WO2020013310A1 - Method for inhibiting odor formation - Google Patents

Method for inhibiting odor formation Download PDF

Info

Publication number
WO2020013310A1
WO2020013310A1 PCT/JP2019/027669 JP2019027669W WO2020013310A1 WO 2020013310 A1 WO2020013310 A1 WO 2020013310A1 JP 2019027669 W JP2019027669 W JP 2019027669W WO 2020013310 A1 WO2020013310 A1 WO 2020013310A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
water
acid
less
carboxylic acid
Prior art date
Application number
PCT/JP2019/027669
Other languages
French (fr)
Japanese (ja)
Inventor
真美 今井
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201980035661.9A priority Critical patent/CN112203699B/en
Publication of WO2020013310A1 publication Critical patent/WO2020013310A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/18Azelaic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/20Sebacic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/21Dicarboxylic acids containing twelve carbon atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a method for suppressing odor generation.
  • the invention further relates to a method for controlling pH, for example in the fields of biology, biochemistry and physiological sciences.
  • Patent Literature 1 discloses a ketone compound having a specific structure as an agent for suppressing the conversion of sebum dirt components to 4-methyl-3-hexenoic acid, which is one of the substances causing a dry odor.
  • Patent Document 2 discloses a macrocyclic ketone compound as an agent that inhibits the activity of ⁇ -gluconidase and suppresses the generation of urine odor.
  • an organic carboxylic acid having a specific structure such as benzoic acid, is used to sterilize microorganisms to suppress generation of odor.
  • Patent Document 1 discloses that the activity of fatty acid metabolism-related enzymes is suppressed by setting the pH environment in the cytoplasm of the bacteria causing the odor to an acidic side (see Non-Patent Document 1), and the intracellular pH is controlled.
  • Patent Document 3 discloses that the pH in a vacuole of a plant cell is adjusted using a nucleic acid molecule encoding a polypeptide having an activity of changing the pH in a cell such as a plant cell.
  • Patent Literature 4 discloses a pH probe capable of measuring intracellular pH, and indicates a need to control intracellular pH.
  • Patent Literature 5 describes administering an effective amount of a drug that increases intracellular pH.
  • JP 2012-127012 A International Publication No. 2009/037861 International Publication No. 2007/137345 International Publication No. WO 2016/138116 International Publication No. WO 2016/142445
  • the present invention relates to a method for suppressing the generation of odor by contacting the following component (a), water and a microorganism to suppress the amount of odorous substances produced by the microorganism, wherein the pH of the composition comprising the component (a) and water is adjusted.
  • the logD of the component (a) calculated by the following formula (1) is -1.5 or more and 1.5 or less.
  • Component (a): organic carboxylic acid or salt thereof logD ClogP-log [1 + 10 (pH-pKa) ]
  • ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a)
  • pH is the pH of water containing the component (a)
  • pKa Is the pKa of the component (a).
  • the present invention provides that, in two phases containing water separated by a surfactant film, the logD of the component (a) present in one of the phases calculated by the formula (1) is -1.5 or more and 1 or more.
  • the present invention relates to a method for controlling pH, wherein the pH of the other phase separated by the surfactant film is lowered by controlling the pH to 0.5 or less.
  • Patent Literature 1 or Patent Literature 2 have an odor itself, and thus need to be used in an appropriate usage scene and amount.
  • the present invention relates to an odor generation suppressing method capable of suppressing odor generation from odor-causing bacteria without sterilizing microorganisms that cause odor.
  • the invention further relates to a method for controlling the pH of one of the two phases containing water separated by a surfactant membrane.
  • the present inventor has conducted intensive studies from the viewpoint of the odor-causing substance, the causative bacteria, and the mechanism of generation.
  • the organic acid or its salt and the microorganism can be combined with each other in water when the logD of the organic acid or its salt having a carboxyl group in water is in the range of -1.5 or more and 1.5 or less in water. It has been found that, by contact, the generation of the odor generated by the microorganism can be suppressed while maintaining the number of microorganisms, and the pH of the microorganism in the cell membrane can be reduced.
  • the present invention has been completed based on these findings.
  • the odor generation from the odor-causing bacteria can be suppressed, without sterilizing the odor-causing microorganisms. Further, the present invention can efficiently control the pH of one of the two phases containing water separated by a surfactant membrane.
  • the component (a) used in the method of the present invention is an organic carboxylic acid or a salt thereof.
  • the component (a) is brought into contact with a microorganism in water in a state where the logD of the component (a) at the pH of the water containing the component (a) is ⁇ 1.5 or more and 1.5 or less, so that the microorganism is contained in the cell membrane of the microorganism. PH decreases.
  • the component (a) easily penetrates into the microorganism, and the component (a) penetrated into the microorganism suppresses the function of the metabolic system that produces odorous substances in the microorganisms, thereby suppressing the production of odorous substances.
  • the component (a) is converted into one phase separated by a surfactant film in a state where the logD of the component (a) at the pH of water containing the component (a) is ⁇ 1.5 or more and 1.5 or less.
  • the component (a) is adsorbed on the surfactant film, and is easily distributed to the other phase where the component (a) is not present, separated by the surfactant film.
  • control the pH includes lowering the pH.
  • the logD of the component (a) calculated from the following formula (1) at the pH of the composition containing the component (a) and water is from ⁇ 1.5 to 1.5.
  • logD ClogP-log [1 + 10 (pH-pKa) ]
  • ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a)
  • pH is the pH of water containing the component (a)
  • pKa Is the pKa of the component (a).
  • logD can be calculated based on the ClogP of the acid form of the component (a), the acid dissociation constant (pKa), and the pH of the composition containing the component (a) and water.
  • logD is a calculated value of the water / octanol partition coefficient in consideration of the acid-form ClogP of the component (a), the pH of water containing the component (a), and pKa.
  • the concept of logD is described in, for example, Li Xing, Robert C. Glen, Novel Methods for the Prediction of logP, pKa, and logD, J. Chem. Inf. Comput. Sci. 2002, vol. 42, p. 796-805. It is a disclosed and well-known concept.
  • the value of ClogP and the value of pKa are calculated by thermodynamic property estimation software “COSMOtherm” (Morcis).
  • the component (a) used in the present invention include an aliphatic polycarboxylic acid having 8 to 14 carbon atoms or a salt thereof.
  • the component (a) preferably has 8 or more carbon atoms, more preferably 9 or more carbon atoms, and preferably 14 or less, and more preferably 12 or less, in that the logD can be easily adjusted to a desired range. And more preferably 10 or less.
  • the value represented by (molecular weight of carboxyl group) is preferably 1.9 or more, more preferably 2.0 or more, and even more preferably 2.2 or more. From the same viewpoint, the value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) is preferably 3.5 or less, more preferably 3.2 or less, more preferably 3.0 or less, and 2 .8 or less is more preferable.
  • the logD is preferably controlled within a desired range without sterilizing microorganisms.
  • the molecular weight of the carboxyl group is 45, which is the value of the molecular weight of the acid type carboxyl group, that is, COOH.
  • the carboxylic acid used for calculating the molecular weight of the component (a) uses an acid type value.
  • the component (a) used in the present invention one or more compounds selected from the group consisting of aliphatic dicarboxylic acids and salts thereof are preferable, and specific examples thereof include suberic acid (8 carbon atoms) and azelaic acid.
  • salt examples include an alkali metal salt such as a sodium salt and an alkaline earth metal salt such as a magnesium salt.
  • Another specific example of the component (a) used in the present invention is an organic carboxylic acid having one naphthalene group and one carboxyl group from the viewpoint of easily controlling logD calculated by the above formula (1) to a desired range. Acids or salts thereof.
  • Such an organic carboxylic acid may have an arbitrary hydroxyl group.
  • the salt include an alkali metal salt such as a sodium salt and an alkaline earth metal salt such as a magnesium salt.
  • 1-naphthalenecarboxylic acid 2-naphthalenecarboxylic acid, 2-hydroxy-1-naphthalenecarboxylic acid, 3-hydroxy-2-naphthalenecarboxylic acid, 6-hydroxy-2-naphthalenecarboxylic acid, and One or more compounds selected from the group consisting of these salts are preferred.
  • a commercially available component (a) may be used.
  • the component (a) can be synthesized by an ordinary production method.
  • the content of the component (a) with respect to the mass of the composition containing the component (a) and water is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and still more preferably 0% by mass or more. 0.05% by mass or more, more preferably 0.08% by mass or more.
  • the content of the component (a) is preferably 1% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.5% by mass or less.
  • Water> As the water used in the method of the present invention, ion-exchanged water, distilled water, tap water, sweat, rain and the like can be used.
  • the composition containing component (a) and water may contain optional components such as surfactants and fragrances as long as the effects of the present invention are not impaired.
  • a surfactant preferably a (b1) nonionic surfactant and a (b2) anion, as long as the effects of the present invention are not impaired.
  • a nonionic surfactant having an HLB of 9 or more and 15 or less is preferable from the viewpoint that the effect of suppressing the generation of odor by the component (a) can be further improved.
  • the HLB of the component (b1) is determined by a Griffin method represented by the following formula (2).
  • HLB value [(molecular weight of polyoxyethylene group portion of component (b1)) / (molecular weight of component (b)]] ⁇ 20
  • the molecular weight of the polyoxyethylene group portion of the component (b1) is calculated using the value of the average number of moles of polyoxyethylene group added.
  • nonionic surfactant having no polyoxyethylene group it can be determined by the Davis method.
  • the method of calculating the HLB by the Davis method is described in pages 24 to 25 of “Surfactant Physical Properties / Application / Chemical Ecology” (published by Kodansha Scientific, May 20, 1990, 7th print, Fumio Kitahara et al.). Can be calculated by using the method described in (1).
  • the HLB of the component (b1) is preferably 9.0 or more, more preferably 9.5 or more, and more preferably 9.5 or more, from the viewpoint of excellent cleaning of dirt attached to textiles and the like (hereinafter, also referred to as cleaning performance). Is at least 10, more preferably at least 10.5, even more preferably at least 11.0.
  • the HLB is preferably 15 or less, more preferably 14.5 or less, more preferably 14 or less, still more preferably 13 or less, and still more preferably 12 or less.
  • component (b2) include one or more anionic surfactants selected from the group consisting of the following components (b21), (b22), (b23) and (b24).
  • component (b21) Component: alkyl or alkenyl sulfate ester salt
  • component polyoxyalkylene alkyl ether sulfate salt or polyoxyalkylene alkenyl ether sulfate salt
  • component anionic surfactant having a sulfonate group
  • Ingredients fatty acids having 10 to 20 carbon atoms or salts thereof (however, excluding component (b23))
  • the content of the component (b) with respect to the mass of the composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably 0.4% by mass, from the viewpoint of further enhancing the odor generation suppressing effect. %, More preferably 0.5% by mass or more. From the same viewpoint, the content of the component (b) is preferably 10% by mass or less, more preferably 9% by mass or less, still more preferably 8% by mass or less, and still more preferably 5% by mass or less.
  • surfactant film means a film formed by a surfactant.
  • the surfactant film to which the present invention can be applied include a film formed of a surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • the surfactant film may be a monomolecular film formed by arranging surfactant molecules in a single layer, or the hydrophobic portion of the surfactant molecules arranged without gaps on the inside and the hydrophilic portion on the outside. It may be a double film formed to face.
  • the surfactant film As a specific example of the surfactant film, a film formed of a cationic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, having an aliphatic hydrocarbon group having 10 to 22 carbon atoms A film formed of an anionic surfactant, a film formed of a nonionic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, and an aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • the surfactant to which the present invention can be applied may be a naturally occurring surfactant.
  • it may be a phospholipid exemplified by phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and rhamnolipid, sophorolipid, and tre may be glycolipids such as roose lipid.
  • surfactants containing phospholipids, particularly amphiphilic substances are particularly preferred.
  • Microbial cell membranes can be used as the surfactant membrane.
  • the microorganism to which the present invention can be applied can be used for general microorganisms existing in the environment.
  • Moraxella bacteria Acinetobacter bacteria, Pseudomonas bacteria, Bacillus bacteria, Sphingomonas bacteria, Ralstonia bacteria, Cupriavidas Bacteria belonging to the genus (Cupriavidus), bacteria belonging to the genus Psychorobacter, bacteria belonging to the genus Serratia, bacteria belonging to the genus Escherichia, bacteria belonging to the genus Staphylococcus, bacteria belonging to the genus Burkholderia, and Saccaromyces And yeasts belonging to the genus Rhodotorula.
  • Moraxella sp Moraxella sp.
  • Moraxella Osuroenshisu Moraxella osloensis
  • Acinetobacter Radio Regis Tense Acinetobacter radioresistens
  • Acinetobacter Junii Acinetobacter JuNii
  • Acinetobacter calcoaceticus Acinetobacter calcoaceticus
  • Serratia marcescens Serratia marcescens
  • Escherichia Korai Esscherichia coli
  • Staphylococcus aureus Staphylococcus aureus
  • Pseudomonas Alcaligenes Pseudomonas alcaligenes
  • Bacillus cereus Bacillus cereus
  • Bacillus subtilis Bacillus subtilis
  • cyclo Arthrobacter Pasi Fi forsythensis Psychrobacter pacificensis
  • cyclo Arthrobacter Gurashinkora Psychrobacter pacificensis
  • the component (a), water and microorganisms are brought into contact with each other to suppress the amount of odorous substances produced by microorganisms.
  • the logD of the component (a) in the composition calculated by the formula (1) is -1.5 or more and 1.5 or less.
  • the pH of the water containing the component (a) is not particularly limited as long as the logD of the component (a) is within a desired range and the viable cell count of the microorganism can be maintained without killing the microorganism.
  • the pH of the composition containing the component (a) and water is preferably 4.0 or more, more preferably 4.5 or more, and still more preferably 5.0. That is all.
  • the pH of the composition containing the component (a) and water is preferably 10.0 or less, more preferably 9.0 or less, further preferably 8.5 or less, and still more preferably. Is 8.0 or less.
  • the pH of the present invention can be measured according to a conventional method, for example, with a pH measuring device using a glass electrode.
  • the logD of the component (a) calculated by the above formula (1) is -1.5 or more from the viewpoint of further enhancing the metabolic control effect of the microorganism.
  • the logD of the component (a) is preferably -1.2 or more, more preferably -1.0 or more, further preferably -0.8 or more, and still more preferably -0.5 or more. Yes, more preferably ⁇ 0.2 or more, and even more preferably 0 or more.
  • the logD of the component (a) is 1.5 or less, preferably 1.3 or less, more preferably 1.1 or less, and further preferably 1.0 or less.
  • the contact time of the component (a), water and microorganisms can be appropriately determined depending on the degree of controlling the metabolism of microorganisms. From the viewpoint of greater control of the metabolism of the microorganism, the contact time is preferably 1 minute or more, more preferably 5 minutes or more, further preferably 10 minutes or more, and still more preferably 30 minutes or more. And still more preferably 1 hour or more. The contact time is preferably 15 hours or less, more preferably 12 hours or less, and further preferably 8 hours or less.
  • the odor generation suppressing method of the present invention is preferably a method of suppressing the amount of odorous substances generated by microorganisms while maintaining the viable count of microorganisms after contact with the component (a).
  • "while maintaining the viable cell count of the microorganism” means “the logarithmic value (1) of the viable cell count of the microorganism before contact with the component (a),” It means that the logarithmic value (1) -the logarithmic value (2), which is the difference from the logarithmic value (2) of the viable cell count, is -1 or more and less than 2.
  • the difference in the logarithmic value is generally referred to as a bactericidal activity value, a bacteriostatic activity value, and having bactericidal or having antibacterial properties, respectively, in a bactericidal test or an antibacterial test, the bactericidal activity value Alternatively, it is defined as having a bacteriostatic activity value of 2.2 or more.
  • the bactericidal activity value or the bacteriostatic activity value is -1 or more and less than 2, preferably -0.5 or more and less than 1, more preferably 0 or more and 0.8 or less, further preferably 0 or more and 0.7 or less.
  • One case is referred to as "maintaining the viable microbial count".
  • the odor that can be suppressed by the present invention can be applied to the odor generated by metabolism of fatty acid synthesis system in the metabolic system of microorganisms.
  • the present invention is a technology that suppresses the generation amount of odorous substances, unlike masking deodorization in which odors generated by metabolism of fatty acid synthesis system are masked to make the odors less noticeable, or chemical deodorization in which odorous substances are changed to odorous substances. is there.
  • the odor control method of the present invention can be applied to odors generated by metabolism of fatty acid synthesis system in the metabolic system of microorganisms.
  • the present invention masks the odor generated by the metabolism of the fatty acid synthesis system, so that masking deodorization that makes the odor less likely to be perceived, or chemical deodorization that makes the odorous substance less odorable by chemical action, differs from the chemical deodorization that makes the odorous substance less odorable. It is a technique to control.
  • the odorant is not necessarily limited, but typical odorants include, for example, 4-methyl-3-hexenoic acid (hereinafter also referred to as “4M3H”) consisting of a compound represented by the following formula, or 4-methylhexanoic acid (hereinafter, also referred to as "4MH”).
  • 4-methyl-3-hexenoic acid has cis-trans isomers as shown below, and in the present invention, compounds having both cis- and trans-structures are included.
  • 4M3H and 4MH which are typical odorous substances, are often produced in the fatty acid synthesis system of microorganisms based on odor precursors contained in sebum stains.
  • "Sebum dirt” is the most typical dirt that adheres to textiles such as clothing, and contains a large amount of oils such as free fatty acids and glycerides, which contain carbon and mud in dust and exfoliated keratin. Is what is observed in textiles and the like.
  • the “sebum dirt component” is not particularly limited as long as it is a sebum dirt component usually found in clothes and the like.
  • Examples of the substance which can be a precursor of the odorous substance include a saturated or unsaturated anteiso fatty acid having 9 to 21 carbon atoms (preferably 11 to 19 carbon atoms, more preferably 17 to 19 carbon atoms) (eg, 6-methyloctane). Acids, 8-methyldecanoic acid, 12-methyltetradecanoic acid, 14-methylhexadecanoic acid, 16-methyloctadecanoic acid, 14-methylhexadecenoic acid and 16-methyloctadecenoic acid), and salts and esters thereof. However, these include compounds that are not actually present in sebum stains.
  • the odor generation suppressing method of the present invention can be applied to a method in which the component (a), water, and microorganisms come into contact with each other, and the method is not particularly limited by the order in which the components come into contact with each other.
  • a method in which the microorganism containing the component (a) and water contacts the composition containing the component (a) the method in which the component (a) contacts the water and the microorganism, and the composition containing the water and the microorganism where the component (a) contacts
  • a method in which component (a) contacts water with a microorganism and a method in which component (a) contacts water in the presence of a microorganism and component (a) contacts water with a microorganism.
  • a composition containing (a) component and water comes into contact with a microorganism, and a component (a) coming into contact with water and a microorganism
  • a composition containing (a) component and water is sprayed on the microorganism.
  • a method of applying, and a method of immersing microorganisms in a composition containing the component (a) and water are mentioned.
  • a method of spraying the composition include a method of spraying using a sprayer such as a sprayer.
  • a tool used for application for example, a microorganism in contact with a sheet-shaped tool made of a cotton fiber or a synthetic fiber containing a composition containing the component (a) and water is contacted.
  • a method of applying a composition containing the component (a) and water to a microorganism is contacted.
  • the state where the component (a), water, and microorganisms are present may be a state of a composition containing the component (a), water, and microorganisms. It may be in the state of a composition containing the same.
  • the target object may be a fiber product, a hard surface, a skin surface, or a hair surface.
  • the material of the fiber product is not particularly limited, and natural materials such as wool, silk, and cotton, and chemical fibers such as polyester and polyamide. , And combinations thereof.
  • the material of the textile is preferably cotton.
  • the fiber product may be unused or used once or more.
  • the fiber product with which the component (a) is brought into contact may be one containing moisture or moisture, or one that has been sufficiently dried.
  • the hard surface may be glass, metal, plastic, pottery.
  • the amount of the component (a) and water can be appropriately adjusted.
  • the amount of the component (a) per mass of the fiber product in which microorganisms are present is from 0.01% by mass to 1% by mass.
  • the component (a), water and microorganisms may be brought into contact with water at a pH or an amount at which the component (a) has a specific logD, and the component (a) is brought into contact with water on the textile.
  • the pH of the composition containing component (a) and water when the component (a), water and microorganisms come into contact with each other is adjusted so that the component (a) has a specific logD of the present invention.
  • odor generation suppressing method of the present invention there is an odor generation suppressing method in which a sheet comprising a nonwoven fabric, which contains the component (a) and water, is brought into contact with an object to which microorganisms are attached.
  • the logD of the component (a) calculated by the formula (1) is ⁇ 1.5 or more and 1.5 or less.
  • a sheet containing a component (a) and water and made of a nonwoven fabric may be mentioned.
  • the logD of the component (a) calculated from the above formula (1) at the pH of the composition containing the component (a) and water is ⁇ 1.5 or more and 1.5 or less.
  • the nonwoven fabric is processed into a sheet shape, and the fibers constituting the nonwoven fabric are formed of one or more fibers selected from the group consisting of hydrophilic fibers and hydrophobic fibers.
  • the term “hydrophilic fiber” refers to a fiber having a moisture content (20 ° C., 65% RH) in a standard state of more than 5%. The moisture content in the standard state is measured by a method specified in JIS L 1013 and JIS L 1015.
  • the “hydrophobic fiber” refers to a fiber having a standard moisture content (20 ° C., 65% RH) of 5% by weight or less.
  • Examples of the chemical fiber which is a hydrophobic fiber that can be used in the sheet of the present invention include polyamide fibers (eg, nylon), polyester fibers (eg, polyester), polyacrylonitrile fibers (eg, acrylic), and polyvinyl alcohol fibers. (Vinylon, etc.), polyvinyl chloride fiber (polyvinyl chloride, etc.), polyvinylidene chloride fiber (vinylidene, etc.), polyolefin fiber (polyethylene, polypropylene, etc.), polyurethane fiber (polyurethane, etc.), polyvinyl chloride / polyvinyl Examples thereof include alcohol copolymer fibers (such as polychloral), and one or more of these can be used.
  • hydrophilic fibers that can be used in the sheet of the present invention include seed hair fibers (cotton, noodles, kapok, etc.), bast fibers (hemp, flax, ramie, cannabis, jute, etc.), and vein fibers (manila hemp, sisal hemp).
  • Palm fiber rush, straw, animal hair fiber (wool, mohair, cashmere, camel, alpaca, bikuna, angora, etc.), silk fiber (domestic silk, wild silk), feather, cellulose fiber (rayon, Polynosic, cupra, acetate, etc.), hydrophilized polyethylene terephthalate fibers (polyethylene terephthalate fibers that have been subjected to hydrophilization treatment and fibers having a water content in the standard state within the range of the hydrophilic fibers described above), and the like. Species or two or more species can be used.
  • the nonwoven fabric used in the present invention preferably contains hydrophilic fibers.
  • the nonwoven fabric used in the present invention contains hydrophilic fibers in an amount of 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and still more preferably 75% by mass or more, from the viewpoint of further enhancing the effect of suppressing odor generation. Is preferable.
  • the content of the hydrophilic fiber contained in the nonwoven fabric is preferably 100% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less.
  • the basis weight of the nonwoven fabric used in the present invention is preferably 10 g / m 2 or more, more preferably 20 g / m 2 or more.
  • the basis weight of the nonwoven fabric used in the present invention is preferably 100 g / m 2 or less, more preferably 80 g / m 2 or less, and further preferably 60 g / m 2 or less.
  • the mass ratio (impregnation rate (% by mass)) of the composition containing the component (a) and water to the mass of the nonwoven fabric is preferably 100% by mass or more, more preferably 150% by mass, from the viewpoint of further enhancing the effect of suppressing odor generation.
  • % By mass more preferably at least 200% by mass, more preferably at least 250% by mass, further preferably at least 300% by mass, still more preferably at least 350% by mass.
  • the mass ratio (impregnation rate (% by mass)) of the composition containing the component (a) and water with respect to the mass of the nonwoven fabric is preferably 500% by mass or less, more preferably 420% by mass or less, It is more preferably at most 380% by mass, further preferably at most 350% by mass.
  • the content of the component (a) with respect to the mass of the composition containing the component (a) and water, which is contained in the sheet of the present invention, is preferably 0.01% by mass or more from the viewpoint of further enhancing the effect of suppressing odor generation. Yes, more preferably at least 0.03% by mass, even more preferably at least 0.05% by mass, even more preferably at least 0.08% by mass. And from the same viewpoint, the content of the component (a) is preferably 1% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.5% by mass or less.
  • the object to which the microorganisms have adhered may be any of a textile, a hard surface, a skin surface, and a hair surface.
  • the material of the fiber product is not particularly limited, and may be any of natural materials such as wool, silk and cotton, chemical fibers such as polyester and polyamide, and combinations thereof.
  • the material of the textile is preferably cotton.
  • the fiber product may be unused or used once or more.
  • the fiber product with which the component (a) is brought into contact may be one containing moisture or moisture, or one that has been sufficiently dried.
  • the hard surface may be glass, metal, plastic, pottery.
  • ⁇ PH control method> In the pH control of the present invention, in two phases containing water separated by a surfactant membrane, the logD of the component (a) present in one phase, which is calculated by the formula (1), is -1.5. By controlling the pH to 1.5 or less, the pH of the other phase separated by the surfactant film can be reduced to control the pH.
  • the pH of the water containing the component (a) is not particularly limited as long as the logD of the component (a) is in the range of -1.5 to 1.5 and the pH is such that a surfactant film can be present. Absent.
  • the pH of the composition containing the component (a) and water is preferably 4.0 or more, and more preferably, from the viewpoint that the pH of the internal phase separated by the surfactant membrane, particularly the cell membrane of the microorganism, can be further reduced. It is 4.5 or more, more preferably 5.0 or more.
  • the pH of the composition containing the component (a) and water is preferably 10.0 or less, more preferably 9.0 or less, further preferably 8.5 or less, and still more preferably. Is 8.0 or less.
  • the pH of the present invention can be measured according to a conventional method, for example, with a measuring device using a glass electrode.
  • the logD of the component (a) calculated by the above formula (1) is -1.5 or more from the viewpoint of further reducing the pH of the internal phase separated by the surfactant membrane, especially the cell membrane of the microorganism.
  • the logD of the component (a) is preferably -1.2 or more, more preferably -1.0 or more, further preferably -0.8 or more, and still more preferably -0.5 or more. Yes, more preferably ⁇ 0.2 or more, and even more preferably 0 or more. From the same viewpoint, logD of the component (a) is 1.5 or less, preferably 1.3 or less, more preferably 1.1 or less, and further preferably 1.0 or less.
  • the contact time of the component (a), water and a surfactant membrane, especially a cell membrane of a microorganism can be appropriately determined depending on the degree to which the pH is controlled. From the viewpoint of increasing the control of pH, the contact time is preferably 1 minute or more, more preferably 5 minutes or more, further preferably 10 minutes or more, and still more preferably 30 minutes or more. More preferably, it is one hour or more. The contact time is preferably 15 hours or less, more preferably 12 hours or less, and further preferably 8 hours or less.
  • the present invention further discloses the following method and sheet.
  • Component (a): organic carboxylic acid or salt thereof logD ClogP-log [1 + 10 (pH-pKa) ]
  • ClogP is a calculated logP of the logarithmic value of the water / octanol partition coefficient in the acid form of the component (a)
  • pH is the pH of water containing the component (a)
  • pKa is PKa of the component (a).
  • the above-mentioned odor generation suppressing method comprises the steps of: (a) a method in which a composition containing component (a) and water is brought into contact with a microorganism; (a) a method in which component, water and a microorganism are brought into contact; The method comprises contacting the components and bringing the component (a) into contact with water and microorganisms, and contacting the component (a) with water in the presence of the microorganisms and contacting the component (a) with water and the microorganisms.
  • the method according to ⁇ 1> or ⁇ 2> which is one or more methods selected from the group.
  • ⁇ 4> (A) The method according to any one of ⁇ 1> to ⁇ 3>, wherein the sheet comprising a nonwoven fabric, which contains the component and water, is brought into contact with an object to which microorganisms have adhered.
  • the logD of the component (a) present in one phase which is calculated by the formula (1), is controlled to be -1.5 or more and 1.5 or less. And controlling the pH of the other phase separated by the surfactant film.
  • the surfactant film is a film formed of a cationic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, anionic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms. Film formed of a nonionic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, and an amphoteric interface having an aliphatic hydrocarbon group having 10 to 22 carbon atoms.
  • the value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) is 1.9 or more, preferably 2.0 or more, more preferably 2.2 or more, and is 3.5 or less, preferably Is 3.2 or less, more preferably 3.0 or less, and even more preferably 2.8 or less, the method according to any one of the above items ⁇ 1> to ⁇ 6>.
  • the component (a) is a group consisting of aliphatic polyhydric carboxylic acids having 8 or more, preferably 9 or more, and 14 or less, preferably 12 or less, more preferably 10 or less carbon atoms, and salts thereof.
  • the component (a) is one or more compounds selected from the group consisting of aliphatic dicarboxylic acids and salts thereof, preferably suberic acid, azelaic acid, sebacic acid, dodecandioic acid, tetradecandioic acid and salts thereof.
  • the component (a) is an organic carboxylic acid having one naphthalene group and one carboxyl group or a salt thereof.
  • the organic carboxylic acid or a salt thereof is 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 2-hydroxy-1-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 6-hydroxy-2-naphthalene carboxylic acid And the at least one compound selected from the group consisting of salts thereof.
  • the logD of the component (a) calculated by the above formula (1) at the pH of the composition containing the component (a) and water is -1.2 or more, preferably -1.0 or more, more preferably -0. 0.8 or more, more preferably -0.5 or more, still more preferably -0.2 or more, still more preferably 0 or more, 1.3 or less, preferably 1.1 or less, more preferably 1.0 or less.
  • the method according to any one of the above items ⁇ 1> to ⁇ 11>. ⁇ 13> (A) The method according to any one of ⁇ 1> to ⁇ 12>, wherein the viable cell count of the microorganism after contact with the component is maintained.
  • (A) The contact time of the component, water and a surfactant film, especially a microorganism, is 1 minute or more, preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 30 minutes or more, and even more preferably 1 hour.
  • the content of the component (a) with respect to the mass of the composition containing the component (a) and water is 0.01% by mass or more, preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and furthermore Any one of the above ⁇ 1> to ⁇ 17>, which is preferably 0.08% by mass or more and 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.5% by mass or less.
  • the described method is preferably 0.08% by mass or more and 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.5% by mass or less.
  • a sheet comprising a nonwoven fabric, containing a component and water, The sheet wherein the logD of the component (a) calculated by the above formula (1) at the pH of the composition containing the component (a) and water is ⁇ 1.5 or more and 1.5 or less.
  • the value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) is 1.9 or more, preferably 2.0 or more, more preferably 2.2 or more, and is 3.5 or less, preferably Is not more than 3.2, more preferably not more than 3.0, and still more preferably not more than 2.8.
  • the component (a) is a group consisting of aliphatic polyhydric carboxylic acids having 8 or more, preferably 9 or more, and 14 or less, preferably 12 or less, more preferably 10 or less carbon atoms, and salts thereof.
  • the sheet according to ⁇ 19> or ⁇ 20> which is one or more compounds selected from the group consisting of: ⁇ 22>
  • the component (a) is one or more compounds selected from the group consisting of aliphatic dicarboxylic acids and salts thereof, preferably suberic acid, azelaic acid, sebacic acid, dodecandioic acid, tetradecandioic acid and salts thereof.
  • the component (a) is an organic carboxylic acid having one naphthalene group and one carboxyl group or a salt thereof.
  • the organic carboxylic acid or a salt thereof is 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 2-hydroxy-1-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 6-hydroxy-2-naphthalene carboxylic acid And the at least one compound selected from the group consisting of salts thereof.
  • the logD of the component (a) calculated by the above formula (1) at the pH of the composition containing the component (a) and water is -1.2 or more, preferably -1.0 or more, more preferably -0. 0.8 or more, more preferably -0.5 or more, still more preferably -0.2 or more, still more preferably 0 or more, 1.3 or less, preferably 1.1 or less, more preferably 1.0 or less.
  • the pH of the composition containing the component (a) and water is 4.0 or more, preferably 4.5 or more, more preferably 5.0 or more, and 10.0 or less, preferably 9.0 or less.
  • the nonwoven fabric is composed of one or more kinds of fibers selected from the group consisting of hydrophilic fibers and hydrophobic fibers.
  • the hydrophobic fibers are polyamide fibers, polyester fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyolefin fibers, polyurethane fibers, and polyvinyl chloride / polyvinyl.
  • the hydrophilic fiber is selected from the group consisting of seed hair fiber, bast fiber, vein fiber, palm fiber, rush, straw, animal hair fiber, silk fiber, feather, cellulosic fiber, and hydrophilized polyethylene terephthalate fiber.
  • the nonwoven fabric contains the hydrophilic fiber in an amount of 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 75% by mass or more, and 100% by mass or less, more preferably 90% by mass or less.
  • the sheet according to any one of the above ⁇ 28> to ⁇ 30> preferably containing 85% by mass or less.
  • the nonwoven fabric has a basis weight of 10 g / m 2 or more, preferably 20 g / m 2 or more, 100 g / m 2 or less, preferably 80 g / m 2 or less, more preferably 60 g / m 2 or less.
  • the impregnation ratio (% by mass) of the composition containing the component (a) and water with respect to the mass of the nonwoven fabric is 100% by mass or more, preferably 150% by mass or more, more preferably 200% by mass or more, more preferably 250% by mass or more.
  • % By mass or more, more preferably 300% by mass or more, still more preferably 350% by mass or more, 500% by mass or less, preferably 420% by mass or less, more preferably 380% by mass or less, and still more preferably 350% by mass or less.
  • the content of the component (a) with respect to the mass of the composition containing the component (a) and water is 0.01% by mass or more, preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and furthermore Any one of the above items ⁇ 19> to ⁇ 33>, which is preferably 0.08% by mass or more and 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.5% by mass or less.
  • the described sheet. ⁇ 35> The sheet according to any one of the above items ⁇ 19> to ⁇ 34>, which is used for suppressing generation of an odor from an object to which microorganisms have adhered by bringing the object into contact with the object to which microorganisms have adhered.
  • ⁇ 36> The sheet according to ⁇ 35>, wherein the object to which the microorganism is attached is any one of a fiber product, a hard surface, a skin surface, and a hair surface.
  • Example 1 (1) Method of quantifying odor-causing substances A methanol solution containing 14-methylhexadecanoic acid (SIGMA-ALDRICH), a precursor of odor-causing substances, was dropped onto 3 x 3 cm of cotton plain woven cloth sterilized from the day before the test. Then, the precursor of the odor-causing substance was attached. The attached amount of the precursor of the odor-causing substance was set so that the fatty acid was 100 ⁇ g (1,000 ⁇ g / g cloth) per cotton plain woven cloth. Further, a methanol solution (1 mM) in which various organic acids shown in Table 1 were dissolved was prepared, and 100 ⁇ L was dropped on each cloth to which the substrate was adhered, and dried overnight.
  • SIGMA-ALDRICH 14-methylhexadecanoic acid
  • Moraxella osloensis ATCC 19976 strain was cultured under agar culture conditions, and the cells were collected in sterile ion-exchanged water.
  • OD 600 0.1 (10 8 CFU / mL), 1 / 2NB (Nutrient Broth: Difco) was prepared.
  • Put the cloth in which the precursor of the odor-causing substance and various organic acids are present in a sterilized No. 3 screw tube (Maruemu) inoculate 100 ⁇ L of the bacterial suspension, and incubate at 37 ° C. for 8 hours. Culture was performed. The same operation was performed under the condition that no bacteria were present, and the pH of the cloth (precursor of the odor-causing substance, presence of the organic acid) was measured before culturing.
  • Test method for change in bacterial count A cloth prepared in the same manner as the above-mentioned method for quantifying an odor-causing substance is placed in a sterilized No. 3 screw tube (Maruemu), inoculated with 100 ⁇ L of the bacterial solution, and cultured at 37 ° C. for 8 hours. Was done. After the culture, 20 mL of LP diluent (manufactured by Nippon Pharmaceutical Co., Ltd.) was added, and the mixture was irradiated with ultrasonic waves for 10 minutes to extract the bacteria.
  • LP diluent manufactured by Nippon Pharmaceutical Co., Ltd.
  • the extract was serially diluted, pulverized on an SCD-LP agar medium (manufactured by Nippon Pharmaceutical Co., Ltd.), and cultured at 37 ° C. for 1 day.
  • the number of colonies obtained for each cloth was counted, and the common logarithm of the viable cell count of each Example or Comparative Example was subtracted from the common logarithm of the viable cell count of the cloth that had not been washed (logarithmic value). ) was taken as the bacteriostatic activity value.
  • the common logarithm of the bacterial count (CFU / cm 2 ) before the test was 6.1 (X1).
  • Example 2 Evaluation method of pH change
  • a change in pH was evaluated using a cell membrane of a microorganism as a representative example of a surfactant membrane. That is, the pH of the component (a) and water that come into contact with the microorganism was appropriately selected, the logD of the component (a) was controlled, and the pH was changed in the cytoplasm of the microorganism by contacting the microorganism.
  • the pH change in the cytoplasm was evaluated using Life Technologies' pHrodo (R) Green AM Intracellular pH Indicators kit.
  • LCIS Live Cell Imaging Solution
  • a bacterial solution having an OD 600 of 10 was prepared, and centrifuged again to collect bacterial cells.
  • 5 ⁇ L of pH rodo dye was added to 50 ⁇ L of powerload, and after stirring, 5 mL of LCIS was added.
  • 5 mL of the obtained mixed solution was added to the collected cell pellets to suspend the cells, and the cells were allowed to stand at 37 ° C for 1 hour.
  • a bacterial solution A The solution subjected to the fluorescent staining treatment is referred to as a bacterial solution A.
  • a phosphate buffer 55 mM, pH 6
  • 0.3 mL of bacterial solution A 0.3 mL of a sodium salt aqueous solution of various organic acids shown in Table 2 were added, and the fluorescence was measured immediately after stirring. (Excitation wavelength 509 nm, fluorescence wavelength 533 nm). The higher the fluorescence intensity, the more acidic the cytoplasmic environment. Table 2 shows the results.
  • Example 3 The same operation as in Example 1 was performed except that the compounds shown in Table 3 were used, and the quantification of 4-methyl-3-hexenoic acid and the measurement of the number of bacteria were performed. Table 3 shows the results.
  • Example 4 The compositions described in Table 4 below were prepared. The pH was adjusted using a 1% by mass aqueous sodium hydroxide solution.
  • the composition was impregnated so as to have an impregnation rate of 350% by mass to prepare a sheet for textile products.
  • the cloth to which the precursor of the odor-causing substance adhered was placed in a sterilized No. 3 screw tube (Maruemu), and 100 ⁇ L of the above-mentioned bacterial suspension was inoculated. Further, the textile sheet was brought into contact with the cloth, allowed to stand for 5 minutes, separated from the cloth, and dried overnight. When the pH of the liquid between the cloth and the sheet for textiles was measured with a pH meter of a glass electrode, the pH was 6 in all cases. After the culture, the amount of 4-methyl-3-hexenoic acid was quantified under the same conditions as in Example 1.
  • Test method for change in bacterial count (antibacterial test method) A cloth left overnight by the same method as the above-mentioned method for quantifying an odor-causing substance is placed in a sterilized No. 3 screw tube (Maruem), and 20 mL of an LP diluent (manufactured by Nippon Pharmaceutical Co., Ltd.) is added thereto, and ultrasonic waves are applied. Irradiation was performed for 10 minutes to extract bacteria. The bacteriostatic activity value of the obtained extract was measured in the same manner as in Example 1. The pH of the cloth (precursor of odor-causing substance, presence of organic acid) was measured before culturing. Table 5 shows the above results.

Abstract

A method for inhibiting odor formation that comprises contacting component (a) and water with a microorganism and thus reducing the amount of an odor substance produced by the microorganism, wherein, at the pH value of a composition comprising component (a) and water, the logD value of component (a) calculated in accordance with formula (1) is -1.5 or more and not more than 1.5. Component (a): an organic carboxylic acid or a salt thereof. logD=ClogP-log[1+10(pH-pKa)] formula (1) [In formula (1): ClogP represents the calculated logP value of the logarithmic value of the water/octanol distribution coefficient of component (a) in the acid state; pH represents the pH value of water containing component (a); and pKa represents the pKa value of component (a)].

Description

臭いの生成抑制方法How to control odor generation
 本発明は、臭いの生成抑制方法に関する。
 さらに本発明は、例えば生物学、生化学、生理科学の分野においてpHを制御する方法に関する。
The present invention relates to a method for suppressing odor generation.
The invention further relates to a method for controlling pH, for example in the fields of biology, biochemistry and physiological sciences.
 近年、消費者の生活環境への関心の高まりから、身の回りの不快な臭気の低減又は除去することが望まれている。下着、タオル及びハンカチ等の人の皮膚と直接接触するような繊維製品、又は皮脂を含んだ汗や角質などを吸収若しくはこれらが付着する可能性のある繊維製品は、特有の臭いを生ずることがある。 In recent years, with the growing interest in the living environment of consumers, it has been desired to reduce or eliminate unpleasant odors around them. Textile products that come into direct contact with human skin, such as underwear, towels, and handkerchiefs, or textile products that may absorb or adhere to sweat or keratin containing sebum may produce a unique odor. is there.
 これまでに、臭いの原因物質を生成する原因菌(微生物)の細胞内で起こる、臭いの原因物質への代謝反応を制御することで、臭いの生成を抑制する方法が検討されてきた。
 例えば、特許文献1には、皮脂汚れ成分が生乾き臭原因物質の1種である4-メチル-3-ヘキセン酸への変換を抑制する剤として、特定の構造を有するケトン化合物が開示されている。特許文献2には、β-グルコニダーゼの活性を阻害し、尿臭の生成を抑制する剤として、大環状ケトン化合物が開示されている。また、安息香酸などの特定の構造を有する有機カルボン酸を使用し、微生物を殺菌することで臭いの生成を抑制する技術も知られている。
Until now, methods for suppressing the generation of odor by controlling the metabolic reaction to the odor-causing substance that occurs in the cells of the causative bacteria (microorganisms) that produce the odor-causing substance have been studied.
For example, Patent Literature 1 discloses a ketone compound having a specific structure as an agent for suppressing the conversion of sebum dirt components to 4-methyl-3-hexenoic acid, which is one of the substances causing a dry odor. . Patent Document 2 discloses a macrocyclic ketone compound as an agent that inhibits the activity of β-gluconidase and suppresses the generation of urine odor. There is also known a technique in which an organic carboxylic acid having a specific structure, such as benzoic acid, is used to sterilize microorganisms to suppress generation of odor.
 一方、臭いの原因菌の細胞質内のpH環境を酸性側にすることで、脂肪酸代謝関連酵素の活性が抑制されることが知られており(非特許文献1参照)、細胞内のpHを制御する方法が検討されている。
 例えば、特許文献3には、植物細胞等の細胞内のpHを変更する活性を有するポリペプチドをコードする核酸分子を用いて、植物細胞の液胞内のpHを調整することが開示されている。特許文献4には、細胞内のpHを測定できるpHプローブが開示されており、細胞内のpHを制御するニーズが示されている。特許文献5には、細胞内のpHを増加させる有効量の薬剤を投与することが記載されている。
On the other hand, it is known that the activity of fatty acid metabolism-related enzymes is suppressed by setting the pH environment in the cytoplasm of the bacteria causing the odor to an acidic side (see Non-Patent Document 1), and the intracellular pH is controlled. A way to do that is being considered.
For example, Patent Document 3 discloses that the pH in a vacuole of a plant cell is adjusted using a nucleic acid molecule encoding a polypeptide having an activity of changing the pH in a cell such as a plant cell. . Patent Literature 4 discloses a pH probe capable of measuring intracellular pH, and indicates a need to control intracellular pH. Patent Literature 5 describes administering an effective amount of a drug that increases intracellular pH.
 しかしこれまでに、臭いの原因菌の細胞質内のpH環境を制御することで、臭いの生成抑制することについては知られていない。 However, it has not been known to control odor generation by controlling the pH environment in the cytoplasm of bacteria causing odor.
特開2012-127012号公報JP 2012-127012 A 国際公開第2009/037861号International Publication No. 2009/037861 国際公開第2007/137345号International Publication No. 2007/137345 国際公開第2016/138116号International Publication No. WO 2016/138116 国際公開第2016/142445号International Publication No. WO 2016/142445
 本発明は、下記(a)成分、水及び微生物を接触させ、前記微生物が生成する臭い物質の量を抑制する、臭い生成抑制方法であって、(a)成分及び水を含む組成物のpHにおける、下記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、臭い生成抑制方法に関する。
 
(a)成分:有機カルボン酸又はその塩
 
logD=ClogP-log[1+10(pH-pKa)]  式(1)
[式(1)中、ClogPは(a)成分の酸型の状態での水/オクタノール分配係数の対数値の計算logP値であり、pHは(a)成分を含む水のpHであり、pKaは(a)成分のpKaである。]
The present invention relates to a method for suppressing the generation of odor by contacting the following component (a), water and a microorganism to suppress the amount of odorous substances produced by the microorganism, wherein the pH of the composition comprising the component (a) and water is adjusted. Wherein the logD of the component (a) calculated by the following formula (1) is -1.5 or more and 1.5 or less.

Component (a): organic carboxylic acid or salt thereof
logD = ClogP-log [1 + 10 (pH-pKa) ] Formula (1)
[In the formula (1), ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a), pH is the pH of water containing the component (a), and pKa Is the pKa of the component (a). ]
 また本発明は、界面活性剤膜で隔てられた水を含む2つの相において、一方の相に存在する前記(a)成分の前記式(1)で算出されるlogDを-1.5以上1.5以下に制御し、前記界面活性剤膜で隔てられた他方の相のpHを低下させる、pHの制御方法に関する。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
Further, the present invention provides that, in two phases containing water separated by a surfactant film, the logD of the component (a) present in one of the phases calculated by the formula (1) is -1.5 or more and 1 or more. The present invention relates to a method for controlling pH, wherein the pH of the other phase separated by the surfactant film is lowered by controlling the pH to 0.5 or less.
The above and other features and advantages of the present invention will become more apparent from the following description.
発明の詳細な説明DETAILED DESCRIPTION OF THE INVENTION
 特許文献1又は特許文献2に開示の臭い生成抑制剤は、剤そのものが臭気を有するものが多く、適切な使用場面や使用量で用いる必要がある。また、環境との共存の観点から、とりわけ微生物を殺菌することなく、臭い生成の抑制の検討が必要な場合がある。 臭 Many of the odor generation inhibitors disclosed in Patent Literature 1 or Patent Literature 2 have an odor itself, and thus need to be used in an appropriate usage scene and amount. In addition, from the viewpoint of coexistence with the environment, it may be necessary to examine the suppression of odor generation without particularly sterilizing microorganisms.
 そこで本発明は、臭いの原因となる微生物を殺菌することなく、臭いの原因菌からの臭い生成を抑制できる、臭い生成抑制方法に関する。
 さらに本発明は、界面活性剤膜で隔てられた水を含む2つの相のうち、一方の相のpHを制御する方法に関する。
Therefore, the present invention relates to an odor generation suppressing method capable of suppressing odor generation from odor-causing bacteria without sterilizing microorganisms that cause odor.
The invention further relates to a method for controlling the pH of one of the two phases containing water separated by a surfactant membrane.
 本発明者は、臭いの原因物質、原因菌、及び発生のメカニズムの観点から鋭意検討を行った。その結果、カルボキシル基を有する有機酸又はその塩の水中における、後述する式で算出されるlogDが-1.5以上1.5以下の範囲で、水中で前記有機酸又はその塩と微生物とを接触させることで、微生物の菌数を維持しつつ、微生物が生成する臭いの生成を抑制できること、並びに微生物の細胞膜内のpHを低下させることができることを見出した。
 本発明はこれらの知見に基づいて完成するに至ったものである。
The present inventor has conducted intensive studies from the viewpoint of the odor-causing substance, the causative bacteria, and the mechanism of generation. As a result, the organic acid or its salt and the microorganism can be combined with each other in water when the logD of the organic acid or its salt having a carboxyl group in water is in the range of -1.5 or more and 1.5 or less in water. It has been found that, by contact, the generation of the odor generated by the microorganism can be suppressed while maintaining the number of microorganisms, and the pH of the microorganism in the cell membrane can be reduced.
The present invention has been completed based on these findings.
 本発明の臭い生成抑制方法によれば、臭いの原因となる微生物を殺菌することなく、臭いの原因菌からの臭い生成を抑制することができる。
 さらに本発明は、界面活性剤膜で隔てられた水を含む2つの相において、一方の相のpHを効率的に制御することができる。
ADVANTAGE OF THE INVENTION According to the odor generation suppression method of this invention, the odor generation from the odor-causing bacteria can be suppressed, without sterilizing the odor-causing microorganisms.
Further, the present invention can efficiently control the pH of one of the two phases containing water separated by a surfactant membrane.
<(a)成分>
 本発明の方法で用いる(a)成分は、有機カルボン酸又はその塩である。
 (a)成分は、(a)成分を含む水のpHにおける(a)成分のlogDが-1.5以上1.5以下となる状態で、水中で微生物と接触させることで、微生物の細胞膜内のpHが低下する。その結果、(a)成分が微生物内に浸透しやすくなり、微生物内に浸透した(a)成分が微生物内の臭い物質を生成する代謝系の働きを抑制し、臭い物質の生成を抑制することができる。特に、微生物内に(a)成分を浸透させることで、細胞内のpHが低下し、その結果、脂肪酸代謝関連酵素の活性を抑制し、脂肪酸の代謝を制御することができる。
 さらに(a)成分は、(a)成分を含む水のpHにおける(a)成分のlogDが-1.5以上1.5以下となる状態で、界面活性剤膜で隔てられた一方の相に存在させることで、(a)成分が界面活性剤膜に吸着し、界面活性剤膜で隔てられた、(a)成分が存在していない他方の相に分配しやすくなる。その結果、界面活性剤で隔てられ、(a)成分が分配された他方の相のpHを制御することができる。本明細書において「pHを制御する」とは、pHを低下させることを含む。
<(A) component>
The component (a) used in the method of the present invention is an organic carboxylic acid or a salt thereof.
The component (a) is brought into contact with a microorganism in water in a state where the logD of the component (a) at the pH of the water containing the component (a) is −1.5 or more and 1.5 or less, so that the microorganism is contained in the cell membrane of the microorganism. PH decreases. As a result, the component (a) easily penetrates into the microorganism, and the component (a) penetrated into the microorganism suppresses the function of the metabolic system that produces odorous substances in the microorganisms, thereby suppressing the production of odorous substances. Can be. In particular, by infiltrating the component (a) into the microorganism, the intracellular pH is reduced, and as a result, the activity of fatty acid metabolism-related enzymes can be suppressed, and the metabolism of fatty acids can be controlled.
Further, the component (a) is converted into one phase separated by a surfactant film in a state where the logD of the component (a) at the pH of water containing the component (a) is −1.5 or more and 1.5 or less. By causing the component (a) to be present, the component (a) is adsorbed on the surfactant film, and is easily distributed to the other phase where the component (a) is not present, separated by the surfactant film. As a result, it is possible to control the pH of the other phase separated by the surfactant and to which the component (a) is distributed. As used herein, "controlling the pH" includes lowering the pH.
 本発明においては、前記(a)成分及び水を含む組成物のpHにおける、下記式(1)で算出される前記(a)成分のlogDを-1.5以上1.5以下とする。
 
logD=ClogP-log[1+10(pH-pKa)]  式(1)
 
[式(1)中、ClogPは(a)成分の酸型の状態での水/オクタノール分配係数の対数値の計算logP値であり、pHは(a)成分を含む水のpHであり、pKaは(a)成分のpKaである。]
In the present invention, the logD of the component (a) calculated from the following formula (1) at the pH of the composition containing the component (a) and water is from −1.5 to 1.5.

logD = ClogP-log [1 + 10 (pH-pKa) ] Formula (1)

[In the formula (1), ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a), pH is the pH of water containing the component (a), and pKa Is the pKa of the component (a). ]
 本発明においてlogDは、(a)成分の酸型のClogP、酸解離定数(pKa)、並びに(a)成分と水を含む組成物のpHを基に算出することができる。logDは(a)成分の酸型のClogP、(a)成分を含む水のpH、及びpKaを考慮した、水/オクタノール分配係数の計算値である。
 logDの考え方は、例えば、Li Xing, Robert C. Glen, Novel Methods for the Prediction of logP, pKa, and logD, J. Chem. Inf. Comput. Sci. 2002, vol. 42, p. 796-805に開示されており、周知の概念である。
 本発明においてlogDを算出するために、ClogPの値及びpKaの値を熱力学物性推算ソフトウェア「COSMOtherm」(モルシス社)で計算する。
In the present invention, logD can be calculated based on the ClogP of the acid form of the component (a), the acid dissociation constant (pKa), and the pH of the composition containing the component (a) and water. logD is a calculated value of the water / octanol partition coefficient in consideration of the acid-form ClogP of the component (a), the pH of water containing the component (a), and pKa.
The concept of logD is described in, for example, Li Xing, Robert C. Glen, Novel Methods for the Prediction of logP, pKa, and logD, J. Chem. Inf. Comput. Sci. 2002, vol. 42, p. 796-805. It is a disclosed and well-known concept.
In the present invention, in order to calculate logD, the value of ClogP and the value of pKa are calculated by thermodynamic property estimation software “COSMOtherm” (Morcis).
 本発明で用いる(a)成分として具体的には、炭素原子数8以上14以下の脂肪族多価カルボン酸又はその塩が挙げられる。logDを所望の範囲に調整しやすい点で、(a)成分の炭素原子数は好ましくは8以上であり、より好ましくは9以上であり、そして、好ましくは14以下であり、より好ましくは12以下であり、更に好ましくは10以下である。
 本発明で用いる(a)成分としては、logDを所望の範囲に制御できる観点から、(a)成分の分子量とカルボキシル基1つあたりの分子量の比である、((a)成分の分子量)/(カルボキシル基の分子量)で表される値が、1.9以上が好ましく、2.0以上がより好ましく、2.2以上がさらに好ましい。そして同じ観点から、((a)成分の分子量)/(カルボキシル基の分子量)で表される値は3.5以下が好ましく、3.2以下がより好ましく、3.0以下がより好ましく、2.8以下がさらに好ましい。((a)成分の分子量)/(カルボキシル基の分子量)で表される値を前記数値範囲とすることで、微生物を殺菌することなく、logDを所望の範囲に制御点で好ましい。尚本発明において、カルボキシル基の分子量は、酸型のカルボキシル基、すなわちCOOHの分子量の値である45とする。また、(a)成分の分子量を算出する場合のカルボン酸は、酸型の値を用いる。
 本発明で用いる(a)成分としては、脂肪族ジカルボン酸及びその塩からなる群より選ばれる1種以上の化合物が好ましく、具体的な例としては、スベリン酸(炭素原子数8)、アゼライン酸(炭素原子数9)、セバシン酸(炭素原子数10)、ドデカン二酸(炭素原子数12)、テトラデカン二酸(炭素原子数14)及びこれらの塩からなる群より選ばれる1種以上の化合物が挙げられる。さらに前記塩としては、ナトリウム塩などのアルカリ金属塩、マグネシウム塩などのアルカリ土類金属塩が挙げられる。
Specific examples of the component (a) used in the present invention include an aliphatic polycarboxylic acid having 8 to 14 carbon atoms or a salt thereof. The component (a) preferably has 8 or more carbon atoms, more preferably 9 or more carbon atoms, and preferably 14 or less, and more preferably 12 or less, in that the logD can be easily adjusted to a desired range. And more preferably 10 or less.
As the component (a) used in the present invention, the ratio of the molecular weight of the component (a) to the molecular weight per carboxyl group, (molecular weight of the component (a)) / The value represented by (molecular weight of carboxyl group) is preferably 1.9 or more, more preferably 2.0 or more, and even more preferably 2.2 or more. From the same viewpoint, the value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) is preferably 3.5 or less, more preferably 3.2 or less, more preferably 3.0 or less, and 2 .8 or less is more preferable. By setting the value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) in the above numerical range, the logD is preferably controlled within a desired range without sterilizing microorganisms. In the present invention, the molecular weight of the carboxyl group is 45, which is the value of the molecular weight of the acid type carboxyl group, that is, COOH. The carboxylic acid used for calculating the molecular weight of the component (a) uses an acid type value.
As the component (a) used in the present invention, one or more compounds selected from the group consisting of aliphatic dicarboxylic acids and salts thereof are preferable, and specific examples thereof include suberic acid (8 carbon atoms) and azelaic acid. (C9), sebacic acid (C10), dodecanedioic acid (C12), tetradecandioic acid (C14), and one or more compounds selected from the group consisting of salts thereof. Is mentioned. Further, examples of the salt include an alkali metal salt such as a sodium salt and an alkaline earth metal salt such as a magnesium salt.
 本発明で用いる(a)成分として別の具体例としては、前記式(1)で算出されるlogDを所望の範囲に制御しやすい観点から、一つのナフタレン基と一つのカルボキシル基を有する有機カルボン酸又はその塩が挙げられる。このような有機カルボン酸は、任意の水酸基を有していてもよい。さらに前記塩としてはナトリウム塩などのアルカリ金属塩、マグネシウム塩などのアルカリ土類金属塩が挙げられる。
 具体的な例としては、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、2-ヒロドキシ-1-ナフタレンカルボン酸、3-ヒロドキシ-2-ナフタレンカルボン酸、6-ヒドロキシ-2-ナフタレンカルボン酸、及びこれらの塩からなる群より選ばれる1種以上の化合物が好ましい。
Another specific example of the component (a) used in the present invention is an organic carboxylic acid having one naphthalene group and one carboxyl group from the viewpoint of easily controlling logD calculated by the above formula (1) to a desired range. Acids or salts thereof. Such an organic carboxylic acid may have an arbitrary hydroxyl group. Further, examples of the salt include an alkali metal salt such as a sodium salt and an alkaline earth metal salt such as a magnesium salt.
Specific examples include 1-naphthalenecarboxylic acid, 2-naphthalenecarboxylic acid, 2-hydroxy-1-naphthalenecarboxylic acid, 3-hydroxy-2-naphthalenecarboxylic acid, 6-hydroxy-2-naphthalenecarboxylic acid, and One or more compounds selected from the group consisting of these salts are preferred.
 本発明において、前記(a)成分として市販のものを用いてもよい。あるいは、通常の製造方法で前記(a)成分を合成することもできる。 市 販 In the present invention, a commercially available component (a) may be used. Alternatively, the component (a) can be synthesized by an ordinary production method.
 (a)成分と水とを含む組成物の質量に対する(a)成分の含有量は、好ましくは0.01質量%以上であり、より好ましくは0.03質量%以上であり、更に好ましくは0.05質量%以上であり、より更に好ましくは0.08質量%以上である。そして、(a)成分の含有量は、好ましくは1質量%以下であり、より好ましくは0.8質量%以下であり、更に好ましくは0.5質量%以下である。 The content of the component (a) with respect to the mass of the composition containing the component (a) and water is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, and still more preferably 0% by mass or more. 0.05% by mass or more, more preferably 0.08% by mass or more. The content of the component (a) is preferably 1% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.5% by mass or less.
<水>
 本発明の方法で用いる水としては、イオン交換水、蒸留水、水道水、汗、雨などを使用することができる。
<Water>
As the water used in the method of the present invention, ion-exchanged water, distilled water, tap water, sweat, rain and the like can be used.
 (a)成分と水とを含む組成物中には、本発明の効果を阻害しない範囲で、界面活性剤や香料などの任意成分が含まれていてもよい。
 例えば、(a)成分と水とを含む組成物中に、本発明の効果を阻害しない範囲で、(b)成分として、界面活性剤、好ましくは(b1)ノニオン界面活性剤及び(b2)アニオン界面活性剤(但し、(a)成分は除く。)をからなる群より選ばれる1種以上の界面活性剤を含むことができる。
The composition containing component (a) and water may contain optional components such as surfactants and fragrances as long as the effects of the present invention are not impaired.
For example, in a composition containing the component (a) and water, as a component (b), a surfactant, preferably a (b1) nonionic surfactant and a (b2) anion, as long as the effects of the present invention are not impaired. One or more surfactants selected from the group consisting of surfactants (however, excluding the component (a)) can be contained.
 (b1)成分としては、(a)成分による臭い生成抑制効果をより向上できる観点から、HLBが9以上15以下のノニオン界面活性剤が好ましい。(b1)成分のHLBは、ポリオキシエチレン基を有するノニオン界面活性剤の場合には、下記式(2)で表されるグリフィン(Griffin)法により求められる。
 
HLB値=〔((b1)成分のポリオキシエチレン基部分の分子量)/((b)成分の分子量)〕×20 (2)
 
 尚、(b1)成分のポリオキシエチレン基部分の分子量は、ポリオキシエチレン基の平均付加モル数の値を用いて算出するものとする。
 また、ポリオキシエチレン基を有さないノニオン界面活性剤の場合には、デービス法により求めることができる。ここで、デービス法によるHLBの算出方法は、「界面活性剤  物性・応用・化学生態学」(北原文雄ら著  講談社サイエンティフィック1990年5月20日第7刷発行)の24頁~25頁に記載されている方法を用いることにより算出することができる。
As the component (b1), a nonionic surfactant having an HLB of 9 or more and 15 or less is preferable from the viewpoint that the effect of suppressing the generation of odor by the component (a) can be further improved. In the case of a nonionic surfactant having a polyoxyethylene group, the HLB of the component (b1) is determined by a Griffin method represented by the following formula (2).

HLB value = [(molecular weight of polyoxyethylene group portion of component (b1)) / (molecular weight of component (b)]] × 20 (2)

The molecular weight of the polyoxyethylene group portion of the component (b1) is calculated using the value of the average number of moles of polyoxyethylene group added.
In the case of a nonionic surfactant having no polyoxyethylene group, it can be determined by the Davis method. Here, the method of calculating the HLB by the Davis method is described in pages 24 to 25 of “Surfactant Physical Properties / Application / Chemical Ecology” (published by Kodansha Scientific, May 20, 1990, 7th print, Fumio Kitahara et al.). Can be calculated by using the method described in (1).
 (b1)成分のHLBは、繊維製品などに付着した汚れの洗浄性に優れる観点(以下、洗浄性の観点ともいう)から、好ましくは9.0以上、より好ましくは9.5以上、より好ましくは10以上、より更に好ましくは10.5以上、より更に好ましくは11.0以上である。そして、HLBは、好ましくは15以下、より好ましくは14.5以下、より好ましくは14以下、より更に好ましくは13以下、より更に好ましくは12以下である。 The HLB of the component (b1) is preferably 9.0 or more, more preferably 9.5 or more, and more preferably 9.5 or more, from the viewpoint of excellent cleaning of dirt attached to textiles and the like (hereinafter, also referred to as cleaning performance). Is at least 10, more preferably at least 10.5, even more preferably at least 11.0. The HLB is preferably 15 or less, more preferably 14.5 or less, more preferably 14 or less, still more preferably 13 or less, and still more preferably 12 or less.
 (b2)成分の具体例としては、下記(b21)成分、(b22)成分、(b23)成分及び(b24)成分からなる群より選ばれる1種以上のアニオン界面活性剤が挙げられる。
 
(b21)成分:アルキル又はアルケニル硫酸エステル塩
(b22)成分:ポリオキシアルキレンアルキルエーテル硫酸エステル塩又はポリオキシアルキレンアルケニルエーテル硫酸エステル塩
(b23)成分:スルホン酸塩基を有するアニオン界面活性剤
(b24)成分:炭素数が10以上20以下の脂肪酸又はその塩(但し、(b23)成分を除く)
Specific examples of the component (b2) include one or more anionic surfactants selected from the group consisting of the following components (b21), (b22), (b23) and (b24).

(B21) Component: alkyl or alkenyl sulfate ester salt (b22) Component: polyoxyalkylene alkyl ether sulfate salt or polyoxyalkylene alkenyl ether sulfate salt (b23) component: anionic surfactant having a sulfonate group (b24) Ingredients: fatty acids having 10 to 20 carbon atoms or salts thereof (however, excluding component (b23))
 組成物の質量に対する(b)成分の含有量は、臭い生成抑制効果をより高める観点から、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上、より更に好ましくは0.5質量%以上である。そして、(b)成分の含有量は、同じ観点から、好ましくは10質量%以下、より好ましくは9質量%以下、更に好ましくは8質量%以下、より更に好ましくは5質量%以下である。 The content of the component (b) with respect to the mass of the composition is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably 0.4% by mass, from the viewpoint of further enhancing the odor generation suppressing effect. %, More preferably 0.5% by mass or more. From the same viewpoint, the content of the component (b) is preferably 10% by mass or less, more preferably 9% by mass or less, still more preferably 8% by mass or less, and still more preferably 5% by mass or less.
<界面活性剤膜>
 本明細書において、「界面活性剤膜」とは、界面活性剤で形成される膜を意味する。
 本発明が適用できる界面活性剤膜としては、炭素原子数10以上22以下の脂肪族炭化水素基を有する界面活性剤で形成される膜が挙げられる。界面活性剤膜は、界面活性剤の分子が1層に並んでできる単分子膜であってもよいし、隙間なく並んだ界面活性剤分子の疎水性部分を内側に、親水性部分を外側に向けて形成された二重膜であってもよい。界面活性剤膜の具体例としては、炭素原子数10以上22以下の脂肪族炭化水素基を有するカチオン界面活性剤で形成される膜、炭素原子数10以上22以下の脂肪族炭化水素基を有するアニオン界面活性剤で形成される膜、炭素原子数10以上22以下の脂肪族炭化水素基を有するノニオン界面活性剤で形成される膜、及び炭素原子数10以上22以下の脂肪族炭化水素基を有する両性界面活性剤で形成される膜からなる群より選ばれる1種又は2種以上が挙げられる。
 また本発明が適用できる界面活性剤は、天然に存在する界面活性剤でもよい。例えば、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリン、ホスファチジルイノシトール、ホスファチジルグリセロールで例示されるリン脂質であってもよく、ラムノリピッド、ソホロリピッド、トレはロースリピッド等の糖脂質であってもよい。このうち、リン脂質を含む界面活性剤、とりわけ両親媒性物質が特に好ましい。
<Surfactant film>
In the present specification, “surfactant film” means a film formed by a surfactant.
Examples of the surfactant film to which the present invention can be applied include a film formed of a surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms. The surfactant film may be a monomolecular film formed by arranging surfactant molecules in a single layer, or the hydrophobic portion of the surfactant molecules arranged without gaps on the inside and the hydrophilic portion on the outside. It may be a double film formed to face. As a specific example of the surfactant film, a film formed of a cationic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, having an aliphatic hydrocarbon group having 10 to 22 carbon atoms A film formed of an anionic surfactant, a film formed of a nonionic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, and an aliphatic hydrocarbon group having 10 to 22 carbon atoms. One or more selected from the group consisting of films formed with amphoteric surfactants.
The surfactant to which the present invention can be applied may be a naturally occurring surfactant. For example, it may be a phospholipid exemplified by phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, and rhamnolipid, sophorolipid, and tre may be glycolipids such as roose lipid. Of these, surfactants containing phospholipids, particularly amphiphilic substances, are particularly preferred.
<微生物>
 界面活性剤膜としては、微生物の細胞膜を利用することができる。
 本発明を適用できる微生物は、環境中に存在する一般的な微生物に対して用いることができる。例えば、モラクセラ(Moraxella)属細菌、アシネトバクター(Acinetobacter)属細菌、シェードモナス(Pseudomonas)属細菌、バチルス(Bacillus)属細菌、スフィンゴモナス(Sphingomonas)属細菌、ラルストニア(Ralstonia)属細菌、キュープリアビダス(Cupriavidus)属細菌、サイクロバクター(Psychorobacter)属細菌、セラチア(Serratia)属細菌、エシェリキア(Escherichia)属細菌、スタフィロコッカス(Staphylococcus)属細菌、ブルクホルデリア(Burkholderia)属細菌、サッカロマイセス(Saccaromyces)属酵母、及びロドトルラ(Rhodotorula)属酵母等が挙げられる。
 具体的には、モラクセラ・エスピー(Moraxella sp.)、モラクセラ・オスロエンシス(Moraxella osloensis)、アシネトバクター・レイディオレジステンス(Acinetobacter radioresistens)、アシネトバクター・ジュニイ(Acinetobacter junii)、アシネトバクター・カルコアセティカス(Acinetobacter calcoaceticus)、セラチア・マルセセンス(Serratia marcescens)、エシェリキア・コーライ(Escherichia coli)、スタフィロコッカス・アウレウス(Staphylococcus aureus)、シュードモナス・アルカリゲネス(Pseudomonas alcaligenes)、バチルス・セレウス(Bacillus cereus)、バチルス・サブティリス(Bacillus subtilis)、サイクロバクター・パシフィセンシス(Psychrobacter pacificensis)、サイクロバクター・グラシンコラ(Psychrobacter glacincola)、スフィンゴモナス・ヤノイクヤエ(Sphingomonas yanoikuyae)、ラルストニア エスピー(Ralstonia sp.)、サッカロマイセス・セレビジエ(Saccaromyces cerevisiae)、ロドトルラ・ムシラギノーサ(Rhodotorula mucilaginosa)、ロドトルラ・スルーフィエ(Rhodotorula slooffiae)、キュープリアビダス・オキサラティカス(Cupriavidus oxalaticus)及びブルクホルデリア・セパシア(Burkholderia cepacia)等が挙げられる。
<Microorganism>
Microbial cell membranes can be used as the surfactant membrane.
The microorganism to which the present invention can be applied can be used for general microorganisms existing in the environment. For example, Moraxella bacteria, Acinetobacter bacteria, Pseudomonas bacteria, Bacillus bacteria, Sphingomonas bacteria, Ralstonia bacteria, Cupriavidas Bacteria belonging to the genus (Cupriavidus), bacteria belonging to the genus Psychorobacter, bacteria belonging to the genus Serratia, bacteria belonging to the genus Escherichia, bacteria belonging to the genus Staphylococcus, bacteria belonging to the genus Burkholderia, and Saccaromyces And yeasts belonging to the genus Rhodotorula.
Specifically, Moraxella sp (Moraxella sp.), Moraxella Osuroenshisu (Moraxella osloensis), Acinetobacter Radio Regis Tense (Acinetobacter radioresistens), Acinetobacter Junii (Acinetobacter JuNii), Acinetobacter calcoaceticus (Acinetobacter calcoaceticus ), Serratia marcescens (Serratia marcescens), Escherichia Korai (Escherichia coli), Staphylococcus aureus (Staphylococcus aureus), Pseudomonas Alcaligenes (Pseudomonas alcaligenes), Bacillus cereus (Bacillus cereus), Bacillus subtilis (Bacillus subtilis), cyclo Arthrobacter Pasi Fi forsythensis (Psychrobacter pacificensis), cyclo Arthrobacter Gurashinkora (Psychrobacter glacincola), Sphingomonas Yanoi Yae (Sphingomonas yanoikuyae), Ralstonia sp (Ralstonia sp.), Saccharomyces cerevisiae (Saccaromyces cerevisiae), Rhodotorula Mushiraginosa (Rhodotorula mucilaginosa), Rhodotorula Surufie (Rhodotorula slooffiae), queue pre-Avi Das oxa Ratih dregs (Cupriavidus oxalaticus) And Burkholderia cepacia .
<臭い生成抑制方法>
 本発明の臭い生成抑制方法において、前記(a)成分、水及び微生物を接触させ、微生物が生成する臭い物質の量を抑制する。ここで、(a)成分及び水を含む組成物のpHにおける、前記組成物中の(a)成分の前記式(1)で算出されるlogDを-1.5以上1.5以下とする。
<How to control odor generation>
In the method for suppressing odor generation of the present invention, the component (a), water and microorganisms are brought into contact with each other to suppress the amount of odorous substances produced by microorganisms. Here, at the pH of the composition containing the component (a) and water, the logD of the component (a) in the composition calculated by the formula (1) is -1.5 or more and 1.5 or less.
 (a)成分を含む水のpHは、(a)成分のlogDが所望の範囲であり、且つ微生物を殺菌することなく微生物の生菌数が維持できるpHであれば、特に制限はない。微生物の生菌数を維持できる観点から、(a)成分及び水を含む組成物のpHは、好ましくは4.0以上であり、より好ましくは4.5以上であり、更に好ましくは5.0以上である。そして同じ観点から、(a)成分及び水を含む組成物のpHは好ましくは10.0以下であり、より好ましくは9.0以下であり、更に好ましくは8.5以下であり、より更に好ましくは8.0以下である。
 本発明のpHは、常法に従い測定することができ、例えばガラス電極を用いたpH測定装置で測定することができる。
The pH of the water containing the component (a) is not particularly limited as long as the logD of the component (a) is within a desired range and the viable cell count of the microorganism can be maintained without killing the microorganism. From the viewpoint of maintaining the viable count of microorganisms, the pH of the composition containing the component (a) and water is preferably 4.0 or more, more preferably 4.5 or more, and still more preferably 5.0. That is all. And from the same viewpoint, the pH of the composition containing the component (a) and water is preferably 10.0 or less, more preferably 9.0 or less, further preferably 8.5 or less, and still more preferably. Is 8.0 or less.
The pH of the present invention can be measured according to a conventional method, for example, with a pH measuring device using a glass electrode.
 前記式(1)で算出される(a)成分のlogDは、微生物の代謝制御効果をより高める観点から、-1.5以上である。(a)成分のlogDは、好ましくは-1.2以上であり、より好ましくは-1.0以上であり、更に好ましくは-0.8以上であり、より更に好ましくは-0.5以上であり、より更に好ましくは-0.2以上であり、より更に好ましくは0以上である。そして同じ観点から(a)成分のlogDは1.5以下であり、好ましくは1.3以下であり、より好ましくは1.1以下であり、更に好ましくは1.0以下である。 Lo The logD of the component (a) calculated by the above formula (1) is -1.5 or more from the viewpoint of further enhancing the metabolic control effect of the microorganism. The logD of the component (a) is preferably -1.2 or more, more preferably -1.0 or more, further preferably -0.8 or more, and still more preferably -0.5 or more. Yes, more preferably −0.2 or more, and even more preferably 0 or more. And from the same viewpoint, the logD of the component (a) is 1.5 or less, preferably 1.3 or less, more preferably 1.1 or less, and further preferably 1.0 or less.
 (a)成分、水及び微生物の接触時間は、微生物の代謝を制御する程度によって適宜決めることができる。微生物の代謝の制御をより大きくする観点から、接触時間は好ましくは1分以上であり、より好ましくは5分以上であり、更に好ましくは10分以上であり、より更に好ましくは30分以上であり、より更に好ましくは1時間以上である。そして、接触時間は好ましくは15時間以下であり、より好ましくは12時間以下であり、更に好ましくは8時間以下である。 接触 The contact time of the component (a), water and microorganisms can be appropriately determined depending on the degree of controlling the metabolism of microorganisms. From the viewpoint of greater control of the metabolism of the microorganism, the contact time is preferably 1 minute or more, more preferably 5 minutes or more, further preferably 10 minutes or more, and still more preferably 30 minutes or more. And still more preferably 1 hour or more. The contact time is preferably 15 hours or less, more preferably 12 hours or less, and further preferably 8 hours or less.
 本発明の臭い生成抑制方法は、(a)成分との接触後の微生物の生菌数を維持しつつ、微生物が生成する臭い物質の量を抑制する方法であることが好ましい。
 本明細書において「微生物の生菌数を維持しつつ」とは、(a)成分と接触する前の微生物の生菌数の対数値(1)と、(a)成分と接触後の微生物の生菌数の対数値(2)との差である、対数値(1)-対数値(2)が-1以上2未満であることを意味する。前記の対数値の差は、一般的に殺菌活性値、静菌活性値と呼ばれることもあり、殺菌性を有する又は抗菌性を有するとは、各々殺菌性試験又は抗菌性試験において、殺菌活性値又は静菌活性値が2.2以上であると定義されている。本発明においては、殺菌活性値ないし静菌活性値が-1以上2未満、好ましくは-0.5以上1未満、より好ましくは0以上0.8以下、更に好ましくは0以上0.7以下である場合を「微生物の生菌数を維持する」と称する。
The odor generation suppressing method of the present invention is preferably a method of suppressing the amount of odorous substances generated by microorganisms while maintaining the viable count of microorganisms after contact with the component (a).
As used herein, "while maintaining the viable cell count of the microorganism" means "the logarithmic value (1) of the viable cell count of the microorganism before contact with the component (a)," It means that the logarithmic value (1) -the logarithmic value (2), which is the difference from the logarithmic value (2) of the viable cell count, is -1 or more and less than 2. The difference in the logarithmic value is generally referred to as a bactericidal activity value, a bacteriostatic activity value, and having bactericidal or having antibacterial properties, respectively, in a bactericidal test or an antibacterial test, the bactericidal activity value Alternatively, it is defined as having a bacteriostatic activity value of 2.2 or more. In the present invention, the bactericidal activity value or the bacteriostatic activity value is -1 or more and less than 2, preferably -0.5 or more and less than 1, more preferably 0 or more and 0.8 or less, further preferably 0 or more and 0.7 or less. One case is referred to as "maintaining the viable microbial count".
 本発明により抑制できる臭いは、微生物の代謝系において、脂肪酸合成系の代謝により生成する臭いに適用することができる。本発明は脂肪酸合成系の代謝により生成する臭いをマスキングにより、臭いを感じにくくするマスキング消臭、または臭い物質を臭い物質に変える化学消臭とは異なり、臭い物質の生成量を抑制する技術である。 臭 The odor that can be suppressed by the present invention can be applied to the odor generated by metabolism of fatty acid synthesis system in the metabolic system of microorganisms. The present invention is a technology that suppresses the generation amount of odorous substances, unlike masking deodorization in which odors generated by metabolism of fatty acid synthesis system are masked to make the odors less noticeable, or chemical deodorization in which odorous substances are changed to odorous substances. is there.
<臭い物質>
 本発明の臭い抑制方法は、微生物の代謝系において、脂肪酸合成系の代謝により生成する臭いに適用することができる。本発明は脂肪酸合成系の代謝により生成する臭いをマスキングすることにより、臭いを感じにくくするマスキング消臭、または臭い物質を化学作用により臭いにくくする化学消臭とは異なり、臭い物質の生成量を抑制する技術である。
 臭い物質は必ずしも限定されるものではないが、代表的な臭い物質として、例えば、下記式で表される化合物からなる、4-メチル-3-ヘキセン酸(以下、「4M3H」ともいう)、又は4-メチルヘキサン酸(以下、「4MH」ともいう)が挙げられる。4-メチル-3-ヘキセン酸には、下記に示すようにシス・トランス異性体が存在し、本発明においては、シス型、トランス型のいずれの構造の化合物も包含するものである。
<Odorous substances>
The odor control method of the present invention can be applied to odors generated by metabolism of fatty acid synthesis system in the metabolic system of microorganisms. The present invention masks the odor generated by the metabolism of the fatty acid synthesis system, so that masking deodorization that makes the odor less likely to be perceived, or chemical deodorization that makes the odorous substance less odorable by chemical action, differs from the chemical deodorization that makes the odorous substance less odorable. It is a technique to control.
The odorant is not necessarily limited, but typical odorants include, for example, 4-methyl-3-hexenoic acid (hereinafter also referred to as “4M3H”) consisting of a compound represented by the following formula, or 4-methylhexanoic acid (hereinafter, also referred to as "4MH"). 4-methyl-3-hexenoic acid has cis-trans isomers as shown below, and in the present invention, compounds having both cis- and trans-structures are included.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記の代表的な臭い物質である4M3Hや4MHは、皮脂汚れに含まれる臭い前駆体をもとに、微生物の脂肪酸合成系で生成されることが多い。「皮脂汚れ」とは、衣類等の繊維製品に付着する最も代表的な汚れであり、遊離脂肪酸、グリセリド等の油分を多量に含有しており、それらがほこり中のカーボンや泥、剥離した角質等を閉じ込めたものが、繊維製品等で観察されるものである。また「皮脂汚れ成分」とは、衣類等に通常見られる皮脂汚れの成分であれば特に制限はない。臭い物質の前駆体となり得る物質としては、例えば炭素数9~21(好ましくは炭素数11~19、より好ましくは炭素数17~19)の飽和又は不飽和のアンテイソ脂肪酸(例えば、6-メチルオクタン酸、8-メチルデカン酸、12-メチルテトラデカン酸、14-メチルヘキサデカン酸、16-メチルオクタデカン酸、14-メチルヘキサデセン酸及び16-メチルオクタデセン酸)、並びにその塩及びエステルが挙げられる。但し、これらの中には、皮脂汚れ中には実際には存在しない化合物も含まれる。 4M3H and 4MH, which are typical odorous substances, are often produced in the fatty acid synthesis system of microorganisms based on odor precursors contained in sebum stains. "Sebum dirt" is the most typical dirt that adheres to textiles such as clothing, and contains a large amount of oils such as free fatty acids and glycerides, which contain carbon and mud in dust and exfoliated keratin. Is what is observed in textiles and the like. The “sebum dirt component” is not particularly limited as long as it is a sebum dirt component usually found in clothes and the like. Examples of the substance which can be a precursor of the odorous substance include a saturated or unsaturated anteiso fatty acid having 9 to 21 carbon atoms (preferably 11 to 19 carbon atoms, more preferably 17 to 19 carbon atoms) (eg, 6-methyloctane). Acids, 8-methyldecanoic acid, 12-methyltetradecanoic acid, 14-methylhexadecanoic acid, 16-methyloctadecanoic acid, 14-methylhexadecenoic acid and 16-methyloctadecenoic acid), and salts and esters thereof. However, these include compounds that are not actually present in sebum stains.
 本発明の臭い生成抑制方法は、(a)成分と水と微生物が接触する方法に適用することができ、それぞれが接触する順番により特に制限されない。例えば、(a)成分及び水を含む組成物と微生物が接触し、(a)成分と水と微生物が接触する方法、水を含み微生物が存在する組成物と(a)成分が接触し、(a)成分と水と微生物が接触する方法、並びに、(a)成分と微生物が存在する状態で水が接触し、(a)成分と水と微生物が接触する方法、が挙げられる。
 (a)成分と水を含む組成物と微生物が接触し、(a)成分と水と微生物が接触する方法の例としては、例えば(a)成分と水を含む組成物を微生物に対して噴霧又は塗布する方法、(a)成分と水を含む組成物に微生物を浸漬する方法が挙げられる。組成物を噴霧する方法としては、例えばスプレイヤー等の噴霧器を用いて噴霧する方法が挙げられる。組成物を塗布する方法としては、塗布に用いる用具、例えば、(a)成分と水を含む組成物を含ませた木綿繊維や化繊繊維で構成された、シート状の用具と微生物を接触させて、微生物に(a)成分と水を含む組成物を塗布する方法が挙げられる。
The odor generation suppressing method of the present invention can be applied to a method in which the component (a), water, and microorganisms come into contact with each other, and the method is not particularly limited by the order in which the components come into contact with each other. For example, a method in which the microorganism containing the component (a) and water contacts the composition containing the component (a), the method in which the component (a) contacts the water and the microorganism, and the composition containing the water and the microorganism where the component (a) contacts, A method in which component (a) contacts water with a microorganism, and a method in which component (a) contacts water in the presence of a microorganism and component (a) contacts water with a microorganism.
As an example of a method in which a composition containing (a) component and water comes into contact with a microorganism, and a component (a) coming into contact with water and a microorganism, for example, a composition containing (a) component and water is sprayed on the microorganism. Alternatively, there may be mentioned a method of applying, and a method of immersing microorganisms in a composition containing the component (a) and water. Examples of a method of spraying the composition include a method of spraying using a sprayer such as a sprayer. As a method of applying the composition, a tool used for application, for example, a microorganism in contact with a sheet-shaped tool made of a cotton fiber or a synthetic fiber containing a composition containing the component (a) and water is contacted. A method of applying a composition containing the component (a) and water to a microorganism.
 前記の(a)成分と水と微生物が存在する状態は、(a)成分と水と微生物を含む組成物の状態であってもよく、対象物上で、(a)成分と水と微生物を含む組成物の状態であってもよい。対象物としては、繊維製品、硬質表面、皮膚表面、毛髪表面であってもよい、繊維製品の素材としては特に制限はなく、ウール、シルク、木綿等の天然素材、ポリエステル、ポリアミド等の化学繊維、及びこれらの組合せのいずれであってもよい。本発明において、繊維製品の素材は木綿であることが好ましい。繊維製品は未使用であっても、一度以上使用した使用済のものでもよい。(a)成分を接触させる繊維製品は、湿気ないし水分を含んだものでもよいし、乾燥を十分に行ったものであってもよい。硬質表面としては、ガラス、金属、プラスチック、陶器であってもよい。 The state where the component (a), water, and microorganisms are present may be a state of a composition containing the component (a), water, and microorganisms. It may be in the state of a composition containing the same. The target object may be a fiber product, a hard surface, a skin surface, or a hair surface. The material of the fiber product is not particularly limited, and natural materials such as wool, silk, and cotton, and chemical fibers such as polyester and polyamide. , And combinations thereof. In the present invention, the material of the textile is preferably cotton. The fiber product may be unused or used once or more. The fiber product with which the component (a) is brought into contact may be one containing moisture or moisture, or one that has been sufficiently dried. The hard surface may be glass, metal, plastic, pottery.
 臭い物質の生成量の抑制のために、(a)成分、水の量は適宜調製することができる。例えば、繊維製品上で本発明の臭い生成抑制方法を実施する場合は、微生物が存在する繊維製品の質量あたりの(a)成分の量が0.01質量%以上1質量%以下となる量で、予め存在させておき、(a)成分が特定のlogDとなるpH又は量の水を接触させ、繊維製品上で(a)成分と水と微生物が接触してもよい。(a)成分と水と微生物が接触する際の、(a)成分と水を含む組成物のpHは、(a)成分が本発明の特定のlogDとなるように、酸剤やアルカリ剤を更に添加して調整してもよく、予め水のpHが(a)成分が水と接触しても予測できるpHであれば、予めlogDが-1.5以上1.5以下の(a)成分を繊維製品上に付着させておいてもよい。 (4) In order to suppress the generation amount of odorous substances, the amount of the component (a) and water can be appropriately adjusted. For example, when the method for suppressing odor generation of the present invention is carried out on a fiber product, the amount of the component (a) per mass of the fiber product in which microorganisms are present is from 0.01% by mass to 1% by mass. The component (a), water and microorganisms may be brought into contact with water at a pH or an amount at which the component (a) has a specific logD, and the component (a) is brought into contact with water on the textile. The pH of the composition containing component (a) and water when the component (a), water and microorganisms come into contact with each other is adjusted so that the component (a) has a specific logD of the present invention. The component (a) having a logD of -1.5 or more and 1.5 or less in advance if the pH of the water is in advance predictable even when the component (a) comes into contact with water. May be left on the textile.
 本発明の臭い生成抑制方法の一態様として、(a)成分及び水を含有し、不織布からなるシートと、微生物が付着した対象物とを接触させる、臭い生成抑制方法が挙げられる。この実施態様において、(a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される前記(a)成分のlogDは、-1.5以上1.5以下とする。 態 様 As one embodiment of the odor generation suppressing method of the present invention, there is an odor generation suppressing method in which a sheet comprising a nonwoven fabric, which contains the component (a) and water, is brought into contact with an object to which microorganisms are attached. In this embodiment, at the pH of the composition containing the component (a) and water, the logD of the component (a) calculated by the formula (1) is −1.5 or more and 1.5 or less.
 本発明の臭い生成抑制方法に好適に用いることができる用具として、(a)成分及び水を含有し、不織布からなるシートが挙げられる。そして、(a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である。 用 As a tool that can be suitably used in the method for suppressing odor generation of the present invention, a sheet containing a component (a) and water and made of a nonwoven fabric may be mentioned. The logD of the component (a) calculated from the above formula (1) at the pH of the composition containing the component (a) and water is −1.5 or more and 1.5 or less.
 本発明のシートに用いる、(a)成分、水、式(1)、(b)成分などの任意成分に係る事項は、前記の臭い生成抑制方法で記載の事項を用いることができる。 事項 Items relating to the optional components such as component (a), water, formulas (1) and (b) used in the sheet of the present invention can be the same as those described in the above-mentioned method for suppressing odor generation.
 本発明のシートにおいて、不織布は、シート状に加工したものであり、不織布を構成する繊維は、親水性繊維、及び疎水性繊維からなる群より選ばれる1種以上の繊維から構成されるものが好ましい。
 本発明において、「親水性繊維」とは、標準状態の水分率(20℃、65%RH)が5%を超える繊維を指している。なお標準状態の水分率は、JIS L 1013、JIS L 1015に規定される方法により測定される。また「疎水性繊維」とは、標準状態の水分率(20℃、65%RH)が5重量%以下の繊維を指す。
In the sheet of the present invention, the nonwoven fabric is processed into a sheet shape, and the fibers constituting the nonwoven fabric are formed of one or more fibers selected from the group consisting of hydrophilic fibers and hydrophobic fibers. preferable.
In the present invention, the term “hydrophilic fiber” refers to a fiber having a moisture content (20 ° C., 65% RH) in a standard state of more than 5%. The moisture content in the standard state is measured by a method specified in JIS L 1013 and JIS L 1015. The “hydrophobic fiber” refers to a fiber having a standard moisture content (20 ° C., 65% RH) of 5% by weight or less.
 本発明のシートに用いることができる疎水性繊維である化学繊維としては、例えば、ポリアミド系繊維(ナイロンなど)、ポリエステル系繊維(ポリエステルなど)、ポリアクリロニトリル系繊維(アクリルなど)、ポリビニルアルコール系繊維(ビニロンなど)、ポリ塩化ビニル系繊維(ポリ塩化ビニルなど)、ポリ塩化ビニリデン系繊維(ビニリデンなど)、ポリオレフィン系繊維(ポリエチレン、ポリプロピレンなど)、ポリウレタン系繊維(ポリウレタンなど)、ポリ塩化ビニル/ポリビニルアルコール共重合系繊維(ポリクレラールなど)などが挙げられ、これらは1種又は2種以上を用いることができる。
 本発明のシートに用いることができる親水性繊維としては、種子毛繊維(綿、もめん、カポックなど)、靭皮繊維(麻、亜麻、苧麻、大麻、黄麻など)、葉脈繊維(マニラ麻、サイザル麻など)、やし繊維、いぐさ、わら、獣毛繊維(羊毛、モヘア、カシミヤ、らくだ毛、アルパカ、ビキュナ、アンゴラなど)、絹繊維(家蚕絹、野蚕絹)、羽毛、セルロース系繊維(レーヨン、ポリノジック、キュプラ、アセテートなど)、親水化ポリエチレンテレフタレート繊維(親水化処理されたポリエチレンテレフタレート繊維であり、前記の標準状態の水分率が親水性繊維の範囲にある繊維)等が挙げられ、これらは1種又は2種以上を用いることができる。
Examples of the chemical fiber which is a hydrophobic fiber that can be used in the sheet of the present invention include polyamide fibers (eg, nylon), polyester fibers (eg, polyester), polyacrylonitrile fibers (eg, acrylic), and polyvinyl alcohol fibers. (Vinylon, etc.), polyvinyl chloride fiber (polyvinyl chloride, etc.), polyvinylidene chloride fiber (vinylidene, etc.), polyolefin fiber (polyethylene, polypropylene, etc.), polyurethane fiber (polyurethane, etc.), polyvinyl chloride / polyvinyl Examples thereof include alcohol copolymer fibers (such as polychloral), and one or more of these can be used.
The hydrophilic fibers that can be used in the sheet of the present invention include seed hair fibers (cotton, noodles, kapok, etc.), bast fibers (hemp, flax, ramie, cannabis, jute, etc.), and vein fibers (manila hemp, sisal hemp). ), Palm fiber, rush, straw, animal hair fiber (wool, mohair, cashmere, camel, alpaca, bikuna, angora, etc.), silk fiber (domestic silk, wild silk), feather, cellulose fiber (rayon, Polynosic, cupra, acetate, etc.), hydrophilized polyethylene terephthalate fibers (polyethylene terephthalate fibers that have been subjected to hydrophilization treatment and fibers having a water content in the standard state within the range of the hydrophilic fibers described above), and the like. Species or two or more species can be used.
 本発明に用いる不織布は、親水性繊維を含むことが好ましい。本発明に用いる不織布は、臭い生成抑制効果をより高める観点から、親水性繊維を50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは75質量%以上、含む不織布が好ましい。不織布に含まれる親水性繊維の含有量は、好ましくは100質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。
 また、臭い生成抑制効果をより高める観点から、本発明に用いる不織布の坪量は、好ましくは10g/m以上、より好ましくは20g/m以上、である。そして、本発明に用いる不織布の坪量は、好ましくは100g/m以下、より好ましくは80g/m以下、更に好ましくは60g/m以下である。
The nonwoven fabric used in the present invention preferably contains hydrophilic fibers. The nonwoven fabric used in the present invention contains hydrophilic fibers in an amount of 50% by mass or more, more preferably 60% by mass or more, further preferably 70% by mass or more, and still more preferably 75% by mass or more, from the viewpoint of further enhancing the effect of suppressing odor generation. Is preferable. The content of the hydrophilic fiber contained in the nonwoven fabric is preferably 100% by mass or less, more preferably 90% by mass or less, and further preferably 85% by mass or less.
Further, from the viewpoint of further enhancing the effect of suppressing the generation of odor, the basis weight of the nonwoven fabric used in the present invention is preferably 10 g / m 2 or more, more preferably 20 g / m 2 or more. The basis weight of the nonwoven fabric used in the present invention is preferably 100 g / m 2 or less, more preferably 80 g / m 2 or less, and further preferably 60 g / m 2 or less.
 不織布の質量に対する、前記(a)成分及び水を含む組成物の質量割合(含浸率(質量%))は、臭い生成抑制効果をより高める観点から、好ましくは100質量%以上、より好ましくは150質量%以上、より好ましくは200質量%以上、より好ましくは250質量%以上、更に好ましくは300質量%以上、より更に好ましくは350質量%以上、である。そして、同じ観点から、不織布の質量に対する、前記(a)成分及び水を含む組成物の質量割合(含浸率(質量%))は、好ましくは500質量%以下、より好ましくは420質量%以下、より好ましくは380質量%以下、更に好ましくは350質量%以下である。
 なお、本発明において、含浸率は、以下の式より算出する。
 
含浸率(質量%)=
(((a)成分と水を含む組成物を含浸させた不織布の質量)/(乾燥した不織布の質量)-1)×100
The mass ratio (impregnation rate (% by mass)) of the composition containing the component (a) and water to the mass of the nonwoven fabric is preferably 100% by mass or more, more preferably 150% by mass, from the viewpoint of further enhancing the effect of suppressing odor generation. % By mass, more preferably at least 200% by mass, more preferably at least 250% by mass, further preferably at least 300% by mass, still more preferably at least 350% by mass. And from the same viewpoint, the mass ratio (impregnation rate (% by mass)) of the composition containing the component (a) and water with respect to the mass of the nonwoven fabric is preferably 500% by mass or less, more preferably 420% by mass or less, It is more preferably at most 380% by mass, further preferably at most 350% by mass.
In the present invention, the impregnation rate is calculated from the following equation.

Impregnation rate (% by mass) =
((Mass of nonwoven fabric impregnated with composition containing component (a) and water) / (mass of dried nonwoven fabric) -1) × 100
 本発明のシートに含まれる、(a)成分と水とを含む組成物の質量に対する(a)成分の含有量は、臭い生成抑制効果をより高める観点から、好ましくは0.01質量%以上であり、より好ましくは0.03質量%以上であり、更に好ましくは0.05質量%以上であり、より更に好ましくは0.08質量%以上である。そして同じ観点から、(a)成分の含有量は、好ましくは1質量%以下であり、より好ましくは0.8質量%以下であり、更に好ましくは0.5質量%以下である。 The content of the component (a) with respect to the mass of the composition containing the component (a) and water, which is contained in the sheet of the present invention, is preferably 0.01% by mass or more from the viewpoint of further enhancing the effect of suppressing odor generation. Yes, more preferably at least 0.03% by mass, even more preferably at least 0.05% by mass, even more preferably at least 0.08% by mass. And from the same viewpoint, the content of the component (a) is preferably 1% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.5% by mass or less.
 本発明のシートと微生物が付着した対象物とを接触させることで、微生物が付着した対象物からの臭いの生成を抑制することができる。
 微生物が付着した対象物としては、繊維製品、硬質表面、皮膚表面、毛髪表面のいずれかであってもよい。繊維製品の素材としては特に制限はなく、ウール、シルク、木綿等の天然素材、ポリエステル、ポリアミド等の化学繊維、及びこれらの組合せのいずれであってもよい。本発明において、繊維製品の素材は木綿であることが好ましい。繊維製品は未使用であっても、一度以上使用した使用済のものでもよい。(a)成分を接触させる繊維製品は、湿気ないし水分を含んだものでもよいし、乾燥を十分に行ったものであってもよい。硬質表面としては、ガラス、金属、プラスチック、陶器であってもよい。
By bringing the sheet of the present invention into contact with an object to which microorganisms have adhered, it is possible to suppress generation of odor from the object to which microorganisms have adhered.
The object to which the microorganisms have adhered may be any of a textile, a hard surface, a skin surface, and a hair surface. The material of the fiber product is not particularly limited, and may be any of natural materials such as wool, silk and cotton, chemical fibers such as polyester and polyamide, and combinations thereof. In the present invention, the material of the textile is preferably cotton. The fiber product may be unused or used once or more. The fiber product with which the component (a) is brought into contact may be one containing moisture or moisture, or one that has been sufficiently dried. The hard surface may be glass, metal, plastic, pottery.
<pH制御方法>
 本発明のpH制御は、界面活性剤膜で隔てられた水を含む2つの相において、一方の相に存在する前記(a)成分の前記式(1)で算出されるlogDを-1.5以上1.5以下に制御することで、界面活性剤膜で隔てられた他方の相のpHを低下させ、pHを制御することができる。
<PH control method>
In the pH control of the present invention, in two phases containing water separated by a surfactant membrane, the logD of the component (a) present in one phase, which is calculated by the formula (1), is -1.5. By controlling the pH to 1.5 or less, the pH of the other phase separated by the surfactant film can be reduced to control the pH.
 (a)成分を含む水のpHは、(a)成分のlogDが-1.5以上1.5以下の範囲であり、且つ界面活性剤膜が存在できる程度のpHであれば、特に制限はない。界面活性剤膜、とりわけ微生物の細胞膜で隔てられた内相のpHをより低下できる観点で、(a)成分及び水を含む組成物のpHは、好ましくは4.0以上であり、より好ましくは4.5以上であり、更に好ましくは5.0以上である。そして同じ観点から、(a)成分及び水を含む組成物のpHは好ましくは10.0以下であり、より好ましくは9.0以下であり、更に好ましくは8.5以下であり、より更に好ましくは8.0以下である。
 本発明のpHは、常法に従い測定することができ、例えばガラス電極を用いた測定装置で測定することができる。
The pH of the water containing the component (a) is not particularly limited as long as the logD of the component (a) is in the range of -1.5 to 1.5 and the pH is such that a surfactant film can be present. Absent. The pH of the composition containing the component (a) and water is preferably 4.0 or more, and more preferably, from the viewpoint that the pH of the internal phase separated by the surfactant membrane, particularly the cell membrane of the microorganism, can be further reduced. It is 4.5 or more, more preferably 5.0 or more. And from the same viewpoint, the pH of the composition containing the component (a) and water is preferably 10.0 or less, more preferably 9.0 or less, further preferably 8.5 or less, and still more preferably. Is 8.0 or less.
The pH of the present invention can be measured according to a conventional method, for example, with a measuring device using a glass electrode.
 前記式(1)で算出される(a)成分のlogDは、界面活性剤膜、とりわけ微生物の細胞膜で隔てられた内相のpHをより低下できる観点から、-1.5以上である。(a)成分のlogDは、好ましくは-1.2以上であり、より好ましくは-1.0以上であり、更に好ましくは-0.8以上であり、より更に好ましくは-0.5以上であり、より更に好ましくは-0.2以上であり、より更に好ましくは0以上である。そして同じ観点から(a)成分のlogDは1.5以下であり、好ましくは1.3以下であり、より好ましくは1.1以下であり、更にこのましくは1.0以下である。 Lo The logD of the component (a) calculated by the above formula (1) is -1.5 or more from the viewpoint of further reducing the pH of the internal phase separated by the surfactant membrane, especially the cell membrane of the microorganism. The logD of the component (a) is preferably -1.2 or more, more preferably -1.0 or more, further preferably -0.8 or more, and still more preferably -0.5 or more. Yes, more preferably −0.2 or more, and even more preferably 0 or more. From the same viewpoint, logD of the component (a) is 1.5 or less, preferably 1.3 or less, more preferably 1.1 or less, and further preferably 1.0 or less.
 (a)成分、水及び界面活性剤膜、とりわけ微生物の細胞膜、の接触時間は、pHを制御する程度によって適宜決めることができる。pHの制御をより大きくする観点から、接触時間は好ましくは1分以上であり、より好ましくは5分以上であり、更に好ましくは10分以上であり、より更に好ましくは30分以上であり、より更に好ましくは1時間以上である。そして、接触時間は好ましくは15時間以下であり、より好ましくは12時間以下であり、更に好ましくは8時間以下である。 接触 The contact time of the component (a), water and a surfactant membrane, especially a cell membrane of a microorganism, can be appropriately determined depending on the degree to which the pH is controlled. From the viewpoint of increasing the control of pH, the contact time is preferably 1 minute or more, more preferably 5 minutes or more, further preferably 10 minutes or more, and still more preferably 30 minutes or more. More preferably, it is one hour or more. The contact time is preferably 15 hours or less, more preferably 12 hours or less, and further preferably 8 hours or less.
 上述した実施形態に関し、本発明はさらに下記の方法及びシートを開示する。 に 関 し Regarding the above-described embodiment, the present invention further discloses the following method and sheet.
<1>
 下記(a)成分、水及び微生物を接触させ、前記微生物が生成する臭い物質の量を抑制する、臭い生成抑制方法であって、
 (a)成分及び水を含む組成物のpHにおける、下記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、臭い生成抑制方法。
 
(a)成分:有機カルボン酸又はその塩
 
logD=ClogP-log[1+10(pH-pKa)]  式(1)
[式(1)中、ClogPは(a)成分の酸型の状態での水/オクタノール分配係数の対数値の計算logPであり、pHは(a)成分を含む水のpHであり、pKaは(a)成分のpKaである。]
<1>
The following (a) component, water and microorganisms are brought into contact with each other to suppress the amount of odorous substances produced by the microorganisms,
An odor generation suppressing method, wherein the component (a) has a logD of -1.5 or more and 1.5 or less, calculated by the following formula (1), at the pH of the composition containing the component (a) and water.

Component (a): organic carboxylic acid or salt thereof
logD = ClogP-log [1 + 10 (pH-pKa) ] Formula (1)
[In the formula (1), ClogP is a calculated logP of the logarithmic value of the water / octanol partition coefficient in the acid form of the component (a), pH is the pH of water containing the component (a), and pKa is PKa of the component (a). ]
<2>
 前記臭い物質が、4-メチル-3-ヘキセン酸及び4-メチルヘキサン酸からなる群より選ばれる少なくとも1種である、前記<1>に記載の方法。
<3>
 前記の臭い生成抑制方法が、(a)成分及び水を含む組成物と微生物が接触し、(a)成分と水と微生物が接触する方法、水を含み微生物が存在する組成物と(a)成分が接触し、(a)成分と水と微生物が接触する方法、並びに、(a)成分と微生物が存在する状態で水が接触し、(a)成分と水と微生物が接触する方法からなる群より選ばれる1種以上の方法である、前記<1>又は<2>に記載の方法。
<4>
 (a)成分及び水を含有し、不織布からなるシートと、微生物が付着した対象物とを接触させる、前記<1>~<3>のいずれか1項に記載の方法であって、(a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、前記<1>~<3>のいずれか1項に記載の方法。
<2>
The method according to <1>, wherein the odorant is at least one selected from the group consisting of 4-methyl-3-hexenoic acid and 4-methylhexanoic acid.
<3>
The above-mentioned odor generation suppressing method comprises the steps of: (a) a method in which a composition containing component (a) and water is brought into contact with a microorganism; (a) a method in which component, water and a microorganism are brought into contact; The method comprises contacting the components and bringing the component (a) into contact with water and microorganisms, and contacting the component (a) with water in the presence of the microorganisms and contacting the component (a) with water and the microorganisms. The method according to <1> or <2>, which is one or more methods selected from the group.
<4>
(A) The method according to any one of <1> to <3>, wherein the sheet comprising a nonwoven fabric, which contains the component and water, is brought into contact with an object to which microorganisms have adhered. The above (1) to (3), wherein logD of the component (a) calculated by the formula (1) at the pH of the composition containing the component and water is −1.5 or more and 1.5 or less. A method according to any one of the preceding claims.
<5>
 界面活性剤膜で隔てられた水を含む2つの相において、一方の相に存在する前記(a)成分の前記式(1)で算出されるlogDを-1.5以上1.5以下に制御し、前記界面活性剤膜で隔てられた他方の相のpHを低下させる、pHの制御方法。
<5>
In two phases containing water separated by a surfactant film, the logD of the component (a) present in one phase, which is calculated by the formula (1), is controlled to be -1.5 or more and 1.5 or less. And controlling the pH of the other phase separated by the surfactant film.
<6>
 前記界面活性剤膜が、炭素原子数10以上22以下の脂肪族炭化水素基を有するカチオン界面活性剤で形成される膜、炭素原子数10以上22以下の脂肪族炭化水素基を有するアニオン界面活性剤で形成される膜、炭素原子数10以上22以下の脂肪族炭化水素基を有するノニオン界面活性剤で形成される膜、及び炭素原子数10以上22以下の脂肪族炭化水素基を有する両性界面活性剤で形成される膜、好ましくは微生物の細胞膜である、前記<5>に記載の方法。
<6>
The surfactant film is a film formed of a cationic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, anionic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms. Film formed of a nonionic surfactant having an aliphatic hydrocarbon group having 10 to 22 carbon atoms, and an amphoteric interface having an aliphatic hydrocarbon group having 10 to 22 carbon atoms. <5> The method according to <5>, wherein the method is a membrane formed with an activator, preferably a cell membrane of a microorganism.
<7>
 (前記(a)成分の分子量)/(カルボキシル基の分子量)で表される値が1.9以上、好ましくは2.0以上、より好ましくは2.2以上であり、3.5以下、好ましくは3.2以下、より好ましくは3.0以下、さらに好ましくは2.8以下、である、前記<1>~<6>のいずれか1項に記載の方法。
<8>
 前記(a)成分が、炭素原子数が8以上、好ましくは9以上、であり、14以下、好ましくは12以下、より好ましくは10以下、の脂肪族多価カルボン酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、前記<1>~<7>のいずれか1項に記載の方法。
<9>
 前記(a)成分が、脂肪族ジカルボン酸及びその塩からなる群より選ばれる1種以上の化合物、好ましくは、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、前記<1>~<8>のいずれか1項に記載の方法。
<7>
The value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) is 1.9 or more, preferably 2.0 or more, more preferably 2.2 or more, and is 3.5 or less, preferably Is 3.2 or less, more preferably 3.0 or less, and even more preferably 2.8 or less, the method according to any one of the above items <1> to <6>.
<8>
The component (a) is a group consisting of aliphatic polyhydric carboxylic acids having 8 or more, preferably 9 or more, and 14 or less, preferably 12 or less, more preferably 10 or less carbon atoms, and salts thereof. The method according to any one of the above <1> to <7>, wherein the method is one or more compounds selected from the group consisting of:
<9>
The component (a) is one or more compounds selected from the group consisting of aliphatic dicarboxylic acids and salts thereof, preferably suberic acid, azelaic acid, sebacic acid, dodecandioic acid, tetradecandioic acid and salts thereof. The method according to any one of the above <1> to <8>, wherein the method is one or more compounds selected from the group consisting of:
<10>
 前記(a)成分が、一つのナフタレン基と一つのカルボキシル基を有する有機カルボン酸又はその塩である、前記<1>~<6>のいずれか1項に記載の方法。
<11>
 前記有機カルボン酸又はその塩が、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、2-ヒロドキシ-1-ナフタレンカルボン酸、3-ヒロドキシ-2-ナフタレンカルボン酸、6-ヒドロキシ-2-ナフタレンカルボン酸、及びこれらの塩からなる群より選ばれる1種以上の化合物である、前記<10>に記載の方法。
<10>
The method according to any one of the above items <1> to <6>, wherein the component (a) is an organic carboxylic acid having one naphthalene group and one carboxyl group or a salt thereof.
<11>
Wherein the organic carboxylic acid or a salt thereof is 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 2-hydroxy-1-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 6-hydroxy-2-naphthalene carboxylic acid And the at least one compound selected from the group consisting of salts thereof.
<12>
 前記(a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される(a)成分のlogDが-1.2以上、好ましくは-1.0以上、より好ましくは-0.8以上、より更に好ましくは-0.5以上、より更に好ましくは-0.2以上、より更に好ましくは0以上、1.3以下、好ましくは1.1以下、より好ましくは1.0以下、である、前記<1>~<11>のいずれか1項に記載の方法。
<13>
 (a)成分との接触後の微生物の生菌数が維持されている、前記<1>~<12>のいずれか1項に記載の方法。
<14>
 (a)成分と接触する前の微生物の生菌数の対数値(1)と、(a)成分と接触後の微生物の生菌数の対数値(2)との差(対数値(1)-対数値(2))が-1以上2未満、好ましくは-0.5以上1未満、より好ましくは0以上0.8以下、更に好ましくは0以上0.7以下である、前記<13>に記載の方法。
<15>
 (a)成分及び水を含む組成物のpHが、4.0以上、好ましくは4.5以上、より好ましくは5.0以上、であり、10.0以下、好ましくは9.0以下、より好ましくは8.5以下、更に好ましくは8.0以下、である、前記<1>~<14>のいずれか1項に記載の方法。
<16>
 (a)成分及び水を含む組成物のpHが、5.0以上8.5以下である、前記<1>~<15>のいずれか1項に記載の方法。
<17>
 (a)成分、水及び界面活性剤膜、とりわけ微生物、の接触時間が、1分以上、好ましくは5分以上、より好ましくは10分以上、更に好ましくは30分以上、より更に好ましくは1時間以上、15時間以下、好ましくは12時間以下、より好ましくは8時間以下、である、前記<1>~<16>のいずれか1項に記載の方法。
<18>
 (a)成分と水とを含む組成物の質量に対する(a)成分の含有量が、0.01質量%以上、好ましくは0.03質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.08質量%以上、1質量%以下、好ましくは0.8質量%以下、より好ましくは0.5質量%以下、である、前記<1>~<17>のいずれか1項に記載の方法。
<12>
The logD of the component (a) calculated by the above formula (1) at the pH of the composition containing the component (a) and water is -1.2 or more, preferably -1.0 or more, more preferably -0. 0.8 or more, more preferably -0.5 or more, still more preferably -0.2 or more, still more preferably 0 or more, 1.3 or less, preferably 1.1 or less, more preferably 1.0 or less. The method according to any one of the above items <1> to <11>.
<13>
(A) The method according to any one of <1> to <12>, wherein the viable cell count of the microorganism after contact with the component is maintained.
<14>
Difference between the logarithmic value (1) of the viable cell count of the microorganism before contact with the component (a) and the logarithmic value (2) of the viable cell count of the microorganism after contact with the component (a) (logarithmic value (1)) <13> wherein the (logarithmic value (2)) is -1 or more and less than 2, preferably -0.5 or more and less than 1, more preferably 0 or more and 0.8 or less, and still more preferably 0 or more and 0.7 or less. The method described in.
<15>
The pH of the composition containing the component (a) and water is 4.0 or more, preferably 4.5 or more, more preferably 5.0 or more, and 10.0 or less, preferably 9.0 or less. The method according to any one of the above items <1> to <14>, wherein the method is preferably 8.5 or less, more preferably 8.0 or less.
<16>
The method according to any one of the above items <1> to <15>, wherein the pH of the composition containing the component (a) and water is 5.0 or more and 8.5 or less.
<17>
(A) The contact time of the component, water and a surfactant film, especially a microorganism, is 1 minute or more, preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 30 minutes or more, and even more preferably 1 hour. The method according to any one of <1> to <16> above, wherein the time is 15 hours or less, preferably 12 hours or less, more preferably 8 hours or less.
<18>
The content of the component (a) with respect to the mass of the composition containing the component (a) and water is 0.01% by mass or more, preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and furthermore Any one of the above <1> to <17>, which is preferably 0.08% by mass or more and 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.5% by mass or less. The described method.
<19>
 (a)成分及び水を含有し、不織布からなるシートであって、
 (a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、シート。
<19>
(A) A sheet comprising a nonwoven fabric, containing a component and water,
The sheet wherein the logD of the component (a) calculated by the above formula (1) at the pH of the composition containing the component (a) and water is −1.5 or more and 1.5 or less.
<20>
 (前記(a)成分の分子量)/(カルボキシル基の分子量)で表される値が1.9以上、好ましくは2.0以上、より好ましくは2.2以上であり、3.5以下、好ましくは3.2以下、より好ましくは3.0以下、さらに好ましくは2.8以下、である、前記<19>に記載のシート。
<21>
 前記(a)成分が、炭素原子数が8以上、好ましくは9以上、であり、14以下、好ましくは12以下、より好ましくは10以下、の脂肪族多価カルボン酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、前記<19>又は<20>に記載のシート。
<22>
 前記(a)成分が、脂肪族ジカルボン酸及びその塩からなる群より選ばれる1種以上の化合物、好ましくは、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、前記<19>~<21>のいずれか1項に記載のシート。
<20>
The value represented by (molecular weight of component (a)) / (molecular weight of carboxyl group) is 1.9 or more, preferably 2.0 or more, more preferably 2.2 or more, and is 3.5 or less, preferably Is not more than 3.2, more preferably not more than 3.0, and still more preferably not more than 2.8.
<21>
The component (a) is a group consisting of aliphatic polyhydric carboxylic acids having 8 or more, preferably 9 or more, and 14 or less, preferably 12 or less, more preferably 10 or less carbon atoms, and salts thereof. The sheet according to <19> or <20>, which is one or more compounds selected from the group consisting of:
<22>
The component (a) is one or more compounds selected from the group consisting of aliphatic dicarboxylic acids and salts thereof, preferably suberic acid, azelaic acid, sebacic acid, dodecandioic acid, tetradecandioic acid and salts thereof. The sheet according to any one of the above items <19> to <21>, wherein the sheet is one or more compounds selected from the group consisting of:
<23>
 前記(a)成分が、一つのナフタレン基と一つのカルボキシル基を有する有機カルボン酸又はその塩である、前記<19>に記載のシート。
<24>
 前記有機カルボン酸又はその塩が、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、2-ヒロドキシ-1-ナフタレンカルボン酸、3-ヒロドキシ-2-ナフタレンカルボン酸、6-ヒドロキシ-2-ナフタレンカルボン酸、及びこれらの塩からなる群より選ばれる1種以上の化合物である、前記<23>に記載のシート。
<23>
The sheet according to <19>, wherein the component (a) is an organic carboxylic acid having one naphthalene group and one carboxyl group or a salt thereof.
<24>
Wherein the organic carboxylic acid or a salt thereof is 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 2-hydroxy-1-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 6-hydroxy-2-naphthalene carboxylic acid And the at least one compound selected from the group consisting of salts thereof.
<25>
 前記(a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される(a)成分のlogDが-1.2以上、好ましくは-1.0以上、より好ましくは-0.8以上、より更に好ましくは-0.5以上、より更に好ましくは-0.2以上、より更に好ましくは0以上、1.3以下、好ましくは1.1以下、より好ましくは1.0以下、である、前記<19>~<24>のいずれか1項に記載のシート。
<26>
 (a)成分及び水を含む組成物のpHが、4.0以上、好ましくは4.5以上、より好ましくは5.0以上、であり、10.0以下、好ましくは9.0以下、より好ましくは8.5以下、更に好ましくは8.0以下、である、前記<19>~<25>のいずれか1項に記載のシート。
<27>
 (a)成分及び水を含む組成物のpHが、5.0以上8.5以下である、前記<19>~<26>のいずれか1項に記載のシート。
<25>
The logD of the component (a) calculated by the above formula (1) at the pH of the composition containing the component (a) and water is -1.2 or more, preferably -1.0 or more, more preferably -0. 0.8 or more, more preferably -0.5 or more, still more preferably -0.2 or more, still more preferably 0 or more, 1.3 or less, preferably 1.1 or less, more preferably 1.0 or less. The sheet according to any one of the above items <19> to <24>.
<26>
The pH of the composition containing the component (a) and water is 4.0 or more, preferably 4.5 or more, more preferably 5.0 or more, and 10.0 or less, preferably 9.0 or less. The sheet according to any one of the above items <19> to <25>, wherein the sheet is preferably 8.5 or less, more preferably 8.0 or less.
<27>
The sheet according to any one of the items <19> to <26>, wherein the pH of the composition containing the component (a) and water is 5.0 or more and 8.5 or less.
<28>
 前記不織布が、親水性繊維、及び疎水性繊維からなる群より選ばれる1種以上の繊維から構成される、前記<19>~<27>のいずれか1項に記載のシート。
<29>
 前記疎水性繊維が、ポリアミド系繊維、ポリエステル系繊維、ポリアクリロニトリル系繊維、ポリビニルアルコール系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリオレフィン系繊維、ポリウレタン系繊維、及びポリ塩化ビニル/ポリビニルアルコール共重合系繊維からなる群より選ばれる1種又は2種以上の繊維である、前記<28>に記載のシート。
<30>
 前記親水性繊維が、種子毛繊維、靭皮繊維、葉脈繊維、やし繊維、いぐさ、わら、獣毛繊維、絹繊維、羽毛、セルロース系繊維、及び親水化ポリエチレンテレフタレート繊維からなる群より選ばれる1種又は2種以上の繊維である、前記<28>に記載のシート。
<31>
 前記不織布が、親水性繊維を、50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは75質量%以上、100質量%以下、好ましくは90質量%以下、更に好ましくは85質量%以下、含む、前記<28>~<30>のいずれか1項に記載のシート。
<32>
 前記不織布の坪量が、10g/m以上、好ましくは20g/m以上、100g/m以下、好ましくは80g/m以下、より好ましくは60g/m以下、である、前記<19>~<31>のいずれか1項に記載のシート。
<33>
 前記不織布の質量に対する、前記(a)成分及び水を含む組成物の含浸率(質量%)が、100質量%以上、好ましくは150質量%以上、より好ましくは200質量%以上、より好ましくは250質量%以上、更に好ましくは300質量%以上、より更に好ましくは350質量%以上、500質量%以下、好ましくは420質量%以下、より好ましくは380質量%以下、更に好ましくは350質量%以下、である、前記<19>~<32>のいずれか1項に記載のシート。
<34>
 (a)成分と水とを含む組成物の質量に対する(a)成分の含有量が、0.01質量%以上、好ましくは0.03質量%以上、より好ましくは0.05質量%以上、更に好ましくは0.08質量%以上、1質量%以下、好ましくは0.8質量%以下、より好ましくは0.5質量%以下、である、前記<19>~<33>のいずれか1項に記載のシート。
<35>
 微生物が付着した対象物と接触させることで、微生物が付着した対象物からの臭いの生成を抑制するために用いる、前記<19>~<34>のいずれか1項に記載のシート。
<36>
 微生物が付着した対象物が、繊維製品、硬質表面、皮膚表面、毛髪表面のいずれかである、前記<35>に記載のシート。
<28>
The sheet according to any one of the items <19> to <27>, wherein the nonwoven fabric is composed of one or more kinds of fibers selected from the group consisting of hydrophilic fibers and hydrophobic fibers.
<29>
The hydrophobic fibers are polyamide fibers, polyester fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, polyvinyl chloride fibers, polyvinylidene chloride fibers, polyolefin fibers, polyurethane fibers, and polyvinyl chloride / polyvinyl. The sheet according to <28>, wherein the sheet is one or more fibers selected from the group consisting of alcohol copolymer fibers.
<30>
The hydrophilic fiber is selected from the group consisting of seed hair fiber, bast fiber, vein fiber, palm fiber, rush, straw, animal hair fiber, silk fiber, feather, cellulosic fiber, and hydrophilized polyethylene terephthalate fiber. The sheet according to <28>, wherein the sheet is one or two or more fibers.
<31>
The nonwoven fabric contains the hydrophilic fiber in an amount of 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 75% by mass or more, and 100% by mass or less, more preferably 90% by mass or less. The sheet according to any one of the above <28> to <30>, preferably containing 85% by mass or less.
<32>
The nonwoven fabric has a basis weight of 10 g / m 2 or more, preferably 20 g / m 2 or more, 100 g / m 2 or less, preferably 80 g / m 2 or less, more preferably 60 g / m 2 or less. > The sheet according to any one of <31>.
<33>
The impregnation ratio (% by mass) of the composition containing the component (a) and water with respect to the mass of the nonwoven fabric is 100% by mass or more, preferably 150% by mass or more, more preferably 200% by mass or more, more preferably 250% by mass or more. % By mass or more, more preferably 300% by mass or more, still more preferably 350% by mass or more, 500% by mass or less, preferably 420% by mass or less, more preferably 380% by mass or less, and still more preferably 350% by mass or less. The sheet according to any one of <19> to <32>.
<34>
The content of the component (a) with respect to the mass of the composition containing the component (a) and water is 0.01% by mass or more, preferably 0.03% by mass or more, more preferably 0.05% by mass or more, and furthermore Any one of the above items <19> to <33>, which is preferably 0.08% by mass or more and 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.5% by mass or less. The described sheet.
<35>
The sheet according to any one of the above items <19> to <34>, which is used for suppressing generation of an odor from an object to which microorganisms have adhered by bringing the object into contact with the object to which microorganisms have adhered.
<36>
The sheet according to <35>, wherein the object to which the microorganism is attached is any one of a fiber product, a hard surface, a skin surface, and a hair surface.
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
実施例1
(1)臭い原因物質の定量方法
 試験前日から滅菌した木綿平織布3×3cmに対して、臭い原因物質の前駆体である14-Methylhexadecanoic acid(SIGMA-ALDRICH)を溶解させたメタノール溶液を滴下し、臭い原因物質の前駆体を付着させた。臭い原因物質の前駆体の付着量は、木綿平織布1枚当たり脂肪酸が100μg(1,000μg/g布)となるように設定した。さらに、表1に示す各種有機酸を溶解させたメタノール溶液(1mM)を調製し、基質が付着している布1枚当たりに100μLずつ滴下し、一晩乾燥させた。
 また前日からモラクセラ・オスロエンシスATCC 19976株を寒天培養条件で培養し、滅菌イオン交換水に菌体を回収し、OD600=0.1(108CFU/mL)、1/2NB(Nutrient Broth: Difco)の菌懸濁液を調製した。
 臭い原因物質の前駆体、及び各種有機酸が存在する布を滅菌済No.3スクリュー管(マルエム)に入れて、前記の菌懸濁液100μLを植菌して、37℃条件下で8時間培養を行った。また同様の操作を菌が存在しない条件で行い、培養前に布(臭い原因物質の前駆体、有機酸存在)のpH測定を行ったところ、いずれもpH6付近となった。
Example 1
(1) Method of quantifying odor-causing substances A methanol solution containing 14-methylhexadecanoic acid (SIGMA-ALDRICH), a precursor of odor-causing substances, was dropped onto 3 x 3 cm of cotton plain woven cloth sterilized from the day before the test. Then, the precursor of the odor-causing substance was attached. The attached amount of the precursor of the odor-causing substance was set so that the fatty acid was 100 μg (1,000 μg / g cloth) per cotton plain woven cloth. Further, a methanol solution (1 mM) in which various organic acids shown in Table 1 were dissolved was prepared, and 100 μL was dropped on each cloth to which the substrate was adhered, and dried overnight.
From the previous day, Moraxella osloensis ATCC 19976 strain was cultured under agar culture conditions, and the cells were collected in sterile ion-exchanged water. OD 600 = 0.1 (10 8 CFU / mL), 1 / 2NB (Nutrient Broth: Difco) Was prepared.
Put the cloth in which the precursor of the odor-causing substance and various organic acids are present in a sterilized No. 3 screw tube (Maruemu), inoculate 100 μL of the bacterial suspension, and incubate at 37 ° C. for 8 hours. Culture was performed. The same operation was performed under the condition that no bacteria were present, and the pH of the cloth (precursor of the odor-causing substance, presence of the organic acid) was measured before culturing.
 培養後、メタノール3mL添加して30分間超音波をかけて抽出を行った。抽出液をフナコシ社のADAM試薬(0.5 mg/mL MeOH溶液)と1:1(体積比)で混合し、室温暗所条件下で一晩放置させた。その後にHPLCを用いて4-メチル-3-ヘキセン酸、4-メチルヘキサン酸の定量を行った。4-メチル-3-ヘキセン酸、4-メチルヘキサン酸の定量条件を下記に示す。
 
・4-メチル-3-ヘキセン酸、4-メチルヘキサン酸の定量条件
LCカラム:Zorbax C8 4.6×250mm
溶離液:アセトニトリル61%(v/v)、水39%(v/v)
カラム温度:40℃
サンプル注入量:10μL
流速:1.0mL/min
検出:FID Ex.365nm、Em.412nm
After the culture, extraction was performed by adding 3 mL of methanol and applying ultrasonic waves for 30 minutes. The extract was mixed with ADAM reagent (0.5 mg / mL MeOH solution) from Funakoshi at a ratio of 1: 1 (volume ratio) and allowed to stand overnight at room temperature in the dark. Thereafter, 4-methyl-3-hexenoic acid and 4-methylhexanoic acid were quantified using HPLC. The quantitative conditions for 4-methyl-3-hexenoic acid and 4-methylhexanoic acid are shown below.

.Quantification conditions for 4-methyl-3-hexenoic acid and 4-methylhexanoic acid
LC column: Zorbax C8 4.6 x 250 mm
Eluent: 61% (v / v) acetonitrile, 39% (v / v) water
Column temperature: 40 ° C
Sample injection volume: 10 μL
Flow rate: 1.0 mL / min
Detection: FID Ex. 365 nm, Em. 412 nm
(2)菌数変化の試験方法(抗菌試験方法)
 前述の臭い原因物質の定量方法と同様の方法で準備した布を滅菌済No.3スクリュー管(マルエム)に入れて、前記の菌液100μLを植菌して、37℃条件下で8時間培養を行った。培養後に20mLのLP希釈液(日本製薬社製)を加えて超音波を10分間照射し、菌の抽出を行った。
(2) Test method for change in bacterial count (antibacterial test method)
A cloth prepared in the same manner as the above-mentioned method for quantifying an odor-causing substance is placed in a sterilized No. 3 screw tube (Maruemu), inoculated with 100 μL of the bacterial solution, and cultured at 37 ° C. for 8 hours. Was done. After the culture, 20 mL of LP diluent (manufactured by Nippon Pharmaceutical Co., Ltd.) was added, and the mixture was irradiated with ultrasonic waves for 10 minutes to extract the bacteria.
 抽出液の段階希釈を行い、SCD-LP寒天培地(日本製薬社製)にて混釈後、37℃にて静置培養を1日行った。それぞれの布について得られたコロニー数を計測し、洗浄処理しなかった布の生菌数の常用対数値から、各実施例又は比較例の生菌数の常用対数値を引いたもの(対数値)を静菌活性値とした。
 試験前の菌数(CFU/cm)の常用対数値は、6.1(X1とする)であった。培養試験後の菌数(CFU/cm)の常用対数値(X2とする)との差である、(X2-X1)が-1以上2未満であった場合、菌数を維持した状態といえる。尚、培養前に布(臭い原因物質の前駆体、有機酸存在)のpH測定を行ったところ、いずれもpH6となった。
 以上の結果を表1に示す。
The extract was serially diluted, pulverized on an SCD-LP agar medium (manufactured by Nippon Pharmaceutical Co., Ltd.), and cultured at 37 ° C. for 1 day. The number of colonies obtained for each cloth was counted, and the common logarithm of the viable cell count of each Example or Comparative Example was subtracted from the common logarithm of the viable cell count of the cloth that had not been washed (logarithmic value). ) Was taken as the bacteriostatic activity value.
The common logarithm of the bacterial count (CFU / cm 2 ) before the test was 6.1 (X1). When (X2-X1), which is a difference from a common logarithmic value (referred to as X2) of the number of bacteria (CFU / cm 2 ) after the culture test, is not less than −1 and less than 2, a state in which the number of bacteria is maintained. I can say. The pH of the cloth (precursor of odor-causing substance, presence of organic acid) was measured before culturing.
Table 1 shows the above results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、微生物に接触させる有機カルボン酸のlogDが-1.5以上1.5以下の場合、臭いの原因となる微生物を殺菌することなく、臭い原因物質の生成を抑制することができた(実施例1-1~1-4参照)。
 これに対して、有機カルボン酸のlogDが本発明で規定する範囲外の場合、臭い原因物質の生成を抑制することができなかった(比較例1-2~1-5参照)。
As shown in Table 1, when the logD of the organic carboxylic acid to be brought into contact with the microorganism is -1.5 or more and 1.5 or less, the generation of the odor-causing substance is suppressed without sterilizing the microorganism causing the odor. (See Examples 1-1 to 1-4).
On the other hand, when the logD of the organic carboxylic acid was out of the range specified in the present invention, generation of the odor-causing substance could not be suppressed (see Comparative Examples 1-2 to 1-5).
実施例2 pH変化の評価方法
 実施例において、界面活性剤膜の代表例として、微生物の細胞膜を用いて、pHの変化について評価を行った。即ち微生物と接触する(a)成分と水のpHを適宜選択し、(a)成分のlogDを制御して、微生物と接触させることで、微生物の細胞質内のpH変化を測定した。細胞質内pH変化の評価にはLife Technologies社のpHrodo(R) Green AM Intracellular pH Indicatorsキットを用いた。
Example 2 Evaluation method of pH change In Examples, a change in pH was evaluated using a cell membrane of a microorganism as a representative example of a surfactant membrane. That is, the pH of the component (a) and water that come into contact with the microorganism was appropriately selected, the logD of the component (a) was controlled, and the pH was changed in the cytoplasm of the microorganism by contacting the microorganism. The pH change in the cytoplasm was evaluated using Life Technologies' pHrodo (R) Green AM Intracellular pH Indicators kit.
 前日より培養したモラクセラ・オスロエンシスATCC 19976株をLive Cell Imaging Solution(Life Technologies社、以下「LCIS」という)に懸濁し、遠心分離(5600rpm、10分間、4℃)を行うことで洗浄を行った。洗浄後、OD600=10の菌液5mLを調製し、再度遠心分離を行って菌体を回収した。
 pH rodo dye 5μLをpowerload 50μLに添加し撹拌後、LCIS5mLを添加した。得られた混合液5mLを、回収した菌体ペレットに添加して菌体を懸濁させ、37℃で1時間放置した。放置後、遠心分離を行い、LCIS5mLで1回洗浄を行った後に、再度LCIS5mLを添加した。この蛍光染色処理を行った液を菌液Aとする。
 蛍光測定セルに対して、リン酸緩衝液(55mM, pH6)2.4mL、菌液A0.3mL、並びに表2に示す各種有機酸のナトリウム塩水溶液0.3mL添加し、撹拌直後に蛍光測定を行った(励起波長509nm、蛍光波長533nm)。蛍光強度の値が高いほど細胞質内環境が酸性に変化していることを示す。
 結果を表2に示す。
The Moraxella osloensis ATCC 19976 strain cultured from the previous day was suspended in Live Cell Imaging Solution (Life Technologies, hereinafter referred to as “LCIS”) and washed by centrifugation (5600 rpm, 10 minutes, 4 ° C.). . After washing, 5 mL of a bacterial solution having an OD 600 of 10 was prepared, and centrifuged again to collect bacterial cells.
5 μL of pH rodo dye was added to 50 μL of powerload, and after stirring, 5 mL of LCIS was added. 5 mL of the obtained mixed solution was added to the collected cell pellets to suspend the cells, and the cells were allowed to stand at 37 ° C for 1 hour. After standing, the mixture was centrifuged, washed once with 5 mL of LCIS, and then 5 mL of LCIS was added again. The solution subjected to the fluorescent staining treatment is referred to as a bacterial solution A.
To the fluorescence measurement cell, 2.4 mL of a phosphate buffer (55 mM, pH 6), 0.3 mL of bacterial solution A, and 0.3 mL of a sodium salt aqueous solution of various organic acids shown in Table 2 were added, and the fluorescence was measured immediately after stirring. (Excitation wavelength 509 nm, fluorescence wavelength 533 nm). The higher the fluorescence intensity, the more acidic the cytoplasmic environment.
Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、微生物に接触させる有機カルボン酸のlogDが-1.5以上2以下の場合、蛍光強度の値が上昇し、微生物の細胞膜内のpHが低下した(実施例2-1~2-3参照)。
 これに対して、有機カルボン酸のlogDが本発明で規定する範囲外の場合、蛍光強度の値に変化はなく、微生物の細胞膜内のpHを低下させることができなかった(比較例1-2~1-5参照)。
As shown in Table 2, when the logD of the organic carboxylic acid brought into contact with the microorganism was -1.5 or more and 2 or less, the value of the fluorescence intensity increased, and the pH in the cell membrane of the microorganism decreased (Example 2-1). 22-3).
On the other hand, when the logD of the organic carboxylic acid was out of the range specified in the present invention, there was no change in the value of the fluorescence intensity, and the pH in the cell membrane of the microorganism could not be lowered (Comparative Example 1-2). To 1-5).
 実施例3
 表3に示す化合物を用いた以外は、実施例1と同じ操作を行い、4-メチル-3-ヘキセン酸の定量と菌数の測定を行った。結果を表3に示す。
Example 3
The same operation as in Example 1 was performed except that the compounds shown in Table 3 were used, and the quantification of 4-methyl-3-hexenoic acid and the measurement of the number of bacteria were performed. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 尚、比較例3-1と比較例1-1とでは、布上の4M3H量が異なっている。これは、菌体内の脂肪酸代謝系の活性状態が個体差により異なっているものと推測している。
 表3に示すように、比較例3-1での4M3H量に比較して、各実施例3-1~3-4の4M3H量の減少割合が高く、微生物に接触させる有機カルボン酸のlogDが-1.5以上1.5以下の場合、臭いの原因となる微生物を殺菌することなく、臭い原因物質の生成を抑制することができた。
 これに対して、有機カルボン酸のlogDが本発明で規定する範囲外の場合、臭い原因物質の生成を抑制することができなかった(比較例3-2参照)。
Note that the amount of 4M3H on the cloth differs between Comparative Example 3-1 and Comparative Example 1-1. This is presumed that the active state of the fatty acid metabolism system in the cells varies depending on individual differences.
As shown in Table 3, the rate of decrease in the amount of 4M3H in each of Examples 3-1 to 3-4 was higher than that in Comparative Example 3-1. In the case of -1.5 or more and 1.5 or less, generation of the odor-causing substance could be suppressed without sterilizing microorganisms that cause odor.
On the other hand, when the logD of the organic carboxylic acid was out of the range specified in the present invention, generation of the odor-causing substance could not be suppressed (see Comparative Example 3-2).
実施例4
 下記表4に記載の組成物を調製した。pHは1質量%の水酸化ナトリウム水溶液を用いてpH調整を行った。
Example 4
The compositions described in Table 4 below were prepared. The pH was adjusted using a 1% by mass aqueous sodium hydroxide solution.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 不織布(シート状のスパンレース不織布(レーヨン/ポリプロピレン/ポリエステル比=80/10/10、坪量60g/m、150mm×100mm))に対して、表4に記載の組成物を、不織布の質量に対して350質量%の含浸率となるように、組成物を含浸させて、繊維製品用シートを調製した。 The composition described in Table 4 was applied to a nonwoven fabric (sheet-like spunlace nonwoven fabric (rayon / polypropylene / polyester ratio = 80/10/10, basis weight 60 g / m 2 , 150 mm × 100 mm)) and the mass of the nonwoven fabric The composition was impregnated so as to have an impregnation rate of 350% by mass to prepare a sheet for textile products.
(1)臭い原因物質の定量方法
 試験前日から滅菌した木綿平織布3×3cmに対して、臭い原因物質の前駆体である14-Methylhexadecanoic acid(SIGMA-ALDRICH)を溶解させたメタノール溶液を滴下し、臭い原因物質の前駆体を付着させた。臭い原因物質の前駆体の付着量は、木綿平織布1枚当たり脂肪酸が100μg(1,000μg/g布)となるように設定した。また前日からモラクセラ・オスロエンシスATCC 19976株を寒天培養条件で培養し、滅菌イオン交換水に菌体を回収し、OD600=0.1(108CFU/mL)、1/2NB(Nutrient Broth: Difco)の菌懸濁液を調製した。
 臭い原因物質の前駆体が付着する布を滅菌済No.3スクリュー管(マルエム)に入れて、前記の菌懸濁液100μLを植菌した。さらに、その布に前記の繊維製品用シートを接触させて、5分放置し、繊維製品用シートを布から離した後に、1晩乾燥させた。
 布と繊維製品用シートの間にある液体のpHをガラス電極のpHメーターで測定したところ、いずれもpH6であった。
 培養後、実施例1と同じ条件で4-メチル-3-ヘキセン酸の定量を行った。
(1) Method of quantifying odor-causing substances A methanol solution containing 14-methylhexadecanoic acid (SIGMA-ALDRICH), a precursor of odor-causing substances, was dropped onto 3 x 3 cm of cotton plain woven cloth sterilized from the day before the test. Then, the precursor of the odor-causing substance was attached. The attached amount of the precursor of the odor-causing substance was set so that the fatty acid was 100 μg (1,000 μg / g cloth) per cotton plain woven cloth. From the previous day, Moraxella osloensis ATCC 19976 strain was cultured under agar culture conditions, and the cells were collected in sterile ion-exchanged water. OD 600 = 0.1 (10 8 CFU / mL), 1 / 2NB (Nutrient Broth: Difco) Was prepared.
The cloth to which the precursor of the odor-causing substance adhered was placed in a sterilized No. 3 screw tube (Maruemu), and 100 μL of the above-mentioned bacterial suspension was inoculated. Further, the textile sheet was brought into contact with the cloth, allowed to stand for 5 minutes, separated from the cloth, and dried overnight.
When the pH of the liquid between the cloth and the sheet for textiles was measured with a pH meter of a glass electrode, the pH was 6 in all cases.
After the culture, the amount of 4-methyl-3-hexenoic acid was quantified under the same conditions as in Example 1.
(2)菌数変化の試験方法(抗菌試験方法)
 前述の臭い原因物質の定量方法と同様の方法で1晩放置した布を滅菌済No.3スクリュー管(マルエム)に入れて、20mLのLP希釈液(日本製薬社製)を加えて超音波を10分間照射し、菌の抽出を行った。
 得られた抽出液に対して、実施例1と同じ方法により、静菌活性値を測定した。尚、培養前に布(臭い原因物質の前駆体、有機酸存在)のpH測定を行ったところ、いずれもpH6となった。
 以上の結果を表5に示す。
(2) Test method for change in bacterial count (antibacterial test method)
A cloth left overnight by the same method as the above-mentioned method for quantifying an odor-causing substance is placed in a sterilized No. 3 screw tube (Maruem), and 20 mL of an LP diluent (manufactured by Nippon Pharmaceutical Co., Ltd.) is added thereto, and ultrasonic waves are applied. Irradiation was performed for 10 minutes to extract bacteria.
The bacteriostatic activity value of the obtained extract was measured in the same manner as in Example 1. The pH of the cloth (precursor of odor-causing substance, presence of organic acid) was measured before culturing.
Table 5 shows the above results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、微生物に接触させる有機カルボン酸のlogDが-1.5以上1.5以下の場合、臭いの原因となる微生物を殺菌することなく、臭い原因物質の生成を抑制することができた(実施例4-1参照)。
 これに対して、有機カルボン酸のlogDが本発明で規定する範囲外の場合、臭い原因物質の生成を抑制することができなかった(比較例4-1参照)。
As shown in Table 5, when the logD of the organic carboxylic acid to be brought into contact with the microorganism is -1.5 or more and 1.5 or less, the generation of the odor-causing substance is suppressed without sterilizing the microorganism causing the odor. (See Example 4-1).
On the other hand, when the logD of the organic carboxylic acid was out of the range specified in the present invention, generation of the odor-causing substance could not be suppressed (see Comparative Example 4-1).
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 Although the present invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified, which is contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted broadly without.
 本願は、2018年7月13日に日本国で特許出願された特願2018-132966に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 
This application claims the priority based on Japanese Patent Application No. 2018-132966, filed in Japan on July 13, 2018, which is hereby incorporated by reference. Capture as a part.

Claims (18)

  1.  下記(a)成分、水及び微生物を接触させ、前記微生物が生成する臭い物質の量を抑制する、臭い生成抑制方法であって、
     (a)成分及び水を含む組成物のpHにおける、下記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、臭い生成抑制方法。
     
    (a)成分:有機カルボン酸又はその塩
     
    logD=ClogP-log[1+10(pH-pKa)]  式(1)
    [式(1)中、ClogPは(a)成分の酸型の状態での水/オクタノール分配係数の対数値の計算logP値であり、pHは(a)成分を含む水のpHであり、pKaは(a)成分のpKaである。]
    The following (a) component, water and microorganisms are brought into contact with each other to suppress the amount of odorous substances produced by the microorganisms,
    An odor generation suppressing method, wherein the component (a) has a logD of -1.5 or more and 1.5 or less, calculated by the following formula (1), at the pH of the composition containing the component (a) and water.

    Component (a): organic carboxylic acid or salt thereof
    logD = ClogP-log [1 + 10 (pH-pKa) ] Formula (1)
    [In the formula (1), ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a), pH is the pH of water containing the component (a), and pKa Is the pKa of the component (a). ]
  2.  前記臭い物質が、4-メチル-3-ヘキセン酸及び4-メチルヘキサン酸からなる群より選ばれる少なくとも1種である、請求項1に記載の方法。 The method according to claim 1, wherein the odorant is at least one selected from the group consisting of 4-methyl-3-hexenoic acid and 4-methylhexanoic acid.
  3.  (a)成分及び水を含有し、不織布からなるシートと、微生物が付着した対象物とを接触させる、請求項1又は2に記載の方法であって、(a)成分及び水を含む組成物のpHにおける、前記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、請求項1又は2に記載の臭い生成抑制方法。 3. The method according to claim 1, wherein the sheet comprising the nonwoven fabric, which contains the component (a) and water, is brought into contact with an object to which microorganisms have adhered, and the composition comprises the component (a) and water. 4. The method for suppressing odor generation according to claim 1 or 2, wherein logD of the component (a) calculated by the formula (1) at a pH of from -1.5 to 1.5.
  4.  界面活性剤膜で隔てられた水を含む2つの相において、一方の相に存在する下記(a)成分の下記式(1)で算出されるlogDを-1.5以上1.5以下に制御し、前記界面活性剤膜で隔てられた他方の相のpHを低下させる、pHの制御方法。
     
    (a)成分:有機カルボン酸又はその塩
     
    logD=ClogP-log[1+10(pH-pKa)]  式(1)
    [式(1)中、ClogPは(a)成分の酸型の状態での水/オクタノール分配係数の対数値の計算logP値であり、pHは(a)成分を含む水のpHであり、pKaは(a)成分のpKaである。]
    In two phases containing water separated by a surfactant film, the logD calculated by the following formula (1) of the following component (a) present in one phase is controlled to be -1.5 or more and 1.5 or less. And controlling the pH of the other phase separated by the surfactant film.

    Component (a): organic carboxylic acid or salt thereof
    logD = ClogP-log [1 + 10 (pH-pKa) ] Formula (1)
    [In the formula (1), ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a), pH is the pH of water containing the component (a), and pKa Is the pKa of the component (a). ]
  5.  前記界面活性剤膜が、微生物の細胞膜である、請求項4に記載のpH制御方法。 The pH control method according to claim 4, wherein the surfactant film is a cell membrane of a microorganism.
  6.  前記(a)成分が、炭素原子数8以上14以下の脂肪族多価カルボン酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the component (a) is at least one compound selected from the group consisting of aliphatic polycarboxylic acids having 8 to 14 carbon atoms and salts thereof. The described method.
  7.  前記(a)成分が、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、請求項1~6のいずれか1項に記載の方法。 7. The method according to claim 1, wherein the component (a) is at least one compound selected from the group consisting of suberic acid, azelaic acid, sebacic acid, dodecandioic acid, tetradecandioic acid, and salts thereof. The method described in the section.
  8.  前記(a)成分が、一つのナフタレン基と一つのカルボキシル基を有する有機カルボン酸又はその塩である、請求項1~5のいずれか1項に記載の方法。 方法 The method according to any one of claims 1 to 5, wherein the component (a) is an organic carboxylic acid having one naphthalene group and one carboxyl group or a salt thereof.
  9.  前記有機カルボン酸又はその塩が、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、2-ヒロドキシ-1-ナフタレンカルボン酸、3-ヒロドキシ-2-ナフタレンカルボン酸、6-ヒドロキシ-2-ナフタレンカルボン酸、及びこれらの塩からなる群より選ばれる1種以上の化合物である、請求項8に記載の方法。 Wherein the organic carboxylic acid or a salt thereof is 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 2-hydroxy-1-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 6-hydroxy-2-naphthalene carboxylic acid The method according to claim 8, wherein the compound is at least one compound selected from the group consisting of:
  10.  (a)成分との接触後の微生物の生菌数が維持されている、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the viable cell count of the microorganism after contact with the component (a) is maintained.
  11.  前記の(a)成分及び水を含む組成物のpHが、5.0以上8.5以下である、請求項1~10のいずれか1項に記載の方法。 (11) The method according to any one of (1) to (10), wherein the composition containing the component (a) and water has a pH of 5.0 or more and 8.5 or less.
  12.  (a)成分及び水を含有し、不織布からなるシートであって、
     (a)成分及び水を含む組成物のpHにおける、下記式(1)で算出される前記(a)成分のlogDが-1.5以上1.5以下である、シート。
     
    (a)成分:有機カルボン酸又はその塩
     
    logD=ClogP-log[1+10(pH-pKa)]  式(1)
    [式(1)中、ClogPは(a)成分の酸型の状態での水/オクタノール分配係数の対数値の計算logP値であり、pHは(a)成分を含む水のpHであり、pKaは(a)成分のpKaである。]
    (A) A sheet comprising a nonwoven fabric, containing a component and water,
    A sheet wherein the logD of the component (a) calculated by the following formula (1) at a pH of the composition containing the component (a) and water is from −1.5 to 1.5.

    Component (a): organic carboxylic acid or salt thereof
    logD = ClogP-log [1 + 10 (pH-pKa) ] Formula (1)
    [In the formula (1), ClogP is a calculated logP value of a logarithmic value of a water / octanol partition coefficient in the acid form of the component (a), pH is the pH of water containing the component (a), and pKa Is the pKa of the component (a). ]
  13.  前記(a)成分が、炭素原子数8以上14以下の脂肪族多価カルボン酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、請求項12に記載のシート。 The sheet according to claim 12, wherein the component (a) is at least one compound selected from the group consisting of aliphatic polycarboxylic acids having 8 to 14 carbon atoms and salts thereof.
  14.  前記(a)成分が、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、テトラデカン二酸及びこれらの塩からなる群より選ばれる1種以上の化合物である、請求項12又は13に記載のシート。 14. The sheet according to claim 12, wherein the component (a) is at least one compound selected from the group consisting of suberic acid, azelaic acid, sebacic acid, dodecandioic acid, tetradecandioic acid, and salts thereof. 15. .
  15.  前記(a)成分が、一つのナフタレン基と一つのカルボキシル基を有する有機カルボン酸又はその塩である、請求項12に記載のシート。 The sheet according to claim 12, wherein the component (a) is an organic carboxylic acid having one naphthalene group and one carboxyl group or a salt thereof.
  16.  前記有機カルボン酸又はその塩が、1-ナフタレンカルボン酸、2-ナフタレンカルボン酸、2-ヒロドキシ-1-ナフタレンカルボン酸、3-ヒロドキシ-2-ナフタレンカルボン酸、6-ヒドロキシ-2-ナフタレンカルボン酸、及びこれらの塩からなる群より選ばれる1種以上の化合物である、請求項15に記載のシート。 Wherein the organic carboxylic acid or a salt thereof is 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 2-hydroxy-1-naphthalene carboxylic acid, 3-hydroxy-2-naphthalene carboxylic acid, 6-hydroxy-2-naphthalene carboxylic acid The sheet according to claim 15, wherein the sheet is at least one compound selected from the group consisting of: and a salt thereof.
  17.  前記不織布の質量に対する、前記(a)成分及び水を含む組成物の含浸率(質量%)が、100質量%以上500質量%以下である、請求項12~16のいずれか1項に記載のシート。 17. The method according to claim 12, wherein an impregnation ratio (% by mass) of the composition containing the component (a) and water with respect to the mass of the nonwoven fabric is 100% by mass or more and 500% by mass or less. Sheet.
  18.  (a)成分と水とを含む組成物の質量に対する(a)成分の含有量が、0.01質量%以上1質量%以下である、請求項12~17のいずれか1項に記載のシート。 The sheet according to any one of claims 12 to 17, wherein the content of the component (a) is 0.01% by mass or more and 1% by mass or less based on the mass of the composition containing the component (a) and water. .
PCT/JP2019/027669 2018-07-13 2019-07-12 Method for inhibiting odor formation WO2020013310A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980035661.9A CN112203699B (en) 2018-07-13 2019-07-12 Method for inhibiting odor generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-132966 2018-07-13
JP2018132966 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013310A1 true WO2020013310A1 (en) 2020-01-16

Family

ID=69142452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027669 WO2020013310A1 (en) 2018-07-13 2019-07-12 Method for inhibiting odor formation

Country Status (3)

Country Link
JP (1) JP7321809B2 (en)
CN (1) CN112203699B (en)
WO (1) WO2020013310A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753344A (en) * 1993-07-20 1995-02-28 Beiersdorf Ag Deodorizing activity compound combinated substance based on alpha. and omega. - alkanedicarboxylic acid and wool wax acid
JPH0987127A (en) * 1995-09-20 1997-03-31 Kao Corp Skin-lightening agent and skin preparation for external use containing the same
JP2011126844A (en) * 2009-12-21 2011-06-30 Shiseido Co Ltd Cosmetic sheet product
JP2012184524A (en) * 2011-03-04 2012-09-27 Kao Corp Half-dry smell suppressor
JP2012183184A (en) * 2011-03-04 2012-09-27 Kao Corp Half-dry smell deodorizer
JP2012240960A (en) * 2011-05-19 2012-12-10 Thermostable Enzyme Laboratory Co Ltd Deodorant
JP2017121203A (en) * 2016-01-07 2017-07-13 花王株式会社 Production method of dihydroxy naphthalene

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2418362B2 (en) * 1974-04-16 1979-05-03 Henkel Kgaa, 4000 Duesseldorf Use of aliphatic hydroxycarboxylic acid esters as deodorants in cosmetic preparations
JPH08311769A (en) * 1995-05-22 1996-11-26 Toyobo Co Ltd Fiber product processed for an antibacterial, deodorizing and water absorbing functions and its production
JP4611498B2 (en) * 2000-06-19 2011-01-12 ライオン株式会社 Deodorant composition
US20050171230A1 (en) * 2002-05-02 2005-08-04 Masahide Ishikawa Agent for suppressing transfer of odor and taste originating from a diacetal a diacetal composition comprising the agent for suppressing transfer of odor and taste a polyolefin nucleating agent comprising the composition a polyolefin resin composition and a molded product comprising the nucleating agent
JP2004263102A (en) * 2003-03-03 2004-09-24 Takasago Internatl Corp False body odor composition
CN101263222A (en) * 2005-09-13 2008-09-10 巴斯夫欧洲公司 Microorganisms inhibiting the formation of axillary malodor
CN101283086A (en) * 2005-09-19 2008-10-08 巴斯夫欧洲公司 Microorganisms inhibiting the formation of foot malodor
US9200269B2 (en) * 2007-09-20 2015-12-01 Kao Corporation β-glucuronidase inhibitor
JP4950927B2 (en) * 2008-03-31 2012-06-13 花王株式会社 Indicator substance for judgment of raw dry odor
US9273427B2 (en) * 2009-09-18 2016-03-01 The Procter & Gamble Company Freshening compositions comprising malodor binding polymers
US9260817B2 (en) * 2009-09-18 2016-02-16 The Procter & Gamble Company Freshening compositions comprising malodor binding polymers and malodor counteractants
JP5670810B2 (en) * 2010-09-21 2015-02-18 花王株式会社 Screening method for raw dry odor inhibitor and evaluation method for raw dry odor suppressor
JP5744473B2 (en) * 2010-10-29 2015-07-08 花王株式会社 Method for reducing off-flavor substances generated from textile products
JP6644555B2 (en) * 2016-01-15 2020-02-12 花王株式会社 Liquid deodorant composition
JP6704800B2 (en) * 2016-06-07 2020-06-03 花王株式会社 Indicator substance for sweat odor determination

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753344A (en) * 1993-07-20 1995-02-28 Beiersdorf Ag Deodorizing activity compound combinated substance based on alpha. and omega. - alkanedicarboxylic acid and wool wax acid
JPH0987127A (en) * 1995-09-20 1997-03-31 Kao Corp Skin-lightening agent and skin preparation for external use containing the same
JP2011126844A (en) * 2009-12-21 2011-06-30 Shiseido Co Ltd Cosmetic sheet product
JP2012184524A (en) * 2011-03-04 2012-09-27 Kao Corp Half-dry smell suppressor
JP2012183184A (en) * 2011-03-04 2012-09-27 Kao Corp Half-dry smell deodorizer
JP2012240960A (en) * 2011-05-19 2012-12-10 Thermostable Enzyme Laboratory Co Ltd Deodorant
JP2017121203A (en) * 2016-01-07 2017-07-13 花王株式会社 Production method of dihydroxy naphthalene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
APRIANI, E. F. ET AL.: "Stability Testing of Azelaic Acid Cream Based Ethosome", ASIAN JOURNAL OF PHARMACEUTICAL AND CLINICAL RESEARCH, vol. 11, no. 5, 5 May 2018 (2018-05-05), pages 270 - 273, XP055674782 *
STOKES, S. S. ET AL.: "Inhibitors of the Acetyltransferase Domain of N-acetylglucosamine-1- phosphate-uridylyltransferase/glucosamine-1- phosphate-acetyltransferase(GlmU). Part2: Optimization of Physical Properties Leading to Antibacterial Aryl Sulfonamides", BIOORGANIC & MEDICAL CHEMISTRY LETTERS, vol. 22, no. 23, 2012, pages 7019 - 7023, XP055103641, DOI: 10.1016/j.bmcl.2012.10.003 *

Also Published As

Publication number Publication date
JP7321809B2 (en) 2023-08-07
JP2020014844A (en) 2020-01-30
CN112203699B (en) 2022-11-29
CN112203699A (en) 2021-01-08

Similar Documents

Publication Publication Date Title
JP5767831B2 (en) Raw dry odor control agent
JP5809800B2 (en) Raw dry odor control agent
Møllebjerg et al. The bacterial life cycle in textiles is governed by fiber hydrophobicity
US20020142364A1 (en) Anti-microbial perfuming compositions
Huang et al. Antimicrobial finish of cotton fabrics treated by sophorolipids combined with 1, 2, 3, 4-butanetetracarboxyic acid
JP5670810B2 (en) Screening method for raw dry odor inhibitor and evaluation method for raw dry odor suppressor
JP7321809B2 (en) Odor generation suppression method
JP2024506903A (en) Enhanced sophorolipid derivatives
AU2013216182B2 (en) Wet hand towel and method for producing the same
JP6670819B2 (en) Microbial disinfection method and clothing deodorization method
JP5990412B2 (en) Liquid detergent composition for textile products
JP5852313B2 (en) Raw dry odor control agent
WO2019230210A1 (en) Antiviral and antibacterial composition and aqueous solution
WO2003022203A2 (en) Products and methods for treating microbial infections
KR20040085417A (en) Fabric softener composition
JP7376330B2 (en) Metabolic control method for branched fatty acids
JP4312449B2 (en) Allergen remover
Obendorf et al. Measurement of Odor Development Due to Bacterial Action on Antimicrobial Polyester Fabrics.
JP7376331B2 (en) Metabolic control method for branched fatty acids
JP6001139B2 (en) Raw dry odor control agent
WO2024031070A1 (en) Cationic surfactants with improved ph stability and their use
CN114761540A (en) Method for controlling metabolism of branched-chain fatty acids
TWI829815B (en) Antibacterial and antiviral compositions, aqueous solutions, soaps, sanitary products, residential detergents, kitchen detergents, laundry detergents, residential antibacterial and antiviral agents, kitchen antibacterial and antiviral agents, clothing antibacterial and antiviral agents, Cosmetics, wet wipes and wet handkerchiefs
TW202413611A (en) Cationic surfactants with improved ph stability and their use
US20230257682A1 (en) Fabric care compositions with dose-dependent antimicrobial activities that reduce the risk of infection and promote health and hygiene when used discretely or synergistically in a machine washing and drying laundry program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834566

Country of ref document: EP

Kind code of ref document: A1