前,第二控制信道与第一控制信道不准共站址,则第二控制信道对应的TCI状态不更新。终端设备在COT内不再监听第二控制信道。
可选地,第二控制信道与第一控制信道的TCI信息中的至少一个参考信号相同和/或QCL状态相同。
可选地,QCL的状态是QCL type D。
可选地,QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,上述QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
可选地,所述控制信令承载在RRC消息中。
可选地,所述控制信令承载在MAC CE中。
可选地,所述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
由此,当第一控制信息更新时,基于第二控制信道与第一控制信道是否准共站址,确定对第二控制信道进行监听、更新,便于后续对第二控制信道进行监听,提高控制信道的监听效率。
本申请实施例提供的监听方法,基于确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
图5为本申请第十实施例提供的监听方法的流程示意图,如图5所示,应用于终端设备,该方法可以包括:
S100,响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,响应于第二控制信道满足预设条件,监听第二控制信道。
可选地,第二控制信道满足预设条件包括以下至少一种:
第二控制信道所使用的波束被第一控制信息指示;
第二控制信道的激活TCI信息与第一传输配置指示存在至少一个相同的TCI状态;
第二控制信道使用的波束在第一控制信道的波束的覆盖范围内。
可选地,上述预设条件还可根据需要设置,本申请对此不加以限制。
由此,当第二控制信道满足任一种预设条件时,监听第二控制信道,为监听第二控制信道提供了判断依据,提高了控制信道的监听效率。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第十实施例,提出本申请的第十一实施例,在第十一实施例中,步骤S100包括:响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,响应于上述第二控制信道所使用的波束未被第一控制信息指示,则不监听上述第二控制信 道;
响应于上述第二控制信道所使用的波束被上述第一控制信息指示,则监听上述第二控制信道。
可选地,第一控制信道承载第一控制信息,上述第一控制信息用以指示至少一个波束信息。
可选地,上述第一控制信息包括至少一个波束信息,上述波束信息用于指示波束是否可以传输。
可选地,上述第一控制信息包括一个比特位图,上述比特位图内的一个或者多个比特对应一个波束;上述比特置“0”表示该波束不可用,该比特置“1”表示该波束可用。
可选地,上述比特位图和上述波束之间的对应关系由RRC信令配置确定。
可选地,上述比特位图和上述波束之间的对应关系是预定义的。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据波束信息判断PDCCH是否需要监听,降低了终端盲检的复杂度。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第十实施例,提出本申请的第十二实施例,在第十二实施例中,步骤S100包括:响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,响应于上述第二控制信道的激活TCI信息与上述第一传输配置指示不存在相同的TCI状态,则不监听上述第二控制信道;
响应于上述第二控制信道的激活TCI信息与上述第一传输配置指示存在相同的TCI状态,则监听上述第二控制信道。
可选地,上述激活TCI信息通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述第一传输配置指示通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述QCL的状态是QCL type D。
可选地,上述下行信号的的波束至少由下行控制信道的DMRS端口信息,下行控制信道指示的TCI信息,下行数据信道的DMRS端口信息之一确定。
可选地,上述QCL的状态是QCL typeD。
可选地,上述QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据不同CORESET的TCI状态之间的关联关系,联合激活和/或去激活TCI状态,降低了MAC CE的开销。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第十实施例,提出本申请的第十三实施例,在第十三实施例中,步骤S100包括:响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,响应于上述第二控制信道使用的波束在上述第一控制信道的波束的覆盖范围外,则不监听上述第二控制信道;
响应于上述第二控制信道使用的波束在上述第一控制信道的波束的覆盖范围内,则监听上述第二控制信道。
可选地,根据比较第二控制信道的DMRS端口信息和第一控制信道的DMRS端口信息是否使用了相同的空间滤波器,来判断第二控制信道使用的波束是否在第一控制信道的波束的覆盖范围之内。
可选地,根据比较第二控制信道的TCI信息和第一控制信道的TCI信息来判断是否使用了相同的空间滤波器,即判断第二控制信道使用的波束是否在第一控制信道的波束覆盖范围之内。
可选地,波束可以通过关联的参考信号(SSB或者CSI-RS)所使用的波束确定。一个特定的下行传输(PDCCH或者PDSCH)使用了与TCI关联的参考信号相同的波束(或者说空间滤波器)。
可选地,每一个TCI包括一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D),通过关联TCI和一个特定下行传输(PDCCH或者PDSCH),可选地,网络通知终端在下行传输使用了与TCI关联的参考信号相同的波束(或者说空间滤波器),网络通知终端包括RRC、MAC CE。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
由此,根据控制信道的波束的覆盖范围,通过多个维度确定控制信道间的包含关系,以此确定监听控制信道,提高控制信道的监听效率,降低终端盲检的复杂度。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第十实施例,提出本申请的第十四实施例,在第十四实施例中,步骤S100包括:响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,更新上述第一控制信道的TCI信息之前,确定上述第一控制信道与上述第二控制信道的TCI信息一致,则更新上述第二控制信道的TCI信息,并监听第二控制信道;
更新上述第一控制信道的TCI信息之前,确定上述第一控制信道与上述第二控制信道的TCI信息不一致,则不更新上述第二控制信道的TCI信息,不监听第二控制信道。
可选地,第一控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,第二控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,第二控制信道与第一控制信道的TCI信息中的至少一个参考信号相同和/或QCL状态相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
可选地,终端设备接收控制信令,上述控制信令由基站发送。
可选地,根据控制信令更新上述第一控制信道、第二控制信道的TCI信息。
可选地,上述控制信令承载在RRC消息中。
可选地,上述控制信令承载在MAC CE中。
可选地,上述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
由此,当第一控制信息更新时,基于第二控制信道与第一控制信道TCI信息的一致性,确定对第二控制信道进行监听、更新,便于后续对第二控制信道进行监听,提高控制信道的监听效率。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第十实施例,提出本申请的第十五实施例,在第十五实施例中,步骤S100包括:响应于第二控制信道满足预设条件,监听所述第二控制信道。
可选地,更新上述第一控制信道的TCI信息之前,确定上述第一控制信道与上述第二控制信道准共站址,则更新上述第二控制信道的TCI信息并监听第二控制信道;
更新上述第一控制信道的TCI信息之前,确定上述第一控制信道与上述第二控制信道不准共站址,则不更新上述第二控制信道的TCI信息,不监听第二控制信道。
可选地,QCL的状态是QCL type D。
可选地,QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
可选地,根据控制信令更新第一控制信道、第二控制信道的TCI信息。
可选地,终端设备接收控制信令,上述控制信令由基站发送。
可选地,上述控制信令承载在RRC消息中。
可选地,上述控制信令承载在MAC CE中。
可选地,上述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
由此,当第一控制信息更新时,基于第二控制信道与第一控制信道是否准共站址,确定对第二控制信道进行监听、更新,便于后续对第二控制信道进行监听,提高控制信道的监听效率。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的第十实施例,提出本申请的第十六实施例,在第十六实施例中,步骤S100还包括以下至少一种:
确定第一控制信道;
确定第一控制信道的第一控制信息;
确定控制信令。
可选地,终端设备接收控制信令,上述控制信令由基站发送。
可选地,上述控制信令承载在RRC消息中。
可选地,上述控制信令承载在MAC CE中。
可选地,上述控制信令承载在物理下行数据信道中。
可选地,终端设备确定第一控制信道,并根据第一控制信道确定相应数据信道,所述控制信令承载在所述数据信道之中。
可选地,网络设备通过系统消息或者RRC消息配置搜索空间集合和控制资源集合。进而根据配置的搜索空间集合和控制资源集合以及两者之间的关联关系,在PDCCH第一监听时机上,确定第一控制信道,并在第一控制信道对应的第一控制信道单元上监听第一控制信道。
可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。
可选地,第一控制信息包括至少一个波束信息,波束信息用于指示波束是否可以传输。由此,根据第一控制信息包括的波束信息,判断波束是否可以进行传输,进而根据波束的传输与否判断是否对第一控制信道进行监听。
若第一控制信息包括的波束信息的指示波束中,至少一个波束可以传输,则监听第一控制信道;和/或,若第一控制信息包括的波束信息的指示波束无法传播,则不监听第一控制信道。基于第一控制信息确定第一控制信道,以此提高控制信道的监听效率,降低监听控制信道的资源浪费,提高辨别需要监听的控制信道的准确率。
可选地,第一控制信息包括一个比特位图,比特位图内的一个或者多个比特对应一个波束;上述比特置“0”表示该波束不可用,和/或,上述比特置“1”表示该波束可用。
可选地,上述比特位图和上述波束之间的对应关系是预定义的。
可选地,上述比特位图和上述波束之间预定义的对应关系由RRC信令配置确定的。
可选地,上述第一控制信息包括至少一个第一TCI,上述第一TCI包括当前COT内控制信道所使用的波束信息。
可选地,每一个TCI包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D),将TCI和一个特定下行传输(PDCCH或者PDSCH)关联。
由此,将TCI与一个特定下行传输关联,每个TCI均有其对应的下行传输,提高了根据TCI信息确定监听控制信道的准确率,提高了监听控制信道的效率。
可选地,网络通知终端在下行传输时,使用了与TCI关联的参考信号相同的波束(或者说空间滤波器),网络通知终端包括RRC、MAC CE。
本申请实施例提供的监听方法,基于响应于第二控制信道满足预设条件,监听所述第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,降低了监听的复杂度。
基于本申请的监听方法,提出本申请的第十七实施例,应用于网络设备,该方法可以包括:
可选地,发送第一控制信道、第二控制信道。
可选地,网络设备通过系统消息或者RRC消息为终端设备配置搜索空间集合和控制资源集合,以使终端设备基于系统消息或者RRC消息配置的搜索空间集合和控制资源集合以及两者之间的关联关系,在PDCCH第一监听时机上,监听第一控制信道。
可选地,上述第一控制信道承载第一控制信息,上述第一控制信息用以指示至少一个波束信息,以使终端设备根据第一控制信息的波束信息确定监听第二控制信道。
可选地,上述第一控制信息包括至少一个波束信息,上述波束信息用于指示波束是否可以传输。
可选地,上述第一控制信息包括一个比特位图,上述比特位图内的一个或者多个比特对应一个波束;上述比特置“0”表示该波束不可用,和/或,该比特置“1”表示该波束可用。
可选地,上述比特位图和上述波束之间的对应关系由RRC信令配置确定。
可选地,上述比特位图和上述波束之间的对应关系是预定义的。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
可选地,上述第一控制信息包括至少一个第一TCI,上述TCI包括当前COT内控制信道所使用的波束信息。
可选地,每一个TCI包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D),关联TCI和一个特定下行传输(PDCCH或者PDSCH)。网络通知终端在下行传输时,使用了与TCI关联的参考信号相同的波束(或者说空间滤波器)。
可选地,激活TCI信息通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态,以使终端设备基于第二控制信道的激活TCI、第一控制信道的第一TCI确定监听第二控制信道。
可选地,上述第一TCI通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述QCL的状态是QCL typeD。
可选地,上述下行信号的的波束至少由下行控制信道的DMRS端口信息,下行控制信道指示的TCI信息,下行数据信道的DMRS端口信息之一确定。
可选地,上述QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,上述QCL typeD是指两个天线端口的spatial RX parameter相同。
本申请实施例提供的监听方法,降低了终端盲检的频率和/或提高了控制信道的监听效率,减少了MACCE开销,降低了监听的复杂度。
基于本申请的监听方法,提出本申请的第十八实施例,应用于网络设备,该方法可以包括:
可选地,发送第一控制信道、第二控制信道、控制信令。
网络设备通过系统消息或者RRC消息为终端配置搜索空间集合和控制资源集合。以使终端根据配置的搜索空间集合和控制资源集合及两者之间的关联信息,在物理下行控制信道第一监听时机上,在对应的第一控制信道单元上监听第一控制信道。
可选地,上述第一控制信道承载第一控制信息,上述第一控制信息用以指示至少一个波束信息。以使终端根据指示的波束信息确定是否在第二监听时间上,在对应的第二控制信道单元上监听第二控制信道。
可选地,更新第一控制信道。
可选地,对控制信道的波束指示,RRC信令对每个配置的CORESET指派配置的备选状态的一个子集。通过MAC信令,网络可以动态地从每个CORESET对应的备选状态子集中指示一个特定的TCI状态为有效。当网络设备从一个CORESET对应的备选状态子集中动态地更新一个特定的TCI状态为有效,上述CORESET上的PDCCH对应的TCI状态更新。
可选地,控制信令承载在RRC消息中。
可选地,上述控制信令承载在MAC CE中。
可选地,上述控制信令承载在物理下行数据信道中。
可选地,确定更新第二控制信道。
可选地,发送第一控制信道,并根据第一控制信道发送相应数据信道,所述控制信令承载在所述数据信道之中,包括以下方式:
第一种方式:
可选地,当网络设备从一个CORESET对应的备选状态子集中动态地更新一个特定的TCI状态为有效,上述CORESET上的第一控制信道对应的TCI状态更新。更新上述第一控制信道的TCI信息之前,如果上述第二控制信道与上述第一控制信道的TCI信息一致,则更新上述第二控制信道对应的TCI状态,更新结果和上述第一控制信道对应的TCI状态更新结果一致。更新上述第一控制信道的TCI信息之前,如果上述第二控制信道与上述第一控制信道的TCI信息不一致,则不更新上述第二控制信道对应的TCI状态。
可选地,上述第一控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,上述第二控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,上述第二控制信道与上述第一控制信道的TCI信息中的至少一个参考信号相同和/或QCL状态相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
第二种方式:
可选地,更新上述第一控制信道的TCI信息之前,如果上述第二控制信道与上述第一控制信道准共站址,则更新上述第二控制信道对应的TCI状态,更新结果和上述第一控制信道对应的TCI状态更新结果一致。更新上述第一控制信道的TCI信息之前,如果上述第二控制信道与上述第一控制信道不准共站址,则不更新上述第二控制信道对应的TCI状态。
可选地,上述QCL的状态是QCL typeD。
可选地,上述QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,上述QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
本申请实施例提供的监听方法,降低了终端盲检的频率和/或提高了控制信道的监听效率,减少了MACCE开销,降低了监听的复杂度。
图6是根据第十九实施例示出的监听方法的交互界面图,如图所示,该方法可以包括:
可选地,网络设备通过系统消息或者RRC消息为终端设备配置搜索空间集合和控制资源集合。终端设备根据配置的搜索空间集合和控制资源集合以及两者之间的关联关系,在PDCCH第一监听时机 上,确定第一控制信道,并在第一控制信道对应的第一控制信道单元上监听第一控制信道。
可选地,第一控制信道承载第一控制信息,第一控制信息用以指示至少一个波束信息。
可选地,第一控制信息包括至少一个波束信息,上述波束信息用于指示波束是否可以传输。由此,根据第一控制信息包括的波束信息,判断波束是否可以进行传输,进而根据波束的传输与否判断是否通过终端设备对第一控制信道进行监听。
若第一控制信息包括的波束信息的指示波束中,至少一个波束可以传输,则监听第一控制信道;和/或,若第一控制信息包括的波束信息的指示波束无法传播,则不监听第一控制信道。基于第一控制信息确定第一控制信道,以此提高控制信道的监听效率,降低监听控制信道的资源浪费,提高辨别需要监听的控制信道的准确率。
可选地,根据第一控制信道确定监听第二控制信道,包括以下方式:
第一种方式:
可选地,终端设备接收到网络设备发送的第一控制信道的第一控制信息之后,确定所需要接收地网络设备传输的第二控制信道所使用的波束是否被第一控制信息所指示;如果被指示,则终端设备监听第二控制信道;和/或,如果没有被指示,则终端设备不监听第二控制信道。
可选地,第一控制信道承载第一控制信息,上述第一控制信息用以指示至少一个波束信息。
可选地,上述第一控制信息包括至少一个波束信息,上述波束信息用于指示波束是否可以传输。
可选地,上述第一控制信息包括一个比特位图,上述比特位图内的一个或者多个比特对应一个波束;上述比特置“0”表示该波束不可用,和/或,该比特置“1”表示该波束可用。
可选地,上述比特位图和上述波束之间的对应关系由RRC信令配置确定。
可选地,上述比特位图和上述波束之间的对应关系是预定义的。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据波束信息判断PDCCH是否需要监听,降低了终端盲检的复杂度。
第二种方式:
可选地,终端设备接收到网络设备发送的第一控制信道的第一控制信息之后,如果终端设备需要监听的第二控制信道的激活TCI信息和第一TCI不存在相同的TCI状态,则终端设备不需要监听第二控制信道;和/或,如果终端设备需要监听的第二控制信道的激活TCI信息和第一TCI存在至少一个相同的TCI状态,则终端设备需要监听第二控制信道。
可选地,上述激活TCI信息通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述第一传输配置指示通过RRC配置至少一个备选TCI状态,并通过MAC CE激活其中的至少一个TCI状态。
可选地,上述QCL的状态是QCL type D。
可选地,上述下行信号的的波束至少由下行控制信道的DMRS端口信息,下行控制信道指示的TCI信息,下行数据信道的DMRS端口信息之一确定。
可选地,上述QCL的状态是QCL typeD。
可选地,上述QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。 如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,上述第一控制信道与上述第二控制信道属于同一个COT。
可选地,上述第一控制信道和第二控制信道是PDCCH。
可选地,上述第一控制信道承载的是公共控制信息。
可选地,上述第一控制信息由DCI 2_0携带。
由此,根据不同CORESET的TCI状态之间的关联关系,联合激活和/或去激活TCI状态,降低了MAC CE的开销。
第三种方式:
可选地,终端设备接收到网络设备发送的第一控制信道的第一控制信息之后,确定第二控制信道所使用的波束在第一控制信道的波束覆盖范围之内,则终端设备监听第二控制信道;和/或,确定第二控制信道所使用地波束在第一控制信道的波束覆盖范围之外,则终端设备不监听第二控制信道。
可选地,根据比较第二控制信道的DMRS端口信息和第一控制信道的DMRS端口信息是否使用了相同的空间滤波器,来判断第二控制信道使用的波束是否在第一控制信道的波束的覆盖范围之内。
可选地,根据比较第二控制信道的TCI信息和第一控制信道的TCI信息来判断是否使用了相同的空间滤波器,即判断第二控制信道使用的波束是否在第一控制信道的波束覆盖范围之内。
可选地,波束可以通过关联的参考信号(SSB或者CSI-RS)所使用的波束确定。一个特定的下行传输(PDCCH或者PDSCH)使用了与TCI关联的参考信号相同的波束(或者说空间滤波器)。
可选地,每一个TCI包括一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D),通过关联TCI和一个特定下行传输(PDCCH或者PDSCH),网络通知终端在下行传输使用了与TCI关联的参考信号相同的波束(或者说空间滤波器),网络通知终端包括RRC、MAC CE。
可选地,第一控制信道与第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
由此,根据控制信道的波束的覆盖范围,通过多个维度确定控制信道间的包含关系,以此确定监听控制信道,提高控制信道的监听效率,降低终端盲检的复杂度。
第四种方式:
可选地,确定控制信令。
可选地,网络设备发送控制信令,终端设备接收控制信令。
可选地,终端设备根据控制信令更新第一控制信道的TCI信息。
可选地,网络设备发送第一控制信道,并根据第一控制信道发送相应数据信道,所述控制信令承载在所述数据信道之中。
对控制信道的波束指示,RRC信令对每个配置的核心集指派配置的备选状态的一个子集。通过MAC信令,网络设备动态地从每个CORESET对应的备选状态子集中指示一个特定的TCI状态为有效。当终端设备监听某个CORESET的PDCCH时,终端设备会认为该PDCCH会采用MAC指定的TCI相关联的参考信号使用的波束(即相同的空间滤波器)。可以理解地,如果终端设备事先决定了对下行参考信号合适的接收端波束,就认为可以用这个波束来接收PDCCH。当网络设备根据控制信令从一个CORESET对应的备选状态子集中动态地更新一个特定的TCI状态为有效,上述CORESET上的PDCCH对应的TCI状态更新。
可选地,当一个CORESET对应的备选状态子集中根据控制信令动态地更新一个特定的TCI状态为有效,上述CORESET上的第一控制信道对应的TCI状态更新。
可选地,如果在更新所述第一控制信道的TCI信息之前,所述第二控制信道的TCI信息与所述第一控制信道的TCI信息一致,则根据控制信令更新第二控制信道对应的TCI状态,更新结果和上述第一控制信道对应的TCI状态的更新结果一致,并在COT内监听上述第一控制信道。如果在更新所述第一控制信道的TCI信息之前,上述第二控制信道与上述第一控制信道的TCI信息不一致,则上述第二控制信道对应的TCI状态不更新。终端设备在COT内不再监听上述第二控制信道。
可选地,第一控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,第二控制信道的TCI信息包括至少一个参考信号(SSB或者CSI-RS)信息,至少一个QCL状态(QCL type A,QCL type B,QCL type C,QCL type D)。
可选地,第二控制信道与第一控制信道的TCI信息中的至少一个参考信号相同和/或QCL状态相同。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
由此,当第一控制信息更新时,基于第二控制信道与第一控制信道TCI信息的一致性,确定对第二控制信道进行监听、更新,便于后续对第二控制信道进行监听,提高控制信道的监听效率。
第五种方式:
可选地,如果更新所述第一控制信道的TCI信息之前,所诉第二控制信道与所诉第一控制信道准共站址,则根据控制信令更新第二控制信道对应的TCI状态,更新结果和第一控制信道对应的TCI状态的更新结果一致,并在COT内监听第一控制信道。和/或,如果在更新所述第一控制信道的TCI信息之前,第二控制信道与第一控制信道不准共站址,则第二控制信道对应的TCI状态不更新。终端设备在COT内不再监听第二控制信道。
可选地,QCL的状态是QCL type D。
可选地,QCL是指某个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。
可选地,大尺度参数可以为时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及spatial RX parameter(空间接收参数)等。
可选地,spatial RX parameter可以为信道相关矩阵、发送波束、接收波束、发送/接收波束对等参数至少之一,上述spatial RX parameter用来定义因模拟波束赋形的变动而引起的信道大尺度参量的差异。如果两个天线端口在spatial RX parameter的意义下QCL,一般可以理解为可以使用相同的波束来接收两个端口或者发送两个端口或者分别接收和发送两个端口。可选地,QCL typeD是指两个天线端口的spatial RX parameter相同。
可选地,第一控制信道与上述第二控制信道属于同一个COT。
可选地,第一控制信道和第二控制信道是PDCCH。
可选地,第一控制信道承载的是公共控制信息。
可选地,第一控制信息由DCI 2_0携带。
由此,当第一控制信息更新时,基于第二控制信道与第一控制信道是否准共站址,确定对第二控制信道进行监听、更新,便于后续对第二控制信道进行监听,提高控制信道的监听效率。
本申请实施例提供的监听方法,通过确定第一控制信道;根据所述第一控制信道确定监听第二控制信道。本申请技术方案降低了终端盲检的频率和/或提高了控制信道的监听效率,减少了MACCE开销,降低了监听的复杂度。
以上所列举的仅为参考示例,为了避免冗余,这里不再一一列举,实际开发或运用中,可以根据实际需要灵活组合,但任一组合均属于本申请的技术方案,也就覆盖在本申请的保护范围之内。
本申请实施例还提供一种通信设备,通信设备包括存储器、处理器,存储器上存储有监听程序,监听程序被处理器执行时实现上述任一实施例中的监听方法的步骤。
本申请实施例还提供一种计算机可读存储介质,存储介质上存储有监听程序,监听程序被处理器执行时实现上述任一实施例中的监听方法的步骤。
在本申请提供的通信设备和计算机可读存储介质的实施例中,可以包含任一上述监听方法实施例的全部技术特征,说明书拓展和解释内容与上述方法的各实施例基本相同,在此不再做赘述。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如上各种可能的实施方式中的方法。
本申请实施例还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得安装有芯片的设备执行如上各种可能的实施方式中的方法。
可以理解,上述场景仅是作为示例,并不构成对于本申请实施例提供的技术方案的应用场景的限定,本申请的技术方案还可应用于其他场景。例如,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例设备中的单元可以根据实际需要进行合并、划分和删减。
在本申请中,对于相同或相似的术语概念、技术方案和/或应用场景描述,一般只在第一次出现时进行详细描述,后面再重复出现时,为了简洁,一般未再重复阐述,在理解本申请技术方案等内容时,对于在后未详细描述的相同或相似的术语概念、技术方案和/或应用场景描述等,可以参考其之前的相关详细描述。
在本申请中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本申请技术方案的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本申请记载的范围。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,被控终端,或者网络设备等)执行本申请每个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络,或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD),或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (18)

  1. 一种监听方法,其特征在于,包括以下步骤:
    S10:确定第一控制信道;
    S20:根据所述第一控制信道确定监听第二控制信道。
  2. 如权利要求1所述的方法,其特征在于,所述步骤S10还包括以下至少一种:
    确定所述第一控制信道的第一控制信息;和/或,
    确定控制信令。
  3. 如权利要求2所述的方法,其特征在于,所述第一控制信息包括至少一个波束信息和/或至少一个第一传输配置指示。
  4. 如权利要求3所述的方法,其特征在于,所述步骤S20包括:
    确定所述第二控制信道所使用的波束是否被所述第一控制信息指示;
    若被指示,则监听所述第二控制信道;和/或,
    若未被指示,则不监听所述第二控制信道。
  5. 如权利要求3所述的方法,其特征在于,所述步骤S20包括:
    确定所述第二控制信道的激活传输配置指示TCI信息与所述第一传输配置指示存在至少一个相同的TCI状态,则监听所述第二控制信道;和/或,
    确定所述第二控制信道的激活TCI信息与所述第一传输配置指示不存在相同的TCI状态,则不监听所述第二控制信道。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述步骤S20包括:
    确定所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围内,则监听所述第二控制信道;和/或,
    确定所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围外,则不监听所述第二控制信道。
  7. 如权利要求2至5中任一项所述的方法,其特征在于,所述步骤S10还包括:
    根据所述控制信令更新所述第一控制信道的TCI信息。
  8. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括以下至少一种:
    确定所述第一控制信道与所述第二控制信道的TCI信息一致,则更新所述第二控制信道的TCI信息;
    确定所述第一控制信道与所述第二控制信道的TCI信息不一致,则不更新所述第二控制信道的TCI信息;
    确定所述第一控制信道与所述第二控制信道准共站址,则更新所述第二控制信道的TCI信息;
    确定所述第一控制信道与所述第二控制信道不准共站址,则不更新所述第二控制信道的TCI信息。
  9. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一控制信道与所述第二控制信道属于同一个COT。
  10. 如权利要求1至5中任一项所述的方法,其特征在于,所述第一控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态;和/或,所述第二控制信道的TCI信息包括至少一个参考信号信息、至少一个QCL状态。
  11. 一种监听方法,其特征在于,包括以下步骤:
    S100,响应于第二控制信道满足预设条件,监听所述第二控制信道。
  12. 如权利要求11所述的方法,其特征在于,所述第二控制信道满足预设条件,包括以下至少一种:
    所述第二控制信道所使用的波束被第一控制信息指示;
    所述第二控制信道的激活TCI信息与第一传输配置指示存在至少一个相同的TCI状态;
    所述第二控制信道使用的波束在第一控制信道的波束的覆盖范围内。
  13. 如权利要求12所述的方法,其特征在于,所述方法还包括以下至少一种:
    响应于所述第二控制信道所使用的波束未被所述第一控制信息指示,则不监听所述第二控制信道;
    响应于所述第二控制信道的激活TCI信息与所述第一传输配置指示不存在相同的TCI状态,则不监听所述第二控制信道;
    响应于所述第二控制信道使用的波束在所述第一控制信道的波束的覆盖范围外,则不监听所述第二控制信道。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括以下至少一种:
    确定所述第一控制信道;
    确定所述第一控制信道的第一控制信息;
    确定控制信令。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括以下至少一种:
    所述第一控制信息包括至少一个波束信息;
    所述第一控制信息包括至少一个第一传输配置指示;
    所述第一控制信道与所述第二控制信道属于同一个COT;
    所述第一控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态;
    所述第二控制信道的TCI信息包括至少一个参考信号信息、至少一个准共站址QCL状态。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括以下至少一种:
    确定所述第一控制信道与所述第二控制信道的TCI信息一致,则更新所述第二控制信道的TCI信息;
    确定所述第一控制信道与所述第二控制信道的TCI信息不一致,则不更新所述第二控制信道的TCI信息;
    确定所述第一控制信道与所述第二控制信道准共站址,则更新所述第二控制信道的TCI信息;
    确定所述第一控制信道与所述第二控制信道不准共站址,则不更新所述第二控制信道的TCI信息;
    根据所述控制信令更新所述第一控制信道的TCI信息。
  17. 一种通信设备,其特征在于,所述通信设备包括:存储器、处理器,所述存储器上存储有监听程序,所述监听程序被所述处理器执行时实现如权利要求1至16中任一项所述的监听方法的步骤。
  18. 一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至16中任一项所述的监听方法的步骤。
PCT/CN2022/078617 2022-03-01 2022-03-01 监听方法、通信设备及存储介质 WO2023164806A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078617 WO2023164806A1 (zh) 2022-03-01 2022-03-01 监听方法、通信设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078617 WO2023164806A1 (zh) 2022-03-01 2022-03-01 监听方法、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023164806A1 true WO2023164806A1 (zh) 2023-09-07

Family

ID=87882729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078617 WO2023164806A1 (zh) 2022-03-01 2022-03-01 监听方法、通信设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023164806A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792792A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 基站、用户终端及其下行数据控制方法及装置
CN110719645A (zh) * 2018-07-13 2020-01-21 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
CN111800801A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 Pdcch的监听方法和设备
US20210219335A1 (en) * 2020-01-15 2021-07-15 Qualcomm Incorporated Wideband control signal transmission
WO2022116838A1 (zh) * 2020-12-04 2022-06-09 展讯通信(上海)有限公司 通信方法、装置、设备、存储介质以及程序产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106792792A (zh) * 2016-09-30 2017-05-31 展讯通信(上海)有限公司 基站、用户终端及其下行数据控制方法及装置
CN110719645A (zh) * 2018-07-13 2020-01-21 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
CN111800801A (zh) * 2019-08-16 2020-10-20 维沃移动通信有限公司 Pdcch的监听方法和设备
US20210219335A1 (en) * 2020-01-15 2021-07-15 Qualcomm Incorporated Wideband control signal transmission
WO2022116838A1 (zh) * 2020-12-04 2022-06-09 展讯通信(上海)有限公司 通信方法、装置、设备、存储介质以及程序产品

Similar Documents

Publication Publication Date Title
CN110859008B (zh) 一种上行信息的发送方法及终端
WO2021213495A1 (zh) Gap配置方法、UE及网络设备
WO2020258928A1 (zh) 数据传输方法及终端设备
WO2021078235A1 (zh) 测量处理方法、指示信息发送方法、终端和网络设备
WO2018082693A1 (zh) Csi上报方法、装置以及设备
CN110167041B (zh) 波束失败恢复请求发送方法及用户设备
WO2019095903A1 (zh) 终端能力的指示方法及终端
WO2023088485A1 (zh) 处理方法、通信设备、通信系统及存储介质
WO2020147795A1 (zh) 一种无线通信方法及终端设备
WO2020038294A1 (zh) 传输方法及终端设备
WO2021209031A1 (zh) 资源确定方法及设备
WO2021129478A1 (zh) 小区拥塞的处理方法、终端及网络侧设备
WO2023221831A1 (zh) 处理方法、通信设备及存储介质
WO2023041069A1 (zh) 通信方法、网络设备、终端设备及存储介质
WO2023082603A1 (zh) 提醒方法、终端设备、网络设备及存储介质
WO2022217552A1 (zh) panel状态的处理方法、通信设备及存储介质
WO2021197191A1 (zh) 冲突资源确定方法和终端
WO2023164806A1 (zh) 监听方法、通信设备及存储介质
WO2021160026A1 (zh) 波束报告方法、网络节点及终端
WO2020011242A1 (zh) Pdsch时域资源分配方法、终端及计算机可读存储介质
WO2023164804A1 (zh) 处理方法、通信设备及存储介质
WO2019137307A1 (zh) Bsr上报方法和移动终端
WO2023133693A1 (zh) 通信方法、通信设备以及存储介质
WO2023151051A1 (zh) 处理方法、通信设备及存储介质
WO2023133692A1 (zh) 处理方法、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929258

Country of ref document: EP

Kind code of ref document: A1