WO2020015268A1 - 一种基于液体体积控制的构件液压成形回弹精确补偿方法 - Google Patents

一种基于液体体积控制的构件液压成形回弹精确补偿方法 Download PDF

Info

Publication number
WO2020015268A1
WO2020015268A1 PCT/CN2018/118067 CN2018118067W WO2020015268A1 WO 2020015268 A1 WO2020015268 A1 WO 2020015268A1 CN 2018118067 W CN2018118067 W CN 2018118067W WO 2020015268 A1 WO2020015268 A1 WO 2020015268A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
liquid
volume
springback
calculate
Prior art date
Application number
PCT/CN2018/118067
Other languages
English (en)
French (fr)
Inventor
苑世剑
刘伟
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to US16/627,795 priority Critical patent/US11577297B2/en
Publication of WO2020015268A1 publication Critical patent/WO2020015268A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • B21D26/041Means for controlling fluid parameters, e.g. pressure or temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/021Deforming sheet bodies
    • B21D26/027Means for controlling fluid parameters, e.g. pressure or temperature

Definitions

  • the present invention relates to a method for accurate springback compensation of metal plate-like members, and in particular, to a method for accurate springback compensation of liquid convex die drawing of a metal curved panel member.
  • Springback is a typical defect form in the formation of plate-like components, which directly affects the dimensional accuracy of the components.
  • the cause of springback is that the internal stress is redistributed due to the removal of the external load after the sheet is formed, resulting in uneven distribution of the residual stress, which in turn leads to changes in the size of the component.
  • the size of plate-like components after springback is no longer equal to the size of the mold geometric profile. If the mold is processed according to the design profile of the component, the dimensional accuracy that meets the design requirements will not be obtained.
  • the effective method of springback compensation for rigid mold forming is the mold profile reverse compensation method.
  • This method compares the theoretical profile and the rebounded profile, and adjusts the mold reversely according to the profile deviation, so that the geometrical profile of the plate-like component after rebound just coincides with the theoretical profile.
  • problems such as long commissioning time of several months, unable to solve the problems caused by fluctuations in the performance of different batches of plates, and difficulty in directly compensating for springback while in place, resulting in long cycles and high costs.
  • material strength high-strength aluminum alloys, high-strength steels, high-temperature alloys, titanium alloys, etc.
  • the problem of rebound has become more prominent. Therefore, it is difficult to accurately control the rebound of the conventional rigid mold forming.
  • Hydroforming uses liquid as a force-transmitting flexible medium instead of a part of a rigid mold, so that the plate abuts against the mold surface under the action of liquid pressure, so as to form a component of a desired shape.
  • hydroforming can also control springback by regulating pressure, which is a unique advantage of hydroforming over traditional rigid molds in springback compensation.
  • the sheet hydroforming is divided into liquid-filled drawing and liquid punching drawing. Liquid-filled drawing is the use of liquid as the back pressure, instead of the die.
  • Liquid punching is the use of liquid as a forward pressure instead of a rigid punch.
  • the component in the later stage of forming, when the component is basically abutted against the mold, the component is fully deformed by increasing the pressure, and the in-plane film stress is reduced to reduce the residual stress of the component, on the other hand, the residual stress is improved.
  • the distribution of the inner and outer layers of the component is even Uniformity, reducing the difference in stress between the inner and outer layers and the rebound bending moment.
  • the hydraulic pressure of the hydroforming process is related to the material thickness, strength and the characteristic dimensions of the mold.
  • the characteristic size of the mold is constant, the hydraulic pressure is affected by the fluctuation of the strength and thickness of the plate.
  • the yield strength of different batches of low carbon steel varies from 2 35 to 280 MPa.
  • Conventional compensation calculations take the intermediate value based on yield strength (or the actual test value of a batch of materials). If the yield strength fluctuates to the limit, This results in a rebound amount of about ⁇ 10%.
  • the purpose of the present invention is to solve the existing problems of hydraulic forming through pressure control springback, which cannot solve the problems of different batches of sheet material performance changes and in-line compensation springback; at the same time, the present invention can solve the problems caused by mold processing errors.
  • Technical solution 1 A method for accurately compensating springback of a component based on liquid volume control provided by the present invention, adopts a liquid punch deep drawing method, according to the theoretical volume of the target part and the volume of the actual part after springback Poor, when shaping in the late forming stage, the mold is elastically deformed by regulating the volume of injected liquid, controlling the mold deformation to be equal to the springback amount, and realizing accurate springback compensation control for curved panel parts, including the following steps:
  • Step 1 According to the design profile of the curved panel, calculate the corresponding theoretical volume
  • Step 2 Put the slab into the mold and close the mold, fill the mold with liquid and pressurize it through an external pressurization system, so that the slab begins to be formed by the liquid punch under the action of liquid pressure;
  • Step 3 Use a flow meter to record the change in the flow rate of the liquid filled in the mold. When the volume is reached, stop the liquid filling and unloading through the control system;
  • Step 4 Use a displacement sensor to measure the distance between the profile of the part after unloading and the corresponding mold profile in-line, calculate the measured volume V of the part after unloading, and calculate the volume difference from V
  • Step 5 Fill the mold with liquid again and pressurize it.
  • V volume of the filled liquid in the mold
  • the flow meter records the change in the flow rate of the liquid filled in the mold.
  • Step six batch forming of subsequent parts, Load liquid.
  • the slab described in step two is a metal plate.
  • the metal plate includes, but is not limited to, aluminum alloy, low carbon steel, and high strength steel.
  • Step 1 Calculate the corresponding theoretical volume according to the design profile of the curved panel
  • Step 2 Put the slab into the mold and close the mold, fill the mold with liquid and pressurize it with an external pressurization system, so that the slab begins to be drawn into shape by the liquid punch under the action of liquid pressure;
  • Step 3 Use a flow meter to record the change in the flow rate of the liquid filled into the mold, and when the volume of liquid filled into the mold reaches, stop the liquid filling and unload by the control system;
  • Step 4 Use a displacement sensor to measure the distance between the profile of the part after unloading and the corresponding mold profile in-line, calculate the measured volume V of the part after unloading, and calculate the volume difference from V
  • Step 5 Fill the mold with liquid again and pressurize it.
  • V ⁇ volume of the filled liquid in the mold
  • the flow rate of the liquid filled in the mold is recorded by a flow meter.
  • the volume of the liquid filled in the mold reaches During AV, the liquid filling is stopped by the control system, and the curved panel is removed after unloading;
  • Step eight batch forming of subsequent parts
  • Step 2 Put the slab into the mold and close the mold, fill the mold with water and pressurize it with an external pressurization system, so that the slab begins to be formed by the liquid punch under the action of water pressure;
  • Step 3 Use a flow meter to record the change in the amount of water charged into the mold.
  • V volume of the liquid charged into the mold
  • V continue to fill the mold with water and pressurize it with an external pressurization system to make the mold elastic.
  • Deformation using a flow meter to record the change in the amount of water charged into the mold, when the volume of the liquid charged into the mold reaches V ; + AV stops the water filling and unloads through the control system;
  • Step 5 Fill the mold with water and pressurize it again to make the mold elastically deformed. Use a flow meter to record the change in the amount of water charged into the mold. When the volume of the liquid filled in the mold reaches V AV, stop it through the control system. Fill with liquid, take out curved panel parts after unloading;
  • Step 6 Batch forming of subsequent parts, and load the liquid according to V fl + AV.
  • the present invention utilizes a sheet metal liquid die deep drawing method.
  • the mold is elastically deformed by controlling the volume of the injected liquid to control the elasticity of the mold.
  • the amount of deformation and springback is equal, and the springback compensation of curved panel parts is accurately compensated, so that the component size meets the design requirements.
  • the invention does not need to repair the mold, and can accurately compensate for the change from the batch of the plate in-line Springback due to simplification of mold and mold processing errors.
  • the invention adopts a measurable and numerically controllable liquid volume change amount to realize springback compensation, and has the advantages of high compensation accuracy, simple process, high efficiency, short cycle and low production cost, and can meet the accurate springback compensation of curved panels in different batches. And profile high-precision control requirements.
  • the present invention can significantly improve the forming accuracy of metal curved panel parts by 30% -50%, shorten the mold debugging cycle by 70%, and reduce the production cost by more than 40% under the same technical conditions.
  • the present invention converts the springback compensation amount into the liquid volume change amount.
  • the liquid volume has the characteristics of being measurable, numerically controllable, and the like, which meets the needs of high-precision manufacturing of complex plate component profiles.
  • the present invention can be applied to the problems of springback due to material thickness and material property deviation, and large dimensional dispersion, poor accuracy, and high reject rate caused by mold manufacturing errors.
  • the process is simple and the debugging period is short: the present invention adopts a hydroforming method, and the sheet forming process and the springback compensation process are completed together, and the process is simple; in addition, the present invention overcomes the traditional method that requires prior theoretical calculations and simulations It is predicted that the technical means such as post-process debugging and mold adjustment have long compensation cycles and need to be repeated many times.
  • the present invention can obtain plate members that meet the forming accuracy without the need for mold adjustment, which can significantly reduce the production cost.
  • FIG. 1 shows a hemispherical curved piece with a design radius q
  • FIG. 2 shows an initial state of a hemispherical curved piece forming process
  • FIG. 3 shows an intermediate state of a hemispherical curved piece forming process
  • FIG. 4 shows the end state of the forming process of the hemispherical curved piece
  • FIG. 5 shows a state in which the hemispherical curved part rebounds after unloading
  • FIG. 6 shows a state of springback compensation of a hemispherical curved piece
  • FIG. 7 shows the initial state of curved surface forming when there is a machining error in the mold
  • FIG. 8 shows the state of curved surface forming and die-casting when there is a processing error in the mold
  • FIG. 9 A mold profile compensation state when a mold has a machining error
  • FIG. 10 shows the state of the curved piece rebounding after unloading when there is a machining error in the mold
  • FIG. 11 Curved panel springback compensation process when there is a processing error in the mold
  • FIG. 12 shows a semi-ellipsoidal curved surface with long and short axis radii ⁇ and ⁇ , respectively.
  • FIG. 14 is a complex curved piece of irregular shape
  • FIG. 15 is a springback compensation process of an irregularly-shaped complex curved surface piece.
  • Step 1 According to the design profile of the curved panel, calculate the theoretical volume of its corresponding profile
  • Step 2 Put the slab into the mold and close the mold, fill the mold with liquid water and pressurize it with an external pressurization system, so that the slab begins to be drawn into the liquid punch under the action of liquid pressure;
  • Step three Use a flow meter to record the change in the flow rate of the liquid filled into the mold, and when the volume of liquid filled into the mold reaches, stop the liquid filling and unload through the control system;
  • Step 4 Use a displacement sensor to measure the distance between the profile of the part after unloading and the corresponding mold profile in-line, calculate the measured volume V of the part after unloading, and calculate the volume difference from V
  • Step 5 Fill the mold with liquid again and pressurize it.
  • the volume of the liquid filled in the mold has reached, continue to fill the mold with liquid and pressurize it to make the mold elastically deformed.
  • the flow rate of the liquid into the mold changes.
  • the volume of the liquid filled into the mold reaches V AV, the liquid filling is stopped by the control system, and the curved panel is removed after unloading.
  • Step 6 Batch forming of subsequent parts, and load the liquid according to VAV.
  • this embodiment also It includes the following steps:
  • Step eight batch forming of subsequent parts
  • the present invention does not need to modify the mold to achieve a high-precision forming of curved panel-like members.
  • This embodiment includes the following steps:
  • Step 2 Put the slab into the mold and close the mold, fill the mold with water and pressurize it through an external pressurization system, so that the slab begins to be drawn into the liquid die under the action of water pressure;
  • Step 3 Use a flow meter to record the change in the amount of water charged into the mold.
  • V volume of liquid charged into the mold
  • V continue to fill the mold with water and pressurize it with an external pressurization system to make the mold elastic.
  • Deformation using a flow meter to record the change in the amount of water charged into the mold, when the volume of the liquid charged into the mold reaches V ; + AV stops the water filling and unloads through the control system;
  • Step 5 Fill the mold with water and pressurize it again to make the mold elastically deformed. Use a flow meter to record the change in the amount of water charged into the mold. When the volume of the liquid filled in the mold reaches V AV, stop by the control system. Fill with liquid and remove the curved panel after unloading.
  • Step 6 Mass forming of subsequent parts, and load liquid according to VAV.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Step 1 Calculate the corresponding theoretical volume according to the design radius r fl of the hemispherical head
  • Step 2 Put the circular slab into a mold with a cavity radius of ⁇ and close the mold, fill the mold with water and pressurize it with an external pressurization system, so that the slab starts the liquid convex mold under the action of water pressure Deep drawing
  • Step three Use a flow meter to record the change in the amount of water charged into the mold. When the volume of the liquid filled in the mold reaches, stop the water filling and unload by the control system;
  • Step 6 Mass forming of subsequent head parts, and load liquid according to 2jt (2r Q 3 -r 3 ) / 3.
  • Step 7 Fill the mold with water again and pressurize it to cause the mold to deform elastically. Use a flow meter to record the change in the amount of water charged into the mold.
  • Step 8 Batch forming of subsequent head parts, and load the liquid according to rp-p + 1) x [2jt (2r Q 3 -r 3 ) / 3]
  • Step 2 Put the circular slab into a mold with a cavity radius r; and close the mold, fill the mold with water and pressurize it with an external pressurization system, so that the slab begins to be liquid convex under the action of water pressure Die drawing;
  • Step three Use a flow meter to record the change in the amount of water charged into the mold.
  • V volume of the liquid charged into the mold
  • V continue to fill the mold with water and pressurize it with an external pressurization system to make the mold elastic.
  • Step 6 Mass forming of the subsequent head parts, and load the liquid according to 2 t (2r Q 3 -r 3 ) / 3.
  • Step 1 Calculate the corresponding theoretical volume according to the long and short axis radii of the semi-ellipsoidal head
  • Step 2 Put the circular slab into a mold with a cavity radius of long and a short axis radius of a and a, and close the mold, fill the mold with water and pressurize it with an external pressurization system to make the slab Liquid protrusion under water pressure Die drawing;
  • Step three Use a flow meter to record the change in the amount of water charged into the mold. When the volume of the liquid filled in the mold reaches, stop the water filling and unload through the control system;
  • Step 6 Mass forming of subsequent head parts, according to Load liquid.
  • Step 1 According to the design profile of the complex curved panel, use CAD software to calculate its corresponding theoretical volume V 0;
  • Step 2 Put the slab into the mold and close the mold, fill the mold with liquid water and pressurize it with an external pressurization system, so that the slab begins to be drawn into shape under the action of liquid pressure;
  • Step 3 Use a flow meter to record the change in the flow rate of the liquid filled in the mold, and when the volume of liquid filled in the mold reaches, stop the liquid filling and unload by the control system;
  • Step 4 Use a displacement sensor to measure the distance between the profile of the part after unloading and the corresponding mold profile in-line, calculate the measured volume V of the part after unloading, and calculate the volume difference from V
  • Step 5 Fill the mold with liquid again and pressurize it.
  • ⁇ 0 volume of the liquid filled in the mold
  • the meter records the change in the flow rate of the liquid filled in the mold.
  • V # AV the liquid filling is stopped by the control system, and the complex curved panel is removed after unloading.
  • Step six batch forming of subsequent parts, Load liquid.
  • the method of the present invention improves the accuracy of part profile by at least 20%, the yield rate by at least 10%, and the work efficiency by at least 70%.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

一种基于液体体积控制的构件液压成形回弹精确补偿方法,通过计算目标零件的理论体积与实际零件回弹后的体积差,通过调控注入的液体体积量使模具发生弹性变形,控制模具的弹性变形与回弹量相等,实现曲面板件的回弹精确补偿,使构件尺寸满足设计要求。本方法无需对模具返修,可以在线在位精确补偿由板材批次变化以及模具加工误差导致的回弹,具有补偿精度高、工艺简单、效率高、周期短、生产成本低的优点,可以满足不同批量曲面板件回弹精确补偿和型面高精度控制要求。

Description

一种基于液体体积控制的构件液压成形回弹精确补偿方法
技术领域
[0001] 本发明涉及一种金属板类构件的回弹精确补偿方法, 具体涉及一种金属曲面板 件液体凸模拉深成形的回弹精确补偿方法。
背景技术
[0002] 回弹是板类构件成形的一种典型缺陷形式, 直接影响构件尺寸精度。 回弹的产 生原因是板料成形后由于外载荷的卸除, 诱发内应力重新分布, 导致残余应力 分布不均, 进而导致构件尺寸的改变。 通常, 发生回弹后板类构件的尺寸不再 等于模具几何型面的尺寸, 如果按照构件的设计型面加工模具, 将无法获得满 足设计要求的尺寸精度。 目前, 刚性模具成形回弹补偿的有效方法是模具型面 逆向补偿法。 该方法对比理论型面和回弹后的型面, 根据型面偏差反向调修模 具, 使得板类构件回弹后的几何型面正好与理论型面一致。 但存在调试时间长 达几个月、 无法解决不同批次板材性能波动带来的超差、 难于在线在位直接补 偿回弹的问题, 导致周期长、 成本高。 同时, 由于材料强度的提高(高强铝合金 、 高强钢、 高温合金、 钛合金等)、 构件尺寸的增大, 使得回弹问题愈加突出。 因此, 传统刚性模具成形难于精确控制回弹。
[0003] 液压成形是采用液体作为传力柔性介质代替部分刚性模具, 使板材在液体压力 的作用下贴靠到模具型面, 从而成形为所需形状的构件。 除了采用模具型面逆 向补偿法, 液压成形还可以通过调控压力控制回弹, 这是液压成形比传统刚性 模具在回弹补偿方面的独特优势。 根据液体的作用方向, 板材液压成形分为充 液拉深和液体凸模拉深。 充液拉深是液体作为背向压力, 代替凹模, 通过增加 背压, 提高板材与凸模的贴模性, 降低构件的残余应力。 液体凸模拉深是液体 作为正向压力, 代替刚性凸模。 对于液体凸模拉深, 在成形后期, 当构件基本 贴靠模具后, 通过增加压力, 使得构件充分变形, 同时诱发面内薄膜应力 方面降低了构件的残余应力, 另一方面改善了残余应力在构件内外层的分布均 匀性, 降低了内外层应力差和回弹弯矩。
[0004] 然而, 5见有液压成形方法控制回弹都是采用控制液体压力的方式。 液压成形过 程的液压与材料厚度、 强度与模具特征尺寸有关。 当模具特征尺寸一定时, 液 压受到板材强度、 厚度的波动影响。 例如: 不同批次低碳钢屈服强度变化范围 2 35-280MPa,常规的补偿计算依据屈服强度取中间值 (或某一个批次材料的实际 测试值) , 如果屈服强度波动变化到极限值, 将导致回弹量产生 ±10%左右的变 化量。 因此, 受到不同批次板材强度、 厚度变化影响, 导致现有液压成形过程 很难通过控制液体压力实现回弹精确补偿, 无法解决不同批次板材性能波动带 来的精度超差。 此外, 当机械加工精度不足导致模具型面超差时, 模具型面误 差和回弹累加, 导致构件的尺寸精度将更加难于控制, 无法在线在位直接补偿 回弹。
发明概述
技术问题
[0005] 本发明的目的是为了解决现有液压成形通过压力控制回弹, 无法解决不同批次 板材性能变化以及不能在线在位补偿回弹的难题; 同时, 本发明可以解决由于 模具加工误差导致的零件型面精度无法精确控制的难题, 无需修改模具实现回 弹快速精确补偿。
问题的解决方案
技术解决方案
[0006] 技术方案一: 本发明提出的一种基于液体体积控制的构件液压成形回弹精确补 偿方法, 采用液体凸模拉深成形方法, 根据目标零件的理论体积与实际零件回 弹后的体积差, 在成形后期整形时, 通过调控注入的液体体积量使模具发生弹 性变形, 控制模具变形量与回弹量相等, 实现曲面板件的回弹精确补偿控制, 包括以下步骤:
[0007] 步骤一: 根据曲面板件的设计型面, 计算其对应的理论体积
Figure imgf000003_0001
[0008] 步骤二: 把板坯放入模具并合模, 向模具内充入液体并通过外部增压系统增压 , 使板坯在液体压力作用下开始液体凸模拉深成形;
[0009] 步骤三: 采用流量计记录充入模具内的液体流量变化, 当充入模具内的液体体 积达到 时, 通过控制系统停止液体充填并卸载;
[0010] 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模具型面的距 离, 计算卸载后零件的实测体积 V, 计算出 与 V的体积差
Figure imgf000004_0001
[0011] 步骤五: 再次向模具内充入液体并增压, 当充入模具内的充入液体体积达到 V 后, 继续向模具内充入液体并增压, 直至使模具发生弹性变形, 采用流量计记 录充入模具内的液体流量变化, 当充入模具内的液体体积达到
Figure imgf000004_0002
AV时, 通过 控制系统停止液体充填, 卸载后取出曲面板件;
[0012] 步骤六: 后续零件的批量成形,
Figure imgf000004_0003
加载液体。
[0013] 进一步地, 步骤二中所述的板坯为金属板材。
[0014] 进一步地, 金属板材包括但不限于铝合金、 低碳钢、 高强钢。
[0015] 技术方案二: 一种基于液体体积控制的构件液压成形回弹精确补偿方法, 所述 方法根据目标零件的理论体积与实际零件回弹后的体积差, 通过调控注入的液 体体积量使模具发生弹性变形, 控制模具变形量与回弹量相等, 实现曲面板件 的回弹精确补偿, 包括以下步骤:
[0016] 步骤一: 根据曲面板件的设计型面, 计算其对应的理论体积
Figure imgf000004_0004
[0017] 步骤二: 把板坯放入模具并合模, 向模具内充入液体并通过外部增压系统增压 , 使板坯在液体压力作用下开始液体凸模拉深成形;
[0018] 步骤三: 采用流量计记录充入模具内的液体流量变化, 当充入模具内的液体体 积达到 时, 通过控制系统停止液体充填并卸载;
[0019] 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模具型面的距 离, 计算卸载后零件的实测体积 V, 计算出 与 V的体积差
Figure imgf000004_0005
[0020] 步骤五: 再次向模具内充入液体并增压, 当充入模具内的充入液体体积达到 V ^后, 继续向模具内充入液体并增压, 直至使模具发生弹性变形, 采用流量计记 录充入模具内的液体流量变化, 当充入模具内的液体体积达到
Figure imgf000004_0006
AV时, 通过 控制系统停止液体充填, 卸载后取出曲面板件;
[0021] 步骤六: 根据液体体积压缩量 Z\V P与液体压力 ;?的关系式 Z\V P= (3^V, 计算 充入模具内的液体体积量为 rv 0+ AV) 时的液体体积压缩量 Z\V P= (3^ (V 04- AY) , 其中 (3为液体介质的压缩系数; [0022] 步骤七: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的水量变化, 当充入模具内的液体体积达到
Figure imgf000005_0001
AV+AV p时, 通过控制 系统停止液体充填, 卸载后取出曲面板件。
[0023] 步骤八: 后续零件的批量成形,
Figure imgf000005_0002
[0024] 技术方案三: 一种基于液体体积控制的构件液压成形回弹精确补偿方法, 所述 方法根据目标零件的理论体积与实际零件回弹后的体积差, 通过调控注入的液 体体积量使模具发生弹性变形, 控制模具变形量与回弹量相等, 实现曲面板件 的回弹精确补偿, 包括以下步骤:
[0025] 步骤一: 根据曲面板件的设计型面和模具型腔的实测型面, 计算对应的的理论 体积 V ()和模具型腔体积 V ;, 计算出 V与 V ;的体积差 V 1=V『 V i ;
[0026] 步骤二: 把板坯放入模具并合模, 向模具内充水并通过外部增压系统增压, 使 板坯在水压作用下开始液体凸模拉深成形;
[0027] 步骤三: 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达 到 V ;时, 继续向模具内充水并通过外部增压系统增压, 使模具发生弹性变形, 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达到 V ;+ AV 通过控制系统停止水充填并卸载;
[0028] 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模具型面的距 离, 计算卸载后零件的实测体积 V, 计算出 V0与 V的体积差 Z\V=V Q-V ;
[0029] 步骤五: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的水量变化, 当充入模具内的液体体积达到 V AV时, 通过控制系统停 止液体充填, 卸载后取出曲面板件;
[0030] 步骤六: 后续零件的批量成形, 按照 V fl+ AV加载液体。
发明的有益效果
有益效果
[0031] 本发明是利用板材液体凸模拉深成形方法, 通过计算目标零件的理论体积与实 际零件回弹后的体积差, 通过调控注入的液体体积量使模具发生弹性变形, 控 制模具的弹性变形与回弹量相等, 实现曲面板件的回弹精确补偿, 使构件尺寸 满足设计要求。 本发明无需对模具返修, 可以在线在位精确补偿由板材批次变 化以及模具加工误差导致的回弹。 本发明采用可计量、 可数控的液体体积变化 量实现回弹量补偿, 具有补偿精度高、 工艺简单、 效率高、 周期短、 生产成本 低的优点, 可以满足不同批量曲面板件回弹精确补偿和型面高精度控制要求。 本发明与现有技术相比, 在相同的技术条件下, 可使金属曲面板件的成形精度 显著提高 30%-50%, 模具调试周期缩短 70%, 生产成本降低 40%以上。
[0032] 本发明的有益效果具体表现在以下几个方面:
[0033] ( 1) 补偿精度高: 本发明把回弹补偿量转化为液体体积变化量, 液体体积具 有可计量、 可数控等特点, 满足复杂板类构件型面高精度制造的需要。
[0034] (2) 适用性宽: 本发明能适用由于材料厚度、 材料性能偏差导致的回弹, 以 及模具制造误差导致的尺寸分散性大、 精度差、 废品率高的问题。
[0035] (3) 工艺简单、 调试周期短: 本发明采用液压成形方法, 板材成形过程和回 弹补偿过程一并完成, 工艺过程简单; 此外, 本发明克服了传统方法需要预先 理论计算、 仿真预测, 或后期工艺调试、 模具调修等技术手段存在补偿周期长 、 需要反复多次的问题。
[0036] (4) 生产成本低: 本发明无需模具调修就可获得满足成形精度的板类构件, 可显著降低生产成本。
对附图的简要说明
附图说明
[0037] 图 1所示为设计半径为 q的半球形曲面件,
[0038] 图 2所示为半球形曲面件成形过程的初始状态,
[0039] 图 3所示为半球形曲面件成形过程的中间状态,
[0040] 图 4所示为半球形曲面件成形过程的结束状态 (半球形曲面件成形的贴模状态
)
[0041] 图 5所示为半球形曲面件卸载后发生回弹的状态,
[0042] 图 6所示为半球形曲面件的回弹补偿状态,
[0043] 图 7所示为模具存在加工误差时的曲面件成形初始状态,
[0044] 图 8模具存在加工误差时的曲面件成形贴模状态,
[0045] 图 9模具存在加工误差时的模具型面补偿状态, [0046] 图 10模具存在加工误差时曲面件卸载后回弹的状态,
[0047] 图 11模具存在加工误差时的曲面板件回弹补偿过程,
[0048] 图 12所示为长、 短轴半径分别为 ^和^的半椭球形曲面件,
[0049] 图 13为半椭球形曲面件的回弹补偿过程,
[0050] 图 14为不规则形状复杂曲面件,
[0051] 图 15为不规则形状复杂曲面件的回弹补偿过程。
发明实施例
本发明的实施方式
[0052] 具体实施方式一: 本实施方式是通过以下步骤实现的:
[0053] 步骤一: 根据曲面板件的设计型面, 计算其对应型面的理论体积
Figure imgf000007_0001
[0054] 步骤二: 把板坯放入模具并合模, 向模具内充入液体水并通过外部增压系统增 压, 使板坯在液体压力作用下开始液体凸模拉深成形;
[0055] 步骤三: 采用流量计记录充入模具内的液体流量变化, 当充入模具内的液体体 积达到 时, 通过控制系统停止液体充填并卸载;
[0056] 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模具型面的距 离, 计算卸载后零件的实测体积 V, 计算出 与 V的体积差
Figure imgf000007_0002
[0057] 步骤五: 再次向模具内充入液体并增压, 当充入模具内的液体体积达到 后 , 继续向模具内充入液体并增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的液体流量变化, 当充入模具内的液体体积达到 V AV时, 通过控制系 统停止液体充填, 卸载后取出曲面板件。
[0058] 步骤六: 后续零件的批量成形, 按照 V AV加载液体。
[0059] 具体实施方式二:
[0060] 考虑到超高压整体过程, 为避免液体在超高压下由于体积压缩导致的误差, 影 响液体体积的精确控制, 在具体实施方式一的步骤一 ~步骤五的基础上, 本实施 方式还包括以下步骤:
[0061] 步骤六: 根据液体体积压缩量 Z\V P与液体压力 ;?的关系式 Z\V P= (3^V, 计算 充入模具内的液体体积量为 rv 0+ AV) 时的液体体积压缩量 Z\V P= (3^ (V 04- AY) , 其中 (3为液体介质的压缩系数; [0062] 步骤七: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的水量变化, 当充入模具内的液体体积达到 V AV+AV p时, 通过控制 系统停止液体充填, 卸载后取出曲面板件。
[0063] 步骤八: 后续零件的批量成形,
Figure imgf000008_0001
[0064] 具体实施方式三:
[0065] 考虑到模具型面加工存在误差, 当模具型腔实际尺寸小于零件尺寸的下公差时 , 采用本发明无需修改模具实现曲面板类构件的一次高精度成形。 本实施方式 包括以下步骤:
[0066] 步骤一: 根据曲面板件的设计型面和模具型腔的实测型面, 计算对应的的理论 体积 V ()和模具型腔体积 V ;, 计算出 V与 V ;的体积差 V 1=V『 V i ;
[0067] 步骤二: 把板坯放入模具并合模, 向模具内充水并通过外部增压系统增压, 使 板坯在水压作用下开始液体凸模拉深成形;
[0068] 步骤三: 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达 到 V ;时, 继续向模具内充水并通过外部增压系统增压, 使模具发生弹性变形, 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达到 V ;+ AV 通过控制系统停止水充填并卸载;
[0069] 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模具型面的距 离, 计算卸载后零件的实测体积 V, 计算出 V 0与 V的体积差 Z\V=V Q-V ;
[0070] 步骤五: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的水量变化, 当充入模具内的液体体积达到 V AV时, 通过控制系统停 止液体充填, 卸载后取出曲面板件。
[0071] 步骤六: 后续零件的批量成形, 按照 V AV加载液体。
[0072] 实施例 1 :
[0073] 以 2219铝合金半球形封头零件成形为例, 其中: r fl为封头零件的设计半径, r 为封头零件卸载发生回弹后的半径。 结合图 1~图6说明本发明的实施过程:
[0074] 步骤一: 根据半球形封头的设计半径 r fl, 计算对应的理论体积
Figure imgf000008_0002
[0075] 步骤二: 把圆形板坯放入型腔半径为 ^的模具并合模, 向模具内充水并通过外 部增压系统增压, 使板坯在水压作用下开始液体凸模拉深成形; [0076] 步骤三: 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达 到 时, 通过控制系统停止水充填并卸载;
[0077] 步骤四: 采用位移传感器测量零件距离模具型面的距离, 计算卸载后的零件实 测半径 r, 计算出零件的实测体积 V=2jtr V3 , 计算出
Figure imgf000009_0001
V的体积差 Z\V=V。 -V=2 Jt(r 0 3- r 3)/3;
[0078] 步骤五: 再次向模具内充水增压, 当充入模具内的水量达到 后, 继续向模 具内充水并通过外部增压系统增压, 使模具发生弹性变形, 采用流量计记录充 入模具内的水量变化, 当充入模具内的液体体积达到
Figure imgf000009_0002
△V=2jt(2r A r 3)/3时 , 通过控制系统停止水充填, 卸载后取出封头零件。
[0079] 步骤六: 后续封头零件的批量成形, 按照 2jt(2rQ 3-r3)/3加载液体。
[0080] 实施例 2:
[0081] 以 2219铝合金半球形封头零件成形为例, 其中: rfl为封头零件的设计半径, r 为封头零件卸载发生回弹后的半径。 为避免超高压条件下, 液体增压后体积压 缩导致的误差, 本实施例的步骤一 ~步骤五同实施例 1, 此外还包括以下步骤: [0082] 步骤六: 记录充入模具内的液体体积量为
Figure imgf000009_0003
0+ AV) 时的液体压力 p, 并根 据液体体积压缩量计算公式
Figure imgf000009_0004
(Vo+AV) , 计算充入模具内的液体体 积压缩量/^1=(^2 2]() 3-]3)/3, 其中 (3为液体介质的压缩系数;
[0083] 步骤七: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的水量变化, 当充入模具内的液体体积达到
Figure imgf000009_0005
AV+AV p= ((3-p+l) x [2jt(2r0 3-r3)/3]^, 停止液体充填, 卸载后取出封头零件。
[0084] 步骤八: 后续封头零件的批量成形, 按照 rp-p+l) x[2jt(2rQ 3-r3)/3]加载液体
[0085] 实施例 3:
[0086] 以 2219铝合金半球形封头零件成形为例, 其中: ^为封头零件的设计半径, 由 于加工误差, 模具型腔的实测半径为 0=0- 6 (6为设计公差) , r为封头零件 卸载发生回弹后的半径。 本发明无需修改模具实现封头零件的一次高精度成形 。 结合图 7~图11说明本发明的实施过程:
[0087] 步骤一: 根据半球形封头的设计半径 ^和模具型腔的实测半径为 r;, 计算对 应的理论体积 h=2 ^r o3/3和模具型腔体积
6 = 2^ / 3
, 计算出 V 0与 V ;的体积差 Z\V 1=V 0-V 1= 崎 / - 3
[0088] 步骤二: 把圆形板坯放入型腔半径为 r ;的模具并合模, 向模具内充水并通过外 部增压系统增压, 使板坯在水压作用下开始液体凸模拉深成形;
[0089] 步骤三: 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达 到 V ;时, 继续向模具内充水并通过外部增压系统增压, 使模具发生弹性变形, 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达到 V ;+ AV i=V o=2 Jtr o3/3时, 通过控制系统停止水充填并卸载;
[0090] 步骤四: 采用位移传感器测量零件距离模具型面的距离, 计算卸载后的零件实 测半径 r, 计算出零件的实测体积 V=2 tr V3 , 计算出
Figure imgf000010_0001
V的体积差 Z\V=V。 -V=2 Jt(r 0 3- r 3)/3;
[0091] 步骤五: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的水量变化, 当充入模具内的液体体积达到
Figure imgf000010_0002
△V=2 t(2r A r 3)/3时, 通过控制系统停止水充填, 卸载后取出封头零件。
[0092] 步骤六: 后续封头零件的批量成形, 按照 2 t(2r Q 3- r 3)/3加载液体。
[0093] 实施例 4:
[0094] 以 2219铝合金半椭球形封头零件成形为例, 其中: a «为封头零件的长轴半径 , 为封头零件的长轴半径。 结合图 12、 图 13说明本发明的实施过程:
[0095] 步骤一: 根据半椭球形封头的长、 短轴半径, 计算对应的理论体积
Figure imgf000010_0003
Figure imgf000010_0004
[0096] 步骤二: 把圆形板坯放入型腔半径为长、 短轴半径分别为 a «和 的模具并合 模, 向模具内充水并通过外部增压系统增压, 使板坯在水压作用下开始液体凸 模拉深成形;
[0097] 步骤三: 采用流量计记录充入模具内的水量变化, 当充入模具内的液体体积达 到 时, 通过控制系统停止水充填并卸载;
[0098] 步骤四: 采用位移传感器测量零件距离模具型面的距离, 计算卸载后的零件实 测长、 短轴半径, 计算出零件的实测体积 V=2jta 2b/3, 计算出 ^与 V的体积差
Z\V=V o-V=
Figure imgf000011_0001
[0099] 步骤五: 再次向模具内充水增压, 当充入模具内的水量达到 后, 继续向模 具内充水并通过外部增压系统增压, 使模具发生弹性变形, 采用流量计记录充 入模具内的水量变化, 当充入模具内的液体体积达到
Figure imgf000011_0002
AV=
27i2^b0 -S2b) 1 3 时, 通过控制系统停止水充填, 卸载后取出半椭球形封头零件。
[0100] 步骤六: 后续封头零件的批量成形, 按照
Figure imgf000011_0003
加载液体。
[0101] 实施例 5:
[0102] 以 5A06铝合金不规则形状复杂曲面零件成形为例, 其中: ;, h 2, h 3分别为 复杂曲面零件的对应的台阶平面高度, r ;和 ^分别为两个曲面半径。 结合图 14 、 图 15说明本发明的实施过程:
[0103] 步骤一: 根据复杂曲面板件的设计型面, 采用 CAD软件计算其对应的的理论体 积 V 0 ;
[0104] 步骤二: 把板坯放入模具并合模, 向模具内充入液体水并通过外部增压系统增 压, 使板坯在液体压力作用下开始拉深成形;
[0105] 步骤三: 采用流量计记录充入模具内的液体流量变化, 当充入模具内的液体体 积达到 时, 通过控制系统停止液体充填并卸载; [0106] 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模具型面的距 离, 计算卸载后零件的实测体积 V, 计算出 与 V的体积差
Figure imgf000012_0001
[0107] 步骤五: 再次向模具内充入液体并增压, 当充入模具内的液体体积达到 \^ 0后 , 继续向模具内充入液体并增压, 使模具发生弹性变形, 采用流量计记录充入 模具内的液体流量变化, 当充入模具内的液体体积达到 V # AV时, 通过控制系 统停止液体充填, 卸载后取出复杂曲面板件。
[0108] 步骤六: 后续零件的批量成形,
Figure imgf000012_0002
加载液体。
[0109] 针对本发明效果的对比验证:
[0110] 在相同试验条件下, 本发明方法与现有的采用控制液体压力的方式控制回弹相 比, 零件型面精度至少提高 20%, 成品率至少提高 10%, 工作效率至少提高 70%

Claims

权利要求书
[权利要求 1] 一种基于液体体积控制的构件液压成形回弹精确补偿方法, 其特征在 于所述方法根据目标零件的理论体积与实际零件回弹后的体积差, 通 过调控注入的液体体积量使模具发生弹性变形, 控制模具变形量与回 弹量相等, 实现曲面板件的回弹精确补偿, 包括以下步骤: 步骤一: 根据曲面板件的设计型面, 计算其对应的理论体积
Figure imgf000013_0001
步骤二: 把板坯放入模具并合模, 向模具内充入液体并通过外部增 压系统增压, 使板坯在液体压力作用下开始液体凸模拉深成形; 步骤三: 采用流量计记录充入模具内的液体流量变化, 当充入模具 内的液体体积达到 V时, 通过控制系统停止液体充填并卸载; 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模 具型面的距离, 计算卸载后零件的实测体积 V, 计算出 与 V的体
Figure imgf000013_0002
步骤五: 再次向模具内充入液体并增压, 当充入模具内的充入液体 体积达到\^后, 继续向模具内充入液体并增压, 直至使模具发生弹 性变形, 采用流量计记录充入模具内的液体流量变化, 当充入模具内 的液体体积达到
Figure imgf000013_0003
通过控制系统停止液体充填, 卸载后取 出曲面板件;
步骤六: 后续零件的批量成形,
Figure imgf000013_0004
加载液体。
[权利要求 2] 根据权利要求 1所述的一种基于液体体积控制的板类构件液压成形回 弹精确补偿方法, 其特征在于: 步骤二中所述的板坯为金属板材。
[权利要求 3] 根据权利要求 2所述的一种基于液体体积控制的板类构件液压成形回 弹精确补偿方法, 其特征在于: 金属板材包括但不限于铝合金、 低碳 钢、 高强钢。
[权利要求 4] 一种基于液体体积控制的构件液压成形回弹精确补偿方法, 其特征在 于所述方法根据目标零件的理论体积与实际零件回弹后的体积差, 通 过调控注入的液体体积量使模具发生弹性变形, 控制模具变形量与回 弹量相等, 实现曲面板件的回弹精确补偿, 包括以下步骤: 步骤一: 根据曲面板件的设计型面, 计算其对应的理论体积 V M 步骤二: 把板坯放入模具并合模, 向模具内充入液体并通过外部增 压系统增压, 使板坯在液体压力作用下开始液体凸模拉深成形; 步骤三: 采用流量计记录充入模具内的液体流量变化, 当充入模具 内的液体体积达到 V时, 通过控制系统停止液体充填并卸载; 步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模 具型面的距离, 计算卸载后零件的实测体积 V, 计算出 与 V的体
Figure imgf000014_0001
步骤五: 再次向模具内充入液体并增压, 当充入模具内的充入液体 体积达到 后, 继续向模具内充入液体并增压, 直至使模具发生弹 性变形, 采用流量计记录充入模具内的液体流量变化, 当充入模具内 的液体体积达到
Figure imgf000014_0002
通过控制系统停止液体充填, 卸载后取 出曲面板件;
步骤六: 根据液体体积压缩量 ZV p与液体压力;?的关系式 Z\v p=(3-p- V, 计算充入模具内的液体体积量为
Figure imgf000014_0003
0+ AV) 时的液体体积压缩 量 Z\V p=(3.p. (V o+ AV) , 其中 (3为液体介质的压缩系数;
步骤七: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量 计记录充入模具内的水量变化, 当充入模具内的液体体积达到 V # △V+AV P时, 通过控制系统停止液体充填, 卸载后取出曲面板件。 步骤八: 后续零件的批量成形,
Figure imgf000014_0004
[权利要求 5] 根据权利要求 4所述的一种基于液体体积控制的板类构件液压成形回 弹精确补偿方法, 其特征在于: 步骤二中所述的板坯为金属板材。
[权利要求 6] 根据权利要求 5所述的一种基于液体体积控制的板类构件液压成形回 弹精确补偿方法, 其特征在于: 金属板材包括但不限于铝合金、 低碳 钢、 高强钢。
[权利要求 7] —种基于液体体积控制的构件液压成形回弹精确补偿方法, 其特征在 于所述方法根据目标零件的理论体积与实际零件回弹后的体积差, 通 过调控注入的液体体积量使模具发生弹性变形, 控制模具变形量与回 弹量相等, 实现曲面板件的回弹精确补偿, 包括以下步骤:
步骤一: 根据曲面板件的设计型面和模具型腔的实测型面, 计算对应 的的理论体积 和模具型腔体积 V ;, 计算出
Figure imgf000015_0001
V ;的体积差 Z\V i
=v o-V 1
步骤二: 把板坯放入模具并合模, 向模具内充水并通过外部增压系统 增压, 使板坯在水压作用下开始液体凸模拉深成形; 步骤三: 采用流量计记录充入模具内的水量变化, 当充入模具内的液 体体积达到 V ;时, 继续向模具内充水并通过外部增压系统增压, 使 模具发生弹性变形, 采用流量计记录充入模具内的水量变化, 当充入 模具内的液体体积达到 V ;+ AV 1=V 0时, 通过控制系统停止水充填 并卸载;
步骤四: 采用位移传感器在线在位测量卸载后的零件型面与对应模 具型面的距离, 计算卸载后零件的实测体积 V, 计算出 与 V的体 积差 Z\V=V o-V;
步骤五: 再次向模具内充水增压, 使模具发生弹性变形, 采用流量 计记录充入模具内的水量变化, 当充入模具内的液体体积达到 V # △V时, 通过控制系统停止液体充填, 卸载后取出曲面板件; 步骤六: 后续零件的批量成形,
Figure imgf000015_0002
加载液体。
[权利要求 8] 根据权利要求 7所述的一种基于液体体积控制的板类构件液压成形回 弹精确补偿方法, 其特征在于: 步骤二中所述的板坯为金属板材。
[权利要求 9] 根据权利要求 8所述的一种基于液体体积控制的板类构件液压成形回 弹精确补偿方法, 其特征在于: 金属板材包括但不限于铝合金、 低碳 钢、 高强钢。
PCT/CN2018/118067 2018-07-20 2018-11-29 一种基于液体体积控制的构件液压成形回弹精确补偿方法 WO2020015268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,795 US11577297B2 (en) 2018-07-20 2018-11-29 Accurate springback compensation method for hydroforming component based on liquid volume control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810822673.3 2018-07-20
CN201810822673.3A CN108994141B (zh) 2018-07-20 2018-07-20 一种基于液体体积控制的板类构件液压成形回弹精确补偿方法

Publications (1)

Publication Number Publication Date
WO2020015268A1 true WO2020015268A1 (zh) 2020-01-23

Family

ID=64596751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118067 WO2020015268A1 (zh) 2018-07-20 2018-11-29 一种基于液体体积控制的构件液压成形回弹精确补偿方法

Country Status (3)

Country Link
US (1) US11577297B2 (zh)
CN (1) CN108994141B (zh)
WO (1) WO2020015268A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207204A (zh) * 2020-09-16 2021-01-12 东风柳州汽车有限公司 侧围外板加油口座冲压加工方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110743956A (zh) * 2019-11-04 2020-02-04 哈尔滨工业大学 一种基于液体体积加载的椭球壳轴长尺寸控制方法及系统
CN110883179B (zh) * 2019-11-28 2021-03-30 哈尔滨工大海卓智能成形科技有限公司 一种基于液体体积加载的液压成形件回弹控制方法及系统
CN111112430B (zh) * 2019-12-16 2022-01-04 中国航发南方工业有限公司 回转体类零件复合补偿回弹成形方法
CN112139340B (zh) * 2020-09-14 2022-06-21 哈尔滨工业大学 一种铝合金构件超低温成形装置及成型方法
CN113523104B (zh) * 2021-07-12 2023-07-18 哈尔滨理工大学 一种提高深凹底型件贴模精度的刚柔复合成形装置及方法
CN114713661B (zh) * 2022-04-13 2024-01-26 重庆电子工程职业学院 一种参照工件回弹参数对冲压模具进行修模的方法
CN115722880A (zh) * 2022-11-22 2023-03-03 航天特种材料及工艺技术研究所 耐高温超薄壁封装壳体及其成形方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265133A (zh) * 1997-07-22 2000-08-30 通用汽车公司 适用于热成形加工的润滑系统
DE10062501A1 (de) * 2000-12-08 2002-06-27 Meier Horst Verfahren und Vorrichtung zum Überwachen eines Umformvorganges mittels einer auf Wellenbasis arbeitenden Sensorik
CN1559719A (zh) * 2004-03-02 2005-01-05 广东工业大学 金属板材液压成形方法及其模具装置
CN1817501A (zh) * 2005-02-07 2006-08-16 丰田自动车株式会社 液压成形装置以及液压成形方法
JP2009172660A (ja) * 2008-01-28 2009-08-06 Jfe Steel Corp 金属板のプレス成形方法およびプレス成形装置
CN102607969A (zh) * 2012-03-20 2012-07-25 哈尔滨工业大学 三维应力状态下板材成形极限测试装置及方法
CN106363067A (zh) * 2015-07-20 2017-02-01 上海航天设备制造总厂 一种航天器燃料贮箱箱底整体成形装置及其成形方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006567A (en) * 1997-05-15 1999-12-28 Aquaform Inc Apparatus and method for hydroforming
US7266982B1 (en) * 2005-06-10 2007-09-11 Guza David E Hydroforming device and method
JP4823850B2 (ja) * 2006-10-25 2011-11-24 新日本製鐵株式会社 ハイドロフォーム成形方法
CN104550403A (zh) * 2015-01-06 2015-04-29 哈尔滨工业大学(威海) 一种实现中空金属构件高温气压胀形的装置及工艺
US9821359B2 (en) * 2015-12-14 2017-11-21 Rasoul Jelokhani Niaraki High-speed hydraulic forming of metal and non-metal sheets using electromagnetic fields
CN106363085B (zh) * 2016-09-20 2018-09-28 中国航空工业集团公司北京航空制造工程研究所 一种模具结构及模具修复方法
CN106862362B (zh) * 2017-04-28 2018-08-14 哈尔滨工业大学 自动补偿内高压成形中管端液体泄漏的控制方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1265133A (zh) * 1997-07-22 2000-08-30 通用汽车公司 适用于热成形加工的润滑系统
DE10062501A1 (de) * 2000-12-08 2002-06-27 Meier Horst Verfahren und Vorrichtung zum Überwachen eines Umformvorganges mittels einer auf Wellenbasis arbeitenden Sensorik
CN1559719A (zh) * 2004-03-02 2005-01-05 广东工业大学 金属板材液压成形方法及其模具装置
CN1817501A (zh) * 2005-02-07 2006-08-16 丰田自动车株式会社 液压成形装置以及液压成形方法
JP2009172660A (ja) * 2008-01-28 2009-08-06 Jfe Steel Corp 金属板のプレス成形方法およびプレス成形装置
CN102607969A (zh) * 2012-03-20 2012-07-25 哈尔滨工业大学 三维应力状态下板材成形极限测试装置及方法
CN106363067A (zh) * 2015-07-20 2017-02-01 上海航天设备制造总厂 一种航天器燃料贮箱箱底整体成形装置及其成形方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112207204A (zh) * 2020-09-16 2021-01-12 东风柳州汽车有限公司 侧围外板加油口座冲压加工方法

Also Published As

Publication number Publication date
CN108994141A (zh) 2018-12-14
US20210331226A1 (en) 2021-10-28
CN108994141B (zh) 2019-11-15
US11577297B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2020015268A1 (zh) 一种基于液体体积控制的构件液压成形回弹精确补偿方法
US8776570B2 (en) Workpiece bending method and apparatus
CN104646475A (zh) 铝合金飞机整体壁板多点成形方法
CN1325185C (zh) 弯曲成型方法
CN113182388B (zh) 一种基于压缩变形的薄壁多腔构件校形的模具及其方法
CN105234239A (zh) 基于渐变模具型面的大曲率三维曲面的多步成形方法
CN108687210B (zh) 一种金属内高压成形件尺寸控制方法及系统
JP2009012044A (ja) 薄板のプレス金型装置及びプレス成形方法
CN114309261B (zh) 双曲面金属板材的渐进成形弯曲方法
Erhu et al. Research on formability in multi-point forming with different elastic pads
CN115532929A (zh) 一种包覆磁流变弹性体层的刚性模及板材零件成形方法
Jia et al. New process of multi-point forming with individually controlled force-displacement and mechanism of inhibiting springback
Liu et al. Evaluation on dimpling and geometrical profile of curved surface shell by hydroforming with reconfigurable multipoint tool
CN109454144A (zh) 一种用于火箭储油箱零件的充液成形工艺
Sun et al. Effect of stress distribution on springback in hydroforming process
CN104504173B (zh) 耦合晶粒尺寸的钛合金压力连接界面连接率预测方法
CN104624799B (zh) 一种高温固体粉末介质辅助钛合金板材超塑性拉深和胀形一体化的方法
Han et al. Springback and compensation of bending for hydroforming of advanced high-strength steel welded tubes
CN110883179B (zh) 一种基于液体体积加载的液压成形件回弹控制方法及系统
Zuo et al. An investigation of involute and lead deflection in hot precision forging of gears
CN107363142B (zh) 复合金属板的热冲压成型控制方法
CN114160681B (zh) 一种板材冲击液压成形回弹评测方法
CN105467840A (zh) 一种封头薄壁构件拉深变压边力优化控制方法
CN107052212B (zh) 多腔类构件多向加载成形加载路径的确定方法
CN110314971B (zh) 一种板材粘性介质压力成形回弹自适应控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926625

Country of ref document: EP

Kind code of ref document: A1