WO2020015290A1 - 泵体组件、流体机械及换热设备 - Google Patents

泵体组件、流体机械及换热设备 Download PDF

Info

Publication number
WO2020015290A1
WO2020015290A1 PCT/CN2018/120954 CN2018120954W WO2020015290A1 WO 2020015290 A1 WO2020015290 A1 WO 2020015290A1 CN 2018120954 W CN2018120954 W CN 2018120954W WO 2020015290 A1 WO2020015290 A1 WO 2020015290A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston sleeve
pump body
body assembly
flange
limit
Prior art date
Application number
PCT/CN2018/120954
Other languages
English (en)
French (fr)
Inventor
魏会军
徐嘉
杜忠诚
杨森
李直
梁社兵
任丽萍
张荣婷
史正良
刘喜兴
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/059,119 priority Critical patent/US11208990B2/en
Priority to EP18926384.1A priority patent/EP3779193A4/en
Priority to JP2020561917A priority patent/JP7047134B2/ja
Publication of WO2020015290A1 publication Critical patent/WO2020015290A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/20Other positive-displacement pumps
    • F04B19/22Other positive-displacement pumps of reciprocating-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • F16J1/005Pistons; Trunk pistons; Plungers obtained by assembling several pieces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/12Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/603Centering; Aligning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components

Definitions

  • the present invention relates to the technical field of pump body components, and in particular, to a pump body component, a fluid machine, and a heat exchange device.
  • the piston sleeve is prone to eccentric and inclined rotation, which causes the piston sleeve to easily friction with the cylinder and the piston, which seriously affects the working efficiency and performance of the pump body assembly.
  • the main purpose of the present invention is to provide a pump body assembly, fluid machinery and heat exchange equipment, so as to solve the problem that the piston sleeve of the pump body assembly is prone to eccentric rotation in the prior art and affects the working efficiency of the pump body assembly.
  • a pump body assembly which includes: a lower flange; a lower friction-reducing ring; a cylinder, the lower friction-reducing ring is located inside the cylinder, and the lower flange is located below the cylinder; a piston
  • the component is arranged in the cylinder.
  • the piston component includes a piston sleeve and a piston slidingly arranged in the piston sleeve.
  • the lower antifriction ring has a central hole, and the surface of the piston sleeve facing the lower flange has a limit protrusion, and the limit protrusion protrudes.
  • the center hole of the lower anti-friction ring is limited to cooperate with the lower flange to prevent radial displacement of the piston sleeve relative to the lower flange.
  • the surface of the lower flange facing the piston sleeve has a second limiting groove, and the limiting protrusion extends into the second limiting groove to prevent the piston sleeve from being displaced in a radial direction relative to the lower flange.
  • the surface of the lower flange facing the piston sleeve has a second extension portion, and the second extension portion and the limiting protrusion limit the stop to prevent the piston sleeve from being displaced in a radial direction relative to the lower flange.
  • the second extension portion is located outside the limiting protrusion.
  • the second extending portion is located inside the limiting protrusion.
  • the limiting protrusion is a convex ring extending toward the lower flange, and the convex ring is arranged coaxially with the piston sleeve.
  • the limiting protrusions are a plurality of bosses extending toward the lower flange, and the plurality of bosses are arranged at intervals along the circumferential direction of the piston sleeve.
  • the pump body assembly further includes an upper flange and an upper antifriction ring, the upper antifriction ring is located in the cylinder, the upper flange is positioned above the cylinder, and the upper end surface of the piston sleeve and the upper antifriction ring are limited to cooperate to Prevent radial displacement of the piston sleeve relative to the upper flange.
  • the upper end surface of the piston sleeve has a first extension portion, and the first extension portion projects into the central hole of the upper friction-reducing ring and is limited to cooperate with the inner surface of the central hole of the upper friction-reducing ring.
  • the surface of the upper antifriction ring facing the piston sleeve has a fifth limit groove
  • the upper end surface of the piston sleeve has a first extension portion, and the first extension portion extends into the fifth limit groove and is in contact with the fifth limit location. Groove limit stop.
  • the surface of the upper antifriction ring facing the piston sleeve has a fourth extension portion, and the fourth extension portion extends into the piston sleeve and limits the stop with the inner surface of the piston sleeve.
  • the surface of the upper antifriction ring facing the piston sleeve has a fourth extension portion, and the upper end surface of the piston sleeve has a first limit groove, and the fourth extension portion extends into the first limit groove and is in line with the first limit position. Groove limit stop.
  • the pump body assembly further includes an upper flange and an upper antifriction ring, the upper antifriction ring is located in the cylinder, the upper flange is positioned above the cylinder, the upper antifriction ring has a central hole, and the upper end surface of the piston sleeve has a first extension.
  • the first extension portion extends into the center hole of the upper antifriction ring and is limitedly matched with the lower end surface of the upper flange to prevent the piston sleeve from being displaced in a radial direction relative to the upper flange.
  • the surface of the upper flange facing the piston sleeve has a recessed portion, and the first extension portion projects into the recessed portion and stops with the recessed portion at an upper limit position in the radial direction of the piston sleeve.
  • the lower end surface of the upper flange has a limit portion extending toward the piston sleeve, and the first extension portion and the limit portion limit stop to prevent the piston sleeve from being displaced in a radial direction relative to the upper flange.
  • the pump body assembly further includes an upper flange located above the piston assembly, and the pump body assembly further includes: a rotating shaft, the rotating shaft passing through the upper flange, the piston sleeve and the lower flange in this order, and the rotating shaft and the upper flange and the lower flange The flange is arranged coaxially.
  • a fluid machine including the above-mentioned pump body assembly.
  • a heat exchange apparatus including the above-mentioned fluid machine.
  • the pump body assembly includes a lower flange, a lower antifriction ring, a cylinder and a piston assembly.
  • the lower friction-reducing ring is located in the cylinder, and the lower flange is located below the cylinder.
  • the piston assembly is arranged in the cylinder.
  • the piston assembly includes a piston sleeve and a piston slidingly arranged in the piston sleeve.
  • the lower friction-reducing ring has a central hole.
  • the surface of the piston sleeve facing the lower flange has a limit protrusion, and the limit protrusion extends into The center hole of the lower anti-friction ring is limited to cooperate with the lower flange to prevent radial displacement of the piston sleeve relative to the lower flange.
  • the limiting protrusion at the lower end of the piston sleeve passes through the center hole of the lower friction ring and cooperates with the lower flange limit, the lower end of the piston sleeve is limited and supported by the lower flange.
  • FIG. 1 shows an exploded structure diagram of a first embodiment of a pump body assembly according to the present invention.
  • FIG. 2 illustrates a cross-sectional view of the pump body assembly in FIG. 1;
  • Figure 3 shows a top view of the lower flange of the pump body assembly in Figure 1;
  • Figure 4 shows a sectional view of the lower flange in Figure 3;
  • FIG. 5 shows an exploded structure diagram of a second embodiment of a pump body assembly according to the present invention
  • FIG. 6 illustrates a cross-sectional view of the pump body assembly in FIG. 5;
  • Figure 7 shows a top view of the lower flange of the pump body assembly of Figure 5;
  • FIG. 8 shows an exploded structure diagram of a third embodiment of a pump body assembly according to the present invention.
  • FIG. 9 illustrates a cross-sectional view of the pump body assembly in FIG. 8.
  • FIG. 10 is a schematic perspective view of the upper flange of the pump body assembly in FIG. 8; FIG.
  • FIG. 11 illustrates a top view of a lower flange of the pump body assembly in FIG. 8;
  • FIG. 12 illustrates a cross-sectional view of the lower flange in FIG. 11;
  • FIG. 13 shows a schematic exploded structure of the fourth embodiment of the pump body assembly according to the present invention.
  • FIG. 14 illustrates a cross-sectional view of the pump body assembly in FIG. 13;
  • FIG. 15 illustrates a top view of a lower flange of the pump body assembly in FIG. 13;
  • FIG. 16 shows a schematic exploded structure of the fifth embodiment of the pump body assembly according to the present invention.
  • FIG. 17 illustrates a cross-sectional view of the pump body assembly in FIG. 16
  • FIG. 18 is a cross-sectional view of the upper antifriction ring of the pump body assembly in FIG. 16; FIG.
  • FIG. 19 illustrates a cross-sectional view of a piston sleeve of the pump body assembly in FIG. 16;
  • FIG. 20 illustrates a cross-sectional view of a lower flange of the pump body assembly in FIG. 16;
  • FIG. 21 is a schematic exploded structure diagram of a sixth embodiment of a pump body assembly according to the present invention.
  • FIG. 22 illustrates a cross-sectional view of the pump body assembly in FIG. 21;
  • FIG. 23 illustrates a cross-sectional view of the upper antifriction ring of the pump body assembly in FIG. 21;
  • FIG. 24 illustrates a cross-sectional view of a piston sleeve of the pump body assembly in FIG. 21;
  • FIG. 25 illustrates a cross-sectional view of a lower flange of the pump body assembly in FIG. 21;
  • 26 shows a schematic exploded structure of the seventh embodiment of the pump body assembly according to the present invention.
  • FIG. 27 illustrates a cross-sectional view of the pump body assembly in FIG. 26
  • FIG. 28 illustrates a cross-sectional view of the upper antifriction ring of the pump body assembly in FIG. 26;
  • FIG. 29 illustrates a cross-sectional view of a piston sleeve of the pump body assembly in FIG. 26;
  • FIG. 30 illustrates a cross-sectional view of a lower flange of the pump body assembly in FIG. 26;
  • FIG. 31 shows an exploded structure diagram of Embodiment 8 of a pump body assembly according to the present invention
  • FIG. 32 illustrates a cross-sectional view of the pump body assembly in FIG. 31;
  • FIG. 33 is a schematic perspective view of the upper flange of the pump body assembly in FIG. 31.
  • FIG. 34 shows a top view of the lower flange of the pump body assembly in FIG. 31.
  • orientation words such as “up and down” are usually used for the directions shown in the drawings, or for vertical, vertical, or gravity directions, unless otherwise stated.
  • “left and right” usually refers to the left and right shown in the drawings; “inside and outside” refer to the inside and outside relative to the outline of each component itself, but the above orientation Words are not used to limit the invention.
  • the present application provides a pump body component, fluid machinery and heat exchange equipment.
  • the pump body assembly includes a lower flange 12, a lower anti-friction ring 60, a cylinder 20, and a piston assembly.
  • the lower friction-reducing ring 60 is located in the cylinder 20, and the lower flange 12 is located below the cylinder 20.
  • the piston assembly is disposed in the cylinder 20.
  • the piston assembly includes a piston sleeve 40 and a piston 50 slidingly disposed in the piston sleeve 40.
  • the lower wear-reducing ring 60 has a central hole, and the surface of the piston sleeve 40 facing the lower flange 12 has a limiting protrusion. 43.
  • the limiting protrusion 43 extends into the center hole of the lower anti-friction ring 60 and is limited to cooperate with the lower flange 12 to prevent the piston sleeve 40 from being displaced in a radial direction relative to the lower flange 12.
  • the limit protrusion 43 located at the lower end of the piston sleeve 40 passes through the center hole of the lower wear-reducing ring 60 and cooperates with the lower flange 12 to limit the position.
  • the lower end of 40 is limited and supported by the lower flange 12, thereby preventing the piston sleeve 40 from moving in the radial direction during operation, ensuring the normal rotation of the piston sleeve 40, and solving the piston sleeve of the pump body assembly in the prior art.
  • the problem of eccentric rotation is likely to occur, which affects the working efficiency of the pump body component, which improves the operation reliability and working performance of the pump body component.
  • the surface of the lower flange 12 facing the piston sleeve 40 has a second limiting groove 121, and the limiting protrusion 43 extends into the second limiting groove 121 to prevent the piston sleeve 40 from facing each other.
  • a displacement in the radial direction occurs at the lower flange 12.
  • the limit protrusion 43 on the piston sleeve 40 projects into the second limit groove 121 of the lower flange 12, and the groove wall of the second limit groove 121 faces the limit
  • the surface of the protrusion 43 performs a limit stop to realize the limit stop of the lower end of the piston sleeve 40 by the lower flange 12 to prevent the lower end of the piston sleeve 40 from being displaced in a radial direction relative to the lower flange 12.
  • the second limiting groove 121 is eccentrically arranged on the lower flange 12, and the limiting protrusion 43 extends into the second limiting groove 121 to realize the limit stop of the lower flange 12 on the piston sleeve 40.
  • the second limiting groove 121 is an annular groove, and the eccentricity of the annular groove on the lower flange 12 is e.
  • the pump body assembly further includes an upper flange 11 located above the piston assembly, and the pump body assembly further includes a rotating shaft 30.
  • the rotating shaft 30 is disposed on the upper flange 11, the piston sleeve 40 and the lower flange 12 in this order, and the rotating shaft 30 is coaxially disposed with the upper flange 11 and the lower flange 12.
  • the rotating shaft 30 rotates about the central axis of the upper flange 11
  • the piston sleeve 40 rotates about the central axis of the recess 111
  • the piston 50 reciprocates only with respect to the piston sleeve 40
  • the piston 50 reciprocates with respect to the rotating shaft 30
  • the two reciprocating motions are perpendicular to each other, that is, the operation of the pump body assembly follows the principle of the cross slider mechanism.
  • the volume of the two cavities formed between the curved surface of the head of the piston 50, the inner surface of the cylinder 20, and the guide hole of the piston sleeve 40 gradually changes. Compression and exhausting process.
  • the present application also provides a fluid machine (not shown) including the above-mentioned pump body assembly.
  • the fluid machine is a compressor.
  • the present application also provides a heat exchange device (not shown), including the fluid machine described above.
  • the heat exchange device is an air conditioner.
  • the difference between the pump body assembly in the second embodiment and the first embodiment is that the structure of the lower flange 12 is different.
  • the surface of the lower flange 12 facing the piston sleeve 40 has a second extension portion 122, and the second extension portion 122 and the limit protrusion 43 limit the stop to prevent the piston sleeve 40 from facing the lower side.
  • the flange 12 is displaced in the radial direction. Specifically, during the operation of the pump body assembly, the side of the second extension portion 122 and the side of the limit protrusion 43 can be limited to prevent radial displacement between the two, thereby preventing the piston sleeve 40 relative to the lower side.
  • the flange 12 is displaced in the radial direction to ensure the stable operation of the piston sleeve 40 and improve the operation reliability and working efficiency of the pump body assembly.
  • the second extension portion 122 is located inside the limiting protrusion 43. Specifically, the outer surface of the second extension portion 122 facing the limit protrusion 43 near the center of the piston sleeve 40 performs a limit stop to prevent radial displacement between the two.
  • the first predetermined distance is 5um or more and 40um or less.
  • the above numerical range not only guarantees that the second extension 122 can radially limit the limit protrusion 43, but also enables the limit protrusion 43 to rotate relative to the second extension 122, thereby improving the reliable operation of the pump body assembly. Sex.
  • the second extension portion is located outside the limiting protrusion. Specifically, the inner side of the second extension portion faces a surface of the limit protrusion away from the center of the piston sleeve to perform a limit stop to prevent radial displacement between the two.
  • the limiting protrusion 43 is a convex ring extending toward the lower flange 12, and the convex ring is coaxially disposed with the piston sleeve 40.
  • the structure of the limiting protrusion 43 is not limited to this.
  • the limiting protrusions 43 are a plurality of bosses extending toward the lower flange 12, and the plurality of bosses are arranged at intervals along the circumferential direction of the piston sleeve 40.
  • the second extension 122 is an eccentric boss, and the eccentricity with the lower flange 12 is e.
  • determining the eccentricity of the pump body component in the above manner makes the eccentricity of the pump body component easier to ensure, and the determination of the eccentricity amount e is more reliable and simple.
  • the difference between the pump assembly in the third embodiment and the first embodiment lies in that the structure of the upper flange 11 is different.
  • the surface of the upper flange 11 facing the piston sleeve 40 has a recessed portion 111, and the first extension portion 41 projects into the recessed portion 111 and stops with the recessed portion 111 at an upper limit position in the radial direction of the piston sleeve 40. .
  • the first extension portion 41 of the piston sleeve 40 projects into the recessed portion 111 of the upper flange 11, and the radial limit of the piston sleeve 40 by the upper flange 11 is achieved.
  • the recessed portion 111 and the first extension portion 41 limit the stop to ensure that the first extension portion 41 rotates in the recess portion 111 without the first extension portion 41 moving in the radial direction.
  • the lower end of the piston sleeve 40 is limited and supported by the lower flange 12, so that the upper and lower ends of the piston sleeve 40 are supported by the limit to ensure the normal operation of the pump body component and improve the working reliability of the pump body component.
  • the first extending portion 41 and the recessed portion 111 are annular, and the first extending portion 41, the recessed portion 111 and the piston sleeve 40 are coaxially disposed.
  • the above-mentioned arrangement ensures that the piston sleeve 40 can rotate relative to the upper flange 11, thereby ensuring the operational reliability of the pump body assembly.
  • the piston sleeve 40 is eccentrically disposed with the upper flange 11, and the eccentricity is the eccentricity e of the pump body component.
  • the above arrangement enables the first extension portion 41 of the piston sleeve 40 to rotate around the central axis of the piston sleeve 40 (or the central axis of the concave portion 111) within the recess 111 of the upper flange 11 to ensure that the upper flange 11 faces the piston sleeve 40 Limit, support reliability.
  • the structure of the first extension portion 41 is not limited to this.
  • the first extension portion 41 is a double-layered annular structure, and at least one layer of the annular structure is limited and stopped with the inner groove wall or the outer groove wall of the recess 111. In this way, the above-mentioned arrangement makes the structure of the first extension portion 41 more diverse, thereby making the processing and manufacturing of the piston sleeve 40 easier and simpler, and reducing the labor intensity of the staff.
  • the recessed portion 111 is a groove.
  • the structure of the above structure is simple and easy to process and implement.
  • the groove width of the groove is greater than the thickness of the first extension portion 41.
  • the second predetermined distance there is a second predetermined distance between the inner groove wall of the groove and the surface of the first extension portion 41 near the center of the piston sleeve 40, and the second predetermined distance is 5um or more and 40um or less.
  • the inner groove wall of the groove performs a limit stop on the surface of the first extension portion 41 near the center of the piston sleeve 40 to prevent radial displacement between the two.
  • the recessed portion 111 and the upper flange 11 are eccentrically disposed, and the eccentricity amount is e.
  • determining the eccentricity of the pump body component in the above manner makes the eccentricity of the pump body component easier to ensure, and the determination of the eccentricity amount e is more reliable and simple.
  • the difference between the pump body component in the fourth embodiment and the third embodiment is that the structure of the pump body component is different.
  • the pump body assembly further includes an upper flange 11 and an upper antifriction ring 70.
  • the upper antifriction ring 70 is located in the cylinder 20, the upper flange 11 is positioned above the cylinder 20, and the upper part of the piston sleeve 40
  • the end surface and the upper anti-friction ring 70 are limitedly matched to prevent the piston sleeve 40 from being displaced in a radial direction relative to the upper flange 11.
  • the upper end of the piston sleeve 40 is limited and supported by the upper anti-friction ring 70, thereby preventing the piston sleeve 40 from moving in the radial direction during the operation and ensuring that the piston sleeve 40 can rotate normally.
  • the problem that the piston sleeve of the pump body component is prone to eccentric rotation and affects the working efficiency of the pump body component is solved, and the operation reliability and working performance of the pump body component are improved.
  • the upper end surface of the piston sleeve 40 has a first extending portion 41 that extends into the center hole of the upper anti-friction ring 70 and is in contact with the center hole of the upper anti-friction ring 70.
  • the first extension portion 41 is annular, and the first extension portion 41 is coaxially disposed with the piston sleeve 40.
  • the above-mentioned arrangement ensures that the piston sleeve 40 can rotate relative to the upper flange 11, thereby ensuring the operational reliability of the pump body assembly.
  • the piston sleeve 40 is eccentrically disposed with the upper flange 11, and the eccentricity is the eccentricity e of the pump body component.
  • the above-mentioned arrangement enables the first extension 41 of the piston sleeve 40 to rotate around the central axis of the piston sleeve 40 in the center hole of the upper limit plate 14, thereby ensuring the limit and support reliability of the upper limit plate 14 to the piston sleeve 40.
  • the structure of the first extension portion 41 is not limited to this.
  • the first extension portion 41 is a double-layered annular structure, and the outermost annular structure and the inner surface of the central hole of the upper limit plate 14 perform limit stop. In this way, the above-mentioned arrangement makes the structure of the first extension portion 41 more diverse, thereby making the processing and manufacturing of the piston sleeve 40 easier and simpler, and reducing the labor intensity of the staff.
  • the first extending portion 41 is a convex ring, and the convex ring is disposed coaxially with the piston sleeve 40.
  • the structure of the first extension portion 41 is not limited to this.
  • the first extending portion 41 is at least one protrusion.
  • the plurality of protrusions are arranged coaxially with the piston sleeve 40 around the formed circle.
  • the difference between the pump body assembly in the fifth embodiment and the fourth embodiment is that the structures of the upper antifriction ring 70 and the piston sleeve 40 are different.
  • the surface of the upper antifriction ring 70 facing the piston sleeve 40 has a fifth limiting groove 71.
  • the upper end surface of the piston sleeve 40 has a first extension 41, and the first extension 41 extends into the first
  • the five limiting grooves 71 are in the fifth limiting groove 71 and limit stops.
  • the structure of the above structure is simple and easy to implement and process.
  • the outer surface of the first extension portion 41 of the piston sleeve 40 and the groove wall of the fifth limit groove 71 limit stop, thereby realizing the upper wear-reduction ring 70 to the piston sleeve.
  • a limit stop at the upper end of 40 prevents the upper end of the piston sleeve 40 from being displaced in a radial direction relative to the upper flange 11, and improves the operational reliability of the pump body assembly.
  • the fifth limiting groove 71 is an annular groove, and the annular groove is coaxially disposed with the central hole of the upper antifriction ring 70.
  • the first extension portion 41 is a ring structure, and the fifth limiting groove 71 is coaxially disposed with the first extension portion 41.
  • the difference between the pump body assembly in the sixth embodiment and the fourth embodiment is that the structure of the upper antifriction ring 70 is different.
  • the surface of the upper antifriction ring 70 facing the piston sleeve 40 has a fourth extension 72, and the fourth extension 72 extends into the piston sleeve 40 and limits the stop with the inner surface of the piston sleeve 40.
  • the inner surface of the piston sleeve 40 has a stepped surface 44, and the fourth extension portion 72 extends into the stepped surface 44 to limit the stepped surface 44 to stop the stepped surface 44 in the radial direction of the piston sleeve 40. Limit.
  • the fourth extension portion 72 is annular, and the fourth extension portion 72 is coaxially disposed with the central hole of the upper antifriction ring 70.
  • the structure of the fourth extension portion 72 is not limited to this.
  • the fourth extension portion 72 is a double-layered ring structure, and the outermost ring-shaped structure performs a limit stop with the inner surface of the step surface 44.
  • the above-mentioned arrangement makes the structure of the fourth extension portion 72 more diverse, thereby making the processing and manufacturing of the upper antifriction ring 70 easier and simpler, and reducing the labor intensity of the staff.
  • the difference between the pump body assembly in the seventh embodiment and the fourth embodiment is that the structures of the upper antifriction ring 70 and the piston sleeve 40 are different.
  • the surface of the upper antifriction ring 70 facing the piston sleeve 40 has a fourth extension 72
  • the upper end surface of the piston sleeve 40 has a first limiting groove 42
  • the fourth extension 72 extends into the first
  • a limit stop 42 is located in the limit groove 42 and stops with the first limit groove 42.
  • the fourth extension portion 72 projects into the first limit groove 42, and then the outer surface of the fourth extension portion 72 and the groove wall of the first limit groove 42 limit the stop. Stop to achieve the limit of the upper anti-wear ring 70 on the piston sleeve 40 in the radial direction.
  • the fourth extending portion 72 and the first limiting groove 42 are annular, and the fourth extending portion 72, the first limiting groove 42 and the piston sleeve 40 are coaxially disposed.
  • the structure of the above structure is simple and easy to implement and process.
  • the difference between the pump body assembly in the eighth embodiment and the fourth embodiment is that the structure of the upper flange 11 is different.
  • the pump body assembly further includes an upper flange 11 and an upper antifriction ring 70.
  • the upper antifriction ring 70 is located in the cylinder 20, the upper flange 11 is positioned above the cylinder 20, and the upper antifriction ring 70
  • the upper end surface of the piston sleeve 40 has a first extension 41, the first extension 41 projects into the central hole of the upper antifriction ring 70 and is limited to cooperate with the lower end surface of the upper flange 11 to prevent The piston sleeve 40 is displaced in a radial direction with respect to the upper flange 11.
  • the first extension portion 41 of the piston sleeve 40 projects into the center hole of the upper antifriction ring 70 and is limited to cooperate with the lower end surface of the upper flange 11 to achieve the upper method.
  • Blue 11 limits and supports the upper end of the piston sleeve 40, thereby preventing the piston sleeve 40 from moving in the radial direction during operation, ensuring the normal rotation of the piston sleeve 40, and solving the piston sleeve of the pump body assembly in the prior art
  • the problem of eccentric rotation is likely to occur, which affects the working efficiency of the pump body component, which improves the operation reliability and working performance of the pump body component.
  • the surface of the upper flange 11 facing the piston sleeve 40 has a recessed portion 111, and the first extension portion 41 projects into the recessed portion 111 and stops with the recessed portion 111 at the upper limit of the piston sleeve 40 in the radial direction. .
  • the first extension 41 passes through the center hole of the upper antifriction ring 70 and extends into the recess 111.
  • the outer surface of the first extension 41 and the inner surface of the recess 111 are limitedly matched to achieve the upper flange.
  • the limit stop in the radial direction of the upper end of the piston sleeve 40 prevents structural interference between the piston sleeve 40 and the piston 50 or the cylinder 20 and affects the normal operation of the pump body component.
  • the structure of the above structure is simple and easy to process and implement.
  • the first extending portion 41 and the recessed portion 111 are annular, and the first extending portion 41, the recessed portion 111 and the piston sleeve 40 are coaxially disposed.
  • the above-mentioned arrangement ensures that the piston sleeve 40 can rotate relative to the upper flange 11, thereby ensuring the operational reliability of the pump body assembly.
  • the piston sleeve 40 is eccentrically disposed with the upper flange 11, and the eccentricity is the eccentricity e of the pump body component.
  • the above arrangement enables the first extension portion 41 of the piston sleeve 40 to rotate around the central axis of the piston sleeve 40 (or the central axis of the concave portion 111) within the recess 111 of the upper flange 11 to ensure that the upper flange 11 faces the piston sleeve 40 Limit, support reliability.
  • the structure of the first extension portion 41 is not limited to this.
  • the first extension portion 41 is a double-layered annular structure, and at least one layer of the annular structure is limited and stopped with the inner groove wall or the outer groove wall of the recess 111. In this way, the above-mentioned arrangement makes the structure of the first extension portion 41 more diverse, thereby making the processing and manufacturing of the piston sleeve 40 easier and simpler, and reducing the labor intensity of the staff.
  • the recessed portion 111 is a groove.
  • the structure of the above structure is simple and easy to process and implement.
  • the groove width of the groove is greater than the thickness of the first extension portion 41.
  • the lower end surface of the upper flange has a limit portion extending toward the piston sleeve, and the first extension portion and the limit portion limit stop to prevent the piston sleeve from being opposed to the upper method. Blue displacement occurs in the radial direction.
  • the limiting protrusion at the lower end of the piston sleeve passes through the center hole of the lower friction ring and cooperates with the lower flange limit, the lower end of the piston sleeve is limited and supported by the lower flange, and further, Prevent the piston sleeve from moving in the radial direction during operation, ensure that the piston sleeve can rotate normally, and solve the problem that the piston sleeve of the pump body component easily rotates eccentrically and affects the working efficiency of the pump body component in the prior art. Reliability and performance of pump components.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种泵体组件、流体机械及换热设备。其中,泵体组件包括:下法兰(12);下减磨环(60);气缸(20),下减磨环(60)位于气缸(20)内,下法兰(12)位于气缸(20)的下方;活塞组件,设置在气缸(20)内,活塞组件包括活塞套(40)及滑动设置在活塞套(40)内的活塞(50),下减磨环(60)具有中心孔,活塞套(40)朝向下法兰(12)的表面具有限位凸起(43),限位凸起(43)伸入下减磨环(60)的中心孔内且与下法兰(12)限位配合,以防止活塞套(40)相对于下法兰(12)发生径向方向的位移。解决了现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题。

Description

泵体组件、流体机械及换热设备 技术领域
本发明涉及泵体组件技术领域,具体而言,涉及一种泵体组件、流体机械及换热设备。
背景技术
目前,在泵体组件运行过程中,活塞套容易发生偏心、倾斜转动,导致活塞套易与气缸及活塞发生摩擦,严重地影响了泵体组件的工作效率及工作性能。
发明内容
本发明的主要目的在于提供一种泵体组件、流体机械及换热设备,以解决现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种泵体组件,包括:下法兰;下减磨环;气缸,下减磨环位于气缸内,下法兰位于气缸的下方;活塞组件,设置在气缸内,活塞组件包括活塞套及滑动设置在活塞套内的活塞,下减磨环具有中心孔,活塞套朝向下法兰的表面具有限位凸起,限位凸起伸入下减磨环的中心孔内且与下法兰限位配合,以防止活塞套相对于下法兰发生径向方向的位移。
进一步地,下法兰朝向活塞套的表面具有第二限位凹槽,限位凸起伸入第二限位凹槽内,以防止活塞套相对于下法兰发生径向方向的位移。
进一步地,下法兰朝向活塞套的表面具有第二延伸部,第二延伸部与限位凸起限位止挡,以防止活塞套相对于下法兰发生径向方向的位移。
进一步地,第二延伸部位于限位凸起的外侧。
进一步地,第二延伸部位于限位凸起的内侧。
进一步地,限位凸起为朝向下法兰延伸的凸环,且凸环与活塞套同轴设置。
进一步地,限位凸起为朝向下法兰延伸的多个凸台,且多个凸台沿活塞套的周向间隔设置。
进一步地,泵体组件还包括上法兰及上减磨环,上减磨环位于气缸内,上法兰位于气缸的上方,活塞套的上端面与上减磨环之间限位配合,以防止活塞套相对于上法兰发生径向方向的位移。
进一步地,活塞套的上端面具有第一延伸部,第一延伸部伸入上减磨环的中心孔内,且与上减磨环的中心孔的内表面限位配合。
进一步地,上减磨环朝向活塞套的表面具有第五限位凹槽,活塞套的上端面具有第一延伸部,第一延伸部伸入第五限位凹槽内且与第五限位凹槽限位止挡。
进一步地,上减磨环朝向活塞套的表面具有第四延伸部,第四延伸部伸入活塞套内且与活塞套的内表面限位止挡。
进一步地,上减磨环朝向活塞套的表面具有第四延伸部,活塞套的上端面具有第一限位凹槽,第四延伸部伸入第一限位凹槽内且与第一限位凹槽限位止挡。
进一步地,泵体组件还包括上法兰及上减磨环,上减磨环位于气缸内,上法兰位于气缸的上方,上减磨环具有中心孔,活塞套的上端面具有第一延伸部,第一延伸部伸入上减磨环的中心孔内且与上法兰的下端面之间限位配合,以防止活塞套相对于上法兰发生径向方向的位移。
进一步地,上法兰朝向活塞套的表面具有凹部,第一延伸部伸入至凹部内且与凹部在活塞套的径向方向上限位止挡。
进一步地,上法兰的下端面具有朝向活塞套延伸的限位部,第一延伸部与限位部限位止挡,以防止活塞套相对于上法兰发生径向方向的位移。
进一步地,泵体组件还包括位于活塞组件上方的上法兰,泵体组件还包括:转轴,转轴依次穿设在上法兰、活塞套及下法兰上,且转轴与上法兰及下法兰同轴设置。
根据本发明的另一方面,提供了一种流体机械,包括上述的泵体组件。
根据本发明的另一方面,提供了一种换热设备,包括上述的流体机械。
应用本发明的技术方案,泵体组件包括下法兰、下减磨环、气缸及活塞组件。其中,下减磨环位于气缸内,下法兰位于气缸的下方。活塞组件设置在气缸内,活塞组件包括活塞套及滑动设置在活塞套内的活塞,下减磨环具有中心孔,活塞套朝向下法兰的表面具有限位凸起,限位凸起伸入下减磨环的中心孔内且与下法兰限位配合,以防止活塞套相对于下法兰发生径向方向的位移。这样,在泵体组件运行过程中,位于活塞套下端的限位凸起穿过下减磨环的中心孔且与下法兰限位配合,则活塞套的下端被下法兰限位、支撑,进而防止活塞套在运行过程中发生径向方向上的移动,保证活塞套能够正常转动,解决了现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题,提升了泵体组件的运行可靠性及工作性能。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的泵体组件的实施例一的分解结构示意图;以及
图2示出了图1中的泵体组件的剖视图;
图3示出了图1中的泵体组件的下法兰的俯视图;
图4示出了图3中的下法兰的剖视图;
图5示出了根据本发明的泵体组件的实施例二的分解结构示意图;
图6示出了图5中的泵体组件的剖视图;
图7示出了图5中的泵体组件的下法兰的俯视图;
图8示出了根据本发明的泵体组件的实施例三的分解结构示意图;
图9示出了图8中的泵体组件的剖视图;
图10示出了图8中的泵体组件的上法兰的立体结构示意图;
图11示出了图8中的泵体组件的下法兰的俯视图;
图12示出了图11中的下法兰的剖视图;
图13示出了根据本发明的泵体组件的实施例四的分解结构示意图;
图14示出了图13中的泵体组件的剖视图;
图15示出了图13中的泵体组件的下法兰的俯视图;
图16示出了根据本发明的泵体组件的实施例五的分解结构示意图;
图17示出了图16中的泵体组件的剖视图;
图18示出了图16中的泵体组件的上减磨环的剖视图;
图19示出了图16中的泵体组件的活塞套的剖视图;
图20示出了图16中的泵体组件的下法兰的剖视图;
图21示出了根据本发明的泵体组件的实施例六的分解结构示意图;
图22示出了图21中的泵体组件的剖视图;
图23示出了图21中的泵体组件的上减磨环的剖视图;
图24示出了图21中的泵体组件的活塞套的剖视图;
图25示出了图21中的泵体组件的下法兰的剖视图;
图26示出了根据本发明的泵体组件的实施例七的分解结构示意图;
图27示出了图26中的泵体组件的剖视图;
图28示出了图26中的泵体组件的上减磨环的剖视图;
图29示出了图26中的泵体组件的活塞套的剖视图;
图30示出了图26中的泵体组件的下法兰的剖视图;
图31示出了根据本发明的泵体组件的实施例八的分解结构示意图;
图32示出了图31中的泵体组件的剖视图;
图33示出了图31中的泵体组件的上法兰的立体结构示意图;以及
图34示出了图31中的泵体组件的下法兰的俯视图。
其中,上述附图包括以下附图标记:
11、上法兰;111、凹部;12、下法兰;121、第二限位凹槽;122、第二延伸部;14、上限位板;20、气缸;30、转轴;40、活塞套;41、第一延伸部;42、第一限位凹槽;43、限位凸起;44、台阶面;50、活塞;60、下减磨环;70、上减磨环;71、第五限位凹槽;72、第四延伸部。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要指出的是,除非另有指明,本申请使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下”通常是针对附图所示的方向而言的,或者是针对竖直、垂直或重力方向上而言的;同样地,为便于理解和描述,“左、右”通常是针对附图所示的左、右;“内、外”是指相对于各部件本身的轮廓的内、外,但上述方位词并不用于限制本发明。
为了解决现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题,本申请提供了一种泵体组件、流体机械及换热设备。
实施例一
如图1至图4所示,泵体组件包括下法兰12、下减磨环60、气缸20及活塞组件。其中,下减磨环60位于气缸20内,下法兰12位于气缸20的下方。活塞组件设置在气缸20内,活塞组件包括活塞套40及滑动设置在活塞套40内的活塞50,下减磨环60具有中心孔,活塞套40朝向下法兰12的表面具有限位凸起43,限位凸起43伸入下减磨环60的中心孔内且与下法兰12限位配合,以防止活塞套40相对于下法兰12发生径向方向的位移。
应用本实施例的技术方案,在泵体组件运行过程中,位于活塞套40下端的限位凸起43穿过下减磨环60的中心孔且与下法兰12限位配合,则活塞套40的下端被下法兰12限位、支撑,进而防止活塞套40在运行过程中发生径向方向上的移动,保证活塞套40能够正常转动,解决了现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题,提升了泵体组件的运行可靠性及工作性能。
如图2和图3所示,下法兰12朝向活塞套40的表面具有第二限位凹槽121,限位凸起43伸入第二限位凹槽121内,以防止活塞套40相对于下法兰12发生径向方向的位移。这样,在泵体组件运行过程中,活塞套40上的限位凸起43伸入至下法兰12的第二限位凹槽121内,第二限位凹槽121的槽壁对限位凸起43的表面进行限位止挡,以实现下法兰12对活塞套40的下端的限位止挡,避免活塞套40的下端相对于下法兰12发生径向方向的位移。
具体地,第二限位凹槽121在下法兰12上偏心设置,限位凸起43伸入第二限位凹槽121内,实现下法兰12对活塞套40的限位止挡。
可选地,第二限位凹槽121为环形槽,环形槽在下法兰12上的偏心量为e。
如图1所示,泵体组件还包括位于活塞组件上方的上法兰11,泵体组件还包括转轴30。其中,转轴30依次穿设在上法兰11、活塞套40及下法兰12上,且转轴30与上法兰11及下法兰12同轴设置。在泵体组件运行过程中,转轴30绕上法兰11的中心轴线旋转,活塞套40绕凹部111的中心轴线旋转,活塞50相对于活塞套40仅往复运动,活塞50相对于转轴30往复运动,两个往复运动相互垂直,即泵体组件的运行遵循十字滑块机构原理。随着活塞50与活塞套40之间的往复运动,活塞50的头部弧面、气缸20的内表面、活塞套40的导向孔之间形成的两个空腔容积逐渐变化,完成吸气、压缩、排气过程。
本申请还提供了一种流体机械(未示出),包括上述的泵体组件。可选地,流体机械为压缩机。
本申请还提供了一种换热设备(未示出),包括上述的流体机械。可选地,换热设备为空调器。
实施例二
实施例二中的泵体组件与实施例一的区别在于:下法兰12的结构不同。
如图5至图7所示,下法兰12朝向活塞套40的表面具有第二延伸部122,第二延伸部122与限位凸起43限位止挡,以防止活塞套40相对于下法兰12发生径向方向的位移。具体地,在泵体组件运行过程中,第二延伸部122的侧面和限位凸起43的侧面能够进行限位配合,防止二者之间发生径向位移,进而防止活塞套40相对于下法兰12发生径向方向的位移,保证活塞套40的稳定运行,提升泵体组件的运行可靠性及工作效率。
如图6所示,第二延伸部122位于限位凸起43的内侧。具体地,第二延伸部122的外侧面对限位凸起43靠近活塞套40的中心一侧的表面进行限位止挡,防止二者之间发生径向移位。
可选地,第二延伸部122的外侧面与限位凸起43靠近活塞套40的中心一侧的表面之间具有第一预定距离,且第一预定距离大于等于5um且小于等于40um。这样,上述数值范围既保证第二延伸部122能够对限位凸起43进行径向限位,还使得限位凸起43能够相对于第二延伸部122转动,进而提升泵体组件的运行可靠性。
在附图中未示出的其他实施方式中,第二延伸部位于限位凸起的外侧。具体地,第二延伸部的内侧面对限位凸起远离活塞套的中心一侧的表面进行限位止挡,防止二者之间发生径向移位。
如图5和图6所示,限位凸起43为朝向下法兰12延伸的凸环,且凸环与活塞套40同轴设置。
需要说明的是,限位凸起43的结构不限于此。可选地,限位凸起43为朝向下法兰12延伸的多个凸台,且多个凸台沿活塞套40的周向间隔设置。
可选地,第二延伸部122为偏心凸台,且与下法兰12的偏心量为e。这样,通过上述方式确定泵体组件的偏心量,使得泵体组件的偏心量更加容易保证,偏心量e的确定更加可靠、简单。
实施例三
实施例三中的泵体组件与实施例一的区别在于:上法兰11的结构不同。
如图8至图12所示,上法兰11朝向活塞套40的表面具有凹部111,第一延伸部41伸入至凹部111内且与凹部111在活塞套40的径向方向上限位止挡。这样,活塞套40的第一延伸部41伸入至上法兰11的凹部111内,实现上法兰11对活塞套40的径向限位。在泵体组件运行过程中,凹部111与第一延伸部41限位止挡,保证第一延伸部41在凹部111内进行转动,而不会发生第一延伸部41在径向方向上的移位,以实现上法兰11对活塞套40的上端的限位、支撑,防止活塞套40发生偏心、倾斜转动。同时,活塞套40的下端被下法兰12限位、支撑,进而使得活塞套40的上、下端均被限位支撑,保证泵体组件正常运行,提升泵体组件的工作可靠性。
在本实施例中,第一延伸部41和凹部111呈环形,且第一延伸部41、凹部111及活塞套40同轴设置。这样,上述设置保证活塞套40能够相对于上法兰11进行转动,进而保证泵体组件的运行可靠性。活塞套40与上法兰11偏心设置,且偏心量为泵体组件的偏心量e。这样,上述设置使得活塞套40的第一延伸部41能够在上法兰11的凹部111内绕活塞套40的中心轴线(或凹部111的中心轴线)转动,保证上法兰11对活塞套40的限位、支撑可靠性。
需要说明的是,第一延伸部41的结构不限于此。可选地,第一延伸部41为双层环状结构,至少一层环状结构与凹部111的内侧槽壁或外侧槽壁进行限位止挡。这样,上述设置使得第一延伸部41的结构更加多样性,进而使得活塞套40的加工、制造更加容易、简单,降低工作人员的劳动强度。
在本实施例中,凹部111为凹槽。上述结构的结构简单,容易加工、实现。
在本实施例中,凹槽的槽宽大于第一延伸部41的厚度。这样,上述设置保证第一延伸部41位于凹槽内,进而保证凹槽能够对第一延伸部41进行限位止挡,提升上法兰11对活塞套40的限位可靠性,提升泵体组件的运行可靠性。
在本实施例中,凹槽的内侧槽壁与第一延伸部41靠近活塞套40的中心一侧的表面之间具有第二预定距离,且第二预定距离大于等于5um且小于等于40um。具体地,凹槽的内侧槽壁对第一延伸部41靠近活塞套40的中心一侧的表面进行限位止挡,防止二者之间发生径向移位。同时,为了保证活塞套40能够正常转动,在凹槽的内侧槽壁与第一延伸部41靠近活塞套40的中心一侧的表面之间具有第二预定距离,既保证凹槽能够对第一延伸部41进行径向限位,还使得第一延伸部41能够相对于凹槽转动,进而提升泵体组件的运行可靠性。
在本实施例中,凹部111与上法兰11偏心设置,且偏心量为e。这样,通过上述方式确定泵体组件的偏心量,使得泵体组件的偏心量更加容易保证,偏心量e的确定更加可靠、简单。
实施例四
实施例四中的泵体组件与实施例三的区别在于:泵体组件的结构不同。
如图13至图15所示,泵体组件还包括上法兰11及上减磨环70,上减磨环70位于气缸20内,上法兰11位于气缸20的上方,活塞套40的上端面与上减磨环70之间限位配合,以防止活塞套40相对于上法兰11发生径向方向的位移。这样,在泵体组件运行过程中,活塞套40的上端被上减磨环70限位、支撑,进而防止活塞套40在运行过程中发生径向方向上的移动,保证活塞套40能够正常转动,解决了现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题,提升了泵体组件的运行可靠性及工作性能。
如图13和图14所示,活塞套40的上端面具有第一延伸部41,第一延伸部41伸入上减磨环70的中心孔内,且与上减磨环70的中心孔的内表面限位配合。具体地,在泵体组件运行过程中,第一延伸部41伸入上减磨环70的中心孔内且能够与中心孔的内表面限位配合,以对活塞套40的上端进行径向方向的限位,防止活塞套40的上端相对与上法兰11发生径向方向的位移,避免活塞套40与活塞50或气缸20发生结构干涉而影响泵体组件的正常运行。上述结构的结构简单,容易加工、实现。
在本实施例中,第一延伸部41呈环形,且第一延伸部41与活塞套40同轴设置。这样,上述设置保证活塞套40能够相对于上法兰11进行转动,进而保证泵体组件的运行可靠性。活塞套40与上法兰11偏心设置,且偏心量为泵体组件的偏心量e。这样,上述设置使得活塞套 40的第一延伸部41能够在上限位板14的中心孔内绕活塞套40的中心轴线转动,保证上限位板14对活塞套40的限位、支撑可靠性。
需要说明的是,第一延伸部41的结构不限于此。可选地,第一延伸部41为双层环状结构,最外层的环状结构与上限位板14的中心孔的内表面进行限位止挡。这样,上述设置使得第一延伸部41的结构更加多样性,进而使得活塞套40的加工、制造更加容易、简单,降低工作人员的劳动强度。
可选地,第一延伸部41为凸环,凸环与活塞套40同轴设置。
需要说明的是,第一延伸部41的结构不限于此。可选地,第一延伸部41为至少一个凸起,当凸起为多个时,多个凸起围绕形成的圆与活塞套40同轴设置。
实施例五
实施例五中的泵体组件与实施例四的区别在于:上减磨环70和活塞套40的结构不同。
如图16至图20所示,上减磨环70朝向活塞套40的表面具有第五限位凹槽71,活塞套40的上端面具有第一延伸部41,第一延伸部41伸入第五限位凹槽71内且与第五限位凹槽71限位止挡。上述结构的结构简单,容易实现、加工。
具体地,在泵体组件运行过程中,活塞套40的第一延伸部41的外表面与第五限位凹槽71的槽壁限位止挡,进而实现了上减磨环70对活塞套40的上端的限位止挡,防止活塞套40的上端相对于上法兰11发生径向方向的位移,提升泵体组件的运行可靠性。
可选地,第五限位凹槽71为环形槽,且环形槽与上减磨环70的中心孔同轴设置。
可选地,第一延伸部41为环形结构,且第五限位凹槽71与第一延伸部41同轴设置。
实施例六
实施例六中的泵体组件与实施例四的区别在于:上减磨环70的结构不同。
如图21至图25所示,上减磨环70朝向活塞套40的表面具有第四延伸部72,第四延伸部72伸入活塞套40内且与活塞套40的内表面限位止挡。具体地,活塞套40的内表面上具有台阶面44,第四延伸部72伸入台阶面44内对台阶面44限位止挡,以实现上减磨环70对活塞套40径向方向的限位。
可选地,第四延伸部72呈环形,且第四延伸部72与上减磨环70的中心孔同轴设置。
需要说明的是,第四延伸部72的结构不限于此。可选地,第四延伸部72为双层环状结构,最外层环状结构与台阶面44的内表面进行限位止挡。这样,上述设置使得第四延伸部72的结构更加多样性,进而使得上减磨环70的加工、制造更加容易、简单,降低工作人员的劳动强度。
实施例七
实施例七中的泵体组件与实施例四的区别在于:上减磨环70和活塞套40的结构不同。
如图26至图30所示,上减磨环70朝向活塞套40的表面具有第四延伸部72,活塞套40的上端面具有第一限位凹槽42,第四延伸部72伸入第一限位凹槽42内且与第一限位凹槽42限位止挡。
具体地,在泵体组件运行过程中,第四延伸部72伸入第一限位凹槽42内,则第四延伸部72的外表面与第一限位凹槽42的槽壁限位止挡,以实现上减磨环70对活塞套40径向方向的限位。
在本实施例中,第四延伸部72和第一限位凹槽42呈环形,且第四延伸部72、第一限位凹槽42及活塞套40同轴设置。上述结构的结构简单,容易实现、加工。
实施例八
实施例八中的泵体组件与实施例四的区别在于:上法兰11的结构不同。
如图31至图34所示,泵体组件还包括上法兰11及上减磨环70,上减磨环70位于气缸20内,上法兰11位于气缸20的上方,上减磨环70具有中心孔,活塞套40的上端面具有第一延伸部41,第一延伸部41伸入上减磨环70的中心孔内且与上法兰11的下端面之间限位配合,以防止活塞套40相对于上法兰11发生径向方向的位移。具体地,在泵体组件运行过程中,活塞套40的第一延伸部41伸入上减磨环70的中心孔内且与上法兰11的下端面之间限位配合,实现了上法兰11对活塞套40上端的限位、支撑,进而防止活塞套40在运行过程中发生径向方向上的移动,保证活塞套40能够正常转动,解决了现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题,提升了泵体组件的运行可靠性及工作性能。
如图32和图33所示,上法兰11朝向活塞套40的表面具有凹部111,第一延伸部41伸入至凹部111内且与凹部111在活塞套40的径向方向上限位止挡。具体地,第一延伸部41穿过上减磨环70的中心孔后伸入至凹部111内,第一延伸部41的外表面与凹部111的内表面限位配合,则实现了上法兰11对活塞套40上端的径向方向的限位止挡,避免活塞套40与活塞50或气缸20发生结构干涉而影响泵体组件的正常运行。上述结构的结构简单,容易加工、实现。
在本实施例中,第一延伸部41和凹部111呈环形,且第一延伸部41、凹部111及活塞套40同轴设置。这样,上述设置保证活塞套40能够相对于上法兰11进行转动,进而保证泵体组件的运行可靠性。活塞套40与上法兰11偏心设置,且偏心量为泵体组件的偏心量e。这样,上述设置使得活塞套40的第一延伸部41能够在上法兰11的凹部111内绕活塞套40的中心轴线(或凹部111的中心轴线)转动,保证上法兰11对活塞套40的限位、支撑可靠性。
需要说明的是,第一延伸部41的结构不限于此。可选地,第一延伸部41为双层环状结构,至少一层环状结构与凹部111的内侧槽壁或外侧槽壁进行限位止挡。这样,上述设置使得第一延伸部41的结构更加多样性,进而使得活塞套40的加工、制造更加容易、简单,降低工作人员的劳动强度。
在本实施例中,凹部111为凹槽。上述结构的结构简单,容易加工、实现。
在本实施例中,凹槽的槽宽大于第一延伸部41的厚度。这样,上述设置保证第一延伸部41位于凹槽内,进而保证凹槽能够对第一延伸部41进行限位止挡,提升上法兰11对活塞套40的限位可靠性,提升泵体组件的运行可靠性。
在附图中未示出的其他实施方式中,上法兰的下端面具有朝向活塞套延伸的限位部,第一延伸部与限位部限位止挡,以防止活塞套相对于上法兰发生径向方向的位移。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
在泵体组件运行过程中,位于活塞套下端的限位凸起穿过下减磨环的中心孔且与下法兰限位配合,则活塞套的下端被下法兰限位、支撑,进而防止活塞套在运行过程中发生径向方向上的移动,保证活塞套能够正常转动,解决了现有技术中泵体组件的活塞套易发生偏心转动、影响泵体组件工作效率的问题,提升了泵体组件的运行可靠性及工作性能。
显然,上述所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、工作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式能够以除了在这里图示或描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种泵体组件,其特征在于,包括:
    下法兰(12);
    下减磨环(60);
    气缸(20),所述下减磨环(60)位于所述气缸(20)内,所述下法兰(12)位于所述气缸(20)的下方;
    活塞组件,设置在所述气缸(20)内,所述活塞组件包括活塞套(40)及滑动设置在所述活塞套(40)内的活塞(50),所述下减磨环(60)具有中心孔,所述活塞套(40)朝向所述下法兰(12)的表面具有限位凸起(43),所述限位凸起(43)伸入所述下减磨环(60)的中心孔内且与所述下法兰(12)限位配合,以防止所述活塞套(40)相对于所述下法兰(12)发生径向方向的位移。
  2. 根据权利要求1所述的泵体组件,其特征在于,所述下法兰(12)朝向所述活塞套(40)的表面具有第二限位凹槽(121),所述限位凸起(43)伸入所述第二限位凹槽(121)内,以防止所述活塞套(40)相对于所述下法兰(12)发生径向方向的位移。
  3. 根据权利要求1所述的泵体组件,其特征在于,所述下法兰(12)朝向所述活塞套(40)的表面具有第二延伸部(122),所述第二延伸部(122)与所述限位凸起(43)限位止挡,以防止所述活塞套(40)相对于所述下法兰(12)发生径向方向的位移。
  4. 根据权利要求3所述的泵体组件,其特征在于,所述第二延伸部(122)位于所述限位凸起(43)的外侧。
  5. 根据权利要求3所述的泵体组件,其特征在于,所述第二延伸部(122)位于所述限位凸起(43)的内侧。
  6. 根据权利要求1所述的泵体组件,其特征在于,所述限位凸起(43)为朝向所述下法兰(12)延伸的凸环,且所述凸环与所述活塞套(40)同轴设置。
  7. 根据权利要求1所述的泵体组件,其特征在于,所述限位凸起(43)为朝向所述下法兰(12)延伸的多个凸台,且多个所述凸台沿所述活塞套(40)的周向间隔设置。
  8. 根据权利要求1至7中任一项所述的泵体组件,其特征在于,所述泵体组件还包括上法兰(11)及上减磨环(70),所述上减磨环(70)位于所述气缸(20)内,所述上法兰(11)位于所述气缸(20)的上方,所述活塞套(40)的上端面与所述上减磨环(70)之间限位配合,以防止所述活塞套(40)相对于所述上法兰(11)发生径向方向的位移。
  9. 根据权利要求8所述的泵体组件,其特征在于,所述活塞套(40)的上端面具有第一延伸部(41),所述第一延伸部(41)伸入所述上减磨环(70)的中心孔内,且与所述上减磨环(70)的中心孔的内表面限位配合。
  10. 根据权利要求8所述的泵体组件,其特征在于,所述上减磨环(70)朝向所述活塞套(40)的表面具有第五限位凹槽(71),所述活塞套(40)的上端面具有第一延伸部(41),所述第一延伸部(41)伸入所述第五限位凹槽(71)内且与所述第五限位凹槽(71)限位止挡。
  11. 根据权利要求8所述的泵体组件,其特征在于,所述上减磨环(70)朝向所述活塞套(40)的表面具有第四延伸部(72),所述第四延伸部(72)伸入所述活塞套(40)内且与所述活塞套(40)的内表面限位止挡。
  12. 根据权利要求8所述的泵体组件,其特征在于,所述上减磨环(70)朝向所述活塞套(40)的表面具有第四延伸部(72),所述活塞套(40)的上端面具有第一限位凹槽(42),所述第四延伸部(72)伸入所述第一限位凹槽(42)内且与所述第一限位凹槽(42)限位止挡。
  13. 根据权利要求1至7中任一项所述的泵体组件,其特征在于,所述泵体组件还包括上法兰(11)及上减磨环(70),所述上减磨环(70)位于所述气缸(20)内,所述上法兰(11)位于所述气缸(20)的上方,所述上减磨环(70)具有中心孔,所述活塞套(40)的上端面具有第一延伸部(41),所述第一延伸部(41)伸入所述上减磨环(70)的中心孔内且与所述上法兰(11)的下端面之间限位配合,以防止所述活塞套(40)相对于所述上法兰(11)发生径向方向的位移。
  14. 根据权利要求13所述的泵体组件,其特征在于,所述上法兰(11)朝向所述活塞套(40)的表面具有凹部(111),所述第一延伸部(41)伸入至所述凹部(111)内且与所述凹部(111)在所述活塞套(40)的径向方向上限位止挡。
  15. 根据权利要求13所述的泵体组件,其特征在于,所述上法兰(11)的下端面具有朝向所述活塞套(40)延伸的限位部,所述第一延伸部(41)与所述限位部限位止挡,以防止所述活塞套(40)相对于所述上法兰(11)发生径向方向的位移。
  16. 根据权利要求1所述的泵体组件,其特征在于,所述泵体组件还包括位于所述活塞组件上方的上法兰(11),所述泵体组件还包括:
    转轴(30),所述转轴(30)依次穿设在所述上法兰(11)、所述活塞套(40)及所述下法兰(12)上,且所述转轴(30)与所述上法兰(11)及所述下法兰(12)同轴设置。
  17. 一种流体机械,其特征在于,包括权利要求1至16中任一项所述的泵体组件。
  18. 一种换热设备,其特征在于,包括权利要求17所述的流体机械。
PCT/CN2018/120954 2018-07-18 2018-12-13 泵体组件、流体机械及换热设备 WO2020015290A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/059,119 US11208990B2 (en) 2018-07-18 2018-12-13 Pump body assembly, fluid machinery, and heat exchange device
EP18926384.1A EP3779193A4 (en) 2018-07-18 2018-12-13 PUMP ARRANGEMENT, FLUID MACHINE AND HEAT EXCHANGE DEVICE
JP2020561917A JP7047134B2 (ja) 2018-07-18 2018-12-13 ポンプ本体ユニット、流体機械、及び熱交換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810792303.X 2018-07-18
CN201810792303.XA CN108799104B (zh) 2018-07-18 2018-07-18 泵体组件、流体机械及换热设备

Publications (1)

Publication Number Publication Date
WO2020015290A1 true WO2020015290A1 (zh) 2020-01-23

Family

ID=64077047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120954 WO2020015290A1 (zh) 2018-07-18 2018-12-13 泵体组件、流体机械及换热设备

Country Status (5)

Country Link
US (1) US11208990B2 (zh)
EP (1) EP3779193A4 (zh)
JP (1) JP7047134B2 (zh)
CN (1) CN108799104B (zh)
WO (1) WO2020015290A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108869278B (zh) * 2018-07-18 2023-12-08 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108916045B (zh) * 2018-07-18 2024-04-02 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799104B (zh) 2018-07-18 2024-04-02 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN109555693A (zh) * 2018-12-18 2019-04-02 珠海格力节能环保制冷技术研究中心有限公司 活塞限位结构、压缩机及换热设备
CN109555691A (zh) * 2018-12-18 2019-04-02 珠海格力电器股份有限公司 活塞限位结构、压缩机及换热设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217228C1 (de) * 2002-04-18 2003-10-23 Enginion Ag Flügelzellenmaschine für ein dampf- oder gasförmiges Arbeitsmedium
CN202510226U (zh) * 2012-04-01 2012-10-31 深圳市特尔佳科技股份有限公司 发动机制动器
CN105604937A (zh) * 2016-02-18 2016-05-25 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN106870361A (zh) * 2017-03-30 2017-06-20 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、压缩机及换热系统
CN108799107A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799108A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799105A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799106A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799104A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108869279A (zh) * 2018-07-18 2018-11-23 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108869278A (zh) * 2018-07-18 2018-11-23 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59155580A (ja) * 1983-02-25 1984-09-04 Hitachi Ltd 容量制御型圧縮機
DE3520662A1 (de) * 1985-06-08 1987-01-02 Rudolf Paul Fritsch Wellendichtung fuer eine vorrichtung zur kontinuierlichen verarbeitung hochviskoser medien, insbesondere zur herstellung hochmolekularer polymere
JPH1113647A (ja) * 1997-06-27 1999-01-19 Kayseven Co Ltd ポンプ
JP4598098B2 (ja) * 2008-03-13 2010-12-15 日立オートモティブシステムズ株式会社 ギヤポンプのシール装置
JP2014513246A (ja) * 2011-02-25 2014-05-29 ネオ メカニクス リミテッド コイル巻きフェルト・シール(cfs)でシールされた液圧シリンダのピストン
CN204877939U (zh) * 2015-08-07 2015-12-16 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN105570130B (zh) * 2016-02-16 2018-11-27 珠海格力节能环保制冷技术研究中心有限公司 压缩机泵体结构和压缩机
CN106089717A (zh) * 2016-07-28 2016-11-09 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机泵体及压缩机
CN107435634B (zh) * 2017-07-31 2023-03-21 珠海格力节能环保制冷技术研究中心有限公司 一种压缩机泵体和压缩机以及压缩机泵体的装配方法
DE102017216002A1 (de) * 2017-09-12 2019-03-14 Robert Bosch Gmbh Pumpenanordnung für ein Hydraulikaggregat mit einem Pumpenkolben
CN208474108U (zh) * 2018-07-18 2019-02-05 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10217228C1 (de) * 2002-04-18 2003-10-23 Enginion Ag Flügelzellenmaschine für ein dampf- oder gasförmiges Arbeitsmedium
CN202510226U (zh) * 2012-04-01 2012-10-31 深圳市特尔佳科技股份有限公司 发动机制动器
CN105604937A (zh) * 2016-02-18 2016-05-25 珠海格力节能环保制冷技术研究中心有限公司 流体机械和换热设备
CN106870361A (zh) * 2017-03-30 2017-06-20 珠海格力节能环保制冷技术研究中心有限公司 泵体组件、压缩机及换热系统
CN108799107A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799108A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799105A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799106A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108799104A (zh) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108869279A (zh) * 2018-07-18 2018-11-23 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备
CN108869278A (zh) * 2018-07-18 2018-11-23 珠海格力电器股份有限公司 泵体组件、流体机械及换热设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3779193A4 *

Also Published As

Publication number Publication date
US11208990B2 (en) 2021-12-28
JP2021528585A (ja) 2021-10-21
US20210207590A1 (en) 2021-07-08
CN108799104B (zh) 2024-04-02
EP3779193A1 (en) 2021-02-17
EP3779193A4 (en) 2021-02-17
CN108799104A (zh) 2018-11-13
JP7047134B2 (ja) 2022-04-04

Similar Documents

Publication Publication Date Title
WO2020015290A1 (zh) 泵体组件、流体机械及换热设备
WO2020015291A1 (zh) 泵体组件、流体机械及换热设备
WO2017140208A1 (zh) 流体机械和换热设备
WO2017140246A1 (zh) 压缩机泵体结构和压缩机
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN108799108B (zh) 泵体组件、流体机械及换热设备
CN108799105B (zh) 泵体组件、流体机械及换热设备
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
CN108799103B (zh) 泵体组件、流体机械及换热设备
CN108799109B (zh) 泵体组件、流体机械及换热设备
CN108869279B (zh) 泵体组件、流体机械及换热设备
WO2020125108A1 (zh) 活塞限位结构、压缩机及换热设备
CN209604248U (zh) 活塞限位结构、压缩机及换热设备
CN107035693B (zh) 驱动主轴和压缩机
WO2020015284A1 (zh) 泵体组件、流体机械及换热设备
WO2020042434A1 (zh) 轴承组件及具有其的压缩机
CN108799107B (zh) 泵体组件、流体机械及换热设备
WO2022142338A1 (zh) 泵体组件和流体机械
CN108916046B (zh) 泵体组件、流体机械及换热设备
CN110966188A (zh) 转缸活塞压缩机的泵体结构及转缸活塞压缩机
WO2019134410A1 (zh) 泵体结构及压缩机
CN211397892U (zh) 转缸活塞压缩机的泵体结构及转缸活塞压缩机
CN112610490B (zh) 泵体组件和流体机械
CN116241469A (zh) 具有轴承的流体机械和换热设备
CN116241472A (zh) 流体机械和换热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926384

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561917

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018926384

Country of ref document: EP

Effective date: 20201111

NENP Non-entry into the national phase

Ref country code: DE