WO2020015286A1 - 一种基于等离子体射流固体烧蚀直接分析的装置 - Google Patents

一种基于等离子体射流固体烧蚀直接分析的装置 Download PDF

Info

Publication number
WO2020015286A1
WO2020015286A1 PCT/CN2018/120782 CN2018120782W WO2020015286A1 WO 2020015286 A1 WO2020015286 A1 WO 2020015286A1 CN 2018120782 W CN2018120782 W CN 2018120782W WO 2020015286 A1 WO2020015286 A1 WO 2020015286A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
discharge tube
sample
discharge
plasma jet
Prior art date
Application number
PCT/CN2018/120782
Other languages
English (en)
French (fr)
Inventor
杨燕婷
刘卓
代渐雄
Original Assignee
成都艾立本科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都艾立本科技有限公司 filed Critical 成都艾立本科技有限公司
Priority to US17/428,098 priority Critical patent/US20220208522A1/en
Publication of WO2020015286A1 publication Critical patent/WO2020015286A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32211Means for coupling power to the plasma
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • H01J37/32266Means for controlling power transmitted to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/0817Microwaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • H01J2237/1405Constructional details
    • H01J2237/141Coils

Definitions

  • the invention relates to the technical field of direct sample analysis, in particular to a device for direct analysis of solid ablation based on plasma jet.
  • Direct injection analysis of samples can largely solve the above problems.
  • Direct analysis of samples is an important part of modern analytical science.
  • Commonly used methods include laser ablation, electrothermal evaporation sampling and electric spark ablation.
  • the analysis devices of these methods include components such as graphite furnaces, lasers, electric heaters, etc., the entire device is very complicated, and it also cannot meet the needs of rapid on-site detection.
  • the X-ray diffractometer which has been rapidly developed in recent years, has a simple structure and can achieve rapid detection of on-site samples.
  • the device has low sensitivity and insufficient simultaneous analysis of multiple elements, making it difficult to detect light elements in the sample.
  • a device for direct analysis of solid ablation based on plasma jet which has a simple structure, high sensitivity, and can simultaneously detect multiple elements in a single sample.
  • the device includes a microwave resonant cavity, and microwave energy is coupled to a working gas through the microwave resonant cavity to generate a microwave plasma. After the microwave plasma is ignited, a microwave plasma jet is formed, and the sample is ablated by the tail flame of the microwave plasma jet and collected. Spectral signals generated by the sample during the ablation process can be used for qualitative and quantitative analysis of the elements in the sample.
  • a metal wire is held near the microwave resonance cavity for artificial ignition to ignite the microwave plasma.
  • this ignition method is not only inconvenient to operate, but also has the risk of microwave leakage.
  • the diameter of the discharge tube in the microwave resonant cavity cannot be made too small, these shortcomings greatly limit the microwave plasma Application.
  • the invention aims to provide a device for direct analysis of solid ablation based on plasma jet, which can realize the automatic ignition process of microwave plasma, and greatly improves the convenience of using the device.
  • a device for direct analysis of solid ablation based on plasma jet includes a microwave plasma system, a gas transmission system, a sample carrying system, a signal collection system, and a data analysis system.
  • the microwave plasma system includes a microwave resonant cavity, a microwave A power source, a discharge tube axially penetrating the microwave resonance cavity; the microwave resonance cavity and the discharge tube are connected to the microwave power source; the gas transmission system is connected to the discharge tube; the sample carrying system is located at the The signal collecting system is used to collect the spectral signal of the sample to be measured; the signal collecting system is connected to the data analysis system; and further includes: an ignition device; the ignition device includes a high-voltage power supply device And two discharge needles; the tips of the two discharge needles are located in the discharge tube through the side wall of the discharge tube, and the tips of the two discharge needles are opposite; the tail ends of the two discharge needles are connected to the Output of high-voltage power supply.
  • the microwave plasma system further includes: a microwave antenna; a coupling member of the microwave antenna is disposed on a discharge tube located inside the microwave resonance cavity, and the microwave antenna is connected to the microwave power source through a microwave transmission line;
  • the gas transmission system includes a gas cylinder and a gas pipeline, and the gas pipeline connects the gas cylinder and the discharge tube air inlet;
  • the gas pipeline is provided with a pressure gauge and a flow control gauge;
  • the sample carrying system is three-dimensionally mobile Platform;
  • the signal collection system includes a focusing lens and a spectrometer; the focusing lens is located above the three-dimensional mobile platform, and the focusing lens is connected to the spectrometer through an optical fiber;
  • the data analysis system includes a host computer; and the host computer is connected to the spectrometer .
  • the discharge tube is further provided with two branch tubes; the two branch tubes are located between the discharge tube air inlet and the top of the microwave resonance cavity, the two branch tubes are located on the same straight line, and the two branch tubes It is perpendicular to the discharge tube; the tips of the two discharge needles pass through the two branch tubes and are located in the discharge tube.
  • the high-voltage power supply device is a Tesla coil; the material of the discharge needle is copper or tungsten or stainless steel.
  • controller further comprises: a controller; an input end of the controller is connected to the host computer, and an output end of the controller is connected to the high-voltage power supply device.
  • the camera further comprises: a camera; the camera is arranged on one side of the discharge tube outlet; and the camera is connected to the host computer.
  • sample matrix is arranged in an array on the sample tray of the three-dimensional mobile platform; the sample tray is a non-metallic high-temperature resistant material; and the sample matrix is a flammable and water-absorbing material .
  • the material of the sample pan is ceramic or graphite or quartz, and the thickness of the sample pan is 0.5 to 5 mm; the sample base is filter paper or mask paper or fiber filter membrane; and the area of one of the sample bases is 1 to 20 mm 2 ; the included angle between the discharge tube and the sample tray is 30 ° to 90 °; the included angle between the main optical axis of the focusing lens and the sample tray is 30 ° to 90 °.
  • the air outlet of the discharge tube, the three-dimensional moving platform, and the focusing lens are all arranged in a cavity; an exhaust duct is arranged on the cavity; and a HEPA filter is arranged in the exhaust duct. network.
  • a cooling fan is further provided on an outer side of the microwave resonance cavity.
  • the device based on the plasma jet solid ablation direct analysis adds an ignition device based on the existing device, and the ignition device includes a high-voltage power supply device and two discharge needles. Supply high voltage electricity to the two discharge needles, so that continuous discharge between the two discharge needles generates species of electrons.
  • the species of electrons enter the discharge tube located inside the microwave resonance cavity under the action of the working gas flow, that is, enter the plasma discharge area. This further ignites the microwave plasma.
  • the purpose of controlling the on-off of the high-voltage power supply device directly on the host computer can be achieved, which further facilitates operation. It can be seen that the technical solution provided by the present invention can realize the automatic ignition process of microwave plasma compared with the existing apparatus based on the direct analysis of solid state ablation of plasma jet, which greatly improves the convenience of using the apparatus.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an ignition device in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a discharge of a Tesla coil in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of implementing a logic control on a Tesla coil by using a relay and a capture card in an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a sample matrix arranged on a sample tray in an embodiment of the present invention.
  • FIG. 6 is an emission spectrum diagram of a soil sample directly analyzed and detected by the device of the present invention.
  • FIG. 7 is an emission spectrum diagram of the mixed standard solution directly analyzed and detected by the device of the present invention.
  • 1 is a gas cylinder
  • 2 is a pressure gauge
  • 3 is a flow control meter
  • 4 is a gas pipeline
  • 5 is a discharge tube
  • 51 is a branch tube of the discharge tube
  • 6 is a microwave resonance cavity
  • 7 is a microwave power source.
  • 8 is a microwave transmission line interface
  • 9 is a microwave transmission line
  • 10 is a solid sample
  • 11 is a three-dimensional mobile platform
  • 101 is a sample tray
  • 12 is a focusing lens
  • 13 is an optical fiber
  • 14 is a spectrometer
  • 15 is a host computer
  • 16 is a high-voltage power supply.
  • the device, 17 is a discharge needle
  • 18 is a microwave antenna
  • 19 is a controller
  • 109 is a relay
  • 119 is a data acquisition card
  • 20 is a sample substrate
  • 21 is a microwave plasma jet.
  • FIG. 1 is a schematic structural diagram of an embodiment of the present invention, including: a microwave plasma system, a gas transmission system, a sample carrying system, a signal collection system, and a data analysis system; the microwave plasma system includes: a microwave resonant cavity 6, a microwave power source 7.
  • the discharge tube 5 which axially penetrates the microwave resonance cavity 6; the microwave resonance cavity 6 and the discharge tube 5 are both connected to the microwave power source 7; the gas transmission system is connected to the discharge tube 5;
  • the sample carrying system is located below the air outlet of the discharge tube 5; the signal collection system is used to collect the spectral signals of the sample to be measured; the signal collection system is connected to the data analysis system; and is characterized in that it further comprises: an ignition device
  • the ignition device includes a high-voltage power supply device 16 and two discharge needles 17; the tips of the two discharge needles 17 pass through the side wall of the discharge tube 5 and are located in the discharge tube 5, and the two discharge needles The tips of 17 are opposite; the tail ends of the two discharge needles 17 are connected to the output ends of the high-voltage power supply device 16.
  • the microwave plasma system includes: a microwave resonant cavity 6, a microwave power source 7, a microwave antenna 18, a discharge tube 5 that axially penetrates the microwave resonant cavity 6, and the microwave antenna.
  • the coupling member 18 is disposed on the discharge tube 5 located inside the microwave resonance cavity 6, and the microwave antenna 18 is connected to the microwave power source 7 through a microwave transmission line 9; the microwave transmission line 9 is a coaxial cable or a rectangular waveguide with a 50 ⁇ impedance ;
  • the power of the microwave power source 7 is 50-200W.
  • the gas transmission system includes a gas cylinder 1 and a gas pipeline 4, the gas pipeline 4 connects the gas cylinder 1 and the air inlet of the discharge tube 5; a pressure gauge 2 and a flow control gauge are provided on the gas pipeline 4 3; the sample carrying system includes a three-dimensional moving platform 11 which is located below the discharge port of the discharge tube 5; the signal collection system includes a focusing lens 12 and a spectrometer 14; the focusing lens 12 is located in the three-dimensional movement Above the platform 11, the focusing lens 12 and the spectrometer 14 are connected through an optical fiber 13.
  • the data analysis system includes a host computer 15; the host computer 15 is connected to the spectrometer 14; further includes: an ignition device; the ignition device includes a high voltage The power supply device 16 and two discharge needles 17; the tips of the two discharge needles 17 pass through the side wall of the discharge tube 5 and are located in the discharge tube 5, and the tips of the two discharge needles 17 are opposite to each other; The tail end of each discharge pin 17 is connected to the output end of the high-voltage power supply device 16.
  • the microwave energy is transmitted to the microwave resonance cavity through the microwave transmission line, and is coupled to the discharge tube located inside the microwave resonance cavity through the microwave antenna. The microwave energy interacts with the working gas transmitted from the gas cylinder to the discharge tube to form a microwave plasma.
  • the discharge needle is continuously discharged under the action of the high-voltage power supply device, which generates electrons that enter the plasma discharge area under the action of the working gas flow, thereby igniting the microwave plasma and forming a microwave plasma jet ejected from the gas outlet of the discharge tube.
  • the plasma ignition time lasts 1 to 3 seconds.
  • the signal collection system in this embodiment includes a focusing lens, an optical fiber, and a spectrometer, and can implement spectral detection with a resolution of 0.1 to 0.2 nm in a range of 200 nm to 800 nm.
  • the data analysis system includes a host computer with data processing software installed. The collected spectral data is deducted from the baseline by using wavelet transform, least squares fitting, and iterative fitting algorithms, automatic peak finding, and automatic standard curve drawing.
  • the discharge tube 5 is an inorganic insulating material, preferably quartz or ceramics or glass or alumina.
  • the outer diameter of the discharge tube is 6 mm or 8 mm, and the inner diameter is 0.5 to 4 mm.
  • the plasma working gas can be argon, helium, nitrogen, air, etc., and the flow rate is 0 to 1 L / min.
  • the discharge tube 5 is further provided with two branch tubes 51; the two branch tubes 51 are located between the air inlet of the discharge tube 5 and the top of the microwave resonance cavity 6, and two The two branch tubes 51 are located on the same straight line, and the two branch tubes 51 are perpendicular to the discharge tube 5; the tips of the two discharge needles 17 pass through the two branch tubes 51 and are located in the discharge tube 5 respectively.
  • the high-voltage power supply device 16 is a Tesla coil, and the discharge principle diagram of the Tesla coil is shown in Figure 3; the material of the discharge needle 17 is copper or tungsten or stainless steel, or other materials that can be used for discharging Metal material.
  • the distance between the discharge needle and the air inlet of the discharge tube is 1 to 4 mm.
  • the ignition of the device is directly implemented on the host computer.
  • This embodiment further includes: a controller 19; the input terminal of the controller 19 is connected to the host computer 15, and the output terminal of the controller 19 is connected to the host computer. Mentioned high-voltage power supply device 16.
  • the controller can directly use a programmable controller to control the on-off of the Tesla coil. Or, in order to save the equipment cost, you can also use a relay and a data acquisition card to implement the logic control of the Tesla coil.
  • the specific connection method is: the input end of the data acquisition card is connected to the upper computer, and the output end of the data acquisition card is connected to the relay. The input terminal and the output terminal of the relay are connected to the Tesla coil.
  • the data acquisition card Since the data acquisition card has a digital output port, it can output 0 and 5V control signals to the relay, so it can control the on and off of the relay, and thus control the on and off of the Tesla coil, so as to realize the ignition operation of the entire device. At this time, the role of the data acquisition card is only to output a switch value to control the on and off of the relay.
  • this embodiment further includes a camera; the camera is disposed on one side of the gas outlet of the discharge tube 5 to capture and capture the ignition state of the microwave plasma; The camera is connected to the host computer 15, and the camera transmits the captured image to the host computer 15.
  • the device of the present invention can also be used for direct analysis of liquid samples.
  • this embodiment further includes more than one sample matrix 20; the sample matrix 20 is arranged in an array on a sample tray 101 of the three-dimensional moving platform 11; the sample tray 101 is non-metal resistant High temperature material; the sample base 20 is a flammable and absorbent material.
  • the material of the sample pan 101 is ceramic or graphite or quartz, and the thickness of the sample pan 101 is 0.5 to 5 mm; the sample base 20 is filter paper or mask paper or fiber filter membrane; the shape of the sample base may be square, Rectangular, circular or elliptical, the area of one of the sample substrates is 1 to 20 mm 2 .
  • a pipette to accurately transfer 0.1 to 10 ⁇ L of liquid samples onto the sample substrate.
  • the tail flame of the microwave plasma jet directly contacts the sample substrate, and the focusing lens is aligned with the tail flame of the microwave plasma jet and Contact area of the sample matrix.
  • the water in the sample evaporates, the sample matrix is dried and carbonized.
  • the carbonized sample matrix is ablated in the tail flame of the microwave plasma to burn the sample matrix, and the spectral signals are continuously collected during the process, so that the elements in the liquid sample are processed Qualitative and quantitative analysis.
  • the included angle between the discharge tube 5 and the sample tray 101 is 30 ° to 90 °, preferably 30 °; the main optical axis of the focusing lens 12 and the sample tray 101 The included angle is 30 ° to 90 °, and preferably 30 °.
  • the device can realize fixed-point analysis and scanning analysis.
  • the fixed-point analysis is suitable for the analysis of elements with high melting and boiling points and is difficult to volatilize
  • the scanning analysis is suitable for the analysis of volatile elements with low melting and boiling points.
  • the three-dimensional displacement stage moves at a speed of 0.1 to 1 mm / s, and combined with the rotation of the sample disc, the microwave plasma jet is continuously ablated at different locations on the sample surface.
  • An exhaust gas purification device is also designed in this embodiment. Specifically, the air outlet of the discharge tube 5, the three-dimensional moving platform 11, and the focusing lens 12 are all disposed in a cavity; the cavity is provided with Exhaust pipe; a HEPA filter is arranged in the exhaust pipe.
  • a heat dissipation fan is further provided on the outer side of the microwave resonance cavity 6 to dissipate heat from the microwave resonance cavity.
  • Step 1 The solid sample is simply ground and the powder sample is compressed to prepare a solid sample for testing; a liquid sample is added dropwise to the sample substrate by a pipette to prepare a liquid sample for testing;
  • Step 2 Move the test sample into contact with the microwave plasma jet tail flame through a three-dimensional moving platform, and then move the sample so that the microwave plasma jet continuously ablates the sample, and continuously collect spectral signals during the period;
  • step 3 the atomic emission spectrum of the obtained sample is compared with a sample of a known concentration to obtain the qualitative and quantitative analysis results of the elements.
  • the soil standard sample powder (GBW soil standard sample series, the element content has been confirmed) was tabletted to obtain a solid sample.
  • the specific tabletting method is as follows: take a 0.4g soil sample and maintain it under 4MPa pressure for 2min to make a disc of the sample to be analyzed with a diameter of 13mm and a thickness of 2mm, and place it in a desiccator to be tested.
  • the working gas used in this experiment is argon, the purity is 99.999%, the gas flow rate is set to 300mL / min, the microwave power source outputs 2450MHz microwaves in the form of continuous waves, and the output power is set to 150W; the microwave transmission line is 50 ⁇ impedance matching Coaxial cable; the moving speed of the three-dimensional mobile platform is 0.4mm / s; the integration time of the spectrometer is 30ms, and the average number is 1 time.
  • the emission spectrum of the soil sample directly analyzed and detected by the device of the present invention is shown in FIG. 5, and the standard curve of the Cu, Pb, and Cr elements in the soil sample detected and analyzed by the device of the present invention is shown in FIG. 7.
  • this device can not only accurately and quickly analyze the element content in the sample, but also improves the existing device by adding the ignition device, heat dissipation device and exhaust gas purification device, which greatly improves the device operation. Convenience.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Plasma Technology (AREA)

Abstract

一种基于等离子体射流固体烧蚀直接分析的装置,包括:微波等离子体系统,气体传输系统,样品承载系统,信号收集系统和数据分析系统;微波等离子体系统包括:微波谐振腔(6),微波功率源(7),轴向贯穿微波谐振腔(6)的放电管(5);微波谐振腔(6)与放电管(5)均与微波功率源(7)连接;气体传输系统连接放电管(5);样品承载系统位于放电管(5)出气口下方;信号收集系统用于收集待测样品的光谱信号,并与数据分析系统连接;还包括:高压供电装置(16)和两个放电针(17);两个放电针(17)的尖端穿过放电管(5)的侧壁位于放电管(5)内,且两个放电针(17)的尖端相对;两个放电针(17)的尾端连接高压供电装置(16)的输出端。该分析装置能够实现微波等离子体的自动引燃过程,提高了装置使用的便捷性。

Description

一种基于等离子体射流固体烧蚀直接分析的装置 技术领域
本发明涉及样品直接分析技术领域,尤其涉及一种基于等离子体射流固体烧蚀直接分析的装置。
背景技术
传统的对于固体样品的分析需采用湿法消解进行,即在分析前,必须将固体样品进行粉碎、研磨与消解处理。由于前处理过程的复杂性,分析过程往往需要耗费较长的时间,因此该方法难以用到现场对于样品的快速检测上。同时,该方法还会在分析过程中引入不确定因素,增加方法的不确定性,进而影响分析结果的准确度和稳定性。此外,由于固体样品的消解过程常常需要用到高氯酸、浓硝酸、火碱等危险化学试剂,因此不满足样品绿色分析的要求。
对样品进行直接进样分析可以在很大程度上解决上述问题。样品直接分析是现代分析科学中的一个重要组成部分,常用的方法包括:激光剥蚀、电热蒸发进样和电火花烧蚀等。然而,由于这些方法的分析装置中包括诸如石墨炉、激光器、电加热器等部件,使得整个装置非常复杂,且同样不能满足现场快速检测的需求。而近年来迅速发展的X射线衍射仪,其结构虽然简单,并可以实现现场样品的快速检测, 但该装置灵敏度较低,多元素同时分析的能力不足,难以检测样品中的轻质元素。
针对上述问题,我们提出了一种基于等离子体射流固体烧蚀直接分析的装置,其结构简单,灵敏度高,且能够实现单个样品中多元素的同时检测。该装置包括微波谐振腔,微波能量通过微波谐振腔耦合给工作气体以生成微波等离子体;点燃微波等离子体后,会形成微波等离子体射流,通过微波等离子体射流的尾焰烧蚀样品,并采集样品在烧蚀过程中产生的光谱信号,即可对样品中的元素进行定性和定量分析。现有的基于等离子体射流固体烧蚀直接分析的装置在工作过程中,需在微波谐振腔附近手持金属丝进行人工点火以引燃微波等离子体。显然,这种引燃方式不仅操作不便,而且存在微波泄露的风险;同时,为了成功引燃微波等离子体,微波谐振腔中放电管的直径不能做得太小,这些缺点都大大限制了微波等离子体的应用。
发明内容
本发明旨在提供一种基于等离子体射流固体烧蚀直接分析的装置,能够实现微波等离子体的自动引燃过程,大大提高了装置使用的便捷性。
为达到上述目的,本发明采用的技术方案如下:
一种基于等离子体射流固体烧蚀直接分析的装置,包括:微波等离子体系统,气体传输系统,样品承载系统,信号收集系统和数据分析系统;所述微波等离子体系统包括:微波谐振腔,微波功率源,轴向贯穿所述微波谐振腔的放电管;所述微波谐振腔与放电管均与所述 微波功率源连接;所述气体传输系统连接所述放电管;所述样品承载系统位于所述放电管出气口下方;所述信号收集系统用于收集待测样品的光谱信号;所述信号收集系统连接所述数据分析系统;还包括:引燃装置;所述引燃装置包括高压供电装置和两个放电针;所述两个放电针的尖端穿过所述放电管的侧壁位于所述放电管内,且两个放电针的尖端相对;所述两个放电针的尾端连接所述高压供电装置的输出端。
进一步地,所述微波等离子体系统还包括:微波天线;所述微波天线的耦合件设置于位于微波谐振腔内部的放电管上,且微波天线通过微波传输线与所述微波功率源连接;所述气体传输系统包括气瓶和气路管道,气路管道连接所述气瓶与所述放电管进气口;所述气路管道上设有压力计和流量控制计;所述样品承载系统为三维移动平台;所述信号收集系统包括聚焦透镜和光谱仪;所述聚焦透镜位于所述三维移动平台上方,聚焦透镜与光谱仪通过光纤连接;所述数据分析系统包括上位机;所述上位机连接所述光谱仪。
进一步地,所述放电管上还设有两个支管;所述两个支管位于所述放电管进气口与所述微波谐振腔顶部之间,两个支管位于同一条直线上,两个支管与所述放电管垂直;所述两个放电针的尖端分别穿过两个支管位于所述放电管内。
优选地,所述高压供电装置为特斯拉线圈;所述放电针的材质为铜或钨或不锈钢。
进一步地,还包括:控制器;所述控制器的输入端连接所述上位 机,控制器的输出端连接所述高压供电装置。
进一步地,还包括:摄像头;所述摄像头设置于所述放电管出气口的一侧;所述摄像头连接所述上位机。
进一步地,还包括:一个以上样品基体;所述样品基体在所述三维移动平台的样品盘上呈阵列排列;所述样品盘为非金属耐高温材质;所述样品基体为易燃吸水性材质。
优选地,所述样品盘的材质为陶瓷或石墨或石英,样品盘的厚度为0.5~5mm;所述样品基体为滤纸或面膜纸或纤维滤膜;一个所述样品基体的面积为1~20mm 2;所述放电管与所述样品盘之间的夹角为30°~90°;所述聚焦透镜的主光轴与所述样品盘之间的夹角为30°~90°。
进一步地,所述放电管的出气口、所述三维移动平台、所述聚焦透镜均设置于一个腔室中;所述腔室上设有排气管道;所述排气管道中设有HEPA滤网。
进一步地,所述微波谐振腔外部的一侧还设有散热风扇。
本发明实施例提供的基于等离子体射流固体烧蚀直接分析的装置,在现有装置的基础上,增加了引燃装置,且引燃装置包括高压供电装置和两个放电针,通过高压供电装置给两个放电针供高压电,使两个放电针之间持续放电,产生种电子,种电子在工作气体的气流作用下进入位于微波谐振腔内部的放电管中,即进入等离子放电区域,进而点燃微波等离子体。此外,通过增加控制器,能够达到直接在上位机上控制高压供电装置通断电的目的,进一步方便操作。可见,本 发明提供的技术方案,与现有的基于等离子体射流固体烧蚀直接分析的装置相比,能够实现微波等离子体的自动引燃过程,大大提高了装置使用的便捷性。
附图说明
图1为本发明实施例的结构示意图;
图2为本发明实施例中引燃装置的结构示意图;
图3为本发明实施例中特斯拉线圈的放电原理图;
图4为本发明实施例中采用继电器和采集卡来实现对于特斯拉线圈逻辑控制的结构示意图;
图5为本发明实施例中样品基体在样品盘上排列的结构示意图;
图6为土壤样品通过本发明装置直接分析检测的发射光谱图;
图7为混合标准溶液通过本发明装置直接分析检测的发射光谱图。
图8为通过本发明装置分析检测出的土壤样品中Cu、Pb、Cr元素的标准曲线图;
图9为通过本发明装置分析检测出的大米样品中Cd元素的标准曲线图;
图1中,1为气瓶,2为压力计,3为流量控制计,4为气路管道,5为放电管,51为放电管的支管,6为微波谐振腔,7为微波功率源,8为微波传输线的接口,9为微波传输线,10为固体样品,11为三维移动平台,101为样品盘,12为聚焦透镜,13为光纤,14为光谱仪, 15为上位机,16为高压供电装置,17为放电针,18为微波天线,19为控制器,109为继电器,119为数据采集卡,20为样品基体,21为微波等离子体射流。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图,对本发明进行进一步详细说明。
图1为本发明实施例的结构示意图,包括:微波等离子体系统,气体传输系统,样品承载系统,信号收集系统和数据分析系统;所述微波等离子体系统包括:微波谐振腔6,微波功率源7,轴向贯穿所述微波谐振腔6的放电管5;所述微波谐振腔6与放电管5均与所述微波功率源7连接;所述气体传输系统连接所述放电管5;所述样品承载系统位于所述放电管5出气口下方;所述信号收集系统用于收集待测样品的光谱信号;所述信号收集系统连接所述数据分析系统;其特征在于,还包括:引燃装置;所述引燃装置包括高压供电装置16和两个放电针17;所述两个放电针17的尖端穿过所述放电管5的侧壁位于所述放电管5内,且两个放电针17的尖端相对;所述两个放电针17的尾端连接所述高压供电装置16的输出端。
以上系统的具体组成和连接方式为:所述微波等离子体系统包括:微波谐振腔6,微波功率源7,微波天线18,轴向贯穿所述微波谐振腔6的放电管5;所述微波天线18的耦合件设置于位于微波谐振腔6内部的放电管5上,且微波天线18通过微波传输线9与所述微波功率源7连接;所述微波传输线9为50Ω阻抗的同轴电缆或者 矩形波导;微波功率源7的功率为50~200W。所述气体传输系统包括气瓶1和气路管道4,气路管道4连接所述气瓶1与所述放电管5进气口;所述气路管道4上设有压力计2和流量控制计3;所述样品承载系统包括三维移动平台11,三维移动平台11位于所述放电管5出气口下方;所述信号收集系统包括聚焦透镜12和光谱仪14;所述聚焦透镜12位于所述三维移动平台11上方,聚焦透镜12与光谱仪14通过光纤13连接;所述数据分析系统包括上位机15;所述上位机15连接所述光谱仪14;还包括:引燃装置;所述引燃装置包括高压供电装置16和两个放电针17;所述两个放电针17的尖端穿过所述放电管5的侧壁位于所述放电管5内,且两个放电针17的尖端相对;所述两个放电针17的尾端连接所述高压供电装置16的输出端。微波能量通过微波传输线传输至微波谐振腔,并通过微波天线耦合至位于微波谐振腔内部的放电管中,微波能量与从气瓶传输至放电管中的工作气体作用,形成微波等离子体。放电针在高压供电装置的作用下持续放电,产生种电子,种电子在工作气体的气流作用下进入等离子体放电区域,从而点燃微波等离子体,形成微波等离子射流从放电管的出气口喷射出来,等离子体点火时间持续1~3s。将微波等离子体射流的尾焰作用于三维移动平台上的样品,即可采集样品在烧蚀过程中产生的光谱信号,从而对样品中的元素进行定性和定量分析。
本实施例中的信号收集系统,包括聚焦透镜、光纤和光谱仪,能够实现200nm至800nm范围内0.1~0.2nm分辨率的光谱探测。数据分析系统包括安装有数据处理软件的上位机,采集到的光谱数据通过 小波变换、最小二乘拟合、迭代拟合等算法实现扣基线、自动寻峰以及自动绘制标准曲线。
本实施例中,放电管5为无机绝缘材质,优选为石英或陶瓷或玻璃或三氧化二铝,放电管的外径为6mm或8mm,内径为0.5~4mm。等离子体工作气体可以为氩气、氦气、氮气及空气等,流速为0~1L/min。
为了有效地固定两个放电针,所述放电管5上还设有两个支管51;所述两个支管51位于所述放电管5进气口与所述微波谐振腔6顶部之间,两个支管51位于同一条直线上,两个支管51与所述放电管5垂直;所述两个放电针17的尖端分别穿过两个支管51位于所述放电管5内。本实施例中,所述高压供电装置16为特斯拉线圈,特斯拉线圈的放电原理图如图3所示;所述放电针17的材质为铜或钨或不锈钢,或其它可用于放电的金属材质。放电针与放电管进气口之间的距离为1~4mm。
为了进一步提高操作的便捷性,直接在上位机上实现装置的点火,本实施例还包括:控制器19;所述控制器19的输入端连接所述上位机15,控制器19的输出端连接所述高压供电装置16。所述控制器可直接采用可编程控制器来控制特斯拉线圈的通断。或者,为了节约设备成本,也可采用继电器和数据采集卡来实现对特斯拉线圈的逻辑控制,具体连接方式为:数据采集卡的输入端与上位机连接,数据采集卡的输出端连接继电器的输入端,继电器的输出端连接特斯拉线圈。由于数据采集卡具有开关量输出端口,能输出0和5V的控制信 号给继电器,因此能控制继电器的通断,从而控制特斯拉线圈的通断,以实现整个装置的点火操作。此时,数据采集卡的作用仅仅是为了输出一个开关量,来控制继电器的通断。
为了能够在上位机上直接观察微波等离子体是否成功点燃,本实施例还包括:摄像头;所述摄像头设置于所述放电管5出气口的一侧,以对微波等离子的点火状态进行拍摄采集;所述摄像头连接所述上位机15,摄像头将拍摄到的图像传输给上位机15。
本发明装置除了用于对固体样品的直接分析外,还可用于对液体样品的直接分析。为了实现对液体样品的直接分析,本实施例还包括一个以上样品基体20;所述样品基体20在所述三维移动平台11的样品盘101上呈阵列排列;所述样品盘101为非金属耐高温材质;所述样品基体20为易燃吸水性材质。优选地,所述样品盘101的材质为陶瓷或石墨或石英,样品盘101的厚度为0.5~5mm;所述样品基体20为滤纸或面膜纸或纤维滤膜;样品基体的形状可以是正方形、长方形、圆形或椭圆形,一个所述样品基体的面积为1~20mm 2。对液体样品进行分析时,使用移液枪准确移取0.1~10μL的液体样品滴在样品基体上,微波等离子体射流的尾焰直接接触样品基体,聚焦透镜对准微波等离子体射流的尾焰与样品基体相接触部位。样品中的水分蒸发,样品基体被干燥且碳化,将碳化后的样品基体置于微波等离子体的尾焰中烧蚀,使样品基体燃烧,期间持续采集光谱信号,从而对液体样品中的元素进行定性定量分析。
本装置实际工作时,所述放电管5与所述样品盘101之间的夹角 为30°~90°,优选为30°;所述聚焦透镜12的主光轴与所述样品盘101之间的夹角为30°~90°,优选为30°。本装置可以实现定点分析与扫描分析,定点分析适用于熔沸点高、难挥发的元素分析,扫描分析适用于熔沸点低、易挥发元素的分析。在进行扫描分析时,三维位移平台0.1~1mm/s的速度移动,并结合样品盘的旋转,使微波等离子体射流在样品表面不同的部位持续烧蚀。
本实施例中还设计了尾气净化装置,具体地,所述放电管5的出气口、所述三维移动平台11、所述聚焦透镜12均设置于一个腔室中;所述腔室上设有排气管道;所述排气管道中设有HEPA滤网。
本实施例中,所述微波谐振腔6外部的一侧还设有散热风扇,用于给微波谐振腔散热。
使用本装置进行固体/液体样品的直接分析方法如下:
步骤1,对固体样品进行简单的磨平处理、粉末样品进行压片处理,制备得到测试用固体样品;液体样品通过移液枪滴加在样品基体上,制备得到测试用液体样品;
步骤2,通过三维移动平台将测试用样品移动与微波等离子体射流尾焰接触,然后移动样品使微波等离子体射流持续烧蚀样品,期间连续采集光谱信号;
步骤3,将获取的样品的原子发射光谱图与已知浓度的样品光谱图进行对比,得到其元素的定性与定量分析结果。
下面以分析土壤样品为例来说明本装置各种参数的设置,并验证本装置的效果:
将土壤标准样品粉末(GBW土壤标样系列样品,元素含量均已得到确认)压片制得固体样品。具体压片方法为:取0.4g土壤样品,在4MPa压力下维持2min,制成直径13mm,厚度2mm的待分析样品圆片,置于干燥器中待测。
本次实验所用的工作气体为氩气,纯度为99.999%,气体流速设定为300mL/min,微波功率源以连续波形式输出2450MHz的微波,输出功率设定为150W;微波传输线为50Ω阻抗匹配同轴电缆;三维移动平台的移动速度为0.4mm/s;光谱仪积分时间为30ms,平均次数为1次。该土壤样品通过本发明装置直接分析检测的发射光谱图如图5所示,通过本发明装置分析检测出的土壤样品中Cu、Pb、Cr元素的标准曲线图如图7所示。
可见,本装置不仅能准确、快速地分析出样品中的元素含量,并且,由于增加了引燃装置、散热装置和尾气净化装置等,对现有装置进行了进一步完善,大大提升了装置操作的便捷性。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种基于等离子体射流固体烧蚀直接分析的装置,包括:微波等离子体系统,气体传输系统,样品承载系统,信号收集系统和数据分析系统;所述微波等离子体系统包括:微波谐振腔(6),微波功率源(7),轴向贯穿所述微波谐振腔(6)的放电管(5);所述微波谐振腔(6)与放电管(5)均与所述微波功率源(7)连接;所述气体传输系统连接所述放电管(5);所述样品承载系统位于所述放电管(5)出气口下方;所述信号收集系统用于收集待测样品的光谱信号;所述信号收集系统连接所述数据分析系统;其特征在于,还包括:引燃装置;所述引燃装置包括高压供电装置(16)和两个放电针(17);所述两个放电针(17)的尖端穿过所述放电管(5)的侧壁位于所述放电管(5)内,且两个放电针(17)的尖端相对;所述两个放电针(17)的尾端连接所述高压供电装置(16)的输出端。
  2. 根据权利要求1所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,所述微波等离子体系统还包括:微波天线(18);所述微波天线(18)的耦合件设置于位于微波谐振腔(6)内部的放电管(5)上,且微波天线(18)通过微波传输线(9)与所述微波功率源(7)连接;所述气体传输系统包括气瓶(1)和气路管道(4),气路管道(4)连接所述气瓶(1)与所述放电管(5)进气口;所述气路管道(4)上设有压力计(2)和流量控制计(3);所述样品承载系统为三维移动平台(11);所述信号收集系统包括聚焦透镜(12)和光谱仪(14);所述聚焦透镜(12)位于所述三维移动平台(11) 上方,聚焦透镜(12)与光谱仪(14)通过光纤(13)连接;所述数据分析系统包括上位机(15);所述上位机(15)连接所述光谱仪(14)。
  3. 根据权利要求2所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,所述放电管(5)上还设有两个支管(51);所述两个支管(51)位于所述放电管(5)进气口与所述微波谐振腔(6)顶部之间,两个支管(51)位于同一条直线上,两个支管(51)与所述放电管(5)垂直;所述两个放电针(17)的尖端分别穿过两个支管(51)位于所述放电管(5)内。
  4. 根据权利要求3所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,所述高压供电装置(16)为特斯拉线圈;所述放电针(17)的材质为铜或钨或不锈钢;所述放电管(5)为无机绝缘材质。
  5. 根据权利要求2所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,还包括:控制器(19);所述控制器(19)的输入端连接所述上位机(15),控制器(19)的输出端连接所述高压供电装置(16)。
  6. 根据权利要求5所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,还包括:摄像头;所述摄像头设置于所述放电管(5)出气口的一侧;所述摄像头连接所述上位机(15)。
  7. 根据权利要求2所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,还包括:一个以上样品基体(20);所述样品基体(20)在所述三维移动平台(11)的样品盘(101)上呈阵列排 列;所述样品盘(101)为非金属耐高温材质;所述样品基体(20)为易燃吸水性材质。
  8. 根据权利要求7所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,所述样品盘(101)的材质为陶瓷或石墨或石英,样品盘(101)的厚度为0.5~5mm;所述样品基体(20)为滤纸或面膜纸或纤维滤膜;一个所述样品基体(20)的面积为1~20mm 2;所述放电管(5)与所述样品盘(101)之间的夹角为30°~90°;所述聚焦透镜(12)的主光轴与所述样品盘(101)之间的夹角为30°~90°。
  9. 根据权利要求2所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,所述放电管(5)的出气口、所述三维移动平台(11)、所述聚焦透镜(12)均设置于一个腔室中;所述腔室上设有排气管道;所述排气管道中设有HEPA滤网。
  10. 根据权利要求2所述的基于等离子体射流固体烧蚀直接分析的装置,其特征在于,所述微波谐振腔(6)外部的一侧还设有散热风扇。
PCT/CN2018/120782 2018-07-16 2018-12-13 一种基于等离子体射流固体烧蚀直接分析的装置 WO2020015286A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/428,098 US20220208522A1 (en) 2018-07-16 2018-12-13 Plasma jet solid ablation-based direct analysis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810779779 2018-07-16
CN201810779779.X 2018-07-16

Publications (1)

Publication Number Publication Date
WO2020015286A1 true WO2020015286A1 (zh) 2020-01-23

Family

ID=67969979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120782 WO2020015286A1 (zh) 2018-07-16 2018-12-13 一种基于等离子体射流固体烧蚀直接分析的装置

Country Status (3)

Country Link
US (1) US20220208522A1 (zh)
CN (3) CN209432703U (zh)
WO (1) WO2020015286A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948193A (zh) * 2020-08-06 2020-11-17 成都西奇仪器有限公司 一种等离子体固样分析发射光谱仪
CN113063643B (zh) * 2021-03-25 2022-02-25 中国科学院地质与地球物理研究所 用于流体包裹体la-icp-ms分析的双体积冷冻剥蚀池装置及其剥蚀方法
CN114062348B (zh) * 2021-11-22 2023-09-12 清华大学 基于介质阻挡放电的激光诱导击穿光谱检测系统
CN117538135B (zh) * 2024-01-09 2024-03-15 成都艾立本科技有限公司 基于纳米结构的气溶胶libs检测复合薄膜及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519917A (zh) * 2011-12-13 2012-06-27 清华大学 一种基于介质阻挡放电的固体样品剥蚀方法及装置
US20120224175A1 (en) * 2011-03-03 2012-09-06 Philippe Minghetti Microwave plasma atomic fluorescence mercury analysis system
CN103776818A (zh) * 2013-12-26 2014-05-07 四川大学 基于辉光放电的等离子体发生装置及构成的光谱检测系统
CN104749139A (zh) * 2015-03-26 2015-07-01 四川大学 基体辅助下的等离子体表面进样激发光谱检测系统
CN104792768A (zh) * 2015-04-25 2015-07-22 浙江大学 用于微波等离子体炬光谱仪的固体样品直接进样装置
CN107664633A (zh) * 2016-07-27 2018-02-06 四川大学 一种直接分析固体样品的微波等离子体原子发射光谱法及其系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5081397A (en) * 1989-07-11 1992-01-14 University Of British Columbia Atmospheric pressure capacitively coupled plasma atomizer for atomic absorption and source for atomic emission spectroscopy
US6429935B1 (en) * 2000-03-02 2002-08-06 The Regents Of The University Of California Microwave plasma monitoring system for real-time elemental analysis
US6594010B2 (en) * 2001-07-06 2003-07-15 Praxair Technology, Inc. Emission spectrometer having a charge coupled device detector
US7453566B2 (en) * 2006-08-31 2008-11-18 Massachusetts Institute Of Technology Hybrid plasma element monitor
KR101314666B1 (ko) * 2011-11-28 2013-10-04 최대규 하이브리드 플라즈마 반응기
CN104386922B (zh) * 2014-09-28 2016-12-07 中国科学院长春光学精密机械与物理研究所 大口径高陡度空间光学非球面反射镜立式加工方法及装置
CN106252191B (zh) * 2016-08-02 2017-11-03 中国科学院长春光学精密机械与物理研究所 等离子体化学刻蚀设备中的可更换喷嘴icp发生装置
CN107271426A (zh) * 2017-06-09 2017-10-20 华东师范大学 一种用激光诱导击穿光谱检测重金属污水的预处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120224175A1 (en) * 2011-03-03 2012-09-06 Philippe Minghetti Microwave plasma atomic fluorescence mercury analysis system
CN102519917A (zh) * 2011-12-13 2012-06-27 清华大学 一种基于介质阻挡放电的固体样品剥蚀方法及装置
CN103776818A (zh) * 2013-12-26 2014-05-07 四川大学 基于辉光放电的等离子体发生装置及构成的光谱检测系统
CN104749139A (zh) * 2015-03-26 2015-07-01 四川大学 基体辅助下的等离子体表面进样激发光谱检测系统
CN104792768A (zh) * 2015-04-25 2015-07-22 浙江大学 用于微波等离子体炬光谱仪的固体样品直接进样装置
CN107664633A (zh) * 2016-07-27 2018-02-06 四川大学 一种直接分析固体样品的微波等离子体原子发射光谱法及其系统

Also Published As

Publication number Publication date
CN110726715A (zh) 2020-01-24
CN209432703U (zh) 2019-09-24
US20220208522A1 (en) 2022-06-30
CN110501326A (zh) 2019-11-26

Similar Documents

Publication Publication Date Title
WO2020015286A1 (zh) 一种基于等离子体射流固体烧蚀直接分析的装置
CN104749139B (zh) 基体辅助下的等离子体表面进样激发光谱检测系统
CN107664633B (zh) 一种直接分析固体样品的微波等离子体原子发射光谱法及其系统
CN100516840C (zh) 钢液成分监测与分析装置
JPH09504109A (ja) 連続リアルタイムマイクロ波プラズマ元素センサ
US20120224175A1 (en) Microwave plasma atomic fluorescence mercury analysis system
CN108802268A (zh) 一种可视化实验用燃料液滴点火测温装置
US6429935B1 (en) Microwave plasma monitoring system for real-time elemental analysis
CN113504218A (zh) 激光诱导击穿光谱-大气压辉光放电联用装置
CN117074790A (zh) 一种电弧风洞透波材料高温宽频透波率试验测量装置
CN109916881A (zh) 激光剥蚀-大气压辉光放电原子发射光谱装置
CN108459012A (zh) 便携式激光等离子体火花放电元素光谱检测系统
CN217542868U (zh) 激光诱导解吸-等离子体发射光谱系统
CN110487603A (zh) 一种多级过滤探头及采样系统
CN113340522A (zh) 一种基于光路复用的真空开关真空度检测装置
RU2408871C2 (ru) Устройство для спектрального анализа состава вещества
CN109752367B (zh) 一种电磁加热-等离子体光谱检测土壤重金属装置及方法
CN106290264B (zh) 一种基于激光诱导光谱击穿技术检测真空装置真空度的系统及方法
CN106442475A (zh) 一种大气压等离子体射流检测溶液中金属离子的装置
CN108387434B (zh) 一种针对民用炉具性能测试的烟气稀释装置
CN210322694U (zh) 一种接触角测试装置
CN105424748A (zh) 一种锥形量热仪
CN109187496B (zh) 一种基于电热蒸发和尖端放电的原子发射光谱分析装置
CN111948193A (zh) 一种等离子体固样分析发射光谱仪
JPH055301B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926696

Country of ref document: EP

Kind code of ref document: A1