WO2020015449A1 - 液晶移相器和天线 - Google Patents

液晶移相器和天线 Download PDF

Info

Publication number
WO2020015449A1
WO2020015449A1 PCT/CN2019/087674 CN2019087674W WO2020015449A1 WO 2020015449 A1 WO2020015449 A1 WO 2020015449A1 CN 2019087674 W CN2019087674 W CN 2019087674W WO 2020015449 A1 WO2020015449 A1 WO 2020015449A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
phase shifter
substrate
crystal phase
line segments
Prior art date
Application number
PCT/CN2019/087674
Other languages
English (en)
French (fr)
Inventor
王东花
吴勃
扈映茹
Original Assignee
成都天马微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都天马微电子有限公司 filed Critical 成都天马微电子有限公司
Priority to US16/959,149 priority Critical patent/US11557838B2/en
Publication of WO2020015449A1 publication Critical patent/WO2020015449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/181Phase-shifters using ferroelectric devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters

Definitions

  • the present application relates to the technical field of electromagnetic waves, and in particular, to a liquid crystal phase shifter and an antenna.
  • Phase shifter is a device that can adjust the phase of electromagnetic waves. It has a wide range of applications in radar, spacecraft attitude control, accelerator, communication, instrumentation and even music.
  • liquid crystal phase shifter With the development of technology, a new type of liquid crystal phase shifter has appeared.
  • the current liquid crystal phase shifter design requires a new liquid crystal phase shifter if the carrier frequency of the liquid crystal phase shifter needs to be adjusted, that is, The compatibility of liquid crystal phase shifters is poor.
  • the embodiments of the present application provide a liquid crystal phase shifter and an antenna, which can adjust a carrier frequency applicable to the liquid crystal phase shifter, thereby improving the compatibility of the liquid crystal phase shifter.
  • an embodiment of the present application provides a liquid crystal phase shifter, including:
  • the phase shifting unit comprising a microstrip line and a phase-controlling electrode, the microstrip line being located between the first substrate and the liquid crystal layer, and the phase-controlling electrode being located on the second substrate
  • the microstrip line includes a plurality of sub-microstrip lines, and each of the sub-microstrip lines includes two ends and a transmission part connected between the two ends, in any phase. Two adjacent sub-microstrip lines share one end;
  • the phase shifting unit further includes a power feeding terminal corresponding to each of the ends, and the power feeding terminal is located on a side of the first substrate away from the second substrate or on a side of the second substrate away from the On one side of the first substrate, in a direction perpendicular to a plane on which the first substrate is located, each of the power feeding ends overlaps with the corresponding end portion, respectively.
  • each of the transmission sections includes an effective line segment extending along an initial alignment direction of the liquid crystal layer
  • At least one of the transmission portions includes non-effective line segments extending along a direction other than the initial alignment direction of the liquid crystal layer;
  • each effective line segment is equal.
  • each of the non-effective line segments extends in the same direction.
  • an extension direction of each of the ineffective line segments is perpendicular to an initial alignment direction of the liquid crystal layer.
  • any two adjacent effective line segments and a non-effective line segment connecting the two form a U-shaped structure.
  • the length of at least one of the effective line segments is not equal to the length of the other effective line segments.
  • an extension direction of at least one of the ineffective line segments is not perpendicular to an initial alignment direction of the liquid crystal layer.
  • an extension direction of at least one of the non-effective line segments is perpendicular to an initial alignment direction of the liquid crystal layer.
  • a T-shaped structure is formed between at least one of the effective line segments and a non-effective line segment connected thereto.
  • the power feeding terminal includes an input power feeding terminal and at least two output power feeding terminals, and the effective length of the microstrip line from the input power feeding terminal to any one of the output power feeding terminals. Are not the same;
  • the power feeding terminal includes an output power feeding terminal and at least two input power feeding terminals, and the effective length of the microstrip line from the output power feeding terminal to any one of the input power feeding terminals is not the same.
  • the phase-controlling electrode covers the transmission portion of the microstrip line.
  • an embodiment of the present application further provides an antenna including the liquid crystal phase shifter described above.
  • the liquid crystal phase shifter and the antenna in the embodiment of the present application wherein the microstrip line of the liquid crystal phase shifter corresponds to at least three feeding ends.
  • the liquid crystal phase shifter When the liquid crystal phase shifter is applied, any two of the at least three feeding ends can be selected.
  • Each feeding terminal is used as an actual input feeding terminal and an actual output feeding terminal.
  • the microstrip line has different microwave transmission distances. When the microwave transmission distances are different, deflection is used in the microwave transmission process.
  • the effective path length of microwave phase shifting can be different, that is, the liquid crystal phase shifter can be applied to different carrier frequencies.
  • the microstrip line of the liquid crystal phase shifter corresponds to only two feeding ends. The applicable carrier frequency cannot be adjusted. Therefore, the embodiment of the present application improves the compatibility of the liquid crystal phase shifter.
  • FIG. 1 is a top view of a liquid crystal phase shifter according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a microstrip line in FIG. 1;
  • FIG. 3 is a schematic cross-sectional structure diagram taken along the line AA ′ in FIG. 1;
  • FIG. 4 is a schematic cross-sectional structure diagram taken along the line BB 'in FIG. 1;
  • FIG. 5 is a schematic diagram of liquid crystal arrangement in a partial area of the liquid crystal phase shifter in a non-working state in FIG. 2;
  • FIG. 6 is a schematic diagram of liquid crystal arrangement in a partial area of the liquid crystal phase shifter in FIG. 2 in a working state
  • FIG. 7 is a top view of another liquid crystal phase shifter in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a microstrip line in FIG. 7.
  • FIG. 1 is a top view of a liquid crystal phase shifter according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a microstrip line in FIG. 1
  • FIG. 3 is 1 is a schematic cross-sectional structure diagram in the AA ′ direction in FIG. 1
  • FIG. 4 is a schematic cross-sectional structure diagram in the BB ′ direction in FIG. 1.
  • An embodiment of the present application provides a liquid crystal phase shifter, which includes a first substrate 1 disposed oppositely.
  • phase shifting unit 4 includes a microstrip line 41 and a phase control electrode 42, the microstrip line 41 is located at Between the first substrate 1 and the liquid crystal layer 3, the phase control electrode 42 is located between the second substrate 2 and the liquid crystal layer 3.
  • the microstrip line 41 includes a plurality of sub-microstrip lines 410, and each sub-microstrip line 410 includes two ends.
  • the phase shifting unit 4 further includes a feeding terminal corresponding to each end portion 411 43, the feeding end 43 is located on the side of the first substrate 1 away from the second substrate 2 or on the side of the second substrate 2 away from the first substrate 1, in FIGS. 1 to 3 2 illustrates a case where the side positioned away from a first substrate and a second substrate feeding terminal 43, is located in a direction perpendicular to the first plane of the substrate 1, each of the feed terminals 43 respectively corresponding to the overlapping end portion 411.
  • a voltage signal is applied to the microstrip line 41 and the phase-controlling electrode 42, respectively.
  • An electric field is formed between the microstrip line 41 and the phase-controlling electrode 42, and the electric field drives the liquid crystal in the liquid crystal layer 3.
  • the microstrip line 41 is used to transmit microwave signals.
  • the microwave signal is transmitted between the microstrip line 41 and the phase control electrode 42.
  • the phase will be changed due to the deflection of the liquid crystal, thereby realizing the microwave signal.
  • Phase shift function The phase shift of the microwave uses the change of the electrical characteristics of the liquid crystal after deflection.
  • the carrier frequency applied by the phase shift unit and the distance transmitted by the microwave in the deflected liquid crystal have a correlation.
  • the transmission unit 412 is used for transmission of microwave signals, and at the same time performs phase shifting during transmission.
  • the feeding end 43 is used to cooperate with the end 411 of the microstrip line 41 to implement the microwave signal on the microstrip line 41. Feed in and out.
  • the microstrip line 41 includes at least two sub-microstrip lines 410, and each sub-microstrip line 410 includes two end portions 411 and a transmission portion 412 connected between the two end portions 411, each The end portion 411 is correspondingly provided with a power feeding terminal 43, that is, the microstrip line 41 includes at least three power feeding terminals 43.
  • the microstrip line 41 includes at least three power feeding terminals 43.
  • any two of the at least three power feeding terminals 43 can be selected.
  • the feeding terminal 43 is used as the actual input feeding terminal and the actual output feeding terminal.
  • the microstrip line 41 has different microwave transmission distances. When the microwave transmission distances are different, the microwave transmission process is different.
  • the liquid crystal phase shifter in FIG. 1 includes five sub-microstrip lines 410 and six Feed terminals 43, six feed terminals 43 include a first feed terminal 431, a second feed terminal 432, a third feed terminal 433, a fourth feed terminal 434, a fifth feed terminal 435, and a sixth feed terminal Power feeding terminal 436, when the first power feeding terminal 431 and the second power feeding terminal 432 are selected as When the actual input feed terminal and the actual output feed terminal, the microwave transmission distance of the microstrip line 41 is short. When the first feed terminal 431 and the third feed terminal 433 are selected as the actual input feed terminal and the actual output, respectively At the feeding end, the microwave transmission distance of the microstrip line 41 is longer.
  • the microstrip line corresponds to at least three feeding ends.
  • any two feeding ends of the at least three feeding ends can be selected as actual inputs respectively. Feeder and actual output feeder.
  • the microstrip line has different microwave transmission distances.
  • the deflected liquid crystal is used to make the microwave phase shift effective during microwave transmission.
  • the path length can be different, that is, the liquid crystal phase shifter can be applied to different carrier frequencies.
  • the microstrip line of the liquid crystal phase shifter only corresponds to two feeding ends, and the applicable carrier frequency cannot be adjusted. Therefore, the embodiments of the present application improve the compatibility of the liquid crystal phase shifter.
  • FIG. 5 is a schematic diagram of the liquid crystal arrangement in a partial area of the liquid crystal phase shifter in the non-working state
  • FIG. 6 is a schematic diagram of the liquid crystal arrangement in a partial area of the liquid crystal phase shifter in FIG. 2 in the working state.
  • Each transmission part 412 includes an effective line segment 401 extending along the initial alignment direction x of the liquid crystal layer; at least one transmission part 412 includes a non-liquid crystal.
  • the non-effective line segments 402 extending in the initial alignment direction of the layer; the two effective line segments 401 respectively located in any two adjacent transmission sections 412 are connected by the non-effective line segments 402.
  • the microwave transmission paths On the microwave transmission path corresponding to the effective line segment 401, the corresponding one before the liquid crystal deflection. It is the dielectric property of the long axis of liquid crystal molecules. After the liquid crystal is deflected, it corresponds to the dielectric property of the short axis of liquid crystal molecules. Therefore, in the working state of the liquid crystal phase shifter, the effective line segment 401 corresponds to the effective path of the microwave phase shift. Phase function, the liquid crystal phase shifter cannot realize the liquid crystal phase shifting function in a non-working state; on the microwave transmission path corresponding to the non-effective line segment 402, the liquid crystal is deflected before and after the deflection.
  • Phase function By setting an effective line segment 401 extending along the initial alignment direction x of the liquid crystal layer and an ineffective line segment 402 extending along the initial alignment direction of the non-liquid crystal layer, the overall shape of the microstrip line 41 can be set more flexibly to achieve more reasonable space utilization. .
  • the initial alignment direction x of the liquid crystal layer is not limited to that shown in the figure, and other angles can also be selected, as long as the effective line segment 401 plays a leading role in adjusting the phase of the microwave signal.
  • the initial alignment direction x of the liquid crystal layer can be set by the liquid crystal alignment layer.
  • a liquid crystal alignment layer is provided between the liquid crystal layer 3 and the microstrip line 41.
  • a liquid crystal alignment layer is provided between the phase control electrode 42 and the liquid crystal phase shifter in a non-operating state.
  • the long axis of the liquid crystal molecules in the liquid crystal layer 3 extends along the initial alignment direction x of the liquid crystal layer under the action of the liquid crystal alignment layer.
  • the liquid crystal molecules in the embodiments of the present application may also be negative liquid crystal molecules.
  • the type of the liquid crystal molecules is not specifically limited in this application.
  • the lengths of each effective line segment 401 are equal. In this way, through the selection of different feeding ends 43, multiples of the effective path length of the microwave phase shift can be selected.
  • the length of each effective line segment 401 is L.
  • the effective path length of the microwave phase shift is L; when the first feeding terminal 431 and the third feeding terminal are selected
  • the electric terminal 433 is used as an actual input feeding terminal and an actual output feeding terminal, the effective path length of the microwave phase shift is 2L; and so on.
  • the length of each effective line segment 401 is the same, it is convenient to realize a multiplying effective path length adjustment by switching between different feeding ends 43.
  • each non-effective line segment 402 is the same, which facilitates the realization of the serpentine transmission portion 412 to use space more effectively.
  • each non-effective line segment 402 is perpendicular to the initial alignment direction x of the liquid crystal layer, which can ensure that the liquid crystal corresponding to the non-effective line segment 402 will not play a phase shift effect when the liquid crystal is deflected. Adjust the effective path length of microwave phase shift more accurately.
  • any two adjacent effective line segments 401 and a non-effective line segment 402 connecting the two form a U-shaped structure.
  • FIG. 7 is a top view of another liquid crystal phase shifter in the embodiment of the present application
  • FIG. 8 is a schematic structural diagram of a microstrip line in FIG. 7 with at least one effective line segment
  • the length of 401 is not equal to the length of other valid line segments 401.
  • the lengths of the effective line segments 401 in the microstrip line 41 are not all equal, for example, from top to bottom, the first, second, and fifth The length of each effective line segment 401 is L, the length of the third effective line segment 401 is L1, and the length of the fourth effective line segment 401 is L2.
  • the effective path length of the microwave phase shift is L when the terminal and the actual output feeder are selected.
  • the microwave shift The effective path length of the phase is 2L + L1. Since the length of each effective line segment 401 is not necessarily equal, by looking at the switching of the feeding end 43 differently, a more flexible adjustment of the effective phase length of the microwave phase shift can be achieved.
  • the extending direction of the at least one non-effective line segment 402 is not perpendicular to the initial alignment direction x of the liquid crystal layer, so that the effective line segments 401 have different lengths.
  • the extending direction of the at least one non-effective line segment 402 is perpendicular to the initial alignment direction x of the liquid crystal layer, so that it is convenient to set a part of the effective line segments 401 to have the same length.
  • a T-shaped structure is formed between at least one valid line segment 401 and a non-effective line segment 402 connected thereto.
  • a T-shaped structure is formed between the third valid line segment 401 and the non-effective line segment 402 below it from the top to the bottom.
  • the effective path adjustment of the microwave phase shift is more flexible.
  • the feeding terminal 43 includes an input feeding terminal and at least two output feeding terminals.
  • the effective length of the microstrip line 41 from the input feeding terminal to any one of the output feeding terminals is different. You only need to select the actual output feeder among multiple output feeders, which can realize the effective path length adjustment of the microwave phase shift, and the adjustment method is relatively simple; or, the feeder 43 includes an output feeder and at least The effective lengths of the two input feeders and the microstrip line 41 from the output feeder to any one of the input feeders are not the same. In this way, only the actual input feeder needs to be selected from multiple input feeders. The electric end can adjust the effective path length of the microwave phase shift, and the adjustment method is relatively simple.
  • the phase control electrode 42 covers the transmission portion 412 of the microstrip line 41 in a direction perpendicular to the plane where the first substrate is located.
  • the feeding end 43 is located on the side of the first substrate 1 away from the second substrate 2.
  • the feeding end 43 may be directly between the microstrip line 41
  • the phase-control electrode 42 can cover the entire microstrip line 41 or the transmission part 412 to expose the feeding end 43.
  • the feeding end is located The side of the second substrate away from the first substrate, because the phase-control electrode is located between the microstrip line and the feeding end, in order to avoid the phase-control electrode from adversely affecting the feeding and output of microwave signals on the microstrip line, it is necessary to make The position of the phase control electrode at the feeding end has a hollow structure.
  • one liquid crystal phase shifter only illustrates one phase shifting unit 4.
  • one liquid crystal phase shifter includes a plurality of phase shifting units distributed in an array.
  • the phase control electrodes of the phase units are connected to each other so that all the phase control electrodes have the same potential.
  • Each phase shift unit is used to implement the phase shift function of a microwave signal.
  • Each phase shift unit can be made into a different liquid crystal. Cell, or all the phase shift units can be made into the same LCD cell.
  • the feeding end 43 may be a part of a feeding line, and the feeding line is used to implement microwave signal transmission between the feeding end 43 and other components.
  • the radiating unit is connected to the feeding terminal 43 through a feeding line. After the liquid crystal phase shifter completes the phase shift, the microwave signal is fed out to the feeding terminal 43 by the microstrip line 41.
  • the feeding terminal 43 passes the phase-shifted microwave signal through the feeding line. Transmission to the radiating unit, the radiating unit radiates the microwave signal to realize the antenna function.
  • An embodiment of the present application further provides an antenna including the liquid crystal phase shifter described above.
  • the liquid crystal phase shifter is used to realize the phase shift function of the microwave signal in the antenna.
  • the microstrip line of the liquid crystal phase shifter corresponds to at least three power feeding ends.
  • any two power feeding ends of the at least three power feeding ends may be selected respectively.
  • the microstrip line has different microwave transmission distances.
  • the deflected liquid crystal is used to move the microwaves during the microwave transmission.
  • the effective path lengths of the phases can be different, that is, the liquid crystal phase shifter can be applied to different carrier frequencies.
  • the microstrip line of the liquid crystal phase shifter only corresponds to two feeding ends, and the applicable carrier cannot be applied. The frequency is adjusted. Therefore, the embodiment of the present application improves the compatibility of the liquid crystal phase shifter.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请实施例提供一种液晶移相器和天线,涉及电磁波技术领域,可以对液晶移相器适用的载波频率进行调节,从而提高液晶移相器的兼容性。液晶移相器包括:至少一个移相单元,移相单元包括微带线和相控电极,微带线包括多条子微带线,每条子微带线包括两个端部和连接于两个端部之间的传输部,任意相邻的两条子微带线共用一个端部;移相单元还包括馈电端,馈电端位于第一基板远离第二基板的一侧或者位于第二基板远离第一基板的一侧,每个馈电端分别与对应的端部交叠。

Description

液晶移相器和天线
本申请要求于2018年07月18日提交中国专利局、申请号为201810806844.3、发明名称为“液晶移相器和天线”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电磁波技术领域,尤其涉及一种液晶移相器和天线。
背景技术
移相器是能够对电磁波的相位进行调整的装置,在雷达、航天器姿态控制、加速器、通信、仪器仪表甚至于音乐等领域都有着广泛的应用。
随着技术的发展,出现了一种新的液晶移相器,但是,目前的液晶移相器设计,如果需要调整液晶移相器的载波频率,则需要使用新的液晶移相器,即,液晶移相器的兼容性较差。
发明内容
本申请实施例提供一种液晶移相器和天线,可以对液晶移相器适用的载波频率进行调节,从而提高液晶移相器的兼容性。
一方面,本申请实施例提供一种液晶移相器,包括:
相对设置的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的液晶层;
至少一个移相单元,所述移相单元包括微带线和相控电极,所述微带线位于所述第一基板和所述液晶层之间,所述相控电极位于所述第二基板和所述液晶层之间,所述微带线包括多条子微带线,每条所述子微带线包括两个端部和连接于所述两个端部之间的传输部,任意相邻的两条所述子微带线共用一个所述端部;
所述移相单元还包括分别与每个所述端部对应的馈电端,所述馈电端位于所述第一基板远离所述第二基板的一侧或者位于所述第二基板远离所述第一基板的一侧,在垂直于所述第一基板所在平面 的方向上,每个所述馈电端分别与对应的所述端部交叠。
可选地,每个所述传输部包括沿所述液晶层初始配向方向延伸的有效线段;
至少一个所述传输部包括沿非所述液晶层初始配向方向延伸的非有效线段;
分别位于任意相邻的两个所述传输部中的两条所述有效线段通过所述非有效线段连接。
可选地,每条所述有效线段的长度相等。
可选地,每条所述非有效线段的延伸方向相同。
可选地,每条所述非有效线段的延伸方向垂直于所述液晶层初始配向方向。
可选地,任意相邻的两条所述有效线段以及连接两者之间的非有效线段形成U形结构。
可选地,至少一条所述有效线段的长度不等于其他所述有效线段的长度。
可选地,至少一条所述非有效线段的延伸方向不垂直于所述液晶层初始配向方向。
可选地,至少一条所述非有效线段的延伸方向垂直于所述液晶层初始配向方向。
可选地,至少一条所述有效线段和与其连接的非有效线段之间形成T形结构。
可选地,所述馈电端包括一个输入馈电端和至少两个输出馈电端,所述微带线从所述输入馈电端至任意一个所述输出馈电端之间的有效长度均不相同;
或者,所述馈电端包括一个输出馈电端和至少两个输入馈电端,所述微带线从所述输出馈电端至任意一个所述输入馈电端之间的有效长度均不相同。
可选地,在垂直于所述第一基板所在平面的方向上,所述相控电极覆盖所述微带线的所述传输部。
另一方面,本申请实施例还提供一种天线,包括上述的液晶移相器。
本申请实施例中的液晶移相器和天线,其中液晶移相器的微带线对应至少三个馈电端,在应用液晶移相器时,可以选择至少三个馈电端中的任意两个馈电端分别作为实际输入馈电端和实际输出馈电端,当使用不同的馈电端时,微带线具有不同的微波传输距离,微波的传输距离不同时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度可以不同,即可以实现使液晶移相器适用于不同的载波频率,而现有技术中,液晶移相器的微带线仅仅对应两个馈电端,无法对适用的载波频率进行调节,因此,本申请实施例提高了液晶移相器的兼容性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中一种液晶移相器的俯视图;
图2为图1中一种微带线的结构示意图;
图3为图1中AA’向的一种剖面结构示意图;
图4为图1中BB’向的一种剖面结构示意图;
图5为图2中液晶移相器在非工作状态下部分区域内的液晶排布示意图;
图6为图2中液晶移相器在工作状态下部分区域内的液晶排布示意图;
图7为本申请实施例中另一种液晶移相器的俯视图;
图8为图7中一种微带线的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将 结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
如图1、图2、图3和图4所示,图1为本申请实施例中一种液晶移相器的俯视图,图2为图1中一种微带线的结构示意图,图3为图1中AA’向的一种剖面结构示意图,图4为图1中BB’向的一种剖面结构示意图,本申请实施例提供一种液晶移相器,包括:相对设置的第一基板1和第二基板2以及位于第一基板1和第二基板2之间的液晶层3;至少一个移相单元4,移相单元4包括微带线41和相控电极42,微带线41位于第一基板1和液晶层3之间,相控电极42位于第二基板2和液晶层3之间,微带线41包括多条子微带线410,每条子微带线410包括两个端部411和连接于两个端部411之间的传输部412,任意相邻的两条子微带线410共用一个端部411;移相单元4还包括分别与每个端部411对应的馈电端43,馈电端43位于第一基板1远离第二基板2的一侧或者位于第二基板2远离第一基板1的一侧,图1至3中仅示意了馈电端43位于第一基板1远离第二基板2一侧的情况,在垂直于第一基板1所在平面的方向上,每个馈电端43分别与对应的端部411交叠。
具体地,液晶移相器的工作过程中,在微带线41和相控电极42上分别施加电压信号,微带线41和相控电极42之间形成电场,电场驱动液晶层3中的液晶偏转,微带线41用于传输微波信号,微波信号在微带线41和相控电极42之间传输,在微波信号的传输过程中,会由于液晶偏转的作用而改变相位,从而实现微波信号的移 相功能。微波的移相是利用液晶偏转后的电学特性的变化,移相单元所适用的载波频率和微波在偏转后液晶中所传输的距离具有相关性。在本申请实施例中,传输部412用于微波信号的传输,同时在传输过程中进行移相,馈电端43用于配合微带线41的端部411实现微带线41上微波信号的馈入和馈出。在本申请实施例中,微带线41包括至少两条子微带线410,每条子微带线410包括两个端部411和连接于这两个端部411之间的传输部412,每个端部411均对应设置有一个馈电端43,即,微带线41包括至少三个馈电端43,在应用液晶移相器时,可以选择至少三个馈电端43中的任意两个馈电端43分别作为实际输入馈电端和实际输出馈电端,当选择使用不同的馈电端43时,微带线41具有不同的微波传输距离,微波的传输距离不同时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度可以不同,即可以实现使液晶移相器适用于不同的载波频率,例如,图1中的液晶移相器包括五条子微带线410以及六个馈电端43,六个馈电端43包括第一馈电端431、第二馈电端432、第三馈电端433、第四馈电端434、第五馈电端435和第六馈电端436,当选择第一馈电端431和第二馈电端432分别作为实际输入馈电端和实际输出馈电端时,该微带线41的微波传输距离较短,当选择第一馈电端431和第三馈电端433分别作为实际输入馈电端和实际输出馈电端时,该微带线41的微波传输距离较长。
本申请实施例中的液晶移相器,微带线对应至少三个馈电端,在应用液晶移相器时,可以选择至少三个馈电端中的任意两个馈电端分别作为实际输入馈电端和实际输出馈电端,当使用不同的馈电端时,微带线具有不同的微波传输距离,微波的传输距离不同时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度可以不同,即可以实现使液晶移相器适用于不同的载波频率,而现有技术中,液晶移相器的微带线仅仅对应两个馈电端,无法对适用的载波频率进行调节,因此,本申请实施例提高了液晶移相器的兼容性。
可选地,如图1、图2、图3、图4、图5和图6所示,图5为 图2中液晶移相器在非工作状态下部分区域内的液晶排布示意图,图6为图2中液晶移相器在工作状态下部分区域内的液晶排布示意图,每个传输部412包括沿液晶层初始配向方向x延伸的有效线段401;至少一个传输部412包括沿非液晶层初始配向方向延伸的非有效线段402;分别位于任意相邻的两个传输部412中的两条有效线段401通过非有效线段402连接。
具体地,以正性液晶分子为例,在非工作状态下,液晶移相器中相控电极42和微带线41之间没有形成电场,液晶层3中的液晶分子长轴沿液晶层初始配向方向x延伸排布,在工作状态下,液晶移相器中相控电极42和微带线41之间形成电场,位于相控电极42和微带线41之间的液晶偏转,沿微带线41的延伸路径传输的微波利用液晶偏转后的电学特性变化实现移相,图4和图5中虚线箭头为微波传输的路径,在有效线段401对应的微波传输路径上,液晶偏转前对应的是液晶分子长轴的介电特性,液晶偏转后对应的是液晶分子短轴的介电特性,因此液晶移相器在工作状态下,有效线段401对应微波移相的有效路径,能够实现液晶移相功能,液晶移相器在非工作状态下,不能实现液晶移相功能;在非有效线段402对应的微波传输路径上,液晶偏转前和偏转后对应的都是液晶分子短轴的介电特性,因此液晶移相器在工作状态,非有效线段402对应微波移相的非有效路径,不能实现液晶移相功能,液晶移相器在非工作状态下,不能实现液晶移相功能。通过设置分别沿液晶层初始配向方向x延伸的有效线段401和沿非液晶层初始配向方向延伸的非有效线段402,可以使整体的微带线41形状设置更加灵活,以实现更加合理的空间利用。
需要说明的是,液晶层初始配向方向x并不限于图示方式,也可以选择其他的角度,只要保证有效线段401对微波信号相位的调节起主导作用即可。液晶层初始配向方向x可以通过液晶配向层来设置,例如,在如图3和图4所示的结构中,在液晶层3和微带线41之间设置有液晶配向层,在液晶层3和相控电极42之间设置有 液晶配向层,在液晶移相器处于非工作状态下时,液晶层3中的液晶分子长轴在液晶配向层的作用下沿液晶层初始配向方向x延伸。可以理解的是,本申请实施例中的液晶分子也可以是负性液晶分子,对于液晶分子的类型,本申请不做具体限制。
可选地,每条有效线段401的长度相等,这样通过不同馈电端43的选择,可以实现微波移相的有效路径长度的倍数选择,例如,每条有效线段401的长度均为L,当选择第一馈电端431和第二馈电端432作为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为L;当选择第一馈电端431和第三馈电端433作为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为2L;以此类推。每条有效线段401的长度相等时,通过不同馈电端43的切换,便于实现倍增式的有效路径长度调整。
可选地,每条非有效线段402的延伸方向相同,便于实现蛇形的传输部412,以更有效地利用空间。
可选地,每条非有效线段402的延伸方向垂直于液晶层初始配向方向x,可以最大程度地保证非有效线段402对应的液晶偏转时,不会起到液晶移相的作用,以此来更加准确地进行微波移相的有效路径长度调整。
可选地,任意相邻的两条有效线段401以及连接两者之间的非有效线段402形成U形结构。
可选地,如图7和图8所示,图7为本申请实施例中另一种液晶移相器的俯视图,图8为图7中一种微带线的结构示意图,至少一条有效线段401的长度不等于其他有效线段401的长度。
具体地,在图7和图8所示的液晶移相器结构中,微带线41中的各条有效线段401的长度并非均相等,例如从上至下,第一、第二和第五条有效线段401的长度为L,第三条有效线段401的长度为L1,第四条有效线段的长度为L2,当选择第一馈电端431和第二馈电端432作为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为L;当选择第一馈电端431和第四馈电端434作 为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为2L+L1。由于每条有效线段401的长度不一定相等,因此通过不同看馈电端43的切换,可以实现更加灵活的微波移相有效路径长度调整。
可选地,如图7和图8所示,至少一条非有效线段402的延伸方向不垂直于液晶层初始配向方向x,以便于设置有效线段401具有不同的长度。
可选地,如图7和图8所示,至少一条非有效线段402的延伸方向垂直于液晶层初始配向方向x,以便于设置部分有效线段401具有相同的长度。
可选地,如图7和图8所示,至少一条有效线段401和与其连接的非有效线段402之间形成T形结构。
具体地,例如,从上至下第三条有效线段401和其下方的非有效线段402之间形成T形结构,在该T形结构中,非有效线段402左侧的有效线段401部分的长度为L3,非有效线段402右侧的有效线段401部分的长度为L4,其中L1=L3+L4,在该结构下,微波移相的有效路径调整更加灵活。例如,当选择第三馈电端433和第四馈电端434作为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为L+L1=L+L2+L3;当选择第三馈电端433和第五馈电端435作为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为L3+L2;当选择第四馈电端434和第五馈电端435作为实际输入馈电端和实际输出馈电端时,微波移相的有效路径长度为L4+L2。
可选地,馈电端43包括一个输入馈电端和至少两个输出馈电端,微带线41从输入馈电端至任意一个输出馈电端之间的有效长度均不相同,这样,只需要在多个输出馈电端之中选择实际的输出馈电端,既可以实现微波移相的有效路径长度调整,调整方式较为简单;或者,馈电端43包括一个输出馈电端和至少两个输入馈电端,微带线41从输出馈电端至任意一个输入馈电端之间的有效长度均 不相同,这样,只需要在多个输馈电端之中选择实际的输入馈电端,即可以实现微波移相的有效路径长度调整,调整方式较为简单。
可选地,如图2和图7所示,在垂直于第一基板所在平面的方向上,相控电极42覆盖微带线41的传输部412。
具体地,只有相控电极42覆盖的微带线41部分,在液晶移相器的工作过程中,对应的液晶会偏转,以实现有效线段401对应位置的液晶移相功能,理论上传输部412的非有效线段402部分无需被相控电极42覆盖,但是为了降低相控电极42的工艺难度,可以使相控电极42覆盖整个传输部412。另外,需要说明的是,在图3所示的结构中,馈电端43位于第一基板1远离第二基板2的一侧,此时,馈电端43可以直接和微带线41之间实现微波信号的馈入和馈出,相控电极42可以覆盖整个微带线41,也可以覆盖传输部412,露出馈电端43;另外,在其他可实现的方式中,若馈电端位于第二基板远离第一基板的一侧,由于相控电极位于微带线和馈电端之间,为了避免相控电极对微带线上微波信号的馈入和馈出产生不良影响,需要使相控电极在馈电端的位置具有镂空结构。
需要说明的是,本申请实施例中液晶移相器仅示意了一个移相单元4,在其他可实现的方式中,一个液晶移相器包括呈阵列分布的多个移相单元,多个移相单元的相控电极相互连接,以使所有的相控电极均具有相同的电位,每个移相单元用于实现一个微波信号的移相功能,每个移相单元可以分别制作为不同的液晶盒,也可以将所有的移相单元制作为同一个液晶盒。另外,在本申请实施例中,馈电端43可以为馈电线的一部分,馈电线用于实现馈电端43和其他元件之间的微波信号传输,例如,在天线的应用场景中,天线的辐射单元通过馈电线连接于馈电端43,液晶移相器完成移相之后,微波信号由微带线41馈出至馈电端43,馈电端43将移相之后的微波信号通过馈电线传输至辐射单元,辐射单元将微波信号辐射出去,以实现天线功能。
本申请实施例还提供一种天线,包括上述的液晶移相器。液晶 移相器用于实现天线中微波信号的移相功能。
液晶移相器的具体结构和原理与上述实施例相同,在此不再赘述。
本申请实施例中的天线,其中液晶移相器的微带线对应至少三个馈电端,在应用液晶移相器时,可以选择至少三个馈电端中的任意两个馈电端分别作为实际输入馈电端和实际输出馈电端,当使用不同的馈电端时,微带线具有不同的微波传输距离,微波的传输距离不同时,微波传输过程中利用偏转的液晶使微波移相的有效路径长度可以不同,即可以实现使液晶移相器适用于不同的载波频率,而现有技术中,液晶移相器的微带线仅仅对应两个馈电端,无法对适用的载波频率进行调节,因此,本申请实施例提高了液晶移相器的兼容性。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (13)

  1. 一种液晶移相器,其特征在于,包括:
    相对设置的第一基板和第二基板以及位于所述第一基板和所述第二基板之间的液晶层;
    至少一个移相单元,所述移相单元包括微带线和相控电极,所述微带线位于所述第一基板和所述液晶层之间,所述相控电极位于所述第二基板和所述液晶层之间,所述微带线包括多条子微带线,每条所述子微带线包括两个端部和连接于所述两个端部之间的传输部,任意相邻的两条所述子微带线共用一个所述端部;
    所述移相单元还包括分别与每个所述端部对应的馈电端,所述馈电端位于所述第一基板远离所述第二基板的一侧或者位于所述第二基板远离所述第一基板的一侧,在垂直于所述第一基板所在平面的方向上,每个所述馈电端分别与对应的所述端部交叠。
  2. 根据权利要求1所述的液晶移相器,其特征在于,
    每个所述传输部包括沿所述液晶层初始配向方向延伸的有效线段;
    至少一个所述传输部包括沿非所述液晶层初始配向方向延伸的非有效线段;
    分别位于任意相邻的两个所述传输部中的两条所述有效线段通过所述非有效线段连接。
  3. 根据权利要求2所述的液晶移相器,其特征在于,
    每条所述有效线段的长度相等。
  4. 根据权利要求3所述的液晶移相器,其特征在于,
    每条所述非有效线段的延伸方向相同。
  5. 根据权利要求4所述的液晶移相器,其特征在于,
    每条所述非有效线段的延伸方向垂直于所述液晶层初始配向方向。
  6. 根据权利要求5所述的液晶移相器,其特征在于,
    任意相邻的两条所述有效线段以及连接两者之间的非有效线段 形成U形结构。
  7. 根据权利要求2所述的液晶移相器,其特征在于,
    至少一条所述有效线段的长度不等于其他所述有效线段的长度。
  8. 根据权利要求7所述的液晶移相器,其特征在于,
    至少一条所述非有效线段的延伸方向不垂直于所述液晶层初始配向方向。
  9. 根据权利要求8所述的液晶移相器,其特征在于,
    至少一条所述非有效线段的延伸方向垂直于所述液晶层初始配向方向。
  10. 根据权利要求7所述的液晶移相器,其特征在于,
    至少一条所述有效线段和与其连接的非有效线段之间形成T形结构。
  11. 根据权利要求1所述的液晶移相器,其特征在于,
    所述馈电端包括一个输入馈电端和至少两个输出馈电端,所述微带线从所述输入馈电端至任意一个所述输出馈电端之间的有效长度均不相同;
    或者,所述馈电端包括一个输出馈电端和至少两个输入馈电端,所述微带线从所述输出馈电端至任意一个所述输入馈电端之间的有效长度均不相同。
  12. 根据权利要求1至11中任意一项所述的液晶移相器,其特征在于,
    在垂直于所述第一基板所在平面的方向上,所述相控电极覆盖所述微带线的所述传输部。
  13. 一种天线,其特征在于,包括如权利要求1至12中任意一项所述的液晶移相器。
PCT/CN2019/087674 2018-07-18 2019-05-21 液晶移相器和天线 WO2020015449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/959,149 US11557838B2 (en) 2018-07-18 2019-05-21 Liquid crystal phase shifter and antenna where effective lengths are different between an input feed terminal and multiple output feed terminals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810806844.3A CN108615962B (zh) 2018-07-18 2018-07-18 液晶移相器和天线
CN201810806844.3 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020015449A1 true WO2020015449A1 (zh) 2020-01-23

Family

ID=63666716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087674 WO2020015449A1 (zh) 2018-07-18 2019-05-21 液晶移相器和天线

Country Status (3)

Country Link
US (1) US11557838B2 (zh)
CN (1) CN108615962B (zh)
WO (1) WO2020015449A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682835B2 (en) 2021-02-24 2023-06-20 Au Optronics Corporation Active phased array

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615962B (zh) * 2018-07-18 2020-06-30 成都天马微电子有限公司 液晶移相器和天线
CN112397893A (zh) * 2019-08-14 2021-02-23 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN110534881B (zh) 2019-09-25 2021-01-22 京东方科技集团股份有限公司 液晶天线及其制作方法
CN112731715B (zh) * 2019-10-14 2022-11-11 京东方科技集团股份有限公司 液晶移相器及天线
CN116315588A (zh) * 2020-02-05 2023-06-23 群创光电股份有限公司 电子装置
CN111342173B (zh) * 2020-03-09 2021-11-23 京东方科技集团股份有限公司 一种液晶移相器、天线及液晶移相器的制造方法
CN113540767B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113540766B (zh) * 2020-04-15 2022-12-16 上海天马微电子有限公司 相控阵天线及其控制方法
CN113871818B (zh) * 2020-06-30 2022-07-26 上海天马微电子有限公司 移相器及其制作方法、天线及其制作方法
CN113867019B (zh) * 2020-06-30 2024-05-07 成都天马微电子有限公司 液晶移相器以及制作方法
CN113300072B (zh) * 2021-05-11 2022-07-15 中国电子科技集团公司第二十九研究所 一种射频阵列前端三维集成结构及制作方法
CN113451718B (zh) * 2021-06-30 2022-06-24 上海天马微电子有限公司 一种移相器及天线
CN115693156B (zh) * 2021-07-29 2024-02-27 北京京东方技术开发有限公司 天线、天线阵列及通信系统
CN113675551B (zh) * 2021-09-03 2023-07-04 上海天马微电子有限公司 液晶移相器和液晶天线
TWI800998B (zh) * 2021-11-19 2023-05-01 友達光電股份有限公司 移相器、具有移相器的天線單元以及具有移相器的天線裝置
CN117321855A (zh) * 2022-04-29 2023-12-29 京东方科技集团股份有限公司 一种天线及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017577A1 (en) * 2000-02-21 2001-08-30 Yasuo Toko Variable phase shifter
CN105739211A (zh) * 2016-04-29 2016-07-06 西安空间无线电技术研究所 一种用于双频液晶光学相控阵波束控制的电压控制方法
CN205488558U (zh) * 2015-12-31 2016-08-17 广东晖速通信技术股份有限公司 一种低频移相器
CN105896082A (zh) * 2016-02-23 2016-08-24 电子科技大学 一种基于液晶材料的频率和方向图可重构天线
CN106532200A (zh) * 2016-12-16 2017-03-22 合肥工业大学 一种基于石墨烯电极的反射式液晶移相单元
CN107994302A (zh) * 2017-11-27 2018-05-04 京东方科技集团股份有限公司 液晶移相器及其工作方法
CN108181745A (zh) * 2018-02-08 2018-06-19 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN108615962A (zh) * 2018-07-18 2018-10-02 成都天马微电子有限公司 液晶移相器和天线

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9059496B2 (en) * 2011-11-14 2015-06-16 The Regents Of The University Of Colorado Nanoparticle-enhanced liquid crystal radio frequency phase shifter
EP2768072A1 (en) * 2013-02-15 2014-08-20 Technische Universität Darmstadt Phase shifting device
CN106125417B (zh) * 2016-09-09 2023-03-14 万维云视(上海)数码科技有限公司 一种液晶光栅及其控制方法、3d显示面板及显示装置
CN106773338B (zh) * 2017-01-16 2020-02-18 京东方科技集团股份有限公司 一种液晶微波移相器
CN106684551B (zh) * 2017-01-24 2019-07-23 京东方科技集团股份有限公司 一种移相单元、天线阵、显示面板和显示装置
CN106940502B (zh) * 2017-05-18 2021-11-26 京东方科技集团股份有限公司 一种液晶显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010017577A1 (en) * 2000-02-21 2001-08-30 Yasuo Toko Variable phase shifter
CN205488558U (zh) * 2015-12-31 2016-08-17 广东晖速通信技术股份有限公司 一种低频移相器
CN105896082A (zh) * 2016-02-23 2016-08-24 电子科技大学 一种基于液晶材料的频率和方向图可重构天线
CN105739211A (zh) * 2016-04-29 2016-07-06 西安空间无线电技术研究所 一种用于双频液晶光学相控阵波束控制的电压控制方法
CN106532200A (zh) * 2016-12-16 2017-03-22 合肥工业大学 一种基于石墨烯电极的反射式液晶移相单元
CN107994302A (zh) * 2017-11-27 2018-05-04 京东方科技集团股份有限公司 液晶移相器及其工作方法
CN108181745A (zh) * 2018-02-08 2018-06-19 京东方科技集团股份有限公司 一种液晶移相器、移相方法及其制作方法
CN108615962A (zh) * 2018-07-18 2018-10-02 成都天马微电子有限公司 液晶移相器和天线

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11682835B2 (en) 2021-02-24 2023-06-20 Au Optronics Corporation Active phased array

Also Published As

Publication number Publication date
CN108615962B (zh) 2020-06-30
US20200343634A1 (en) 2020-10-29
US11557838B2 (en) 2023-01-17
CN108615962A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
WO2020015449A1 (zh) 液晶移相器和天线
WO2020015450A1 (zh) 液晶移相器和天线
KR102368374B1 (ko) 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치
JP7433229B2 (ja) 液晶移相器及びその操作方法、液晶アンテナ及び通信装置
WO2019228213A1 (zh) 液晶移相器和天线
CN112448105B (zh) 移相器及天线
US11962054B2 (en) Phase shifter and antenna
WO2021037132A1 (zh) 馈电结构、微波射频器件及天线
EP4016733B1 (en) Feed structure, microwave radio-frequency device and antenna
CN110011038A (zh) 相控阵天线、显示面板及显示装置
CN113728512B (zh) 移相器及天线
JP6470930B2 (ja) 分配器及び平面アンテナ
US11189920B2 (en) Control substrate, liquid crystal phase shifter and method of forming control substrate
US11984633B2 (en) Phase shifter and antenna
CN112164875A (zh) 微带天线、通信设备
US11799179B2 (en) Liquid crystal phase shifter, method for operating the same, liquid crystal antenna, and communication apparatus
US20240222869A1 (en) Antenna
CN115428260A (zh) 阵列天线模块及其制备方法、相控阵天线系统
US20240006762A1 (en) Liquid Crystal Phase Shifter, Method for Operating the Same, Liquid Crystal Antenna, and Communication Apparatus
JPS6322723B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19836971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19836971

Country of ref document: EP

Kind code of ref document: A1