WO2020015444A1 - 空气处理设备、风机及其离心风叶 - Google Patents

空气处理设备、风机及其离心风叶 Download PDF

Info

Publication number
WO2020015444A1
WO2020015444A1 PCT/CN2019/087354 CN2019087354W WO2020015444A1 WO 2020015444 A1 WO2020015444 A1 WO 2020015444A1 CN 2019087354 W CN2019087354 W CN 2019087354W WO 2020015444 A1 WO2020015444 A1 WO 2020015444A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
flow channel
fan
centrifugal
flow
Prior art date
Application number
PCT/CN2019/087354
Other languages
English (en)
French (fr)
Inventor
匡细细
曾成
魏忠梅
林伟雪
玉格
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/259,945 priority Critical patent/US11371525B2/en
Priority to EP19837453.0A priority patent/EP3808991A4/en
Publication of WO2020015444A1 publication Critical patent/WO2020015444A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/713Shape curved inflexed

Definitions

  • the present application relates to the field of air treatment technology, and in particular, to an air purification device, a fan, and a centrifugal fan blade.
  • air handling equipment usually uses forward centrifugal fans to ensure airflow.
  • a forward centrifugal fan the larger the included angle between the blade exit angle and the tangential direction of the impeller, the stronger its static pressure resistance.
  • the flow velocity of the airflow at the air outlet of the forward centrifugal fan is the largest. Since the flow loss of the airflow is proportional to the flow speed, the airflow flow loss is large, resulting in low efficiency.
  • centrifugal fan blade capable of reducing flow loss and improving efficiency in response to the problem of large flow loss caused by current forward centrifugal fans, and also to provide a fan including the centrifugal fan blade.
  • an air treatment apparatus including the fan.
  • a centrifugal fan blade includes a hub and a plurality of fan blades, and a plurality of the fan blades are distributed around a peripheral side of the hub;
  • the fan blade includes a first blade and a second blade, and an airfoil shape of the first blade is a backward airfoil, and an airfoil shape of the second blade is a forward airfoil.
  • the first blade and the second blade are connected in series.
  • the first blade is connected to the hub, and the second blade is disposed away from the hub.
  • the curvature radius of the first blade is larger than the curvature radius of the second blade.
  • the range of the ratio of the curvature radius of the first blade to the curvature radius of the second blade ranges from 3.4 to 3.8.
  • the angle of the inlet placement angle of the first blade ranges from 64.5 ° to 68.5 °;
  • the angle of the exit setting angle of the second blade is 16 ° -20 °.
  • the fan blade further includes a connecting blade, and the connecting blade smoothly connects the first blade and the second blade.
  • the first blades adjacent to the two fan blades are enclosed as a first flow channel, and the first flow channel is used to make the airflow flow at the same speed;
  • the second blades of two adjacent blades form a second flow channel, and the second flow channel is used for gradually increasing the flow velocity of the airflow.
  • the first flow channels are equally spaced flow channels
  • the second flow channel includes a gradually expanding flow channel and a tapered flow channel, and an outlet of the gradually expanding flow channel is in communication with an inlet of the tapered flow channel.
  • a ratio of a pitch at an inlet of the first flow channel to a pitch at an outlet of the first flow channel ranges from 1 to 1.05;
  • the range of the ratio of the pitch at the entrance of the gradually expanding flow path to the pitch at the exit of the tapered flow path is 1.3 to 1.7, and the distance between the entrance of the tapered flow path and the distance
  • the range of the pitch ratio at the exit of the tapered flow channel ranges from 2 to 2.4.
  • the first blades adjacent to the two fan blades are enclosed as a first flow channel, and the second blades adjacent to the two fan blades form a second flow channel;
  • the connecting blades of the two fan blades form a third flow channel, and the third flow channel smoothly connects the first flow channel and the second flow channel.
  • the first flow channel, the third flow channel, and the second flow channel are sequentially connected in an arc shape.
  • the fan blade further includes the connecting blade connecting the first blade and the second blade, and the first blade, the connecting blade, and the second blade are an integrated structure. .
  • a fan includes the centrifugal fan blade according to any one of the above technical features.
  • An air processing equipment includes the fan according to any one of the above technical features.
  • the air treatment equipment, fan, and centrifugal fan blade of the present application compared with the current forward centrifugal fan, the centrifugal fan blade has a first blade with a backward blade shape, and the airflow can be improved by using the backward blade shape. , To reduce the flow loss and improve the efficiency of the air outlet to solve the current forward centrifugal fan has a large flow loss caused by low efficiency.
  • FIG. 1 is a schematic diagram of a centrifugal fan blade according to an embodiment of the present application.
  • FIG. 2 is a partially enlarged view of the centrifugal wind blade shown in FIG. 1 at one position.
  • FIG. 3 is a partially enlarged view of the acoustic wave transmission path of the centrifugal wind blade shown in FIG. 1.
  • A1-first runner A2-second runner; A3-third runner.
  • connection and “connection” in this application include direct and indirect connections (connections) unless otherwise specified.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.
  • the present application provides a centrifugal fan blade 100, which is applied to a fan of an air processing device to accelerate and pressurize the airflow to realize the output of the airflow.
  • the centrifugal fan blade 100 of the present application can also be used in equipment requiring a fan, such as an air conditioner.
  • the centrifugal air blade 100 of the present application can improve the air outlet efficiency while ensuring the anti-static pressure capability.
  • the centrifugal fan blade 100 includes a hub 110 and a plurality of fan blades 120, and the plurality of fan blades 120 are distributed around the peripheral side of the hub 110.
  • the hub 110 plays a bearing role and is used to carry a plurality of fan blades 120; the fan blades 120 are used to guide the air flow.
  • the hub 110 drives a plurality of fan blades 120 thereon to rotate, and the airflow is guided by the fan blades 120 to realize the acceleration and pressure output of the airflow.
  • the airflow enters the centrifugal blade 100 in the axial direction of the centrifugal blade 100 and flows out through the flow channel between the adjacent blades 120.
  • the fan blade 120 includes a first blade 121 and a second blade 122 connected to the first blade 121.
  • the radial bending direction of the first blade 121 is opposite to the radial bending direction of the second blade 122.
  • the airfoil is a backward airfoil, and the airfoil of the second blade 122 is a forward airfoil.
  • the first blade 121 and the second blade 122 are connected in series. That is, the centrifugal wind blade 100 of the present application connects two different types of blades in series on the same blade 120, and a first blade 121 that is a backward blade and a second blade 122 that is a forward blade are connected in series. Compared with the current use of the forward fan and the backward fan, the centrifugal fan blade 100 of the present application can omit the connection structure and frame of the above two, so that the overall structure of the centrifugal fan blade 100 is compact.
  • the first blade 121 is connected to the hub 110, and the second blade 122 is disposed away from the hub 110. That is, the first blade 121 having a backward-type airfoil is located at the entrance of the centrifugal blade 100, and the second blade 122 having a forward-blade type is located at the exit of the centrifugal blade 100.
  • the first blade 121 having a backward-type airfoil is located at the exit of the centrifugal blade 100, and the second blade 122 having a forward-type airblade is located at the inlet of the centrifugal blade 100.
  • the radial bending direction of the first blade 121 refers to the direction of the arc-shaped depression of the first blade 121
  • the radial bending direction of the second blade 122 refers to the direction of the arc-shaped depression of the second blade 122.
  • the radial bending direction of the first blade 121 is opposite to the radial bending direction of the second blade 122. That is, the direction of the arc-shaped depression of the first blade 121 is opposite to the direction of the arc-shaped depression of the second blade 122. It can form forward and backward blades in series.
  • the flow channel formed by adjacent fan blades 120 can also bend the flow channel formed by adjacent fan blades 120, so that the sound waves are reflected and refracted multiple times in the flow channel, effectively dissipating sound energy. From the conduction path, it plays a role in sound insulation of the leaf channel, reduces the acoustic radiation energy, and then reduces the noise.
  • a curvature radius of the first blade 121 is larger than a curvature radius of the second blade 122. That is, the first blade 121 adopts a backward-type blade with a large curvature radius, and the second blade 122 employs a forward-type blade with a small curvature radius.
  • the flow channel formed by the adjacent fan blades 120 is relatively narrow compared with a single airfoil, so that the sound waves are refracted and reflected multiple times as they propagate in the flow channel, effectively dissipating sound energy, and acting as a sound insulation from the conduction path, reducing Acoustic radiation energy.
  • the ratio of the radius of curvature of the first blade 121 to the radius of curvature of the second blade 122 ranges from 3.4 to 3.8, which further reduces the acoustic radiation energy.
  • the angle of the inlet placement angle of the first blade 121 ranges from 64.5 ° to 68.5 °. After the inlet angle of the first blade 121 is within the above range, the inlet angle can be matched with the airflow inlet angle, so that the airflow can flow along the extension direction of the first blade 121, reducing the impact of the airflow on the first blade 121, and thereby reducing the centrifugal wind. The noise during the operation of the leaf 100 ensures that the centrifugal air leaf 100 runs smoothly.
  • the angle of the exit placement angle of the second blade 122 ranges from 16 ° to 20 °.
  • the outlet placement angle of the second blade 122 can determine the wind direction, so that the airflow blows out along the second blade 122 with the outlet placement angle, ensuring the anti-static pressure capability.
  • the placement angle of the exit of the second blade 122 is within the above range, which can ensure the requirement of the static pressure resistance of the centrifugal air blade 100.
  • the curvature of the flow path of the second blade 122 of the backward blade is small, which can reduce the impact angle of the air inlet, and the impact of the air on the blade is small. , Reduce the impact loss at the entrance and exit, the natural impact noise is low, the energy loss is minimal, and the efficiency of the wind can be improved.
  • the first blade 121 is a backward-type blade, and it is also convenient to adjust the inlet angle of the fan blade 120. It can be understood that the convenient adjustment here refers to the convenient adjustment of the inlet-position angle of the backward-type blade.
  • the second blade 122 of the outlet of the centrifugal wind blade 100 adopts a forward-shaped blade, which can make the air flow smoothly without swirling between adjacent blades 120, and can effectively suppress the formation of the exit vortex area.
  • the airflow is allowed to go out along the fan blade 120 to improve the static pressure resistance of the centrifugal fan blade 100 and ensure the air volume. In this way, for some units that have higher requirements for antistatic pressure, the second blade 122 with a forward blade shape can ensure that the air volume does not decay on the basis of high antistatic pressure.
  • the fan blade 120 further includes a connection blade 123, and the connection blade 123 smoothly connects the first blade 121 and the second blade 122.
  • the connecting blade 123 plays a connecting role and establishes a connection between the first blade 121 and the second blade 122.
  • the connecting blade 123 can smooth the transition between the flow path between the first blade 121 and the second blade 122, so that the air flow can be stabilized and the loss can be reduced.
  • the connecting blade 123 is a straight line segment, and the first blade 121 and the second blade 122 are connected by the straight line segment.
  • the first blades 121 of two adjacent fan blades 120 are enclosed as a first flow channel A1.
  • the first flow passage A1 is used to make the airflow flow at the same speed.
  • the first flow passage A1 is an equal-space flow passage.
  • the equal-spaced flow path here means that the inner wall pitch of the first flow path A1 is substantially equal everywhere. That is, the cross-section width of the equal-spaced flow channel is basically constant, which can reduce the vortex area in the first flow channel A1, and the air flow is separated in the first flow channel A1. The energy dissipation between the fan blades 120 is reduced, which improves the efficiency of the centrifugal blade 100 .
  • the distance L1 at the inlet of the first flow channel A1 is less than or equal to the distance L2 at the outlet of the first flow channel A1.
  • the inlet of the first flow channel A1 refers to the position where the first flow channel A1 is connected to the hub 110
  • the outlet of the first flow channel A1 refers to the end of the first flow channel A1 away from the hub 110.
  • the exit of the first flow path A1 refers to the position of the connection with the connection blade 123. That is, the distance between the first flow passage A1 from the end connected to the hub 110 and the end away from the hub 110 is substantially equal, so that the first flow passage A1 forms a constant velocity flow passage. In this way, when the airflow flows between the first flow channels A1, a uniform flow can be achieved, and the loss is reduced.
  • the pitch refers to a distance between two adjacent first blades 121.
  • the ratio of the distance L1 at the inlet of the first flow channel A1 to the distance L2 at the outlet of the first flow channel A1 ranges from 1 to 1.05. Constructing the first blade 121 according to this design parameter can make the distance between adjacent first blades 121 substantially the same, and ensure that the air flow velocity of the first flow channel A1 is consistent.
  • the range of the ratio between the pitch of the first flow path A1 and the pitch L1 of the inlet of the first flow path A1 ranges from 1 to 1.05. This can ensure that the first flow channel A1 is a constant velocity flow channel.
  • the second blades 122 of two adjacent blades 120 form a second flow channel A2.
  • the second flow passage A2 is used to gradually increase the flow speed of the airflow.
  • the second flow channel A2 includes a gradual flow channel and a tapered flow channel, and the outlet of the gradual flow channel is in communication with the inlet of the tapered flow channel.
  • the inner wall spacing of the second flow channel A2 gradually increases, and in the tapered flow channel, the inner wall spacing of the second flow channel A2 gradually decreases. That is, the second flow channel A2 formed by the adjacent second blades 122 is gradually expanded and then gradually reduced.
  • the gradually expanding flow channel is connected to the first blade 121, and the smooth connection between the gradually expanding flow channel and the first flow channel A1 can reduce the loss of the flow channel, so as to increase the energy of the wind and improve the static pressure resistance.
  • the distance between the tapered flow path near the air outlet side is reduced, and the area with the same air volume is reduced, which will increase the outlet air velocity accordingly. In this way, the tapered blade can effectively eliminate the uneven flow velocity at the outlet, reduce the air flow diffusion, and weaken the outlet. Jet-wake effect.
  • the distance L3 at the inlet of the second flow channel A2 is larger than the distance L5 at the outlet of the second flow channel A2. It can be understood that the distance between the inlets of the second flow channel A2 refers to the position of the second flow channel A2 near one end of the first flow channel A1. In this embodiment, the distance between the inlets of the second flow channel A2 refers to the second The position where the blade 122 and the connecting blade 123 are connected; the exit of the second flow channel A2 refers to the end of the fan blade 120. That is, the distance between the second flow passage A2 from the end connected to the connection blade 123 to the end remote from the connection blade 123 is larger and then smaller, so that the second flow channel A2 forms an accelerated flow channel. In this way, when the airflow flows in the second flow path A2, the second flow path A2 can accelerate the airflow.
  • the range of the ratio of the pitch at the entrance of the gradually expanding flow path to the pitch at the exit of the tapered flow path ranges from 1.3 to 1.7
  • the pitch at the entrance of the tapered flow path and the The pitch ratio ranges from 2 to 2.4. That is, the ratio of the distance L3 at the inlet of the second flow channel A2 to the distance L5 at the outlet of the second flow channel A2 ranges from 1.3 to 1.7.
  • the ratio of the pitch at the inlet of the tapered flow path to the pitch at the outlet of the second flow path A2 ranges from 2 to 2.4.
  • the pitch in the second flow channel A2 increases first and then decreases, so that the airflow is accelerated.
  • the length of the first blade 121 in the radial direction is equal to the length of the second blade 122 in the radial direction. If the length of the second blade 122 is too short, it is difficult to accelerate the process of airflow formation, and the antistatic capacity is insufficient. If the length of the second blade 122 is too long, the static pressure resistance is improved, but the airflow noise is large and the efficiency is also great. reduce. In addition, due to the diameter and size limitation of the centrifugal wind blade 100, the length of the first blade 121 is too long, which will cause the corner of the connection between the first blade 121 and the second blade 122 to be too large, and the profile of the blade will not be smooth.
  • the first blades 121 and the second blades 122 having the same length can reduce the noise, ensure the efficiency, and facilitate the flow of airflow while ensuring the static pressure resistance.
  • the connecting blades 123 of two adjacent fan blades 120 form a third flow channel A3, and the third flow channel A3 smoothly connects the first flow channel A1 and the second flow channel A2.
  • This can ensure the smooth flow of the air flow, reduce the loss of air flow, and ensure the amount of air output.
  • the pitch at the inlet of the third flow channel A3 is smaller than the pitch at the inlet L3 of the second flow channel A2, and the pitch at the inlet of the third flow channel A3 is greater than the pitch L2 at the exit of the first flow channel A1. That is, the pitch of the third flow channel A3 is gradually increased along the flow direction of the airflow, so as to smoothly connect the first flow channel A1 and the second flow channel A2.
  • the first flow channel A1, the third flow channel A3, and the second flow channel A2 are sequentially connected in an arc shape, and are smoothly connected. This can ensure smooth runners and small losses.
  • first blade 121, the connection blade 123, and the second blade 122 are an integrated structure. This can facilitate the forming process of the fan blade 120, ensure reliable connection, and improve assembly efficiency.
  • first blade 121, the connection blade 123, the second blade 122 and the hub 110 may be integrally formed.
  • the design parameter of the centrifugal wind blade 100 is the hub ratio of the first blade 121 (the ratio of the diameter of the end where the first blade 121 is connected to the hub 110 and the diameter of the end where the first blade 121 is connected to the connection blade 123 ) Is 0.8125; the ratio of the hub of the second blade 122 (the ratio of the diameter of the end of the second blade 122 to the diameter of the end of the second blade 122 and the connecting blade 123) is 0.6; the inlet placement angle of the first blade 121 is 66.5 °, The exit angle of the second blade 122 is 18.3 °, the center angle of the first blade 121 is 28 °, the center angle of the second blade 122 is 117 °, the arc radius of the first blade 121 is 64.7mm, and the second blade 122 The arc radius is 17.8mm.
  • the airflow can flow into the centrifugal wind blade 100 along the first blade 121 to reduce the impact of the airflow on the fan blade 120 at the inlet and reduce the impact noise.
  • the air flow at the inlet of the fan blade 120 can be improved, the shunt is suppressed, and the output Air volume, the second blade 122 can suppress the formation of vortices at the outlet, improve the anti-static pressure capability, make the centrifugal blade 100 have a compact structure while ensuring the efficiency of the air outlet, and reduce the noise of the centrifugal blade 100 during operation.
  • the present application also provides a fan including a motor and a centrifugal fan blade 100.
  • the output shaft of the motor is connected to the hub 110 of the centrifugal fan blade 100, so as to realize the rotational driving of the centrifugal fan blade 100, thereby achieving the accelerated output of the airflow.
  • the fan of the present application adopts the centrifugal wind blade 100, the static pressure resistance can be improved, the air outlet efficiency can be guaranteed, the noise during the operation of the fan can be reduced, and the fan can be operated smoothly and reliably.
  • the present application also provides an air processing device, including a filter component and a fan.
  • the filter component may be provided at the air inlet end of the fan or at the air outlet end of the fan.
  • the filter component is used for filtering air to achieve air purification. Dust removal, the accelerated flow of airflow is achieved by a fan.
  • the air treatment equipment of the present application adopts the above-mentioned fan, which can improve the anti-static pressure capability, ensure the efficiency of the air outlet, reduce the noise during the operation of the fan, ensure the fan to run smoothly and reliably, and improve the user's comfort during use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

提供一种离心风叶、空气处理设备和风机,离心风叶包括轮毂(110)及多个扇叶(120),多个扇叶(120)围绕轮毂(110)的周侧分布;扇叶(120)包括第一叶片(121)及第二叶片(122),且第一叶片(121)的叶型为后向叶型,第二叶片(122)的叶型为前向叶型。该离心风叶能够改善气流流动,提高出风效率。

Description

空气处理设备、风机及其离心风叶
相关申请
本申请要求2018年07月17日申请的,申请号为201810782248.6,名称为“空气处理设备、风机及其离心风叶”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及空气处理技术领域,特别是涉及一种空气净化设备、风机及其离心风叶。
背景技术
在家电行业风机应用场合中,随着人们生活品质的提高,对室内空气质量要求越来越高,而空气处理设备中的各种滤芯、阻力部件日益增多。对风机的抗静压能力提出了巨大的挑战。
目前,空气处理设备通常采用前向离心风扇保证气流流动。使用前向离心风扇时,其叶片出口角与叶轮切向方向的夹角越大,其抗静压能力越强。但是,前向离心风扇的出风口处气流的流动速度最大,由于气流的流动损失与流动速度成二次方正比,所以气流流动损失大,导致效率低。
发明内容
基于此,有必要针对目前的前向离心风扇存在流动损失大导致效率低的问题,提供一种能够减少流动损失、提高效率的离心风叶,同时还提供一种含有上述离心风叶的风机,提供一种含有上述风机的空气处理设备。
上述目的通过下述技术方案实现:
一种离心风叶,包括轮毂及多个扇叶,多个所述扇叶围绕所述轮毂的周侧分布;
所述扇叶包括第一叶片及第二叶片,且所述第一叶片的叶型为后向叶型,所述第二叶片的叶型为前向叶型。
在其中一个实施例中,所述第一叶片与第二叶片串联连接。
在其中一个实施例中,所述第一叶片与所述轮毂连接,所述第二叶片远离所述轮毂设置。
在其中一个实施例中,所述第一叶片的曲率半径大于所述第二叶片的曲率半径。
在其中一个实施例中,所述第一叶片的曲率半径与所述第二叶片的曲率半径之比的范 围为3.4~3.8。
在其中一个实施例中,所述第一叶片的进口安放角的角度范围为64.5°~68.5°;
和/或,所述第二叶片的出口安放角的角度范围为16°~20°。
在其中一个实施例中,所述扇叶还包括连接叶片,所述连接叶片平滑连接所述第一叶片及所述第二叶片。
在其中一个实施例中,相邻两个所述扇叶的所述第一叶片围设成第一流道,所述第一流道用于使气流以相同速度流动;
和/或,相邻两个所述扇叶的所述第二叶片形成第二流道,所述第二流道用于使所述气流的流动速度逐渐增加。
在其中一个实施例中,所述第一流道为等间距流道;
和/或,所述第二流道包括渐扩流道与渐缩流道,所述渐扩流道的出口与所述渐缩流道的进口连通。
在其中一个实施例中,所述第一流道的进口处的间距与所述第一流道的出口处的间距之比的范围为1~1.05;
和/或,所述渐扩流道的进口处的间距与所述渐缩流道的出口处的间距之比的范围为1.3~1.7,且所述渐缩流道的进口处的间距与所述渐缩流道的出口处的间距之比的范围为2~2.4。
在其中一个实施例中,相邻两个所述扇叶的所述第一叶片围设成第一流道,相邻两个所述扇叶的所述第二叶片形成第二流道;相邻两个所述扇叶的所述连接叶片形成第三流道,所述第三流道平滑连接所述第一流道与所述第二流道。
在其中一个实施例中,所述第一流道、所述第三流道及所述第二流道顺次呈弧形连接。
在其中一个实施例中,所述扇叶还包括连接所述第一叶片与所述第二叶片的所述连接叶片,所述第一叶片、所述连接叶片及所述第二叶片为一体结构。
一种风机,包括如上述任一技术特征所述的离心风叶。
一种空气处理设备,包括如上述任一技术特征所述的风机。
采用上述技术方案后,本申请的有益效果为:
本申请的空气处理设备、风机及离心风叶,该离心风叶相对于目前的前向离心风扇而言,增加了为后向叶型的第一叶片,采用后向叶型后可改善气流流动,降低流动损失,提高出风效率,以解决目前的前向离心风扇存在流动损失大导致效率低问题。
附图说明
图1为本申请一实施例的离心风叶的示意图。
图2为图1所示的离心风叶其中一位置处的局部放大图。
图3为图1所示的离心风叶声波传导路径的局部放大图。
其中:
100-离心风叶;110-轮毂;
120-扇叶;121-第一叶片;122-第二叶片;123-连接叶片;
A1-第一流道;A2-第二流道;A3-第三流道。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本申请的空气处理设备、风机及其离心风叶进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1至图3,本申请提供了一种离心风叶100,该离心风叶100应用于空气处理设备的风机中,用于对气流进行加速加压,实现气流的输出。当然,本申请的离心风叶100也可用于空调等需要风机的设备中。本申请的离心风叶100能够在保证抗静压能力的同时提高出风效率。
在本申请中,离心风叶100包括轮毂110及多个扇叶120,多个扇叶120围绕轮毂110的周侧分布。轮毂110起承载作用,用于承载多个扇叶120;扇叶120用于引导气流流动。 离心风叶100转动时,轮毂110带动其上的多个扇叶120转动,通过扇叶120引导气流流动,实现气流的加速与加压输出。而且,气流沿离心风叶100的轴向方向进入离心风叶100,经过相邻扇叶120之间的流道流出。
具体的,扇叶120包括第一叶片121及与第一叶片121连接的第二叶片122,第一叶片121径向弯曲方向与第二叶片122的径向弯曲方向相反,且第一叶片121的叶型为后向叶型,第二叶片122的叶型为前向叶型。
在一实施例中,第一叶片121与第二叶片122串联连接。也就是说,本申请的离心风叶100在同一扇叶120上将两种不同的叶型串联,为后向叶型的第一叶片121与为前向叶型的第二叶片122串联连接。相较于目前的前向风扇与后向风扇配合使用而言,本申请的离心风叶100能够省去上述二者的连接结构及框架等,使得离心风叶100的整体结构紧凑。
在一实施例中,第一叶片121与轮毂110连接,第二叶片122远离轮毂110设置。也就是说,为后向叶型的第一叶片121位于离心风叶100的进口处,为前向叶型的第二叶片122位于离心风叶100的出口处。当然,在本申请的其他实施方式中,为后向叶型的第一叶片121位于离心风叶100的出口处,为前向叶型的第二叶片122位于离心风叶100的进口处。
而且,第一叶片121的径向弯曲方向是指第一叶片121的弧形凹陷处的朝向,第二叶片122的径向弯曲方向是指第二叶片122的弧形凹陷处的朝向。第一叶片121径向弯曲方向与第二叶片122的径向弯曲方向相反,也就是说,第一叶片121的弧形凹陷处的朝向与第二叶片122弧形凹陷处的朝向相反,这样,能够形成前向叶型与后向叶型的叶片串联,同时,还能使得相邻扇叶120形成的流道弯折,使得声波在流道中进行多次反射和折射,有效耗散声能量,从传导路径上起到了叶道隔声作用,降低声辐射能量,进而达到降低噪声的作用。
作为一种可实施方式,第一叶片121的曲率半径大于第二叶片122的曲率半径。也就是说,第一叶片121采用大曲率半径的后向叶型的叶片,第二叶片122采用小曲率半径的前向叶型的叶片。相邻扇叶120形成的流道较单一叶型而言相对狭长,以使声波在流道中传播时进行多次折射、反射,有效耗散声能量,从传导路径上起到了隔声作用,降低声辐射能量。进一步地,第一叶片121的曲率半径与第二叶片122的曲率半径之比的范围为3.4~3.8,进一步降低声辐射能量。
再进一步地,第一叶片121的进口安放角的角度范围为64.5°~68.5°。第一叶片121的进口安放角在上述范围内后能够与气流进口角相吻合,这样气流能够沿着第一叶片121的延伸方向流动,减少气流对第一叶片121产生的冲击,进而降低离心风叶100运行时的 噪声,保证离心风叶100运行平稳。第二叶片122的出口安放角的角度范围为16°~20°。第二叶片122的出口安放角能够确定出风方向,这样气流随着出口安放角沿第二叶片122吹出,保证抗静压能力。第二叶片122的出口安放角在上述范围内,能够保证离心风叶100的抗静压能力要求。
离心风叶100的进口的第一叶片121采用后向叶型的叶片后,由于后向叶型的第二叶片122的流道弯曲率小,能够减小气流进口冲角,气流对叶片冲击小,减少进出处的冲击损失,自然冲击噪音就低,能量损失最小,可以提高出风效率。而且,第一叶片121为后向叶型的叶片,还能方便调整扇叶120的进口角,可以理解的是,这里的方便调整是指方便调整后向叶型的进口安放角,而且,调整是指离心风叶100成型设计时对第一叶片121的进口安放角进行调整,使得第一叶片121的进口安放角与进口气流交相吻合,这样,离心风叶100运行时,气流能够沿着第一叶片121的延伸方向流动,减小气流直接冲击到第一叶片121上,达到降低离心风叶100运行时噪音的目的。
离心风叶100的出口的第二叶片122采用前向叶型的叶片,能够使气流顺利出风而不会在相邻的扇叶120之间打旋,能够有效的抑制出口涡区的形成,使气流顺着扇叶120出去,提高离心风叶100的抗静压能力,保证风量。这样,对一些有较高抗静压能力要求的机组,为前向叶型的第二叶片122能够保证在高抗静压能力的基础上风量不衰减。
作为一种可实施方式,扇叶120还包括连接叶片123,连接叶片123平滑连接第一叶片121及第二叶片122。连接叶片123起到连接作用,建立第一叶片121与第二叶片122之间的连接。同时,连接叶片123能够使第一叶片121与第二叶片122之间流道光滑过过渡,这样能够使得气流流动平稳,减小损失。可选地,连接叶片123为直线段,通过直线段衔接第一叶片121与第二叶片122。
作为一种可实施方式,相邻两个扇叶120的第一叶片121围设成第一流道A1。第一流道A1用于使气流以相同速度流动。可选的,第一流道A1为等间距流道。这里的等间距流道是指第一流道A1的内壁间距处处基本相等。即等间距流道的截面宽度基本不变,可减少第一流道A1内涡区,气流在第一流道A1内分离减少,进而扇叶120间能量耗散减少,使得离心风叶100的效率提高。
在一实施例中,第一流道A1的进口处的间距L1小于等于第一流道A1的出口处的间距L2。可以理解的是,第一流道A1的进口处是指第一流道A1与轮毂110连接一端的位置,第一流道A1的出口处是指第一流道A1远离轮毂110的一端的位置,在本实施例中,第一流道A1的出口处是指与连接叶片123的连接处的位置。也就是说,第一流道A1从与轮毂110连接的一端到远离轮毂110的一端的间距基本相等,使得第一流道A1形成等速 流道。这样,气流在第一流道A1之间流动时能够实现匀速流动,减小损失。而且,间距是指相邻两个第一叶片121之间的距离。
进一步地,第一流道A1的进口处的间距L1与第一流道A1的出口处的间距L2之比的范围为1~1.05。根据此设计参数构建第一叶片121,能够使得相邻的第一叶片121之间的间距基本相同,保证第一流道A1的气流流速相一致。而且,第一流道A1任意处的间距与第一流道A1的进口处的间距L1之比的范围为1~1.05。这样能够保证第一流道A1为等速流道。
作为一种可实施方式,相邻两个扇叶120的第二叶片122形成第二流道A2。第二流道A2用于使气流的流动速度逐渐增加。可选地,第二流道A2包括渐扩流道与渐缩流道,渐扩流道的出口与渐缩流道的进口连通。渐扩流道中,第二流道A2的内壁间距逐渐增加,渐缩流道中,第二流道A2的内壁间距逐渐减小。也就是说,相邻的第二叶片122形成的第二流道A2先是渐扩再渐缩。
渐扩流道和第一叶片121连接,渐扩流道与第一流道A1之间平滑连接可减小流道损失,以提高出风能量,进而提高抗静压能力。渐缩流道靠近出风侧的间距缩小,相同风量过流面积缩小,会使出口气流速度相应增大,这样,渐缩的叶型可以有效消除出口流速不均,减少气流扩散,进而减弱出口射流-尾迹影响。
第二流道A2的进口处的间距L3大于第二流道A2的出口处L5的间距。可以理解的是,第二流道A2的进口处的间距是指第二流道A2靠近第一流道A1一端的位置,在本实施例中,第二流道A2进口处的间距是指第二叶片122与连接叶片123连接处的位置;第二流道A2的出口处是指扇叶120的末端。也就是说,第二流道A2从与连接叶片123连接的一端到远离连接叶片123的一端的间距先大后小,使得第二流道A2形成加速流道。这样,气流在第二流道A2中流动时,第二流道A2能够对气流加速。
进一步地,渐扩流道的进口处的间距与渐缩流道的出口处的间距之比的范围为1.3~1.7,且渐缩流道的进口处的间距与渐缩流道的出口处的间距之比的范围为2~2.4。即第二流道A2的进口处的间距L3与第二流道A2的出口处的间距L5之比的范围为1.3~1.7。渐缩流道的进口处的间距与第二流道A2的出口处的间距之比的范围为2~2.4。而且,如图2所示,第二流道A2中的间距先增加后减小,实现气流的加速。
可选地,第一叶片121沿径向方向的长度等于第二叶片122沿径向方向的长度。若第二叶片122的长度过短,则难以使气流形成加速过程,抗静压能力不足,若第二叶片122的长度过长,抗静压能力虽然提高,但是气流噪音大,效率也会大大降低。而且,由于离心风叶100直径尺寸限制,第一叶片121的长度过长会导致第一叶片121与第二叶片122 连接处转角过大,叶型线不光滑,转角大气流在流道内形成集中涡区,导致气流在流道内打旋对出风不利。因此,第一叶片121与第二叶片122等长设置可以在保证抗静压能力的同时,降低噪音、保证效率,便于气流流动。
作为一种可实施方式,相邻两个扇叶120的连接叶片123形成第三流道A3,第三流道A3平滑连接第一流道A1与第二流道A2。这样能够保证气流流道光滑,减小气流流动损失,保证出风量。而且,第三流道A3的进口处的间距小于第二流道A2的进口处L3的间距,且第三流道A3的进口处的间距大于第一流道A1的出口处的间距L2。也就是说,第三流道A3的间距沿气流流动方向逐渐增加,以实现平滑连接第一流道A1与第二流道A2。
如图3所示,可选地,第一流道A1、第三流道A3及第二流道A2顺次呈弧形连接,且平滑连接。这样能够在保证流道光滑、损失小。
又可选地,第一叶片121、连接叶片123及第二叶片122为一体结构。这样能够方便扇叶120的成型加工,保证连接可靠,同时还能提高装配效率。而且,第一叶片121、连接叶片123、第二叶片122与轮毂110也可一体成型。
本申请一具体实施例的离心风叶100的设计参数为,第一叶片121的轮毂比(第一叶片121与轮毂110连接一端的直径和第一叶片121与连接叶片123连接一端的直径之比)为0.8125;第二叶片122的轮毂比(第二叶片122末端的直径和第二叶片122与连接叶片123连接一端的直径之比)为0.6;第一叶片121的进口安放角为66.5°,第二叶片122的出口安放角为18.3°,第一叶片121的圆心角为28°,第二叶片122的圆心角为117°,第一叶片121的圆弧半径为64.7mm,第二叶片122的圆弧半径为17.8mm。这样气流能够沿着第一叶片121流入离心风叶100,以减小气流对进口处扇叶120的冲击,降低冲击噪声,同时还可以改善扇叶120进口处的气流流动,抑制分流,提高出风量,第二叶片122能够抑制出口处涡旋的形成,提高抗静压能力,使得离心风叶100在保证出风效率的同时结构紧凑,降低离心风叶100运行时的噪声。
本申请还提供一种风机,包括电机及离心风叶100。电机的输出轴与离心风叶100的轮毂110连接,以实现离心风叶100的转动驱动,进而实现气流的加速输出。本申请的风机采用上述离心风叶100后,能够提高抗静压能力,保证出风效率,降低风机运行时的噪音,保证风机运行平稳可靠。
本申请还提供一种空气处理设备,包括过滤组件及风机,过滤组件可以设置在风机的进风端,也可设置在风机的出风端,过滤组件用于对空气进行过滤,实现空气的净化除尘,通过风机实现气流的加速流动。本申请的空气处理设备采用上述风机后,能够提高抗静压能力,保证出风效率,降低风机运行时的噪音,保证风机运行平稳可靠,提高用户使用时 的舒适度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书的记载范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种离心风叶,其特征在于,包括轮毂(110)及多个扇叶(120),多个所述扇叶(120)围绕所述轮毂(110)的周侧分布;
    所述扇叶(120)包括第一叶片(121)及与所述第一叶片(121)连接的第二叶片(122),且所述第一叶片(121)的叶型为后向叶型,所述第二叶片(122)的叶型为前向叶型。
  2. 根据权利要求1所述的离心风叶,其特征在于,所述第一叶片(121)与第二叶片(122)串联连接。
  3. 根据权利要求2所述的离心风叶,其特征在于,所述第一叶片(121)与所述轮毂(110)连接,所述第二叶片(122)远离所述轮毂(110)设置。
  4. 根据权利要求1所述的离心风叶,其特征在于,所述第一叶片(121)的曲率半径大于所述第二叶片(122)的曲率半径。
  5. 根据权利要求4所述的离心风叶,其特征在于,所述第一叶片(121)的曲率半径与所述第二叶片(122)的曲率半径之比的范围为3.4~3.8。
  6. 根据权利要求3所述的离心风叶,其特征在于,所述第一叶片(121)的进口安放角的角度范围为64.5°~68.5°;
    和/或,所述第二叶片(122)的出口安放角的角度范围为16°~20°。
  7. 根据权利要求1至6任一项所述的离心风叶,其特征在于,所述扇叶(120)还包括连接叶片(123),所述连接叶片(123)平滑连接所述第一叶片(121)及所述第二叶片(122)。
  8. 根据权利要求1至6任一项所述的离心风叶,其特征在于,相邻两个所述扇叶(120)的所述第一叶片(121)围设成第一流道(A1),所述第一流道(A1)用于使气流以相同速度流动;
    和/或,相邻两个所述扇叶(120)的所述第二叶片(122)形成第二流道(A2),所述第二流道(A2)用于使气流的流动速度逐渐增加。
  9. 根据权利要求8所述的离心风叶,其特征在于,所述第一流道(A1)为等间距流道;和/或,所述第二流道(A2)包括渐扩流道与渐缩流道,所述渐扩流道的出口与所述渐缩流道的进口连通。
  10. 根据权利要求9所述的离心风叶,其特征在于,所述第一流道(A1)的进口处的间距与所述第一流道(A1)的出口处的间距之比的范围为1~1.05;
    和/或,所述渐扩流道的进口处的间距与所述渐缩流道的出口处的间距之比的范围为1.3~1.7,且所述渐缩流道的进口处的间距与所述渐缩流道的出口处的间距之比的范围为2~2.4。
  11. 根据权利要求7所述的离心风叶,其特征在于,相邻两个所述扇叶(120)的所述第一叶片(121)围设成第一流道(A1),相邻两个所述扇叶(120)的所述第二叶片(122)形成第二流道(A2);
    相邻两个所述扇叶(120)的所述连接叶片(123)形成第三流道,所述第三流道平滑连接所述第一流道(A1)与所述第二流道(A2)。
  12. 根据权利要求11所述的离心风叶,其特征在于,所述第一流道(A1)、所述第三流道及所述第二流道(A2)顺次呈弧形连接。
  13. 根据权利要求1至6任一项所述的离心风叶,其特征在于,所述扇叶(120)还包括连接所述第一叶片(121)与所述第二叶片(122)的所述连接叶片(123),所述第一叶片(121)、所述连接叶片(123)及所述第二叶片(122)为一体结构。
  14. 一种风机,其特征在于,包括如权利要求1至13任一项所述的离心风叶(100)。
  15. 一种空气处理设备,其特征在于,包括如权利要求14所述的风机。
PCT/CN2019/087354 2018-07-17 2019-05-17 空气处理设备、风机及其离心风叶 WO2020015444A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/259,945 US11371525B2 (en) 2018-07-17 2019-05-17 Air treatment equipment, fan and centrifugal fan blade of fan
EP19837453.0A EP3808991A4 (en) 2018-07-17 2019-05-17 AIR TREATMENT DEVICE, FAN AND RADIAL IMPELLER FOR IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810782248.6 2018-07-17
CN201810782248.6A CN108825552B (zh) 2018-07-17 2018-07-17 空气处理设备、风机及其离心风叶

Publications (1)

Publication Number Publication Date
WO2020015444A1 true WO2020015444A1 (zh) 2020-01-23

Family

ID=64140630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087354 WO2020015444A1 (zh) 2018-07-17 2019-05-17 空气处理设备、风机及其离心风叶

Country Status (4)

Country Link
US (1) US11371525B2 (zh)
EP (1) EP3808991A4 (zh)
CN (1) CN108825552B (zh)
WO (1) WO2020015444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797185A (zh) * 2022-05-18 2022-07-29 三一技术装备有限公司 流体分离器
EP4234943A4 (en) * 2020-10-23 2023-12-06 Mitsubishi Electric Corporation MULTIPLE BLADE CENTRIFUGAL FLOWER

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108825552B (zh) 2018-07-17 2023-10-03 珠海格力电器股份有限公司 空气处理设备、风机及其离心风叶
CN111043075A (zh) * 2019-11-26 2020-04-21 广东顺威精密塑料股份有限公司 后向离心截面改良型离心风叶
CN113565793A (zh) * 2020-04-29 2021-10-29 青岛海尔空调电子有限公司 压缩机叶轮及压缩机
US11536286B2 (en) * 2020-07-30 2022-12-27 Microsoft Technology Licensing, Llc Systems and methods for improving airflow in a centrifugal blower

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007300A (en) * 1996-05-17 1999-12-28 Calsonic Corporation Centrifugal multiblade fan
CN1546868A (zh) * 2003-12-04 2004-11-17 北京本然科技有限公司 高势比、内减摩、向心增压离心泵及其技术组合方法与实例
KR20050044972A (ko) * 2003-11-08 2005-05-16 박 희 섭 원심 송풍형 다익팬
CN104251229A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 离心式叶轮及包括该离心式叶轮的吹吸装置
CN206092502U (zh) * 2016-10-21 2017-04-12 佛山市顺德区美的电热电器制造有限公司 扇叶、离心风扇的扇叶组件、离心风扇及电磁炉
CN108825552A (zh) * 2018-07-17 2018-11-16 珠海格力电器股份有限公司 空气处理设备、风机及其离心风叶
CN208442081U (zh) * 2018-07-17 2019-01-29 珠海格力电器股份有限公司 空气处理设备、风机及其离心风叶

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1059869A (en) 1965-06-14 1967-02-22 Inst Elmasch Improvements in or relating to radial flow fans
JP2000240590A (ja) * 1999-02-23 2000-09-05 Hitachi Ltd 多翼前向ファン
KR100380228B1 (ko) * 2000-05-16 2003-04-16 엘지전자 주식회사 창문형 에어컨의 시로코팬
JP2003090298A (ja) * 2001-09-17 2003-03-28 Nippon Soken Inc 遠心ファン
SE525219C2 (sv) 2003-05-15 2004-12-28 Volvo Lastvagnar Ab Turboladdarsystem för en förbränningsmotor där båda kompressorstegen är av radialtyp med kompressorhjul försedda med bakåtsvepta blad
WO2007003416A1 (de) * 2005-07-04 2007-01-11 Behr Gmbh & Co. Kg Laufrad
US10100839B2 (en) * 2013-12-11 2018-10-16 Keihin Corporation Centrifugal fan
DE102016218983A1 (de) 2016-09-30 2018-04-05 Tlt-Turbo Gmbh Schaufeln mit in Strömungsrichtung S-förmigem Verlauf für Laufräder radialer Bauart

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6007300A (en) * 1996-05-17 1999-12-28 Calsonic Corporation Centrifugal multiblade fan
KR20050044972A (ko) * 2003-11-08 2005-05-16 박 희 섭 원심 송풍형 다익팬
CN1546868A (zh) * 2003-12-04 2004-11-17 北京本然科技有限公司 高势比、内减摩、向心增压离心泵及其技术组合方法与实例
CN104251229A (zh) * 2013-06-28 2014-12-31 苏州宝时得电动工具有限公司 离心式叶轮及包括该离心式叶轮的吹吸装置
CN206092502U (zh) * 2016-10-21 2017-04-12 佛山市顺德区美的电热电器制造有限公司 扇叶、离心风扇的扇叶组件、离心风扇及电磁炉
CN108825552A (zh) * 2018-07-17 2018-11-16 珠海格力电器股份有限公司 空气处理设备、风机及其离心风叶
CN208442081U (zh) * 2018-07-17 2019-01-29 珠海格力电器股份有限公司 空气处理设备、风机及其离心风叶

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4234943A4 (en) * 2020-10-23 2023-12-06 Mitsubishi Electric Corporation MULTIPLE BLADE CENTRIFUGAL FLOWER
CN114797185A (zh) * 2022-05-18 2022-07-29 三一技术装备有限公司 流体分离器

Also Published As

Publication number Publication date
CN108825552A (zh) 2018-11-16
US11371525B2 (en) 2022-06-28
EP3808991A1 (en) 2021-04-21
US20210270281A1 (en) 2021-09-02
CN108825552B (zh) 2023-10-03
EP3808991A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2020015444A1 (zh) 空气处理设备、风机及其离心风叶
KR101243935B1 (ko) 고성능 환풍기
WO2013073469A1 (ja) 遠心式流体機械
CN104196761A (zh) 一种双进风离心风机
JP2001271790A (ja) 遠心型羽根車および空気清浄装置
JP3822447B2 (ja) 窓型エアコンのターボファン
US11116367B2 (en) Electric fan and vacuum cleaner having same
JP2001271791A (ja) 多翼ファン
WO2020001272A1 (zh) 电机结构及吸尘器
US20230332604A1 (en) Fan Assembly and Vacuum Cleaner
JPH05321891A (ja) 多翼ファン
JP2005105865A (ja) プロペラファン
WO2016095838A1 (zh) 风机外壳
CN208442081U (zh) 空气处理设备、风机及其离心风叶
WO2020019656A1 (zh) 气体处理设备
JP3123288B2 (ja) 電動送風機
JP3488126B2 (ja) エアカ−テン
CN109185225A (zh) 风叶和风扇
JP2564889B2 (ja) 軸流フアン
JP3191516B2 (ja) 電動送風機のインペラ
WO2020024401A1 (zh) 一种斜流风机
JP2004052615A (ja) ファンフィルタユニット
JPH03138493A (ja) 電動送風機
JP4460758B2 (ja) 遠心送風機及びこれを備えた車両用空調装置
JP2751741B2 (ja) 軸流ファン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019837453

Country of ref document: EP

Effective date: 20210113