WO2020015450A1 - 液晶移相器和天线 - Google Patents

液晶移相器和天线 Download PDF

Info

Publication number
WO2020015450A1
WO2020015450A1 PCT/CN2019/087675 CN2019087675W WO2020015450A1 WO 2020015450 A1 WO2020015450 A1 WO 2020015450A1 CN 2019087675 W CN2019087675 W CN 2019087675W WO 2020015450 A1 WO2020015450 A1 WO 2020015450A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
sub
phase shifter
electrode
substrate
Prior art date
Application number
PCT/CN2019/087675
Other languages
English (en)
French (fr)
Inventor
王东花
扈映茹
吴勃
Original Assignee
成都天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都天马微电子有限公司 filed Critical 成都天马微电子有限公司
Priority to US16/958,750 priority Critical patent/US11233301B2/en
Publication of WO2020015450A1 publication Critical patent/WO2020015450A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present application relates to the technical field of electromagnetic waves, and in particular, to a liquid crystal phase shifter and an antenna.
  • Phase shifter is a device that can adjust the phase of electromagnetic waves. It has a wide range of applications in radar, spacecraft attitude control, accelerator, communication, instrumentation and even music.
  • liquid crystal phase shifter With the development of technology, a new type of liquid crystal phase shifter has appeared.
  • the current liquid crystal phase shifter design requires a new liquid crystal phase shifter if the carrier frequency of the liquid crystal phase shifter needs to be adjusted, that is, The compatibility of liquid crystal phase shifters is poor.
  • the embodiments of the present application provide a liquid crystal phase shifter and an antenna, which can adjust a carrier frequency applicable to the liquid crystal phase shifter, thereby improving the compatibility of the liquid crystal phase shifter.
  • an embodiment of the present application provides a liquid crystal phase shifter, including:
  • the phase shifting unit includes a microstrip line, a phase-controlling electrode, and two feeding terminals, the microstrip line being located between the first substrate and the liquid crystal layer, and the phase-controlling electrode Located between the second substrate and the liquid crystal layer, the two feeding ends are located on a side of the first substrate away from the second substrate or on a side of the second substrate away from the first substrate One side, in a direction perpendicular to the plane where the first substrate is located, two ends of the microstrip line overlap the two feeding ends, respectively;
  • the phased electrode includes at least two sub-electrodes spaced apart from each other, and the microstrip line includes an effective line segment corresponding to each of the sub-electrodes, wherein,
  • each of the sub-electrodes covers the corresponding effective line segment.
  • each of the effective line segments extends along an initial alignment direction of the liquid crystal layer.
  • the microstrip line further includes non-effective line segments connected between any adjacent two of the effective line segments, and each of the non-effective line segments extends along a direction other than the initial alignment direction of the liquid crystal layer.
  • each of the non-effective line segments extends in the same direction.
  • an extension direction of each of the ineffective line segments is perpendicular to an initial alignment direction of the liquid crystal layer.
  • any two adjacent effective line segments and a non-effective line segment connecting the two form a U-shaped structure.
  • the first pole of each of the sub-electrodes is electrically connected to a fixed potential.
  • the second poles of the at least two sub-electrodes are respectively connected to different input terminals.
  • the second poles of the at least two sub-electrodes are connected to the same input terminal through a gate circuit.
  • the gating circuit includes a switch tube corresponding to each second pole, and each second pole is connected to the input terminal through the corresponding switch tube.
  • the at least two sub-electrodes include n sub-electrodes
  • the gate circuit includes n switch tubes, and n is an integer greater than 1.
  • the second pole of the i-th sub-electrode is connected to the second pole of the i + 1-th sub-electrode through the i-th switching tube.
  • the value of i is 1, 2, 3, ..., n-1.
  • the second pole is connected to the input terminal through the n-th switch.
  • an embodiment of the present application further provides an antenna including the liquid crystal phase shifter described above.
  • the phase control electrode of the liquid crystal phase shifter includes a plurality of sub-electrodes spaced apart from each other, and each sub-electrode corresponds to an effective line segment. Since different sub-electrodes are independent of each other, During the operation of the phase shifter, you can control which sub-electrodes are applied with voltage, and which sub-electrodes are not applied with voltage. The liquid crystal between the applied sub-electrode and the corresponding effective line segment will deflect. The liquid crystal between the corresponding effective line segments will not be deflected.
  • the undeflected liquid crystal will not play the role of phase shift, and only the deflected liquid crystal will play the role of phase shift. Therefore, when choosing When different numbers of sub-electrodes are applied with voltage, the effective path length of the microwave phase shift using the deflected liquid crystal during microwave transmission is different, that is, the liquid crystal phase shifter can be applied to different carrier frequencies.
  • liquid crystal shift The microstrip line of the phaser only corresponds to two feeding ends, and the applicable carrier frequency cannot be adjusted. Therefore, the embodiment of this application provides The compatibility of the liquid crystal phase shifter is improved.
  • FIG. 1 is a top view of a liquid crystal phase shifter according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a microstrip line in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a phase-controlled electrode in FIG. 1;
  • FIG. 4 is a schematic cross-sectional structure diagram taken along the line AA ′ in FIG. 1;
  • FIG. 5 is a schematic cross-sectional structure diagram taken along the line BB 'in FIG. 1;
  • FIG. 6 is a schematic diagram of liquid crystal arrangement in a partial region of the liquid crystal phase shifter in a non-working state in FIG. 1;
  • FIG. 7 is a schematic diagram of the liquid crystal arrangement in a partial area of the liquid crystal phase shifter in FIG. 1 in a working state;
  • FIG. 8 is a schematic connection diagram of another phase-control electrode in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of connection of another phase-control electrode in the embodiment of the present application.
  • FIG. 1 is a top view of a liquid crystal phase shifter according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a microstrip line in FIG. 3 is a schematic structural diagram of a phase-control electrode in FIG. 1
  • FIG. 4 is a schematic sectional structure diagram in AA ′ direction in FIG. 1
  • FIG. 5 is a schematic sectional structure diagram in BB ′ direction in FIG. 1.
  • An example provides a liquid crystal phase shifter, which includes: a first substrate 1 and a second substrate 2 opposite to each other, and a liquid crystal layer 3 located between the first substrate 1 and the second substrate 2; at least one phase shifting unit 4;
  • the phase shifting unit 4 includes a microstrip line 41, a phase control electrode 42, and two feeding terminals 43.
  • the microstrip line 41 is located between the first substrate 1 and the liquid crystal layer 3, and the phase control electrode 42 is located between the second substrate 2 and the liquid crystal layer.
  • the two feeding ends 43 are located on the side of the first substrate 1 away from the second substrate 2 or on the side of the second substrate 2 away from the first substrate 1 in a direction perpendicular to the plane where the first substrate 1 is located
  • the two ends of the microstrip line 41 overlap with the two feeding ends 43 respectively;
  • the phase control electrode 42 includes at least two sub-electrodes 420 spaced from each other, and the microstrip line 41 covers Each sub-electrode 420 and the corresponding valid segment 401, wherein, in a plane perpendicular to the first direction where the substrate 1, each of the sub-electrodes 420 cover the effective line corresponding to 401.
  • a voltage signal is applied to the microstrip line 41 and the phase-controlling electrode 42, respectively.
  • An electric field is formed between the microstrip line 41 and the phase-controlling electrode 42, and the electric field drives the liquid crystal in the liquid crystal layer 3.
  • the microstrip line 41 is used to transmit microwave signals.
  • the microwave signal is transmitted between the microstrip line 41 and the phase control electrode 42.
  • the phase will be changed due to the deflection of the liquid crystal, thereby realizing the microwave signal.
  • Phase shift function The phase shift of the microwave uses the change of the electrical characteristics of the liquid crystal after deflection.
  • the carrier frequency applied by the phase shifting unit and the distance transmitted by the microwave in the deflected liquid crystal have a correlation.
  • the microstrip line 41 is used for transmission of microwave signals, and at the same time phase shifting is performed during the transmission process.
  • the feeding end 43 is used to cooperate with the two ends of the microstrip line 41 to realize the feeding of microwave signals on the microstrip line 41.
  • the phase control electrode 42 includes a plurality of sub-electrodes 420 spaced from each other, and each sub-electrode 420 corresponds to an effective line segment 401.
  • the liquid crystal phase shifter can be applied to different carrier frequencies.
  • the phase control electrode includes a plurality of sub-electrodes spaced apart from each other, and each sub-electrode corresponds to an effective line segment. Since different sub-electrodes are independent of each other, during the working process of the liquid crystal phase shifter, Control which sub-electrodes are to be applied with voltage, and which sub-electrodes are not to be applied with voltage.
  • the liquid crystal between the applied sub-electrode and the corresponding effective line segment will be deflected. It will deflect. In the transmission path of the microwave signal, the undeflected liquid crystal will not play the role of phase shift. Only the deflected liquid crystal will play the role of phase shift.
  • the embodiment of the present application improves the compatibility of the liquid crystal phase shifter.
  • FIG. 6 is a liquid crystal arrangement in a partial area of the liquid crystal phase shifter in the non-operating state
  • FIG. 7 is a schematic diagram of a liquid crystal arrangement in a partial area of the liquid crystal phase shifter in the working state in FIG. 1.
  • Each effective line segment 401 extends along an initial alignment direction x of the liquid crystal layer.
  • the liquid crystal between the sub-electrode 420 to which the voltage is not applied and the microstrip line 41 is not deflected.
  • the microwave transmitted along the extension path of the microstrip line 41 uses The phase shift of the electrical characteristics after liquid crystal deflection is realized.
  • the dotted arrows in Fig. 6 and Fig. 7 indicate the microwave transmission path.
  • the long axis of the liquid crystal molecules corresponds to the long axis of the liquid crystal molecules.
  • Dielectric properties After the liquid crystal is deflected, it corresponds to the dielectric properties of the short axis of the liquid crystal molecules.
  • the liquid crystal phase shifter in the working state of the liquid crystal phase shifter, the voltage applied to the sub-electrode 420 and the effective line segment 401 correspond to the effective path of the microwave phase shift.
  • the liquid crystal phase shifter in the non-operating state the liquid crystal phase shift function can not be realized.
  • the initial alignment direction x of the liquid crystal layer is not limited to that shown in the figure, and other angles can also be selected, as long as the effective line segment 401 plays a leading role in adjusting the phase of the microwave signal.
  • the initial alignment direction x of the liquid crystal layer can be set by the liquid crystal alignment layer.
  • a liquid crystal alignment layer is provided between the liquid crystal layer 3 and the microstrip line 41.
  • a liquid crystal alignment layer is provided between the phase control electrode 42 and the liquid crystal phase shifter in a non-operating state.
  • the long axis of the liquid crystal molecules in the liquid crystal layer 3 extends along the initial alignment direction x of the liquid crystal layer under the action of the liquid crystal alignment layer.
  • the liquid crystal molecules in the embodiments of the present application may also be negative liquid crystal molecules.
  • the type of the liquid crystal molecules is not specifically limited in this application.
  • the microstrip line 41 further includes non-effective line segments 402 connected between any two adjacent effective line segments 401, and each non-effective line segment 402 extends along the initial alignment direction of the non-liquid crystal layer.
  • the dielectric properties of the short axis of the liquid crystal molecules are corresponding to the liquid crystal molecules before and after deflection, so the liquid crystal phase shifter is in the working state, and the non-effective line segment 402 corresponds to the microwave shift.
  • Ineffective path of phase cannot realize liquid crystal phase shift function.
  • each non-effective line segment 402 is the same, which facilitates the realization of the serpentine transmission portion 412 to use space more effectively.
  • each non-effective line segment 402 is perpendicular to the initial alignment direction x of the liquid crystal layer, which can ensure that the liquid crystal corresponding to the non-effective line segment 402 will not play a phase shift effect when the liquid crystal is deflected. Adjust the effective path length of microwave phase shift more accurately.
  • any two adjacent effective line segments 401 and the non-effective line segments 402 connecting the two form a U-shaped structure, thereby realizing a serpentine microstrip line 41 and using space more effectively.
  • the first pole 421 of each sub-electrode 420 is electrically connected to a fixed potential, for example, the first pole 421 of each sub-electrode 420 is grounded to GND.
  • the second poles 422 of the at least two sub-electrodes 420 are respectively connected to different input terminals.
  • the second electrodes 422 of the five sub-electrodes 420 from top to bottom in FIG. 3 are respectively connected to the first input terminal IN1, the second input terminal IN2, the third input terminal IN3, the fourth input terminal IN4, and the fifth terminal.
  • Input terminal IN5 when using only the path corresponding to the first sub-electrode 420 as the effective phase shift path of the microwave, apply the input voltage to the first input terminal IN1, so that the first input terminal IN1 and the ground GND A path is formed between the first sub-electrode 420 through the first sub-electrode 420, and an electric field is formed between the first sub-electrode 420 and the corresponding effective line segment 401 to drive the liquid crystal deflection to realize the liquid crystal shift.
  • phase function no voltage is applied to the second input terminal IN2, the third input terminal IN3, the fourth input terminal IN4, and the fifth input terminal IN5, that is, the second sub-electrode 420, the third sub-electrode 420, and the fourth sub-electrode 420 There is no voltage on the fifth sub-electrode 420, no voltage will be formed between the corresponding effective line segment 401, and the corresponding liquid crystal will not be deflected.
  • the effective path length of the microwave phase shift is that of the first sub-electrode 420.
  • Effective line segment 401 Length when only the paths corresponding to the first two sub-electrodes 420 are used as effective paths for the microwave phase shift, the input voltage is applied to the first input terminal IN1 and the second input terminal IN2 so that the first input terminal IN1 A path is formed between the second sub-electrode 420 and the ground through the first sub-electrode 420, and a path is formed between the second input terminal IN2 and the ground GND through the second sub-electrode 420, so that the first sub-electrode 420 and the second sub-electrode 420 have Voltage, the two sub-electrodes 420 and the corresponding effective line segment 401 form a voltage, respectively, to drive the liquid crystal deflection therein to realize the liquid crystal phase shift function.
  • the third input terminal IN3, the fourth input terminal IN4, and the fifth input terminal IN5 No voltage is applied, that is, there is no voltage on the third sub-electrode 420, the fourth sub-electrode 420, and the fifth sub-electrode 420, and no voltage is formed between the corresponding effective line segment 401, and the corresponding liquid crystal is not deflected. ; Others can be deduced by analogy.
  • FIG. 8 is a schematic diagram of another phase-control electrode connection in the embodiment of the present application.
  • the second poles 422 of at least two sub-electrodes 420 are connected to the same input terminal IN through the gate circuit 5.
  • the gate circuit 5 can be used to control which sub-electrode 420 has a second pole 422 connected to the input terminal IN, and which sub-electrode 420 has a second pole 422 and the input terminal IN to be cut off.
  • the electrode 420 applies a voltage to achieve an effective path length adjustment of the microwave phase shift.
  • the gating circuit 5 includes a switch M corresponding to each second pole 422, each second pole 422 is connected to the input terminal IN through a corresponding switch M, and the first end of each switch M is connected At the corresponding second pole 422, the second end of each switch M is connected to the input terminal IN, and the control end of each switch M is used to control the conduction between the first end and the second end of the switch M Or it can be turned off.
  • the control end of each switch M is used to control the conduction between the first end and the second end of the switch M Or it can be turned off.
  • the terminals IN are cut off to achieve effective path length adjustment of the microwave phase shift.
  • FIG. 9 is a schematic diagram of another phase-control electrode connection in the embodiment of the present application.
  • At least two sub-electrodes 420 include n sub-electrodes 420, and the gate circuit 5 includes n switch tubes M.
  • n is an integer greater than 1; the second pole 422 of the i-th sub-electrode 420 is connected to the second pole 422 of the i + 1-th sub-electrode 420 through the i-th switch M, and the value of i is 1, 2, 3, ... N-1, the second electrode 422 of the n-th sub-electrode 420 is connected to the input terminal IN through the n-th switch M.
  • n 5
  • the five sub-electrodes 420 from the top to the bottom are the first to the fifth sub-electrodes 4201 to 4205
  • the five switching tubes M from the top to the bottom are:
  • the second electrode 422 of the first sub-electrode 4201 are connected to the second electrode 422 of the second sub-electrode 4202, and the second of the second sub-electrode 4202 through the first switching tube M1.
  • the pole 422 is connected to the second pole 422 of the third sub-electrode 4203 through the second switching tube M2, and so on.
  • the last sub-electrode that is, the second pole 422 of the fifth sub-electrode 4205 is connected to the fifth switching tube M5.
  • the input terminal IN can also be controlled to apply voltages to different numbers of sub-electrodes 420 through the control of the switch M to achieve effective path length adjustment of the microwave phase shift.
  • a voltage can be applied to five sub-electrodes 420; when the second to fifth switching tubes M are turned on, and the first switching tube M is turned off, four sub-electrodes 420 can be applied Apply voltage; control the 3rd to 5th switching tubes M to be turned on, and when the 1st and 2nd switching tubes M are turned off, voltage can be applied to 3 sub-electrodes 420; and so on, different numbers of sub-electrodes can be realized 420 Applied voltage.
  • one liquid crystal phase shifter only illustrates one phase shifting unit 4.
  • one liquid crystal phase shifter includes a plurality of phase shifting units distributed in an array.
  • the phase control electrodes of the phase units are connected to each other so that all the phase control electrodes have the same potential.
  • Each phase shift unit is used to implement the phase shift function of a microwave signal.
  • Each phase shift unit can be made into a different liquid crystal. Cell, or all the phase shift units can be made into the same LCD cell.
  • the feeding end 43 may be a part of a feeding line, and the feeding line is used to implement microwave signal transmission between the feeding end 43 and other components.
  • the radiating unit is connected to the feeding terminal 43 through a feeding line. After the liquid crystal phase shifter completes the phase shift, the microwave signal is fed out to the feeding terminal 43 by the microstrip line 41.
  • the feeding terminal 43 passes the phase-shifted microwave signal through the feeding line. Transmission to the radiating unit, the radiating unit radiates the microwave signal to realize the antenna function.
  • An embodiment of the present application further provides an antenna including the liquid crystal phase shifter described above.
  • the liquid crystal phase shifter is used to realize the phase shift function of the microwave signal in the antenna.
  • the phase control electrode of the liquid crystal phase shifter includes a plurality of sub-electrodes spaced apart from each other, and each sub-electrode corresponds to an effective line segment. Since different sub-electrodes are independent of each other, the liquid crystal phase shifter works In the process, you can control which sub-electrodes are applied with voltage, and which sub-electrodes are not applied with voltage. The liquid crystal between the sub-electrode to which the voltage is applied and the corresponding effective line segment will be deflected. The liquid crystal will not be deflected. In the transmission path of the microwave signal, the undeflected liquid crystal will not play the role of phase shift.
  • the liquid crystal phase shifter can be applied to different carrier frequencies.
  • the strip line only corresponds to two feeding ends, and the applicable carrier frequency cannot be adjusted. Therefore, the embodiment of the present application improves the liquid crystal shift. Compatibility's.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请实施例提供一种液晶移相器和天线,涉及电磁波技术领域,可以对液晶移相器适用的载波频率进行调节,从而提高液晶移相器的兼容性。液晶移相器,包括:至少一个移相单元,移相单元包括微带线、相控电极和两个馈电端,微带线位于第一基板和液晶层之间,相控电极位于第二基板和液晶层之间,微带线的两端分别与两个馈电端交叠;相控电极包括相互间隔的至少两个子电极,微带线包括与每个子电极对应的有效线段,每个子电极覆盖对应的有效线段。

Description

液晶移相器和天线
本申请要求于2018年07月20日提交中国专利局、申请号为201810804419.0、发明名称为“液晶移相器和天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电磁波技术领域,尤其涉及一种液晶移相器和天线。
背景技术
移相器是能够对电磁波的相位进行调整的装置,在雷达、航天器姿态控制、加速器、通信、仪器仪表甚至于音乐等领域都有着广泛的应用。
随着技术的发展,出现了一种新的液晶移相器,但是,目前的液晶移相器设计,如果需要调整液晶移相器的载波频率,则需要使用新的液晶移相器,即,液晶移相器的兼容性较差。
发明内容
本申请实施例提供一种液晶移相器和天线,可以对液晶移相器适用的载波频率进行调节,从而提高液晶移相器的兼容性。
一方面,本申请实施例提供了一种液晶移相器,包括:
相对设置的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的液晶层;
至少一个移相单元,所述移相单元包括微带线、相控电极和两个馈电端,所述微带线位于所述第一基板和所述液晶层之间,所述相控电极位于所述第二基板和所述液晶层之间,所述两个馈电端位于所述第一基板远离所述第二基板的一侧或者位于所述第二基板远离所述第一基板的一侧,在垂直于所述第一基板所在平面的方向上,所述微带线的两端分别与所述两个馈电端交叠;
所述相控电极包括相互间隔的至少两个子电极,所述微带线包括与每个所述子电极对应的有效线段,其中,
在垂直于所述第一基板所在平面的方向上,每个所述子电极覆盖对应的所述有效线段。
可选地,每条所述有效线段沿所述液晶层初始配向方向延伸。
可选地,所述微带线还包括连接于任意相邻两条所述有效线段之间的非有效线段,每条所述非有效线段沿非所述液晶层初始配向方向延伸。
可选地,每条所述非有效线段的延伸方向相同。
可选地,每条所述非有效线段的延伸方向垂直于所述液晶层初始配向方向。
可选地,任意相邻的两条所述有效线段以及连接两者之间的非有效线段形成U形结构。
可选地,每个所述子电极的第一极与固定电位电连接。
可选地,所述至少两个子电极的第二极分别连接于不同的输入端。
可选地,所述至少两个子电极的第二极通过选通电路连接于同一输入端。
可选地,所述选通电路包括与每个第二极对应的开关管,每个第二极通过对应的所述开关管连接于所述输入端。
可选地,所述至少两个子电极包括n个子电极,所述选通电路包括n个开关管,n为大于1的整数;
第i个子电极的第二极通过第i个开关管连接于第i+1个子电极的第二极,i的取值为1、2、3、……、n-1,第n个子电极的第二极通过第n个开关管连接于所述输入端。
另一方面,本申请实施例还提供一种天线,包括上述的液晶移相器。
本申请实施例中的液晶移相器和天线,其中,液晶移相器的相控电极包括相互间隔的多个子电极,每个子电极对应一个有效线段,由于不同的子电极相互独立,因此在液晶移相器的工作过程中,可以分别控制给哪些子电极施加电压,给哪些子电极不施加电压,施 加电压的子电极和对应的有效线段之间的液晶会偏转,未施加电压的子电极和对应的有效线段之间的液晶不会偏转,在微波信号的传输路径中,未偏转的液晶不会起到移相的作用,只有偏转的液晶会起到移相的作用,因此,当选择为不同数量的子电极施加电压时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度不同,即可以实现使液晶移相器适用于不同的载波频率,而现有技术中,液晶移相器的微带线仅仅对应两个馈电端,无法对适用的载波频率进行调节,因此,本申请实施例提高了液晶移相器的兼容性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种液晶移相器的俯视图;
图2为图1中一种微带线的结构示意图;
图3为图1中一种相控电极的结构示意图;
图4为图1中AA’向的一种剖面结构示意图;
图5为图1中BB’向的一种剖面结构示意图;
图6为图1中液晶移相器在非工作状态下部分区域内的液晶排布示意图;
图7为图1中液晶移相器在工作状态下部分区域内的液晶排布示意图;
图8为本申请实施例中另一种相控电极的连接示意图;
图9为本申请实施例中另一种相控电极的连接示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例, 而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
如图1、图2、图3、图4和图5所示,图1为本申请实施例中一种液晶移相器的俯视图,图2为图1中一种微带线的结构示意图,图3为图1中一种相控电极的结构示意图,图4为图1中AA’向的一种剖面结构示意图,图5为图1中BB’向的一种剖面结构示意图,本申请实施例提供一种液晶移相器,包括:相对设置的第一基板1和第二基板2以及位于第一基板1和第二基板2之间的液晶层3;至少一个移相单元4,所述移相单元4包括微带线41、相控电极42和两个馈电端43,微带线41位于第一基板1和液晶层3之间,相控电极42位于第二基板2和液晶层3之间,两个馈电端43位于第一基板1远离第二基板2的一侧或者位于第二基板2远离第一基板1的一侧,在垂直于第一基板1所在平面的方向上,微带线41的两端分别与两个馈电端43交叠;相控电极42包括相互间隔的至少两个子电极420,微带线41包括与每个子电极420对应的有效线段401,其中,在垂直于第一基板1所在平面的方向上,每个子电极420覆盖对应的有效线段401。
具体地,液晶移相器的工作过程中,在微带线41和相控电极42上分别施加电压信号,微带线41和相控电极42之间形成电场,电场驱动液晶层3中的液晶偏转,微带线41用于传输微波信号,微波信号在微带线41和相控电极42之间传输,在微波信号的传输过程中,会由于液晶偏转的作用而改变相位,从而实现微波信号的移相功能。微波的移相是利用液晶偏转后的电学特性的变化,移相单元所适用的载波频率和微波在偏转后液晶中所传输的距离具有相关 性。微带线41用于微波信号的传输,同时在传输过程中进行移相,馈电端43用于配合微带线41的两端实现微带线41上微波信号的馈入和馈出。在本申请实施例中,相控电极42包括相互间隔的多个子电极420,每个子电极420对应一个有效线段401,由于不同的子电极420相互独立,因此在液晶移相器的工作过程中,可以分别控制给哪些子电极420施加电压,给哪些子电极420不施加电压,施加电压的子电极420和对应的有效线段401之间的液晶会偏转,未施加电压的子电极420和对应的有效线段401之间的液晶不会偏转,在微波信号的传输路径中,未偏转的液晶不会起到移相的作用,只有偏转的液晶会起到移相的作用,因此,当选择为不同数量的子电极420施加电压时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度不同,即可以实现使液晶移相器适用于不同的载波频率。
本申请实施例中的液晶移相器,相控电极包括相互间隔的多个子电极,每个子电极对应一个有效线段,由于不同的子电极相互独立,因此在液晶移相器的工作过程中,可以分别控制给哪些子电极施加电压,给哪些子电极不施加电压,施加电压的子电极和对应的有效线段之间的液晶会偏转,未施加电压的子电极和对应的有效线段之间的液晶不会偏转,在微波信号的传输路径中,未偏转的液晶不会起到移相的作用,只有偏转的液晶会起到移相的作用,因此,当选择为不同数量的子电极施加电压时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度不同,即可以实现使液晶移相器适用于不同的载波频率,而现有技术中,液晶移相器的微带线仅仅对应两个馈电端,无法对适用的载波频率进行调节,因此,本申请实施例提高了液晶移相器的兼容性。
可选地,如图1、图2、图3、图4、图5、图6和图7所示,图6为图1中液晶移相器在非工作状态下部分区域内的液晶排布示意图,图7为图1中液晶移相器在工作状态下部分区域内的液晶排布示意图,每条有效线段401沿液晶层初始配向方向x延伸。
具体地,以正性液晶分子为例,在非工作状态下,液晶移相器中相控电极42和微带线41之间没有形成电场,液晶层3中的液晶分子长轴沿液晶层初始配向方向x延伸排布,在工作状态下,液晶移相器中施加电压的子电极420和微带线41之间形成电场,未施加电压的子电极420和微带线41之间没有形成电场,位于施加电压的子电极420和微带线41之间的液晶偏转,未施加电压的子电极420和微带线41之间的液晶未偏转,沿微带线41的延伸路径传输的微波利用液晶偏转后的电学特性变化实现移相,图6和图7中虚线箭头为微波传输的路径,对于施加电压的子电极420对应的微波传输路径上,液晶偏转前对应的是液晶分子长轴的介电特性,液晶偏转后对应的是液晶分子短轴的介电特性,因此液晶移相器在工作状态下,施加电压的子电极420和有效线段401对应微波移相的有效路径,能够实现最佳的液晶移相功能,液晶移相器在非工作状态下,不能实现液晶移相功能。
需要说明的是,液晶层初始配向方向x并不限于图示方式,也可以选择其他的角度,只要保证有效线段401对微波信号相位的调节起主导作用即可。液晶层初始配向方向x可以通过液晶配向层来设置,例如,在如图4和图5所示的结构中,在液晶层3和微带线41之间设置有液晶配向层,在液晶层3和相控电极42之间设置有液晶配向层,在液晶移相器处于非工作状态下时,液晶层3中的液晶分子长轴在液晶配向层的作用下沿液晶层初始配向方向x延伸。可以理解的是,本申请实施例中的液晶分子也可以是负性液晶分子,对于液晶分子的类型,本申请不做具体限制。
可选地,微带线41还包括连接于任意相邻两条有效线段401之间的非有效线段402,每条非有效线段402沿非液晶层初始配向方向延伸。
具体地,在非有效线段402对应的微波传输路径上,液晶偏转前和偏转后对应的都是液晶分子短轴的介电特性,因此液晶移相器在工作状态,非有效线段402对应微波移相的非有效路径,不能实 现液晶移相功能。通过设置分别沿液晶层初始配向方向x延伸的有效线段401和沿非液晶层初始配向方向延伸的非有效线段402,可以使整体的微带线41形状设置更加灵活,以实现更加合理的空间利用。
可选地,每条非有效线段402的延伸方向相同,便于实现蛇形的传输部412,以更有效地利用空间。
可选地,每条非有效线段402的延伸方向垂直于液晶层初始配向方向x,可以最大程度地保证非有效线段402对应的液晶偏转时,不会起到液晶移相的作用,以此来更加准确地进行微波移相的有效路径长度调整。
可选地,任意相邻的两条有效线段401以及连接两者之间的非有效线段402形成U形结构,从而实现蛇形的微带线41,更有效地利用空间。
可选地,每个子电极420的第一极421与固定电位电连接,例如每个子电极420的第一极421均接地GND。
可选地,至少两个子电极420的第二极422分别连接于不同的输入端。
具体地,例如,图3中从上至下五个子电极420的第二极422分别连接于第一输入端IN1、第二输入端IN2、第三输入端IN3、第四输入端IN4和第五输入端IN5,根据载波频率的需要,当仅使用第一个子电极420对应的路径作为微波移相的有效路径时,向第一输入端IN1施加输入电压,使第一输入端IN1和地GND之间通过第一个子电极420形成通路,使第一个子电极420上具有电压,第一个子电极420和对应的有效线段401之间形成电场,驱动其中的液晶偏转,以实现液晶移相功能,第二输入端IN2、第三输入端IN3、第四输入端IN4和第五输入端IN5上均不施加电压,即第二个子电极420、第三个子电极420、第四个子电极420和第五个子电极420上均不具有电压,不会与对应的有效线段401之间形成电压,其对应的液晶也不会偏转,微波移相的有效路径长度即为第一子电极420 对应的有效线段401的长度;根据载波频率的需要,当仅使用前两个子电极420对应的路径作为微波移相的有效路径时,向第一输入端IN1和第二输入端IN2施加输入电压,使第一输入端IN1和地GND之间通过第一个子电极420形成通路,使第二输入端IN2和地GND之间通过第二个子电极420形成通路,使第一个子电极420和第二个子电极420上具有电压,这两个子电极420分别与对应的有效线段401之间形成电压,驱动其中的液晶偏转,以实现液晶移相功能,第三输入端IN3、第四输入端IN4和第五输入端IN5上均不施加电压,即第三个子电极420、第四个子电极420和第五个子电极420上均不具有电压,不会与对应的有效线段401之间形成电压,其对应的液晶也不会偏转;其他的则可依次类推。
可选地,如图8所示,图8为本申请实施例中另一种相控电极的连接示意图,至少两个子电极420的第二极422通过选通电路5连接于同一输入端IN,通过选通电路5可以控制哪些子电极420的第二极422与输入端IN之间导通,哪些子电极420的第二极422与输入端IN之间截止,同样可以通过控制为不同的子电极420施加电压来实现微波移相的有效路径长度调节。
可选地,选通电路5包括与每个第二极422对应的开关管M,每个第二极422通过对应的开关管M连接于输入端IN,每个开关管M的第一端连接于对应的第二极422,每个开关管M的第二端连接于输入端IN,每个开关管M的控制端用于控制该开关管M的第一端和第二端之间导通或者截止,通过分别控制每个开关管M的导通或截止,既可以实现控制哪些子电极420的第二极422与输入端IN之间导通,哪些子电极420的第二极422与输入端IN之间截止,从而实现微波移相的有效路径长度调节。
可选地,如图9所示,图9为本申请实施例中另一种相控电极的连接示意图,至少两个子电极420包括n个子电极420,选通电路5包括n个开关管M,n为大于1的整数;第i个子电极420的第二极422通过第i个开关管M连接于第i+1个子电极420的第二极 422,i的取值为1、2、3、……、n-1,第n个子电极420的第二极422通过第n个开关管M连接于输入端IN。
具体地,例如,图9所示的结构,n=5,自上至下的五个子电极420依次为第1至第5个子电极4201至4205,自上至下的五个开关管M依次为第1至第5个开关管M1至M5,第1个子电极4201的第二极422通过第1个开关管M1连接于第2个子电极4202的第二极422,第2个子电极4202的第二极422通过第2个开关管M2连接于第3个子电极4203的第二极422,依次类推,最后一个子电极,即第5个子电极4205的第二极422通过第5个开关管M5连接于输入端IN,通过对开关管M的控制,同样可以控制为不同数量的子电极420施加电压,以实现微波移相的有效路径长度调节。例如,控制5个开关管M均导通时,可以为5个子电极420施加电压;控制第2至第5个开关管M导通,第1个开关管M截止时,可以为4个子电极420施加电压;控制第3至第5个开关管M导通,第1和第2个开关管M截止时,可以为3个子电极420施加电压;以此类推,即可实现为不同数量的子电极420施加电压。
需要说明的是,本申请实施例中液晶移相器仅示意了一个移相单元4,在其他可实现的方式中,一个液晶移相器包括呈阵列分布的多个移相单元,多个移相单元的相控电极相互连接,以使所有的相控电极均具有相同的电位,每个移相单元用于实现一个微波信号的移相功能,每个移相单元可以分别制作为不同的液晶盒,也可以将所有的移相单元制作为同一个液晶盒。另外,在本申请实施例中,馈电端43可以为馈电线的一部分,馈电线用于实现馈电端43和其他元件之间的微波信号传输,例如,在天线的应用场景中,天线的辐射单元通过馈电线连接于馈电端43,液晶移相器完成移相之后,微波信号由微带线41馈出至馈电端43,馈电端43将移相之后的微波信号通过馈电线传输至辐射单元,辐射单元将微波信号辐射出去,以实现天线功能。
本申请实施例还提供一种天线,包括上述的液晶移相器。液晶 移相器用于实现天线中微波信号的移相功能。
液晶移相器的具体结构和原理与上述实施例相同,在此不再赘述。
本申请实施例中的天线,其中,液晶移相器的相控电极包括相互间隔的多个子电极,每个子电极对应一个有效线段,由于不同的子电极相互独立,因此在液晶移相器的工作过程中,可以分别控制给哪些子电极施加电压,给哪些子电极不施加电压,施加电压的子电极和对应的有效线段之间的液晶会偏转,未施加电压的子电极和对应的有效线段之间的液晶不会偏转,在微波信号的传输路径中,未偏转的液晶不会起到移相的作用,只有偏转的液晶会起到移相的作用,因此,当选择对为不同数量的子电极施加电压时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度不同,即可以实现使液晶移相器适用于不同的载波频率,而现有技术中,液晶移相器的微带线仅仅对应两个馈电端,无法对适用的载波频率进行调节,因此,本申请实施例提高了液晶移相器的兼容性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种液晶移相器,其特征在于,包括:
    相对设置的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的液晶层;
    至少一个移相单元,所述移相单元包括微带线、相控电极和两个馈电端,所述微带线位于所述第一基板和所述液晶层之间,所述相控电极位于所述第二基板和所述液晶层之间,所述两个馈电端位于所述第一基板远离所述第二基板的一侧或者位于所述第二基板远离所述第一基板的一侧,在垂直于所述第一基板所在平面的方向上,所述微带线的两端分别与所述两个馈电端交叠;
    所述相控电极包括相互间隔的至少两个子电极,所述微带线包括与每个所述子电极对应的有效线段,其中,
    在垂直于所述第一基板所在平面的方向上,每个所述子电极覆盖对应的所述有效线段。
  2. 根据权利要求1所述的液晶移相器,其特征在于,
    每条所述有效线段沿所述液晶层初始配向方向延伸。
  3. 根据权利要求2所述的液晶移相器,其特征在于,
    所述微带线还包括连接于任意相邻两条所述有效线段之间的非有效线段,每条所述非有效线段沿非所述液晶层初始配向方向延伸。
  4. 根据权利要求3所述的液晶移相器,其特征在于,
    每条所述非有效线段的延伸方向相同。
  5. 根据权利要求4所述的液晶移相器,其特征在于,
    每条所述非有效线段的延伸方向垂直于所述液晶层初始配向方向。
  6. 根据权利要求5所述的液晶移相器,其特征在于,
    任意相邻的两条所述有效线段以及连接两者之间的非有效线段形成U形结构。
  7. 根据权利要求1至6中任意一项所述的液晶移相器,其特征在于,
    每个所述子电极的第一极与固定电位电连接。
  8. 根据权利要求1至6中任意一项所述的液晶移相器,其特征在于,
    所述至少两个子电极的第二极分别连接于不同的输入端。
  9. 根据权利要求1至6中任意一项所述的液晶移相器,其特征在于,
    所述至少两个子电极的第二极通过选通电路连接于同一输入端。
  10. 根据权利要求9所述的液晶移相器,其特征在于,
    所述选通电路包括与每个第二极对应的开关管,每个第二极通过对应的所述开关管连接于所述输入端。
  11. 根据权利要求9所述的液晶移相器,其特征在于,
    所述至少两个子电极包括n个子电极,所述选通电路包括n个开关管,n为大于1的整数;
    第i个子电极的第二极通过第i个开关管连接于第i+1个子电极的第二极,i的取值为1、2、3、……、n-1,第n个子电极的第二极通过第n个开关管连接于所述输入端。
  12. 一种天线,其特征在于,包括如权利要求1至11中任意一项所述的液晶移相器。
PCT/CN2019/087675 2018-07-20 2019-05-21 液晶移相器和天线 WO2020015450A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/958,750 US11233301B2 (en) 2018-07-20 2019-05-21 Liquid crystal phase shifter and antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810804419.0A CN108808181B (zh) 2018-07-20 2018-07-20 液晶移相器和天线
CN201810804419.0 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020015450A1 true WO2020015450A1 (zh) 2020-01-23

Family

ID=64077406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087675 WO2020015450A1 (zh) 2018-07-20 2019-05-21 液晶移相器和天线

Country Status (3)

Country Link
US (1) US11233301B2 (zh)
CN (1) CN108808181B (zh)
WO (1) WO2020015450A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824698A (zh) * 2021-01-19 2022-07-29 京东方科技集团股份有限公司 一种移相器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405672B1 (ko) * 2017-11-06 2022-06-03 엘지디스플레이 주식회사 Dgs를 포함하는 위상 천이기 및 이를 포함하는 전파 통신 모듈
CN108808181B (zh) 2018-07-20 2020-05-29 成都天马微电子有限公司 液晶移相器和天线
CN109921190B (zh) 2019-02-25 2020-06-30 北京京东方传感技术有限公司 信号调节器、天线装置和制造方法
CN110034358B (zh) * 2019-04-04 2024-02-23 信利半导体有限公司 一种液晶移相器、液晶天线及液晶移相器的制作方法
CN112397893A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN112731715B (zh) 2019-10-14 2022-11-11 京东方科技集团股份有限公司 液晶移相器及天线
US11482781B2 (en) * 2019-11-04 2022-10-25 Innolux Corporation Electromagnetic wave adjusting device
CN113728512B (zh) * 2020-03-24 2022-09-09 京东方科技集团股份有限公司 移相器及天线
CN113540766B (zh) 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113540767B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN114063324B (zh) * 2020-08-06 2024-01-16 成都天马微电子有限公司 液晶移相器和液晶天线的测试方法和测试装置
CN112436246B (zh) * 2020-10-20 2021-12-21 电子科技大学 一种基于双稳态液晶的可编码天线移相单元
CN115693161A (zh) * 2021-07-30 2023-02-03 北京京东方技术开发有限公司 液晶天线及通信设备
CN113675551B (zh) * 2021-09-03 2023-07-04 上海天马微电子有限公司 液晶移相器和液晶天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537242A (en) * 1994-02-10 1996-07-16 Hughes Aircraft Company Liquid crystal millimeter wave open transmission lines modulators
US20140022029A1 (en) * 2011-11-14 2014-01-23 Anatoliy Volodymyrovych GLUSHCHENKO Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN108181745A (zh) * 2018-02-08 2018-06-19 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN108196405A (zh) * 2018-01-15 2018-06-22 京东方科技集团股份有限公司 液晶移相器及电子装置
CN108808181A (zh) * 2018-07-20 2018-11-13 成都天马微电子有限公司 液晶移相器和天线

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322861B2 (ja) * 2000-02-21 2002-09-09 スタンレー電気株式会社 位相可変装置
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
US10177444B2 (en) * 2016-01-29 2019-01-08 Sharp Kabushiki Kaisha Scanning antenna
CN106125417B (zh) * 2016-09-09 2023-03-14 万维云视(上海)数码科技有限公司 一种液晶光栅及其控制方法、3d显示面板及显示装置
CN106532200B (zh) * 2016-12-16 2021-11-23 合肥工业大学 一种基于石墨烯电极的反射式液晶移相单元
CN106940502B (zh) * 2017-05-18 2021-11-26 京东方科技集团股份有限公司 一种液晶显示面板及显示装置
CN107994302B (zh) * 2017-11-27 2020-11-27 京东方科技集团股份有限公司 液晶移相器及其工作方法
JP2019134032A (ja) * 2018-01-30 2019-08-08 シャープ株式会社 Tft基板、tft基板を備えた走査アンテナ、およびtft基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537242A (en) * 1994-02-10 1996-07-16 Hughes Aircraft Company Liquid crystal millimeter wave open transmission lines modulators
US20140022029A1 (en) * 2011-11-14 2014-01-23 Anatoliy Volodymyrovych GLUSHCHENKO Nanoparticle-enhanced liquid crystal radio frequency phase shifter
CN108196405A (zh) * 2018-01-15 2018-06-22 京东方科技集团股份有限公司 液晶移相器及电子装置
CN108181745A (zh) * 2018-02-08 2018-06-19 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN108808181A (zh) * 2018-07-20 2018-11-13 成都天马微电子有限公司 液晶移相器和天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824698A (zh) * 2021-01-19 2022-07-29 京东方科技集团股份有限公司 一种移相器
CN114824698B (zh) * 2021-01-19 2024-04-16 京东方科技集团股份有限公司 一种移相器

Also Published As

Publication number Publication date
US20210135327A1 (en) 2021-05-06
CN108808181A (zh) 2018-11-13
US11233301B2 (en) 2022-01-25
CN108808181B (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
WO2020015450A1 (zh) 液晶移相器和天线
WO2020015449A1 (zh) 液晶移相器和天线
JP7433229B2 (ja) 液晶移相器及びその操作方法、液晶アンテナ及び通信装置
US11949141B2 (en) Phase shifter and liquid crystal antenna
US10741921B2 (en) Multi-layered software defined antenna and method of manufacture
KR102368374B1 (ko) 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치
CN109164608B (zh) 移相器、天线及移相器的控制方法
US11158916B2 (en) Phase shifter and liquid crystal antenna
CN110011038A (zh) 相控阵天线、显示面板及显示装置
CN112448105B (zh) 移相器及天线
CN113728512B (zh) 移相器及天线
CN113451718A (zh) 一种移相器及天线
CN112164875B (zh) 微带天线、通信设备
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
WO2021189409A1 (zh) 移相器及其制备方法、天线
US11799179B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
WO2021143820A1 (zh) 移相器及天线
US20240006762A1 (en) Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus
US20240063554A1 (en) Improving scanning time of an antenna
US20230155285A1 (en) Antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837985

Country of ref document: EP

Kind code of ref document: A1