WO2020012986A1 - Substrate processing system and substrate processing method - Google Patents

Substrate processing system and substrate processing method Download PDF

Info

Publication number
WO2020012986A1
WO2020012986A1 PCT/JP2019/025817 JP2019025817W WO2020012986A1 WO 2020012986 A1 WO2020012986 A1 WO 2020012986A1 JP 2019025817 W JP2019025817 W JP 2019025817W WO 2020012986 A1 WO2020012986 A1 WO 2020012986A1
Authority
WO
WIPO (PCT)
Prior art keywords
peripheral portion
surface film
outer peripheral
wafer
substrate processing
Prior art date
Application number
PCT/JP2019/025817
Other languages
French (fr)
Japanese (ja)
Inventor
隼斗 田之上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2020530108A priority Critical patent/JP7058737B2/en
Publication of WO2020012986A1 publication Critical patent/WO2020012986A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present disclosure relates to a substrate processing system and a substrate processing method.
  • Patent Document 1 discloses a device for bonding two wafers.
  • the bonding apparatus first, the center portion of the upper wafer of the two wafers that are vertically opposed to each other is pressed by a push pin to bring the center portion into contact with the lower wafer. Thereafter, the spacer supporting the upper wafer is retracted, the entire surface of the upper wafer is brought into contact with the entire surface of the lower wafer, and the wafers are joined.
  • Patent Document 2 discloses an end surface grinding device for grinding a peripheral end portion of a semiconductor wafer.
  • a disk-shaped grinding tool provided with abrasive grains on the outer peripheral portion is rotated, and at least the outer peripheral surface of the grinding tool is brought into linear contact with the semiconductor wafer so that the peripheral edge of the semiconductor wafer is substantially L-shaped.
  • the semiconductor wafer is manufactured by bonding two silicon wafers together.
  • the technology according to the present disclosure suppresses voids generated at the peripheral edge of the substrate when the substrates are joined to each other.
  • One embodiment of the present disclosure is a substrate processing system for processing a substrate, wherein the substrate processing system is formed on a surface of a first substrate before being bonded to a second surface film formed on a surface of the second substrate. There is a surface modification device for modifying the outer peripheral portion of the first surface film.
  • FIG. 2 is a plan view schematically showing the outline of the configuration of the wafer processing system according to the first embodiment. It is a side view which shows the outline of a structure of a surface modification apparatus.
  • FIG. 4 is a flowchart showing main steps of wafer processing according to the first embodiment.
  • FIG. 3 is an explanatory diagram of main steps of wafer processing according to the first embodiment. It is explanatory drawing which shows a mode that the modified layer was formed in the to-be-processed wafer. It is explanatory drawing which shows a mode that a peripheral edge modification layer is formed in a to-be-processed wafer. It is explanatory drawing which shows a mode that a division
  • FIG. 11 is a flowchart showing main steps of wafer processing according to the second embodiment. It is an explanatory view of a main process of wafer processing according to a second embodiment. It is a side view which shows the outline of a structure of the surface modification apparatus concerning another embodiment.
  • FIG. 19 is an explanatory diagram showing how the outer peripheral portion of the oxide film is removed and the wafers are joined together in the surface reforming device shown in FIG. 18.
  • FIG. 24 is an explanatory diagram showing how the outer peripheral portion of the oxide film is removed in the surface reforming apparatus shown in FIG. 23 and the wafers are joined together.
  • FIG. 24 is a plan view schematically showing how an oxide film is removed in the surface modification device shown in FIG. 23.
  • FIG. 24 is a side view schematically showing how an oxide film is removed in the surface modification device shown in FIG. 23.
  • FIG. 24 is an explanatory diagram schematically showing how an outer peripheral portion of an oxide film is removed by another method in the surface modifying apparatus shown in FIG. 23. It is a side view which shows the outline of a structure of the surface reforming apparatus with which the wafer processing system concerning 3rd Embodiment is provided.
  • FIG. 14 is a flowchart showing main steps of wafer processing according to a third embodiment. It is an explanatory view of a main process of wafer processing according to a third embodiment. It is explanatory drawing which shows typically the mode of thinning of the to-be-processed wafer by another method. It is explanatory drawing which shows typically the mode of the edge trim of the to-be-processed wafer by another method.
  • wafers two semiconductor wafers (hereinafter, referred to as wafers) are joined. Specifically, for example, the wafers are joined together by van der Waals force and hydrogen bonding (intermolecular force).
  • the bonding of the wafers is performed by, for example, a bonding apparatus disclosed in Patent Document 1.
  • a back surface of a wafer having devices such as a plurality of electronic circuits formed on a front surface of a bonded superposed wafer is ground to thin the wafer. .
  • the peripheral portion of the wafer is chamfered.
  • the peripheral portion of the wafer becomes sharp and sharp (a so-called knife edge shape).
  • chipping occurs at the peripheral portion of the wafer, and the wafer may be damaged. Therefore, so-called edge trimming, in which the peripheral portion of the wafer is cut in advance before the grinding process, is performed. This edge trimming is performed by, for example, an end face grinding device disclosed in Patent Document 2.
  • edge voids voids generated at the peripheral edge of the bonded superposed wafer, and it is required to suppress the edge voids.
  • edge voids are generated in the overlapped wafer as described above.
  • the processing target wafer W and the support wafer S are joined.
  • a device layer D and an oxide film Fw are formed on the surface Wa of the processing target wafer W, and an oxide film Fs is formed on the surface Sa of the support wafer S.
  • the surface Wa of the peripheral portion We of the processing target wafer W is removed (edge trim).
  • the wafer W to be processed and the support wafer S that have been edge-trimmed are joined.
  • the edge void V described above is formed between the oxide films Fw and Fs in the bonded overlapped wafer T.
  • the back surface Wb of the processing target wafer W is ground on the overlapped wafer T.
  • an edge void V occurs in the overlapped wafer T
  • the processing of the processing target wafer W may be separated (peeled) by the edge void V.
  • cracks and chipping may occur in the wafer W to be processed based on the peeling.
  • metal vias and pads are formed on each of the wafers W and S, and these vias and pads may be connected by diffusion bonding. In such a case, if an edge void occurs at a location of a via or a pad, diffusion bonding does not occur and a connection failure may occur.
  • the effective area (usable area) of the processing target wafer W also becomes smaller.
  • the distance L1 from the end of the processing target wafer W to the inner end of the edge void V before processing was about 7 mm. Therefore, when the diameter of the processing target wafer W before the processing is 300 mm, the effective area is an area of ⁇ 286 mm.
  • the technology according to the present disclosure suppresses edge voids when bonding wafers.
  • the present inventors have elucidated the generation mechanism of edge voids, and based on the knowledge, have arrived at a system and method for suppressing edge voids.
  • the processing target wafer W as the first substrate and the supporting wafer S as the second substrate are joined.
  • the surface to be joined is referred to as a front surface Wa
  • the surface opposite to the front surface Wa is referred to as a back surface Wb.
  • the surface to be joined is referred to as a front surface Sa
  • the surface opposite to the front surface Sa is referred to as a back surface Sb.
  • the processing target wafer W is a semiconductor wafer such as a silicon wafer, for example, and a device layer D including a plurality of devices is formed on a front surface Wa. Further, an oxide film Fw as a first surface film, for example, an SiO 2 film (TEOS film) is further formed on the device layer D.
  • TEOS film SiO 2 film
  • the support wafer S is a wafer that supports the processing target wafer W.
  • an oxide film Fs as a second surface film for example, an SiO 2 film (TEOS film) is formed.
  • the support wafer S functions as a protective material for protecting devices on the surface Wa of the processing target wafer W.
  • a device layer (not shown) is formed on the surface Sa, similarly to the wafer W to be processed.
  • the device layer D and the oxide films Fw and Fs may be omitted in order to avoid complexity.
  • the mechanism of generation of edge voids will be described.
  • the respective surfaces of the oxide films Fw and Fs are activated by plasma processing in a reduced-pressure atmosphere. Thereafter, the activated surface is hydrophilized, and an OH group (hydroxy group) is provided to the dangling bond formed on the surface. Then, at the time of bonding, the oxide films Fw and Fs are in contact with each other and the OH groups are hydrogen-bonded, so that the oxide films Fw and Fs are bonded to each other.
  • the bonded oxide films Fw and Fs are further subjected to an annealing treatment to remove water, thereby securing the bonding strength.
  • the processing target wafer W is suction-held by the upper chuck 300
  • the support wafer S is suction-held by the lower chuck 301.
  • the upper chuck 300 can suck the wafer W to be processed independently from the suction ports 300a and 300b
  • the lower chuck 301 can suck the support wafer S independently from the suction ports 301a and 301b.
  • FIG. 3B the suction from the suction port 300a at the center is stopped, and the pressing member 302 provided on the upper chuck 300 is lowered to press the center of the wafer W to be processed. You.
  • the central portion of the processing target wafer W and the central portion of the supporting wafer S abut, and bonding by hydrogen bonding starts, so that a so-called bonding wave B is generated.
  • the bonding wave B is diffused from the center to the periphery.
  • the suction from the suction port 300b in the peripheral portion is stopped as shown in FIG. 3D, and the peripheral portion of the wafer W to be processed falls on the support wafer S.
  • the processing target wafer W and the support wafer S are joined as shown in FIG.
  • the space between the wafers W and S is compressed to a high pressure due to the air.
  • the atmosphere compressed at the end Be of the bonding wave B to a high pressure (for example, three times the atmospheric pressure) is opened to the atmosphere, and rapidly.
  • the pressure will be reduced to atmospheric pressure.
  • the Joule-Thomson effect occurs due to the rapid pressure reduction, the temperature decreases (for example, decreases by 1.5 ° C.), and dew condensation occurs.
  • edge voids are generated by a sudden change in pressure between the wafers W and S.
  • the present inventors have come to think of suppressing the abrupt pressure change to suppress the edge void.
  • a wafer processing system as a substrate processing system and a wafer processing method as a substrate processing method according to the present embodiment will be described with reference to the drawings.
  • elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 6 is a plan view schematically showing the outline of the configuration of the wafer processing system 1.
  • edge trimming is performed after bonding.
  • the wafer processing system 1 has a configuration in which the loading / unloading station 2 and the processing station 3 are integrally connected.
  • cassettes Cw, Cs, and Ct capable of accommodating a plurality of wafers W to be processed, a plurality of support wafers S, and a plurality of overlapped wafers T with the outside, respectively, are carried into and out of the carry-in / out station 2.
  • the processing station 3 includes various processing apparatuses that perform predetermined processing on the processing target wafer W, the support wafer S, and the overlapped wafer T.
  • the cassette loading table 10 is provided at the loading / unloading station 2.
  • a plurality of, for example, four cassettes Cw, Cs, Ct can be mounted on the cassette mounting table 10 in a line in the X-axis direction.
  • the number of cassettes Cw, Cs, Ct to be mounted on the cassette mounting table 10 is not limited to the present embodiment, and can be arbitrarily determined.
  • the wafer transfer area 20 is provided in the loading / unloading station 2 adjacent to the cassette mounting table 10.
  • the wafer transfer area 20 is provided with a wafer transfer device 22 movable on a transfer path 21 extending in the X-axis direction.
  • the wafer transfer device 22 has, for example, two transfer arms 23, 23 for holding and transferring the processing target wafer W, the support wafer S, and the overlapped wafer T.
  • Each transfer arm 23 is configured to be movable in a horizontal direction, a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 23 is not limited to the present embodiment, and may have any configuration.
  • the processing station 3 is provided with a wafer transfer area 30.
  • the wafer transfer area 30 is provided with a wafer transfer device 32 movable on a transfer path 31 extending in the X-axis direction.
  • the wafer transfer device 32 sends a processing target wafer W, a support wafer S, and a polymerization device to a transition device 34, a bonding device 40, an internal reforming device 41, a surface reforming device 42, a hydrophobizing device 43, and a processing device 50 described later.
  • the wafer T is configured to be transportable.
  • the wafer transfer device 32 has, for example, two transfer arms 33, 33 for holding and transferring the processing target wafer W, the support wafer S, and the superposed wafer T.
  • Each transfer arm 33 is configured to be movable in a horizontal direction, a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 33 is not limited to the present embodiment, and may have any configuration.
  • a transition device 34 for transferring the processing target wafer W, the support wafer S, and the overlapped wafer T is provided between the wafer transfer area 20 and the wafer transfer area 30.
  • a bonding device 40 and an internal reforming device 41 are arranged in this order in the X-axis direction from the loading / unloading station 2 side.
  • a surface reforming device 42 and a hydrophobizing device 43 are arranged in this order in the X-axis direction from the loading / unloading station 2 side.
  • the bonding device 40 bonds the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S.
  • the oxide film Fw and the oxide film Fs Prior to the bonding, the oxide film Fw and the oxide film Fs are respectively activated and hydrophilized. Specifically, when activating the oxide film Fw and the oxide film Fs, for example, under a reduced pressure atmosphere, an oxygen gas or a nitrogen gas as a processing gas is excited to be turned into plasma and ionized.
  • the oxide film Fw and the oxide film Fs are irradiated with the oxygen ions or the nitrogen ions, and the oxide film Fw and the oxide film Fs are plasma-treated and activated.
  • oxide film Fw and the oxide film Fs activated in this way, and an OH group is given to a dangling bond between the oxide film Fw and the oxide film Fs to make them hydrophilic. Then, as shown in FIG. 3, oxide film Fw and oxide film Fs are joined by hydrogen bonding. Further, an annealing process is performed on the bonded overlapped wafer T to remove water from the oxide film Fw and the oxide film Fs, thereby securing the bonding strength.
  • the internal reforming device 41 forms a peripheral reforming layer and a split reforming layer inside the wafer W to be processed.
  • a laser beam is emitted from a laser head (not shown) to the inside of the wafer to be processed W while the overlapped wafer T is rotated and held by a chuck (not shown).
  • the laser head receives high-frequency pulsed laser light oscillated from a laser light oscillator (not shown), and has a wavelength that is transparent to the wafer W to be processed, for example, infrared light.
  • the light is focused and irradiated on a predetermined position inside the processing wafer W. Thereby, the portion where the laser light is focused inside the wafer W to be processed is modified.
  • the peripheral edge modified layer is formed along the boundary between the peripheral edge portion We to be removed and the central portion of the processing target wafer W.
  • the split modified layer is formed to extend in the radial direction on the radially outside of the peripheral edge modified layer.
  • the laser head further includes a spatial light modulator (not shown).
  • the spatial light modulator modulates and outputs the laser light.
  • the spatial light modulator can control the focal position and phase of the laser light, and can adjust the shape and number (the number of branches) of the laser light applied to the processing target wafer W.
  • the surface reforming device 42 reforms the outer peripheral portion of the oxide film Fw of the processing target wafer W, and removes the outer peripheral portion in the present embodiment.
  • wet etching is performed on the outer peripheral portion of the oxide film Fw with an etching solution such as hydrofluoric acid.
  • the hydrophobizing device 43 immerses the polymerized wafer T in an organic solvent to bond, for example, CH 3 groups (methyl groups) to the surfaces of the unbonded oxide films Fw and Fs.
  • the interface between the oxide films Fw and Fs joined by the joining device 40 corresponds to the joining region where the oxide films Fw and Fs are joined and the oxide film Fw removed by the surface reforming device 42 as described later.
  • An unjoined region is formed.
  • the dangling bonds formed on the surfaces of the oxide films Fw and Fs in the unbonded regions are hydrophobized by, for example, bonding CH 3 groups.
  • the hydrophobicity of the surfaces of the oxide films Fw and Fs is not limited to the bonding of the CH 3 group, and for example, a group containing another carbon may be bonded to the surfaces of the oxide films Fw and Fs.
  • the superposed wafer T is immersed in the organic solvent, but the method of providing the CH 3 group is not limited to this, and the organic solvent may be supplied to the surfaces of the oxide films Fw and Fs.
  • the surfaces of the oxide films Fw and Fs may be exposed to an organic solvent atmosphere.
  • a processing apparatus 50 is disposed on the X-axis positive direction side of the wafer transfer area 30. In the processing apparatus 50, processing such as grinding and cleaning is performed on the wafer W to be processed.
  • the processing device 50 includes a rotary table 60, a transport unit 70, an alignment unit 80, a first cleaning unit 90, a second cleaning unit 100, a rough grinding unit 110, a medium grinding unit 120, and a finish grinding unit 130. I have.
  • the rotary table 60 is configured to be rotatable by a rotating mechanism (not shown).
  • a rotating mechanism not shown
  • four chucks 61 for holding the overlapped wafer T by suction are provided on the turntable 60.
  • the chucks 61 are evenly arranged on the same circumference as the rotary table 60, that is, are arranged at intervals of 90 degrees.
  • the four chucks 61 can be moved to the delivery position A0 and the processing positions A1 to A3 by rotating the rotary table 60.
  • the chuck 61 is held by a chuck base (not shown), and is configured to be rotatable by a rotation mechanism (not shown).
  • the delivery position A0 is a position on the X-axis negative direction side and the Y-axis negative direction side of the turntable 60, and the second cleaning unit 100 and the alignment unit are located on the X-axis negative direction side of the delivery position A0.
  • the 80 and the first cleaning unit 90 are arranged side by side.
  • the alignment unit 80 and the first cleaning unit 90 are stacked and arranged in this order from above.
  • the first processing position A1 is a position on the X-axis positive direction side and the Y-axis negative direction side of the turntable 60, and the coarse grinding unit 110 is disposed.
  • the second processing position A2 is a position on the X-axis positive direction side and the Y-axis positive direction side of the turntable 60, and the medium grinding unit 120 is disposed.
  • the third processing position A3 is a position on the X-axis negative direction side and the Y-axis positive direction side of the rotary table 60, and the finish grinding unit 130 is disposed.
  • the transfer unit 70 is an articulated robot having a plurality of, for example, three arms 71. Each of the three arms 71 is configured to be pivotable. A transfer pad 72 for sucking and holding the overlapped wafer T is attached to the tip arm 71. The base arm 71 is attached to a moving mechanism 73 that moves the arm 71 in the vertical direction. Then, the transfer unit 70 having such a configuration can transfer the overlapped wafer T to the delivery position A0, the alignment unit 80, the first cleaning unit 90, and the second cleaning unit 100.
  • the horizontal direction of the overlapped wafer T before the grinding process is adjusted.
  • the position of the notch portion is adjusted by detecting the position of the notch portion of the processing target wafer W by the detection unit (not shown) while rotating the overlapped wafer T held by the chuck (not shown). To adjust the horizontal direction of the overlapped wafer T.
  • the first cleaning unit 90 cleans the back surface Wb of the processed wafer W after the grinding process, and more specifically performs spin cleaning.
  • the second cleaning unit 100 cleans the back surface Sb of the support wafer S in a state where the wafer W after the grinding process is held on the transfer pad 72, and also cleans the transfer pad 72.
  • the rough grinding unit 110 roughly grinds the back surface of the wafer W to be processed.
  • the coarse grinding unit 110 has a coarse grinding unit 111 provided with a rotatable coarse grinding wheel (not shown) having an annular shape.
  • the rough grinding unit 111 is configured to be movable in the vertical and horizontal directions along the column 112. Then, with the back surface of the wafer W to be processed held by the chuck 61 being in contact with the rough grinding wheel, the chuck 61 and the rough grinding wheel are respectively rotated, and the rough grinding wheel is further lowered, whereby the wafer to be processed is lowered.
  • the back surface of W is roughly ground.
  • the medium grinding unit 120 performs medium grinding on the back surface of the wafer W to be processed.
  • the medium grinding unit 120 has a medium grinding unit 121 provided with an annular and rotatable medium grinding wheel (not shown).
  • the middle grinding portion 121 is configured to be movable in the vertical and horizontal directions along the column 122.
  • the grain size of the abrasive grains of the medium grinding wheel is smaller than the grain size of the abrasive grains of the coarse grinding wheel. Then, with the back surface of the wafer W to be processed held by the chuck 61 being in contact with the medium grinding wheel, the chuck 61 and the medium grinding wheel are respectively rotated, and the medium grinding wheel is further lowered, so that the back surface is centered. Grind.
  • the finish grinding unit 130 finish-grinds the back surface of the wafer W to be processed.
  • the finish grinding unit 130 has a finish grinding unit 131 having a ring-shaped rotatable finish grinding wheel (not shown). Further, the finish grinding section 131 is configured to be movable in the vertical and horizontal directions along the column 132.
  • the grain size of the abrasive grains of the finish grinding wheel is smaller than the grain size of the abrasive grains of the medium grinding wheel. Then, while the back surface of the wafer W to be processed held by the chuck 61 is in contact with the finishing grinding wheel, the chuck 61 and the finishing grinding wheel are respectively rotated, and the finishing grinding wheel is further lowered to finish the back surface. Grind.
  • the peripheral edge portion We of the processing target wafer W is removed, and the processing device 50 constitutes a peripheral edge removing device. are doing.
  • the control device 140 is a computer, for example, and has a program storage unit (not shown).
  • the program storage section stores a program for controlling wafer processing in the wafer processing system 1.
  • the program storage unit also stores programs for controlling operations of driving systems such as the above-described various types of processing apparatuses and transfer apparatuses, and for realizing wafer processing to be described later in the wafer processing system 1.
  • the program may be recorded on a computer-readable storage medium H, and may be installed from the storage medium H to the control device 140.
  • the surface reforming apparatus 42 has a chuck 150 for holding the wafer W to be processed with the oxide film Fw facing upward.
  • the chuck 150 is configured to be rotatable around a vertical axis by a rotation mechanism 151.
  • a nozzle 152 for applying the etching solution E to the outer peripheral portion of the oxide film Fw is provided above the chuck 150.
  • the nozzle 152 is in communication with an etchant supply source (not shown) that stores and supplies the etchant E.
  • the nozzle 152 is configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction by a moving mechanism (not shown).
  • the surface layer of the outer peripheral portion Fwe of the oxide film Fw is removed by the etching solution E as shown in FIG. Then, as shown in FIG. 8B, in the outer peripheral portion Fwe, the oxide films Fw and Fs are not joined during the joining process. That is, when the oxide films Fw and Fs are joined, an unjoined region Ae corresponding to the outer peripheral portion Fwe and a joined region Ac where the oxide films Fw and Fs are joined are formed at the interface between the oxide films Fw and Fs. You.
  • the thickness H of the outer peripheral portion Fwe to be removed shown in FIG. 8 is desirably within 400 nm from the surface. As the thickness H of the outer peripheral portion Fwe becomes larger than 400 nm, the space where the atmosphere at the end of the bonding wave is opened increases, and the degree of pressure reduction increases. Therefore, the smaller the thickness H of the outer peripheral portion Fwe, the better.
  • the present inventors conducted an experiment and confirmed that edge voids can be reliably suppressed if the thickness H of the outer peripheral portion Fwe is within 400 nm.
  • the width La of the unjoined area Ae shown in FIG. 8 is, for example, within 4 mm.
  • the width La does not contribute to the generation of edge voids. Even if the width La is as large as 4 mm, for example, the edge voids can be suppressed. However, in order to increase the effective area of the processing target wafer W as described later, it is preferable that the width La is as small as possible.
  • the cassette Cw storing a plurality of wafers W to be processed and the cassette Cs storing a plurality of supporting wafers S are mounted on the cassette mounting table 10 of the loading / unloading station 2.
  • the wafer W to be processed in the cassette Cw is taken out by the wafer transfer device 22 and transferred to the transition device 34.
  • the processing target wafer W of the transition device 34 is taken out by the wafer transfer device 32 and transferred to the surface reforming device 42.
  • the etchant E is supplied to the outer peripheral portion Fwe of the oxide film Fw of the processing target wafer W, and the surface layer of the outer peripheral portion Fwe is removed as shown in FIG. 10A (step in FIG. 9). P1).
  • the outer peripheral portion Fwe is removed such that the distance L2 from the end of the processing target wafer W becomes about 0.5 mm.
  • Step P1 the support wafer S in the cassette Cs is taken out by the wafer transfer device 22 and transferred to the bonding device 40 by the wafer transfer device 32 via the transition device 34.
  • the processing target wafer W is transferred to the bonding device 40 by the wafer transfer device 32.
  • the front and back surfaces of the processing target wafer W are reversed by the wafer transfer device 22 or the reversing device (not shown).
  • the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S are bonded to form the overlapped wafer T (Step P2 in FIG. 9).
  • the oxide films Fw and Fs are not bonded at the outer peripheral portion Fwe, and a bonded region Ac and an unbonded region Ae are formed at the interface between the oxide films Fw and Fs.
  • the unbonded region Ae reduces the space at the end of the bonding wave where the high-pressure atmosphere is released, and does not reduce the pressure to the atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed.
  • the overlapped wafer T is transferred to the hydrophobizing device 43 by the wafer transfer device 32.
  • the polymerized wafer T is immersed in an organic solvent to bond CH 3 groups to the surfaces of the oxide films Fw and Fs in the unbonded region Ae as shown in FIG. 10C (step in FIG. 9). P3).
  • the peripheral portion We of the processing target wafer W may not be appropriately removed in step P5 described below.
  • a problem may be caused by making the surfaces of the oxide films Fw and Fs hydrophobic.
  • the peripheral portion We can be appropriately removed. Note that the oxide films Fw and Fs may not adhere to each other after the bonding process depending on the humidity of the surrounding environment such as a dry environment. In such a case, Step P3 becomes unnecessary and can be omitted.
  • the overlapped wafer T is transferred to the internal reforming device 41 by the wafer transfer device 32.
  • the internal reforming device 41 irradiates the inside of the processing target wafer W with laser light from the laser head while rotating the processing target wafer W.
  • an annular peripheral modification layer M1 is formed inside the processing target wafer W.
  • the peripheral edge modified layer M1 is formed so as to coincide with the boundary between the joined region Ac and the unjoined region Ae, or radially inward of the boundary.
  • the peripheral edge modified layer M1 is formed at seven places in the thickness direction of the processing target wafer W, but the number of the peripheral edge modified layer M1 is arbitrary.
  • the peripheral edge modified layer M1 laser light emitted from a laser head is switched by the spatial light modulator, and the shape and number thereof are adjusted. Specifically, first, as shown in FIG. 12A, the surface Wa side in the thickness direction of the processing target wafer W is irradiated with the laser beam Lr1 to form the peripheral edge modified layers M1 (1) to M3 (3). To form The number of focal points of the laser beam Lr1 is one (single focus processing). Next, as shown in FIG. 12B, on the upper side of the peripheral edge modified layer M1 (3), that is, on the rear surface Wb side in the thickness direction of the processing target wafer W, the peripheral edge modified layer M1 (4) to ( 7) is formed. The number of focal points of the laser beam Lr2 is, for example, two, that is, the peripheral modified layers M1 (4) and (5) or the peripheral modified layers M1 (6) and (7) are formed at the same time. (Multi focus processing).
  • the number of the peripheral edge modified layers M1 formed by the laser beams Lr1 and Lr2 and the number of converging points of the laser beams Lr1 and Lr2 are arbitrary. However, in the peripheral modified layers M1 (1) to M (3) formed on the device layer D side of the processing target wafer W, cracks that propagate in the direction of the device layer D are controlled, that is, damage to the device layer D is prevented. In order to suppress giving, it is preferable that the peripheral modified layer M1 is formed with high precision by the single focus processing. On the other hand, the possibility of damaging the device layer D of the peripheral modified layers M1 (4) to (7) is lower than that of the peripheral modified layers M1 (1) to (3). Thereby, the throughput in the internal reforming device 41 can be improved.
  • a divided modified layer M2 extending in the radial direction of the wafer W to be processed is formed outside the peripheral modified layer M1 in the radial direction (Step P4 in FIG. 9).
  • the divided modified layers M2 are formed at eight locations in the circumferential direction and seven locations in the thickness direction of the wafer W to be processed, but the number of the divided modified layers M2 is arbitrary.
  • the spatial light modulator switches the laser light emitted from the laser head, and adjusts the shape and number of the laser light. Specifically, as shown in FIG. 13, the inside of the processing target wafer W is irradiated with the laser beam Lr3 to form the divided modified layer M2.
  • the number of focal points of the laser beam Lr3 is, for example, two (multi-focus processing).
  • the number of divided modified layers M2 formed by the laser light Lr3 and the number of converging points of the laser light Lr3 are arbitrary.
  • the split modified layer M2 is formed at a position where it is removed by the subsequent edge trim, and has a low possibility of giving a damaged layer to the device layer D as described above. Throughput in the reformer 41 can be improved.
  • the overlapped wafer T is transferred to the processing device 50 by the wafer transfer device 32.
  • the overlapped wafer T transferred to the processing device is transferred to the alignment unit 80.
  • the alignment unit 80 the horizontal direction of the processing target wafer W is adjusted.
  • the overlapped wafer T is transferred from the alignment unit 80 to the transfer position A0 by the transfer unit 70, and transferred to the chuck 61 at the transfer position A0. Thereafter, the chuck 61 is moved to the first processing position A1. Then, the back surface Wb of the processing target wafer W is roughly ground by the rough grinding unit 110 (Step P5 in FIG. 9).
  • cracks C1 and C2 are substantially linearly formed in the thickness direction from the peripheral modified layer M1 and the divided modified layer M2 inside the wafer W to be processed. And reaches the back surface Wb and the front surface Wa. Further, as the grinding of the back surface Wb proceeds, as shown in FIG. 10E, the peripheral edge portion We of the processing target wafer W is peeled off and removed from the peripheral edge modified layer M1 and the crack C1 as a base point. Further, at this time, the peripheral edge portion We is fragmented based on the divided modified layer M2 and the crack C2, and the peripheral edge portion We can be more easily removed. In the grinding of the back surface Wb, since the unbonded region Ae is formed at the interface between the oxide films Fw and Fs, the peripheral portion We can be appropriately removed.
  • the distance L2 between the end of the processed wafer W before the processing in step P1 and the end of the processed wafer W after the processing in step P5 can be set to about 0.5 mm. That is, the effective area is an area of ⁇ 299 mm. Therefore, the effective area can be increased as compared with the conventional example shown in FIG. In the present embodiment, since the edge void can be suppressed, the effective area can be increased. Further, in Step P5, since the peripheral portion We can be removed starting from the peripheral modified layer M1, the width (trim width) of the peripheral portion We can be reduced, and the effective area can be further increased. For example, when edge trimming is performed using a grinding tool (blade) as in the related art, a trim width of about 2 mm is required. However, in this embodiment, no trimming tool is used, and the trim width can be reduced.
  • blade grinding tool
  • the chuck 61 is moved to the second processing position A2. Then, the back surface Wb of the wafer W to be processed is subjected to middle grinding by the middle grinding unit 120. In the case where the peripheral portion We cannot be completely removed in the above-described rough grinding unit 110, the peripheral portion We is completely removed by the middle grinding unit 120.
  • the chuck 61 is moved to the third processing position A3. Then, the back surface Wb of the processing target wafer W is finish-ground by the finish grinding unit 130.
  • the chuck 61 is moved to the delivery position A0.
  • the back surface Wb of the processing target wafer W is roughly cleaned with a cleaning liquid using a cleaning liquid nozzle (not shown). At this time, cleaning for removing stains on the back surface Wb to some extent is performed.
  • the overlapped wafer T is transferred from the delivery position A0 to the second cleaning unit 100 by the transfer unit 70. Then, in the second cleaning unit 100, the back surface Sb of the support wafer S is cleaned and dried while the processing target wafer W is held by the transfer pad 72.
  • the superposed wafer T is transferred from the second cleaning unit 100 to the first cleaning unit 90 by the transfer unit 70.
  • the back surface Wb of the processing target wafer W is finish-cleaned by the cleaning liquid using a cleaning liquid nozzle (not shown).
  • the back surface Wb is washed to a desired degree of cleanliness and dried.
  • the overlapped wafer T that has been subjected to all the processes is transferred to the transition device 34 by the wafer transfer device 32, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 22.
  • a series of wafer processing in the wafer processing system 1 ends.
  • the surface layer of the outer peripheral portion Fwe of the oxide film Fw is removed in step P1, and when the oxide films Fw and Fs are joined in step P2, the oxide films Fw and Fs are removed.
  • An unbonded region Ae is formed at the interface.
  • the unbonded region Ae can suppress a rapid pressure reduction of the atmosphere at the end of the bonding wave, and as a result, can suppress edge voids.
  • the CH 3 groups are bonded to the surfaces of the oxide films Fw and Fs in the unbonded region Ae to make them hydrophobic in step P3, the adhesion (bonding) of the oxide films Fw and Fs can be suppressed. . Since the unjoined area Ae can be secured in this way, edge voids can be further suppressed. In addition, by making the surfaces of the oxide films Fw and Fs in the unbonded region Ae hydrophobic, the peripheral portion We of the processing target wafer W can be appropriately removed in Step P5.
  • the effective area of the processing target wafer W can be increased.
  • the peripheral portion We can be removed starting from the modified layer M in Step P5
  • the width (trim width) of the peripheral portion We can be reduced, and the effective area can be further increased.
  • the distance L1 from the end of the processing target wafer W to the edge void V before processing is about 7 mm
  • the effective area is an area of ⁇ 286 mm.
  • the distance L2 between the end of the processing target wafer W before the processing in step P1 and the end of the processing target wafer W after the processing in step P5 is about 0. 5 mm
  • the effective area is an area of ⁇ 299 mm.
  • the effective area of the processing target wafer W can be increased as compared with the related art, and a large number of chips as products can be manufactured.
  • the activation process, the hydrophilization process, the bonding process, and the annealing process of the oxide films Fw and Fs are sequentially performed in Step P2, and then, in Step P3, the surfaces of the oxide films Fw and Fs in the non-bonded region Ae. Was hydrophobized.
  • step P3 may be performed between the hydrophilic treatment and the bonding process in step P2, or may be performed between the bonding process and the annealing process.
  • the wafer processing system 1 of the present embodiment includes the bonding device 40, the internal reforming device 41, the surface reforming device 42, the hydrophobizing device 43, and the processing device 50, but the device configuration is arbitrary.
  • the joining device 40 and the surface reforming device 42 may be provided in one system, and the internal reforming device 41, the hydrophobizing device 43, and the processing device 50 may be provided in another system.
  • an internal reforming device 41 and a processing device 50 are provided in the wafer processing system 1, and a bonding device 40, a surface reforming device 42, and a hydrophobic device 43 are provided in another system (not shown). May be provided.
  • a cassette Ct capable of accommodating a plurality of overlapped wafers T is loaded and unloaded into the loading and unloading station 2 of the wafer processing system 1.
  • the cassettes Ct can be mounted on the cassette mounting table 10 in a line in the X-axis direction.
  • a processing device 50 is provided adjacent to the wafer transfer area 20.
  • the internal reforming device 41 is provided inside the processing device 50 and on the Y axis positive direction side of the transport unit 70 and the X axis negative direction side of the finish grinding unit 130.
  • the overlapped wafer T on which the above-described steps P1 to P3 have been performed in the external system is carried into the carry-in / out station 2 of the wafer processing system 1. That is, the surface layer of the outer peripheral portion Fwe is removed by the surface reforming device 42 from the loaded superposed wafer T (Step P1), and the oxide films Fw and Fs are joined by the joining device 40 (Step P2). At 43, the oxide films Fw and Fs are hydrophobized (step P3). Then, in the wafer processing system 1, steps P4 to P5 are performed on the overlapped wafer T.
  • Step P4 After the reformed layer M is formed inside the processing target wafer W by the internal reforming device 41 (step P4), the back surface Wb of the processing target wafer W is ground by the processing device 50, and the peripheral edge We is removed. (Step P5).
  • a substrate processing system for processing a substrate comprising: a first substrate having a thickness of 400 nm or less removed from a surface in a thickness direction of the surface film at an outer peripheral portion of the surface film; On the other hand, an internal reforming device that forms a modified layer inside the first substrate along a boundary between a peripheral portion and a central portion to be removed, and a peripheral edge that removes the peripheral portion based on the modified layer.
  • a substrate processing system comprising: a removing device.
  • a substrate processing method for processing a substrate comprising: removing a first substrate having a thickness of 400 nm or less removed from a surface in a thickness direction of the surface film at an outer peripheral portion of the surface film; On the other hand, an internal reforming step of forming a modified layer inside the first substrate along a boundary between a peripheral portion to be removed and a central portion, and a peripheral edge for removing the peripheral portion from the modified layer as a base point And a removing step.
  • the bonding device 40 may be provided in the wafer processing system 1, and the internal reforming device 41, the surface reforming device 42, and the hydrophobizing device 43 may be provided in another system.
  • the surface modification processing of the processing target wafer W in another system that is, the processing target wafer W from which the surface layer of the outer peripheral portion Fwe has been removed is carried into the wafer processing system 1, and thereafter, The overlapped wafer T is formed in the joining device 40.
  • a substrate processing method for processing a substrate comprising: preparing a first substrate having an outer peripheral portion of a first surface film modified by a surface modification step; A bonding step of bonding the first surface film of the first substrate prepared in the step of preparing the first substrate and a second surface film formed on a surface of the second substrate;
  • a substrate processing method comprising:
  • FIG. 15 is a plan view schematically showing the outline of the configuration of the wafer processing system 200.
  • edge trimming is performed before bonding.
  • the wafer processing system 200 has a configuration in which, in the configuration of the wafer processing system 1 according to the first embodiment, a peripheral edge removing device 210 is provided instead of the internal reforming device 41, and a hydrophilic device 220 is provided instead of the hydrophobic device 43. have.
  • the peripheral edge removing device 210 removes the peripheral edge portion We of the processing target wafer W using a grinding tool (not shown) such as a blade (edge trim). At this time, the peripheral edge portion We may be completely removed from the front surface Wa to the back surface Wb. However, in the present embodiment, only the surface layer is removed from the front surface Wa because the back surface Wb is ground later.
  • the hydrophilizing device 220 immerses the superposed wafer T in pure water to bond, for example, OH groups to the surfaces of the oxide films Fw and Fs in the unbonded region Ae. Specifically, the dangling bonds formed on the surfaces of the oxide films Fw and Fs in the unbonded region Ae are made hydrophilic by bonding OH groups.
  • the superposed wafer T is immersed in pure water, but the method of providing OH groups is not limited to this, and it is sufficient to supply water vapor to the surfaces of the oxide films Fw and Fs. For example, the surfaces of the oxide films Fw and Fs may be exposed to a high humidity atmosphere.
  • the wafer W to be processed in the cassette Cw is taken out by the wafer transfer device 22 and transferred to the transition device 34.
  • the wafer W to be processed in the transition device 34 is taken out by the wafer transfer device 32 and transferred to the peripheral edge removing device 210.
  • the peripheral edge removing device 210 as shown in FIG. 17A, the surface layer of the peripheral edge portion We of the processing target wafer W is removed (Step Q1 in FIG. 16).
  • the width L3 (trim width) of the peripheral edge portion We is about 2 mm.
  • the surface layer of the peripheral portion We is removed, and the device layer D and the oxide film Fw in the peripheral portion We are also removed.
  • the wafer W to be processed is transferred to the surface reforming device 42 by the wafer transfer device 32.
  • the etchant E is supplied to the outer peripheral portion Fwe of the oxide film Fw of the processing target wafer W, and the surface layer of the outer peripheral portion Fwe is removed as shown in FIG. 17B (step in FIG. 16). Q2).
  • the outer peripheral portion Fwe is removed inward from the inner end of the peripheral edge portion We, and the width of the outer peripheral portion Fwe is about 0.5 mm.
  • the support wafer S in the cassette Cs is taken out by the wafer transfer device 22 and transferred to the bonding device 40 by the wafer transfer device 32 via the transition device 34.
  • the processing target wafer W is transferred to the bonding device 40 by the wafer transfer device 32.
  • the bonding apparatus 40 as shown in FIG. 17C, the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S are bonded to form the overlapped wafer T (Step Q3 in FIG. 16).
  • the oxide films Fw and Fs are not bonded at the outer peripheral portion Fwe, and a bonded region Ac and an unbonded region Ae are formed at the interface between the oxide films Fw and Fs.
  • the unbonded region Ae reduces the space at the end of the bonding wave where the high-pressure atmosphere is released, and does not reduce the pressure to the atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed.
  • the wafer W to be processed is transferred by the wafer transfer device 32 to the hydrophilizing device 220.
  • the hydrophilizing device 220 the superposed wafer T is immersed in pure water to bond OH groups to the surfaces of the oxide films Fw and Fs in the unbonded region Ae as shown in FIG. 17D (step Q4 in FIG. 16). ).
  • the surfaces of the oxide films Fw and Fs in the unbonded region Ae are made hydrophilic, so that the oxide films Fw and Fs are bonded by hydrogen bonding.
  • the oxide films Fw and Fs are joined on the entire surface.
  • an annealing process may be further performed.
  • step Q4 is unnecessary and is omitted. be able to.
  • the overlapped wafer T is transferred to the processing device 50 by the wafer transfer device 32.
  • the same processing as in the first embodiment is performed.
  • the back surface Wb of the processing target wafer W is ground (Step Q5 in FIG. 16).
  • the overlapped wafer T that has been subjected to all the processes is transferred to the transition device 34 by the wafer transfer device 32, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 22.
  • a series of wafer processing in the wafer processing system 1 ends.
  • the same effects as in the first embodiment can be obtained. That is, the surface layer of the outer peripheral portion Fwe of the oxide film Fw is removed in step Q2, and when the oxide films Fw and Fs are joined in step Q3, an unjoined region Ae is formed at the interface between the oxide films Fw and Fs. You.
  • the unbonded region Ae can suppress a rapid pressure reduction of the atmosphere at the end of the bonding wave, and as a result, can suppress edge voids.
  • the oxide films Fw and Fs can be adhered (joined). Since the oxide films Fw and Fs can be bonded on the entire surface, the effective area of the wafer W to be processed can be increased.
  • the effective area of the wafer W to be processed can be increased by suppressing edge voids and making the oxide films Fw and Fs of the unbonded area Ae adhere to each other.
  • the distance L1 from the end of the processing target wafer W to the edge void V before processing is about 7 mm, and the effective area is an area of ⁇ 286 mm.
  • the distance L3 between the end of the processing target wafer W before the processing in step Q1 and the end of the processing target wafer W after the processing in step Q5 is about 2 mm.
  • the effective area is an area of ⁇ 296 mm.
  • the effective area of the processing target wafer W can be increased as compared with the related art, and a large number of chips as products can be manufactured.
  • step Q4 the activation process, the hydrophilization process, the bonding process, and the annealing process of the oxide films Fw and Fs are sequentially performed in step Q3, and then, in step Q4, the surfaces of the oxide films Fw and Fs in the unbonded region Ae are processed.
  • step Q4 may be performed between the hydrophilic treatment and the bonding processing in step Q3, or may be performed between the bonding processing and the annealing processing. In such a case, the annealing process in step Q4 can be omitted.
  • the wafer processing system 1 of the present embodiment includes the bonding device 40, the surface reforming device 42, the processing device 50, the peripheral edge removing device 210, and the hydrophilizing device 220
  • the device configuration is arbitrary.
  • the joining device 40, the surface modification device 42, the peripheral edge removing device 210, and the hydrophilizing device 220 may be provided in one system, and the processing device 50 may be provided in another system.
  • the surface modification device 42 removes the outer peripheral portion Fwe of the oxide film Fw by performing wet etching, but the method of removing the outer peripheral portion Fwe is not limited to this. Not limited.
  • the surface reforming apparatus 230 includes a chuck 231 that holds the wafer W to be processed with the oxide film Fw facing upward.
  • the chuck 231 is configured to be rotatable around a vertical axis by a rotation mechanism 232.
  • a polishing member 233 pressed by the outer peripheral portion Fwe to remove the oxide film Fw is provided above the chuck 231, a polishing member 233 pressed by the outer peripheral portion Fwe to remove the oxide film Fw is provided.
  • the polishing member 233 is configured to be movable in the Z-axis direction by a moving mechanism (not shown).
  • the surface grain size of the polishing member 233 that is, the abrasive grain size of the polishing member 233 can be arbitrarily selected
  • the film removal rate of the oxide film Fw and the surface roughness of the oxide film Fw after the film removal are arbitrary. Can be adjusted. Thereby, generation of the edge void V and re-adhesion of the unjoined area Ae can be more appropriately suppressed.
  • the outer peripheral portion Fwe may be removed so that an inclination is formed, that is, such that the thickness of the oxide film Fw decreases toward the radially outward side in a side view.
  • the inclination is formed by the difference between the abrasive grain size of the polishing member 233 and the thickness of the oxide film Fw.
  • a polishing member having a shape capable of forming the inclination in advance may be pressed.
  • the inclination may be formed by devising the pressing direction of the polishing member 233, for example.
  • the formation of the slope on the outer peripheral portion Fwe may also be performed in the surface reforming device 42, that is, when the outer peripheral portion Fwe of the oxide film Fw is removed by wet etching. In such a case, for example, by controlling the supply angle of the etchant or the supply amount of the etchant, the inclination is formed toward the outer peripheral direction.
  • debris for removing the oxide film Fw (hereinafter, referred to as “debris”) is generated. Since the debris may cause defective bonding between wafers or defective product devices, it is necessary to prevent the debris from adhering to the surface of the wafer W to be processed, particularly to the surface of the device layer D.
  • a fluid nozzle 244 for diffusing is provided.
  • the fluid nozzle 244 is provided, for example, above the peripheral edge portion We of the processing target wafer W. Further, for example, pure water, air, or the like is supplied from the fluid nozzle 244, and debris generated from the polished surface can be diffused outward in the outer peripheral direction. Thereby, it is possible to suppress the debris generated by the polishing from scattering to the inside in the radial direction of the processing target wafer W and adhering to the surface of the processing target wafer W.
  • the fluid nozzle 244 may be further provided, for example, above a central portion of the processing target wafer W or on a back surface side of the processing target wafer W in order to more reliably scatter generated debris outward in the outer peripheral direction. .
  • the configuration of the surface reforming device 230 may be any configuration as long as the generated debris can be scattered in the outer peripheral direction, and is not limited to the configuration described above.
  • the inside of the wafer W to be processed in the radial direction is positive pressure (“+” in FIG. 20B), and the outside is negative pressure (“ ⁇ ” in FIG. 20B).
  • the pressure inside the surface reforming device 230 may be controlled so as to be as follows.
  • an airflow is formed from the radially inner side to the outer side of the processing target wafer W, and the generated debris can be appropriately scattered in the outer peripheral direction.
  • the suction mechanism 245 such as a vacuum pump on the outer peripheral side of the outer peripheral portion Fwe to be polished, it is possible to more appropriately form an airflow from the radially inner side to the outer side. .
  • the polishing member 233 having a large abrasive particle diameter causes the boundary between the peripheral portion We and the central portion Wc, that is, the inner peripheral end of the peripheral portion We to be removed. (Hereinafter sometimes simply referred to as “edge”) becomes coarse, and the trimming processing position cannot be appropriately set in the radial direction.
  • the present inventor processes the edge of the peripheral portion We as shown in FIG. It has been found that the accuracy is improved and the trimming processing position can be appropriately set in the radial direction.
  • polishing is performed using a polishing member 234 having a small abrasive particle diameter at the edge of the peripheral edge We.
  • One polishing region 234a is formed.
  • the polishing is performed by the polishing member 234 having a small abrasive particle diameter, so that the processing accuracy of the inner peripheral end of the first polishing region 234a, that is, the peripheral edge portion We is improved. I do.
  • polishing member 234 is left on the edge of the peripheral edge We, that is, a position separated from the inner peripheral end of the first polishing area 234a by a distance L to both radial outer sides. Then, polishing is performed by the polishing member 233 having a large abrasive particle diameter toward the edge of the processing target wafer W to form a second polishing region 233a.
  • the surface of the oxide film Fw in order to appropriately form the unbonded region Ae and to suppress re-adhesion in the unbonded region Ae, the surface of the oxide film Fw must be formed. It is preferable that the area of the roughened second polishing region 233a is large. That is, the first polishing region 234a is sufficient if the processing accuracy of the edge of the peripheral portion We required in the alignment processing can be ensured, and the distance L is desirably small. Specifically, by setting the distance L to be larger than at least the abrasive grain size of the polishing member 233 forming the second polishing region 233a, the alignment processing can be appropriately performed.
  • the processing accuracy of the edge of the peripheral portion We is increased, so that the alignment in the formation of the modified layer M (Step P4 in FIG. 9) can be appropriately performed, and the edge of the wafer W to be processed can be formed.
  • a damage layer is formed on the surface of the oxide film Fw, so that the generation of the edge voids V can be suppressed and, at the same time, the re-adhesion of the unjoined region Ae can be appropriately suppressed.
  • the abrasive particle size of the polishing member 233 can be arbitrarily selected, the film removal rate of the oxide film Fw and the surface roughness of the oxide film Fw after the film removal can be arbitrarily adjusted. Thereby, generation of the edge void V and re-adhesion of the unjoined area Ae can be more appropriately suppressed.
  • the second polishing region 233a is formed after forming the first polishing region 234a, but the processing order by the polishing members 233 and 234 is not limited to this.
  • the first polishing region 234a may be formed after forming the second polishing region 233a.
  • the grinding of the edges of the peripheral portion We by the polishing member 234 having a small abrasive particle diameter may be performed, for example, in a case where a slope is formed radially outward of the processing target wafer W as illustrated in FIG. Good.
  • the surface modification device 42 removes the outer peripheral portion Fwe of the oxide film Fw by performing wet etching. It is not limited to.
  • the outer peripheral portion Fwe may be removed by irradiating the outer peripheral portion Fwe with laser light having a wavelength that does not pass through the oxide film Fw, for example, ultraviolet light.
  • the surface modification device 42 removes the outer peripheral portion Fwe as the modification process of the outer peripheral portion Fwe of the oxide film Fw, the outer peripheral portion Fwe may be made to project.
  • the surface reforming device 240 has a chuck 241 that holds the processing target wafer W with the oxide film Fw facing upward.
  • the chuck 241 is configured to be rotatable around a vertical axis by a rotation mechanism 242.
  • a laser head 243 for irradiating the laser beam R to the outer peripheral portion Fwe is provided.
  • the laser light R for example, ultraviolet light is used.
  • the laser head 243 is configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction by a moving mechanism (not shown).
  • the outer peripheral portion Fwe is projected by the laser beam R as shown in FIG. Then, as shown in FIG. 24B, the oxide films Fw and Fs are not joined at the outer peripheral portion Fwe. That is, when the oxide films Fw and Fs are joined, an unjoined region Ae corresponding to the outer peripheral portion Fwe and a joined region Ac where the oxide films Fw and Fs are joined are formed at the interface between the oxide films Fw and Fs. You.
  • the unjoined region Ae is formed in the present embodiment, so that the space where the high-pressure atmosphere at the end of the bonding wave is released becomes smaller. It is not reduced to atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed. Moreover, by forming the protrusion of the outer peripheral portion Fwe discontinuously in the circumferential direction, the high-pressure atmosphere at the end of the bonding wave can be released to the outside of the overlapped wafer T. Then, even if dew condensation occurs at the outer peripheral portion Fwe, the water vapor can escape to the outside of the superposed wafer T.
  • the laser beam R is used when projecting the outer peripheral portion Fwe.
  • the laser light R roughens the top of the outer peripheral portion Fwe and roughens the outer peripheral portion Fwe.
  • the bonding of the oxide films Fw and Fs at the outer peripheral portion Fwe can be further suppressed, that is, the unbonded region Ae can be formed more reliably.
  • sharp voids can be suppressed, and edge voids can be suppressed.
  • the roughening of the outer peripheral portion Fwe may be performed even when the surface layer of the outer peripheral portion Fwe is removed by using the surface reforming device 42.
  • the removal of the oxide film Fw by the laser beam R is performed by dividing the outer peripheral portion Fwe into a plurality of regions in the radial direction of the processing target wafer W and inward from the radially outer side of the plurality of regions. May be performed in order.
  • FIG. 25 shows a region distribution when the outer peripheral portion Fwe of the oxide film Fw is divided into, for example, two annular regions in the radial direction. As shown in FIG. 25, the outer peripheral portion Fwe is divided into annular regions Fwe1 and Fwe2 in order from the outside in the radial direction.
  • the irradiation point Pt (1) of the laser light on the annular region Fwe1 is irradiated with the laser light R, and the oxide film Fw at the irradiation point Pt (1) is removed.
  • the annular region Fwe1 where the irradiation point Pt (1) is located faces an open space on the outer side in the outer peripheral direction of the processing target wafer W as shown in FIG. Spread into open space.
  • the oxide film Fw is removed at the irradiation point Pt (1), the wafer W to be processed subsequently rotates, and the irradiation point Pt (2) is irradiated with the laser beam R.
  • the irradiation point Pt (2) is set adjacent to the irradiation point Pt (1).
  • the irradiation point Pt (2) is located in the annular region Fwe1 and also faces the irradiation point Pt (1) from which the oxide film Fw has already been removed. Diffusion to the inside is more reliably suppressed.
  • the oxide film Fw is removed over the entire circumference of the annular region Fwe1 by repeating such a series of the irradiation operation of the laser beam R and the rotation operation of the processing target wafer W.
  • the laser head 243 subsequently moves above the annular region Fwe2, and the removal of the oxide film Fw from the annular region Fwe2 is started.
  • the annular region Fwe2 faces the open space on the outer side in the outer peripheral direction of the processing target wafer W, as shown in FIG. The generated debris is diffused into the open space.
  • the above series of irradiation operation of the laser beam R and the rotation operation of the processing target wafer W are repeatedly performed, and the oxide film Fw is removed over the entire circumference of the annular region Fwe2.
  • the irradiation point of the laser beam R since the irradiation point of the laser beam R always faces the open space on the outer side in the outer peripheral direction of the processing target wafer W, it is possible to suppress the diffusion of debris to the radially inner side of the processing target wafer W. Thus, adhesion to the processing target wafer W can be appropriately suppressed. Further, according to the above operation, the scattering direction of the debris can be directed to the outer peripheral direction of the processing target wafer W and to the irradiation point direction of the immediately preceding laser beam R, so that the adhesion to the processing target wafer W is further improved. In addition to being able to appropriately suppress, it is possible to simplify the configuration of the exhaust equipment in the surface reforming device 240.
  • the surface reforming device 240 is provided with, for example, a fluid nozzle or the like in the same manner as the surface reforming device 230 in order to more appropriately prevent the debris generated by the laser light irradiation from adhering to the processing target wafer W. You may. Naturally, the internal pressure of the surface reforming device 240 may be controlled to generate an airflow from the radially inner side to the outer side of the processing target wafer W, or a suction mechanism may be provided. Is also good.
  • the irradiation point depth of the laser beam in the annular region Fwe2 may be controlled to be smaller than the irradiation point depth of the laser beam in the annular region Fwe1. That is, as shown in FIG. 27, the irradiation point depth of the laser beam R may be changed so that the removal thickness of the oxide film Fw gradually increases toward the outside in the radial direction of the processing target wafer W.
  • the surface of the outer peripheral portion Fwe is removed so as to have a substantially inclined surface, the same effects as those of the outer peripheral portion Fwe having the above-described inclined surface can be enjoyed, and the generation of the edge void V and the reconnection of the unjoined region Ae can be achieved. Adhesion can be appropriately suppressed. In this case, it is desirable that the difference H2 in the removal thickness in each annular region is within 400 nm.
  • the case where the outer peripheral portion Fwe is divided into two in the radial direction has been described as an example, but the number of divisions of the outer peripheral portion Fwe is not limited to this, and the surface of the oxide film Fw may be arbitrarily divided. Can be removed. In such a case, by increasing the number of divisions, the resolution of the above-mentioned substantially tilt can be increased, and the effect of suppressing the generation of the edge void V and the re-adhesion of the unjoined region Ae can be more appropriately enjoyed.
  • the surface film is not limited to this.
  • a SiC film, a SiCN film, or the like may be formed.
  • the second embodiment can also be applied to a case where the peripheral edge portion We of the processing target wafer W is left without being removed, that is, a case where Step Q1 is not performed.
  • the unbonded region Ae is formed by removing the oxide film Fw in the outer peripheral portion Fwe, but the method of forming the unbonded region Ae is not limited to this.
  • the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S are made hydrophilic by imparting OH groups to the dangling bonds formed on the surfaces of the oxide films Fw and Fs. And oxide film Fs are joined by hydrogen bonding.
  • the unbonded area Ae is supplied by supplying the hydrophobic material to the oxide film Fw of the processing target wafer W before the bonding.
  • the outer peripheral portion Fwe is made hydrophobic and water repellent by supplying the silylating material G to the outer peripheral portion Fwe of the oxide film Fw.
  • FIG. 28 is a side view schematically showing the outline of the configuration of the surface reforming device 330.
  • FIG. 29 is a flowchart showing main steps of wafer processing in the wafer processing system according to the third embodiment.
  • FIG. 30 is an explanatory diagram showing a state of wafer processing in the third embodiment.
  • elements having substantially the same functional configuration as those of the above-described first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the surface reforming apparatus 330 has a chuck 350 for holding the wafer W to be processed with the oxide film Fw facing upward.
  • the chuck 350 is configured to be rotatable around a vertical axis by a rotation mechanism 351.
  • a nozzle 352 for applying the silylating material G to the outer peripheral portion of the oxide film Fw is provided above the chuck 350.
  • the nozzle 352 communicates with a silylating material supply source (not shown) that stores and supplies the silylating material G.
  • the nozzle 352 is configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction by a moving mechanism (not shown).
  • the wafer to be processed W in the cassette Cw is taken out by the wafer transfer device 22 and transferred to the transition device 34.
  • the processing target wafer W of the transition device 34 is taken out by the wafer transfer device 32 and transferred to the surface reforming device 330.
  • the surface reforming device 330 before the bonding is performed (before step U2 in FIG. 29), the dangling bond formed on the outer peripheral portion Fwe of the oxide film Fw by the silylation material G is added to a silyl group (Si—R). (Step U1 in FIG. 29).
  • a silylation region Fws is formed in the outer peripheral portion Fwe.
  • the processed wafer W having the silylated region Fws formed in the outer peripheral portion Fwe is subsequently transferred to the bonding device 40 by the wafer transfer device 32.
  • the oxide film Fw is activated and hydrophilized prior to bonding.
  • a silyl group is provided to the outer peripheral portion Fwe in step U1.
  • the hydrophilic treatment is performed by giving an OH group to the dangling bond formed on the oxide film Fw as described above.
  • the silyl group since the silyl group has already been imparted to the outer peripheral portion Fwe, it has been rendered hydrophobic and water repellent, so that the OH group is not imparted to the outer peripheral portion Fwe.
  • the oxide film Fw of the processing target wafer W and the oxidation of the support wafer S which has been activated and hydrophilized in advance are oxidized.
  • the film Fs is bonded to form the overlapped wafer T (Step U2 in FIG. 29).
  • the oxide films Fw and Fs are not bonded at the outer peripheral portion Fwe, and a bonded region Ac and an unbonded region Ae are formed at the interface between the oxide films Fw and Fs.
  • the overlapped wafer T is transferred to the internal reforming device 41 by the wafer transfer device 32.
  • the internal reforming device 41 irradiates the inside of the processing target wafer W with laser light from the laser head while rotating the processing target wafer W.
  • an annular peripheral modification layer M1 is formed inside the processing target wafer W (FIG. 29).
  • Step U3 by moving the laser head, a divided modified layer M2 extending in the radial direction of the processing target wafer W is formed radially outside the peripheral modified layer M1.
  • the overlapped wafer T is transferred by the transfer unit 70 to the processing device 50 via the alignment unit 80.
  • the back surface Wb of the processing target wafer W is ground by the processing apparatus 50, and the peripheral edge We is removed as shown in FIG. 30D (step U4 in FIG. 29).
  • the overlapped wafer T that has been subjected to all the processes is transferred to the transition device 34 by the wafer transfer device 32, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 22.
  • a series of wafer processing in the wafer processing system 1 ends.
  • the removal of the oxide film Fw and the roughening of the surface are not performed in the unbonded region Ae. That is, the high-pressure atmosphere at the end of the bonding wave B according to the present embodiment is released at the end of the wafer W to be processed, and an edge void V is generated as shown in FIG.
  • the position where the edge void V is generated is on the end side of the processing target wafer W, that is, the outer periphery of the peripheral edge We to be removed. It is formed at the portion Fwe.
  • the outer peripheral portion Fwe is not a device forming portion, and thus does not substantially affect the semiconductor device manufacturing process.
  • the silylation of the outer peripheral portion Fwe of the oxide film Fw can be performed at an arbitrary timing before the bonding of the processing target wafer W. That is, in the above embodiment, the silylation process is performed before the bonding and before the activation of the oxide film Fw, but may be performed between the activation process and the hydrophilization process, for example. It may be performed after performing the hydrophilic treatment. In any case, by performing silylation of the outer peripheral portion Fwe before hydrogen bonding between the oxide film Fw and the oxide film Fs in the bonding process, the unbonded region Ae can be appropriately formed.
  • the unbonded region Ae is formed by performing silylation on the outer peripheral portion Fwe of the oxide film Fw.
  • the outer peripheral portion Fwe can be made hydrophobic and water repellent, it can be formed.
  • the method of making the outer peripheral portion Fwe hydrophobic is not limited to this. For example, by imparting a methyl group to the dangling bond as described above, the outer peripheral portion Fwe may be made hydrophobic. Further, for example, a release agent may be supplied to the outer peripheral portion Fwe of the oxide film Fw.
  • the thinning of the processing target wafer W is performed by grinding the back surface Wb in the processing apparatus, but the method of thinning the processing target wafer W is not limited to this. I can't.
  • the peripheral surface modified layer M1 and the internal surface modified layer M3 are formed along the surface direction of the processed wafer W inside the processed wafer W.
  • the order of forming the peripheral edge modified layer M1 and the internal surface modified layer M3 can be arbitrarily determined.
  • the unjoined region Ae is formed in the outer peripheral portion Fwe, the re-adhesion of the outer peripheral portion Fwe is suppressed, and the peeling of the peripheral edge portion We is appropriately performed. It can be carried out.
  • the thinning of the processing target wafer W by the separation based on the internal surface modified layer M3 as described above, it is necessary to grind the back surface Wb and the end surface for thinning and edge trim as in the related art. There is no. That is, when thinning and edge trimming of the wafer W to be processed, grinding chips are not generated, and there is no need to provide a grinding tool which is a consumable product, so that the apparatus configuration can be simplified.
  • the processing target wafer W may be thinned and the edge trim may be performed simultaneously.
  • the upper end of the peripheral edge modified layer M1 formed as shown in FIG. 32A is made substantially coincident with the height at which the internal surface modified layer M3 is formed. Then, in this state, by separating the back surface Wb side of the processing target wafer W from the peripheral modified layer M1 and the internal surface modified layer M3 as a base point, the peripheral portion We is formed on the rear surface as shown in FIG. It is removed integrally with the wafer on the Wb side.
  • the wafer processing according to the present embodiment since the unjoined region Ae is formed in the outer peripheral portion Fwe, re-adhesion of the outer peripheral portion Fwe is suppressed, and The peripheral portion We can be peeled off. Further, conventionally, grinding for thinning of the processing target wafer W and grinding for edge trimming are performed, respectively. However, thinning and edge trimming of the processing target wafer W can be performed simultaneously.
  • the wafer W to be processed is thinned by separation with the internal surface reforming layer M3 as a base point, so that the back surface Wb and the end surface are ground for thinning and edge trim as in the related art. No need. That is, when thinning and edge trimming of the wafer W to be processed, grinding chips are not generated, and there is no need to provide a grinding tool which is a consumable product, so that the apparatus configuration can be simplified.

Abstract

A substrate processing system for processing a substrate comprises a surface modifying device for modifying an outer peripheral portion of a first surface film formed on a surface of a first substrate, before being joined with a second surface film formed on a surface of a second substrate. A substrate processing method for processing a substrate comprises modifying an outer peripheral portion of a first surface film formed on a surface of a first substrate, before being joined with a second surface film formed on a surface of a second substrate.

Description

基板処理システム及び基板処理方法Substrate processing system and substrate processing method
 本開示は、基板処理システム及び基板処理方法に関する。 The present disclosure relates to a substrate processing system and a substrate processing method.
 特許文献1には、2枚のウェハの貼り合わせ装置が開示されている。貼り合わせ装置では、先ず、上下方向で対向配置させた2枚のウェハのうち、上ウェハの中心部を押動ピンで押圧してこの中心部を下ウェハに当接させる。その後、上ウェハを支持しているスペーサを退避させて、上ウェハの全面を下ウェハの全面に当接させ、当該ウェハ同士を接合する。 Patent Document 1 discloses a device for bonding two wafers. In the bonding apparatus, first, the center portion of the upper wafer of the two wafers that are vertically opposed to each other is pressed by a push pin to bring the center portion into contact with the lower wafer. Thereafter, the spacer supporting the upper wafer is retracted, the entire surface of the upper wafer is brought into contact with the entire surface of the lower wafer, and the wafers are joined.
 特許文献2には、半導体ウェハの周端部を研削する端面研削装置が開示されている。端面研削装置では、外周部に砥粒が設けられた円板状の研削工具を回転し、研削工具の少なくとも外周面を半導体ウェハに線状に当接させて半導体ウェハの周端部を略L字状に研削する。半導体ウェハは、二枚のシリコンウェハを貼り合わせて作製されたものである。 Patent Document 2 discloses an end surface grinding device for grinding a peripheral end portion of a semiconductor wafer. In the end face grinding apparatus, a disk-shaped grinding tool provided with abrasive grains on the outer peripheral portion is rotated, and at least the outer peripheral surface of the grinding tool is brought into linear contact with the semiconductor wafer so that the peripheral edge of the semiconductor wafer is substantially L-shaped. Grind in the shape of a letter. The semiconductor wafer is manufactured by bonding two silicon wafers together.
特開2004-207436号公報JP 2004-207436 A 特開平9-216152号公報JP-A-9-216152
 本開示にかかる技術は、基板同士を接合する際に、基板周縁部に生じるボイドを抑制する。 技術 The technology according to the present disclosure suppresses voids generated at the peripheral edge of the substrate when the substrates are joined to each other.
 本開示の一態様は、基板を処理する基板処理システムであって、第2の基板の表面に形成された第2の表面膜と接合される前の、第1の基板の表面に形成された第1の表面膜の外周部を改質する表面改質装置を有する。 One embodiment of the present disclosure is a substrate processing system for processing a substrate, wherein the substrate processing system is formed on a surface of a first substrate before being bonded to a second surface film formed on a surface of the second substrate. There is a surface modification device for modifying the outer peripheral portion of the first surface film.
 本開示によれば、基板同士を接合する際に、基板周縁部に生じるボイドを抑制することができる。 According to the present disclosure, it is possible to suppress a void generated in a peripheral portion of a substrate when joining substrates.
従来のウェハ同士の接合処理の様子を示す説明図である。It is explanatory drawing which shows the mode of the joining process of the conventional wafer. 重合ウェハの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a superposition wafer. 接合装置におけるウェハ同士の接合処理の様子を示す説明図である。It is explanatory drawing which shows a mode of the joining process of the wafers in a joining apparatus. エッジボイドが発生するメカニズムを示す説明図である。It is explanatory drawing which shows the mechanism which an edge void produces. 重合ウェハにエッジボイドが発生した様子を示す説明図である。It is explanatory drawing which shows a mode that the edge void generate | occur | produced in the superposition wafer. 第1の実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。FIG. 2 is a plan view schematically showing the outline of the configuration of the wafer processing system according to the first embodiment. 表面改質装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a surface modification apparatus. 表面改質装置において酸化膜の外周部を除去し、さらにウェハ同士を接合する様子を示す説明図である。It is explanatory drawing which shows a mode that the outer peripheral part of an oxide film is removed in a surface modification apparatus, and also wafers are joined. 第1の実施形態にかかるウェハ処理の主な工程を示すフロー図である。FIG. 4 is a flowchart showing main steps of wafer processing according to the first embodiment. 第1の実施形態にかかるウェハ処理の主な工程の説明図である。FIG. 3 is an explanatory diagram of main steps of wafer processing according to the first embodiment. 被処理ウェハに改質層を形成した様子を示す説明図である。It is explanatory drawing which shows a mode that the modified layer was formed in the to-be-processed wafer. 被処理ウェハに周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a peripheral edge modification layer is formed in a to-be-processed wafer. 被処理ウェハに分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a division | segmentation modification layer is formed in a to-be-processed wafer. 第1の実施形態の変形例にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows typically the outline of the structure of the wafer processing system concerning the modification of 1st Embodiment. 第2の実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows typically the outline of the structure of the wafer processing system concerning 2nd Embodiment. 第2の実施形態にかかるウェハ処理の主な工程を示すフロー図である。FIG. 11 is a flowchart showing main steps of wafer processing according to the second embodiment. 第2の実施形態にかかるウェハ処理の主な工程の説明図である。It is an explanatory view of a main process of wafer processing according to a second embodiment. 他の実施形態にかかる表面改質装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the surface modification apparatus concerning another embodiment. 図18に示す表面改質装置において酸化膜の外周部を除去し、さらにウェハ同士を接合する様子を示す説明図である。FIG. 19 is an explanatory diagram showing how the outer peripheral portion of the oxide film is removed and the wafers are joined together in the surface reforming device shown in FIG. 18. 表面改質装置における酸化膜の外周部の除去において発生するデブリの拡散を制御する方法を模式的に示す説明図である。It is explanatory drawing which shows typically the method of controlling the diffusion of the debris which generate | occur | produces in removal of the outer peripheral part of an oxide film in a surface modification apparatus. 砥粒径による周縁部のキワの加工精度の違いを模式的に示す説明図である。It is explanatory drawing which shows typically the difference of the processing accuracy of the edge | edge of a peripheral part according to an abrasive grain size. 表面改質装置における酸化膜の外周部の除去の方法を模式的に示す説明図である。It is explanatory drawing which shows typically the method of removing the outer peripheral part of an oxide film in a surface modification apparatus. 更に別の実施形態にかかる表面改質装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the surface modification apparatus concerning another embodiment. 図23に示す表面改質装置において酸化膜の外周部を除去し、さらにウェハ同士を接合する様子を示す説明図である。FIG. 24 is an explanatory diagram showing how the outer peripheral portion of the oxide film is removed in the surface reforming apparatus shown in FIG. 23 and the wafers are joined together. 図23に示す表面改質装置における酸化膜の除去の様子を模式的に示す平面図である。FIG. 24 is a plan view schematically showing how an oxide film is removed in the surface modification device shown in FIG. 23. 図23に示す表面改質装置における酸化膜の除去の様子を模式的に示す側面図である。FIG. 24 is a side view schematically showing how an oxide film is removed in the surface modification device shown in FIG. 23. 図23に示す表面改質装置における他の方法による酸化膜の外周部の除去の様子を模式的に示す説明図である。FIG. 24 is an explanatory diagram schematically showing how an outer peripheral portion of an oxide film is removed by another method in the surface modifying apparatus shown in FIG. 23. 第3の実施形態にかかるウェハ処理システムが備える表面改質装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the surface reforming apparatus with which the wafer processing system concerning 3rd Embodiment is provided. 第3の実施形態にかかるウェハ処理の主な工程を示すフロー図である。FIG. 14 is a flowchart showing main steps of wafer processing according to a third embodiment. 第3の実施形態にかかるウェハ処理の主な工程の説明図である。It is an explanatory view of a main process of wafer processing according to a third embodiment. 他の方法による被処理ウェハの薄化の様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of thinning of the to-be-processed wafer by another method. 他の方法による被処理ウェハのエッジトリムの様子を模式的に示す説明図である。It is explanatory drawing which shows typically the mode of the edge trim of the to-be-processed wafer by another method.
 半導体デバイスを3次元に積層する3次元集積技術では、2枚の半導体ウェハ(以下、ウェハという)の接合が行われる。具体的には、例えばウェハ同士をファンデルワールス力及び水素結合(分子間力)によって接合する。そして、このウェハの接合は、例えば特許文献1に開示された貼り合せ装置で行われる。 で は In the three-dimensional integration technology for three-dimensionally stacking semiconductor devices, two semiconductor wafers (hereinafter, referred to as wafers) are joined. Specifically, for example, the wafers are joined together by van der Waals force and hydrogen bonding (intermolecular force). The bonding of the wafers is performed by, for example, a bonding apparatus disclosed in Patent Document 1.
 また、半導体デバイスの製造工程では、接合された重合ウェハのうち、表面に複数の電子回路等のデバイスが形成されたウェハの裏面を研削して、当該ウェハを薄化することが行われている。通常、ウェハの周縁部は面取り加工がされているが、このようにウェハに研削処理を行うと、ウェハの周縁部が鋭く尖った形状(いわゆるナイフエッジ形状)になる。そうすると、ウェハの周縁部でチッピングが発生し、ウェハが損傷を被るおそれがある。そこで、研削処理前に予めウェハの周縁部を削る、いわゆるエッジトリムが行われている。そして、このエッジトリムは、例えば特許文献2に開示された端面研削装置で行われる。 Further, in a manufacturing process of a semiconductor device, a back surface of a wafer having devices such as a plurality of electronic circuits formed on a front surface of a bonded superposed wafer is ground to thin the wafer. . Usually, the peripheral portion of the wafer is chamfered. However, when the wafer is subjected to the grinding process, the peripheral portion of the wafer becomes sharp and sharp (a so-called knife edge shape). Then, chipping occurs at the peripheral portion of the wafer, and the wafer may be damaged. Therefore, so-called edge trimming, in which the peripheral portion of the wafer is cut in advance before the grinding process, is performed. This edge trimming is performed by, for example, an end face grinding device disclosed in Patent Document 2.
 ここで、ウェハの接合を適切に行うためには、様々な基準を満たす必要があるが、そのうちの重要な基準としてボイドの抑制が挙げられる。特に、接合された重合ウェハの周縁部に発生するボイド(以下、エッジボイドという)はその制御が困難であり、当該エッジボイドを抑制することが求められている。 Here, in order to properly perform wafer bonding, various criteria must be satisfied. Among them, an important criterion is suppression of voids. Particularly, it is difficult to control voids (hereinafter, referred to as edge voids) generated at the peripheral edge of the bonded superposed wafer, and it is required to suppress the edge voids.
 上述のように重合ウェハにエッジボイドが発生する様子を、図1に図示して説明する。ここでは、被処理ウェハWと支持ウェハSを接合する。後述するように被処理ウェハWの表面Waにはデバイス層Dと酸化膜Fwが形成され、支持ウェハSの表面Saには酸化膜Fsが形成されている。そして、図1(a)に示すように被処理ウェハWの周縁部Weの表面Waが除去される(エッジトリム)。その後、図1(b)に示すようにエッジトリムされた被処理ウェハWと支持ウェハSが接合される。この際、接合された重合ウェハTにおいて、酸化膜Fw、Fsの間に、上述したエッジボイドVが形成される。その後、図1(c)に示すように重合ウェハTにおいて、被処理ウェハWの裏面Wbが研削される。 (1) The manner in which edge voids are generated in the overlapped wafer as described above will be described with reference to FIG. Here, the processing target wafer W and the support wafer S are joined. As will be described later, a device layer D and an oxide film Fw are formed on the surface Wa of the processing target wafer W, and an oxide film Fs is formed on the surface Sa of the support wafer S. Then, as shown in FIG. 1A, the surface Wa of the peripheral portion We of the processing target wafer W is removed (edge trim). Thereafter, as shown in FIG. 1B, the wafer W to be processed and the support wafer S that have been edge-trimmed are joined. At this time, the edge void V described above is formed between the oxide films Fw and Fs in the bonded overlapped wafer T. Thereafter, as shown in FIG. 1C, the back surface Wb of the processing target wafer W is ground on the overlapped wafer T.
 重合ウェハTにエッジボイドVが発生すると、例えば図1(c)に示した被処理ウェハWの裏面Wbの研削時に、当該エッジボイドVにより被処理ウェハWの剥離(ピーリング)が生じる場合がある。また、このピーリングを基点に、被処理ウェハWにクラックやチッピング等が生じる場合もある。さらに、例えば重合ウェハTにおいて、各々のウェハW、Sに金属のビアやパッドが形成されており、これらビアやパッドが拡散接合によって接続される場合がある。かかる場合、ビアやパッドの場所にエッジボイドが発生すると、拡散接合が起きず、接続不良が生じる場合がある。 When an edge void V occurs in the overlapped wafer T, for example, when the back surface Wb of the processing target wafer W shown in FIG. 1C is ground, the processing of the processing target wafer W may be separated (peeled) by the edge void V. In addition, cracks and chipping may occur in the wafer W to be processed based on the peeling. Further, for example, in the overlapped wafer T, metal vias and pads are formed on each of the wafers W and S, and these vias and pads may be connected by diffusion bonding. In such a case, if an edge void occurs at a location of a via or a pad, diffusion bonding does not occur and a connection failure may occur.
 また、重合ウェハTにエッジボイドVが発生すると、被処理ウェハWの有効領域(使用可能領域)も小さくなる。図1に示すように、例えば処理前の被処理ウェハWの端部からエッジボイドVの内側端部までの距離L1は約7mmであった。したがって、処理前の被処理ウェハWの径が300mmである場合、有効領域はφ286mmの領域となる。 {Circle around (4)} When an edge void V occurs in the overlapped wafer T, the effective area (usable area) of the processing target wafer W also becomes smaller. As shown in FIG. 1, for example, the distance L1 from the end of the processing target wafer W to the inner end of the edge void V before processing was about 7 mm. Therefore, when the diameter of the processing target wafer W before the processing is 300 mm, the effective area is an area of φ286 mm.
 このようにエッジボイドが発生すると、製品の歩留まりが低下する。しかしながら、特許文献1に開示された貼り合せ装置を含め、従来、このエッジボイドを抑制することが課題となっている。 エ ッ ジ When the edge voids are generated, the product yield is reduced. However, in the past, including the bonding apparatus disclosed in Patent Document 1, it has been a problem to suppress the edge void.
 そこで、本開示にかかる技術は、ウェハ同士を接合する際のエッジボイドを抑制する。具体的に本開示者らは、エッジボイドの発生メカニズムを解明し、その知見に基づいて、エッジボイドを抑制するシステムと方法を想到した。 Therefore, the technology according to the present disclosure suppresses edge voids when bonding wafers. Specifically, the present inventors have elucidated the generation mechanism of edge voids, and based on the knowledge, have arrived at a system and method for suppressing edge voids.
 本実施形態では、図2に示すように第1の基板としての被処理ウェハWと第2の基板としての支持ウェハSを接合する。以下、被処理ウェハWにおいて、接合される面を表面Waといい、表面Waと反対側の面を裏面Wbという。同様に、支持ウェハSにおいて、接合される面を表面Saといい、表面Saと反対側の面を裏面Sbという。 In the present embodiment, as shown in FIG. 2, the processing target wafer W as the first substrate and the supporting wafer S as the second substrate are joined. Hereinafter, in the processing target wafer W, the surface to be joined is referred to as a front surface Wa, and the surface opposite to the front surface Wa is referred to as a back surface Wb. Similarly, in the support wafer S, the surface to be joined is referred to as a front surface Sa, and the surface opposite to the front surface Sa is referred to as a back surface Sb.
 被処理ウェハWは、例えばシリコンウェハなどの半導体ウェハであって、表面Waに複数のデバイスを含むデバイス層Dが形成されている。また、デバイス層Dにはさらに第1の表面膜としての酸化膜Fw、例えばSiO膜(TEOS膜)が形成されている。 The processing target wafer W is a semiconductor wafer such as a silicon wafer, for example, and a device layer D including a plurality of devices is formed on a front surface Wa. Further, an oxide film Fw as a first surface film, for example, an SiO 2 film (TEOS film) is further formed on the device layer D.
 支持ウェハSは、被処理ウェハWを支持するウェハである。支持ウェハSの表面Saには第2の表面膜としての酸化膜Fs、例えばSiO膜(TEOS膜)が形成されている。また、支持ウェハSは、被処理ウェハWの表面Waのデバイスを保護する保護材として機能する。なお、支持ウェハSの表面Saの複数のデバイスが形成されている場合には、被処理ウェハWと同様に表面Saにデバイス層(図示せず)が形成される。 The support wafer S is a wafer that supports the processing target wafer W. On the surface Sa of the support wafer S, an oxide film Fs as a second surface film, for example, an SiO 2 film (TEOS film) is formed. Further, the support wafer S functions as a protective material for protecting devices on the surface Wa of the processing target wafer W. When a plurality of devices on the surface Sa of the support wafer S are formed, a device layer (not shown) is formed on the surface Sa, similarly to the wafer W to be processed.
 なお、以下の説明で用いられる図面においては、図示の煩雑さを回避するため、デバイス層Dと酸化膜Fw、Fsの図示を省略する場合がある。 In the drawings used in the following description, the device layer D and the oxide films Fw and Fs may be omitted in order to avoid complexity.
 先ず、エッジボイドの発生メカニズムについて説明する。被処理ウェハWと支持ウェハSを接合するにあたっては、先ず、接合前に酸化膜Fw、Fsのそれぞれの表面は減圧雰囲気でのプラズマ処理により活性化される。その後、活性化した表面が親水化され、当該表面に形成されたダングリングボンドにOH基(ヒドロキシ基)が付与される。そして、接合時に酸化膜Fw、Fsが当接してOH基が水素結合することで、当該酸化膜Fw、Fs同士が接合される。なお、接合された酸化膜Fw、Fsは、さらにアニール処理を行うことで水が除去され、その接合強度が確保される。 First, the mechanism of generation of edge voids will be described. In bonding the processing target wafer W and the support wafer S, first, before bonding, the respective surfaces of the oxide films Fw and Fs are activated by plasma processing in a reduced-pressure atmosphere. Thereafter, the activated surface is hydrophilized, and an OH group (hydroxy group) is provided to the dangling bond formed on the surface. Then, at the time of bonding, the oxide films Fw and Fs are in contact with each other and the OH groups are hydrogen-bonded, so that the oxide films Fw and Fs are bonded to each other. The bonded oxide films Fw and Fs are further subjected to an annealing treatment to remove water, thereby securing the bonding strength.
 接合装置では、図3(a)に示すように上チャック300で被処理ウェハWが吸着保持され、下チャック301で支持ウェハSが吸着保持される。上チャック300は吸引口300a、300bからそれぞれ独立して被処理ウェハWを吸引でき、下チャック301も吸引口301a、301bからそれぞれ独立して支持ウェハSを吸引できる。その後、図3(b)に示すように中央部の吸引口300aからの吸引を停止し、上チャック300に設けられた押動部材302を下降させて、被処理ウェハWの中央部が押圧される。そして、被処理ウェハWの中央部と支持ウェハSの中心部が当接し、水素結合による接合が開始し、いわゆるボンディングウェーブBが発生する。続いて、図3(c)に示すようにボンディングウェーブBは中心部から周縁部に拡散する。ボンディングウェーブBが周縁部まで到達すると、図3(d)に示すように周縁部の吸引口300bからの吸引を停止し、被処理ウェハWの周縁部が支持ウェハS上に落下する。そして、図3(e)に示すように被処理ウェハWと支持ウェハSが接合される。 In the bonding apparatus, as shown in FIG. 3A, the processing target wafer W is suction-held by the upper chuck 300, and the support wafer S is suction-held by the lower chuck 301. The upper chuck 300 can suck the wafer W to be processed independently from the suction ports 300a and 300b, and the lower chuck 301 can suck the support wafer S independently from the suction ports 301a and 301b. Thereafter, as shown in FIG. 3B, the suction from the suction port 300a at the center is stopped, and the pressing member 302 provided on the upper chuck 300 is lowered to press the center of the wafer W to be processed. You. Then, the central portion of the processing target wafer W and the central portion of the supporting wafer S abut, and bonding by hydrogen bonding starts, so that a so-called bonding wave B is generated. Subsequently, as shown in FIG. 3C, the bonding wave B is diffused from the center to the periphery. When the bonding wave B reaches the peripheral portion, the suction from the suction port 300b in the peripheral portion is stopped as shown in FIG. 3D, and the peripheral portion of the wafer W to be processed falls on the support wafer S. Then, the processing target wafer W and the support wafer S are joined as shown in FIG.
 ここで、図4に示すようにボンディングウェーブBの端部Beでは、ウェハW、S間の空間は空気が圧縮されて高圧になる。また、ウェハW、Sの周縁部、例えば端部から1mm~5mmでは、ボンディングウェーブBの端部Beで圧縮されて高圧(例えば大気圧の3倍)になった雰囲気が大気開放され、急激に大気圧まで減圧されることになる。そうすると、ウェハW、Sの周縁部では、この急激な減圧によりジュールトムソン効果が発生して温度が低下し(例えば1.5℃低下し)、結露が発生する。この結露は、ウェハW、Sが接合されると、酸化膜Fw、Fsの界面に閉じ込められる。そしてその後、アニール処理を行うと、界面に存在する水が蒸発して膨張しボイドとなり、図5に示すように重合ウェハTの周縁部に環状のエッジボイドVが発生する。 Here, as shown in FIG. 4, at the end Be of the bonding wave B, the space between the wafers W and S is compressed to a high pressure due to the air. Further, at the peripheral portions of the wafers W and S, for example, 1 mm to 5 mm from the ends, the atmosphere compressed at the end Be of the bonding wave B to a high pressure (for example, three times the atmospheric pressure) is opened to the atmosphere, and rapidly. The pressure will be reduced to atmospheric pressure. Then, at the peripheral portions of the wafers W and S, the Joule-Thomson effect occurs due to the rapid pressure reduction, the temperature decreases (for example, decreases by 1.5 ° C.), and dew condensation occurs. This dew is confined at the interface between the oxide films Fw and Fs when the wafers W and S are joined. Then, when an annealing process is performed thereafter, water present at the interface evaporates and expands to form a void, and an annular edge void V is generated at the peripheral portion of the overlapped wafer T as shown in FIG.
 以上のようにエッジボイドがウェハW、S間の急激な圧力変化によって発生することを、本開示者らは知見した。そこで、本開示者らは、この急激な圧力変化を抑えて、エッジボイドを抑制することを想到するに至った。以下、本実施形態にかかる基板処理システムとしてのウェハ処理システム、及び基板処理方法としてのウェハ処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 As described above, the present inventors have found that edge voids are generated by a sudden change in pressure between the wafers W and S. Thus, the present inventors have come to think of suppressing the abrupt pressure change to suppress the edge void. Hereinafter, a wafer processing system as a substrate processing system and a wafer processing method as a substrate processing method according to the present embodiment will be described with reference to the drawings. In the specification and the drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted.
 先ず、第1の実施形態にかかるウェハ処理システムの構成について説明する。図6は、ウェハ処理システム1の構成の概略を模式的に示す平面図である。なお、第1の実施形態にかかるウェハ処理システム1では、接合後にエッジトリムを行う。 First, the configuration of the wafer processing system according to the first embodiment will be described. FIG. 6 is a plan view schematically showing the outline of the configuration of the wafer processing system 1. In the wafer processing system 1 according to the first embodiment, edge trimming is performed after bonding.
 ウェハ処理システム1は、搬入出ステーション2と処理ステーション3を一体に接続した構成を有している。搬入出ステーション2には、例えば外部との間で複数の被処理ウェハW、複数の支持ウェハS、複数の重合ウェハTをそれぞれ収容可能なカセットCw、Cs、Ctがそれぞれ搬入出される。処理ステーション3は、被処理ウェハW、支持ウェハS、重合ウェハTに対して所定の処理を施す各種処理装置を備えている。 The wafer processing system 1 has a configuration in which the loading / unloading station 2 and the processing station 3 are integrally connected. For example, cassettes Cw, Cs, and Ct capable of accommodating a plurality of wafers W to be processed, a plurality of support wafers S, and a plurality of overlapped wafers T with the outside, respectively, are carried into and out of the carry-in / out station 2. The processing station 3 includes various processing apparatuses that perform predetermined processing on the processing target wafer W, the support wafer S, and the overlapped wafer T.
 搬入出ステーション2には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば4つのカセットCw、Cs、CtをX軸方向に一列に載置自在になっている。なお、カセット載置台10に載置されるカセットCw、Cs、Ctの個数は、本実施形態に限定されず、任意に決定することができる。 The cassette loading table 10 is provided at the loading / unloading station 2. In the illustrated example, a plurality of, for example, four cassettes Cw, Cs, Ct can be mounted on the cassette mounting table 10 in a line in the X-axis direction. Note that the number of cassettes Cw, Cs, Ct to be mounted on the cassette mounting table 10 is not limited to the present embodiment, and can be arbitrarily determined.
 搬入出ステーション2には、カセット載置台10に隣接してウェハ搬送領域20が設けられている。ウェハ搬送領域20には、X軸方向に延伸する搬送路21上を移動自在なウェハ搬送装置22が設けられている。ウェハ搬送装置22は、被処理ウェハW、支持ウェハS、重合ウェハTを保持して搬送する、例えば2本の搬送アーム23、23を有している。各搬送アーム23は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム23の構成は本実施形態に限定されず、任意の構成を取り得る。 The wafer transfer area 20 is provided in the loading / unloading station 2 adjacent to the cassette mounting table 10. The wafer transfer area 20 is provided with a wafer transfer device 22 movable on a transfer path 21 extending in the X-axis direction. The wafer transfer device 22 has, for example, two transfer arms 23, 23 for holding and transferring the processing target wafer W, the support wafer S, and the overlapped wafer T. Each transfer arm 23 is configured to be movable in a horizontal direction, a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 23 is not limited to the present embodiment, and may have any configuration.
 処理ステーション3には、ウェハ搬送領域30が設けられている。ウェハ搬送領域30には、X軸方向に延伸する搬送路31上を移動自在なウェハ搬送装置32が設けられている。ウェハ搬送装置32は、後述するトランジション装置34、接合装置40、内部改質装置41、表面改質装置42、疎水化装置43、加工装置50に対して、被処理ウェハW、支持ウェハS、重合ウェハTを搬送可能に構成されている。また、ウェハ搬送装置32は、被処理ウェハW、支持ウェハS、重合ウェハTを保持して搬送する、例えば2本の搬送アーム33、33を有している。各搬送アーム33は、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム33の構成は本実施形態に限定されず、任意の構成を取り得る。 The processing station 3 is provided with a wafer transfer area 30. The wafer transfer area 30 is provided with a wafer transfer device 32 movable on a transfer path 31 extending in the X-axis direction. The wafer transfer device 32 sends a processing target wafer W, a support wafer S, and a polymerization device to a transition device 34, a bonding device 40, an internal reforming device 41, a surface reforming device 42, a hydrophobizing device 43, and a processing device 50 described later. The wafer T is configured to be transportable. Further, the wafer transfer device 32 has, for example, two transfer arms 33, 33 for holding and transferring the processing target wafer W, the support wafer S, and the superposed wafer T. Each transfer arm 33 is configured to be movable in a horizontal direction, a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 33 is not limited to the present embodiment, and may have any configuration.
 ウェハ搬送領域20とウェハ搬送領域30との間には、被処理ウェハW、支持ウェハS、重合ウェハTを受け渡すためのトランジション装置34が設けられている。 ト ラ ン A transition device 34 for transferring the processing target wafer W, the support wafer S, and the overlapped wafer T is provided between the wafer transfer area 20 and the wafer transfer area 30.
 ウェハ搬送領域30のY軸正方向側には、接合装置40と内部改質装置41が、搬入出ステーション2側からX軸方向にこの順並べて配置されている。ウェハ搬送領域30のY軸負方向側には、表面改質装置42と疎水化装置43が、搬入出ステーション2側からX軸方向にこの順並べて配置されている。 (4) On the Y-axis positive direction side of the wafer transfer area 30, a bonding device 40 and an internal reforming device 41 are arranged in this order in the X-axis direction from the loading / unloading station 2 side. On the Y-axis negative direction side of the wafer transfer area 30, a surface reforming device 42 and a hydrophobizing device 43 are arranged in this order in the X-axis direction from the loading / unloading station 2 side.
 接合装置40は、被処理ウェハWの酸化膜Fwと支持ウェハSの酸化膜Fsを接合する。接合に先だって、酸化膜Fwと酸化膜Fsは、それぞれ活性化され親水化される。具体的に酸化膜Fwと酸化膜Fsを活性化する際には、例えば減圧雰囲気下において、処理ガスである酸素ガス又は窒素ガスが励起されてプラズマ化され、イオン化される。この酸素イオン又は窒素イオンが酸化膜Fwと酸化膜Fsに照射されて、酸化膜Fwと酸化膜Fsがプラズマ処理され、活性化される。また、このように活性化された酸化膜Fwと酸化膜Fsに純水を供給し、酸化膜Fwと酸化膜FsのダングリングボンドにOH基を付与して親水化する。そして、図3に示したように酸化膜Fwと酸化膜Fsが水素結合によって接合される。またさらに、接合された重合ウェハTにアニール処理を行い、酸化膜Fwと酸化膜Fsから水を除去して接合強度を確保する。 The bonding device 40 bonds the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S. Prior to the bonding, the oxide film Fw and the oxide film Fs are respectively activated and hydrophilized. Specifically, when activating the oxide film Fw and the oxide film Fs, for example, under a reduced pressure atmosphere, an oxygen gas or a nitrogen gas as a processing gas is excited to be turned into plasma and ionized. The oxide film Fw and the oxide film Fs are irradiated with the oxygen ions or the nitrogen ions, and the oxide film Fw and the oxide film Fs are plasma-treated and activated. In addition, pure water is supplied to the oxide film Fw and the oxide film Fs activated in this way, and an OH group is given to a dangling bond between the oxide film Fw and the oxide film Fs to make them hydrophilic. Then, as shown in FIG. 3, oxide film Fw and oxide film Fs are joined by hydrogen bonding. Further, an annealing process is performed on the bonded overlapped wafer T to remove water from the oxide film Fw and the oxide film Fs, thereby securing the bonding strength.
 内部改質装置41は、被処理ウェハWの内部に周縁改質層および分割改質層を形成する。内部改質装置41では、重合ウェハTをチャック(図示せず)で回転保持した状態で、被処理ウェハWの内部にレーザヘッド(図示せず)からレーザ光を照射する。レーザヘッドは、レーザ光発振器(図示せず)から発振された高周波のパルス状のレーザ光であって、被処理ウェハWに対して透過性を有する波長のレーザ光、例えば赤外光を、被処理ウェハWの内部の所定位置に集光して照射する。これによって、被処理ウェハWの内部においてレーザ光が集光した部分が改質する。なお、後述するように周縁改質層は、被処理ウェハWにおいて除去対象の周縁部Weと中央部との境界に沿って形成される。また、後述するように分割改質層は、前記周縁改質層の径方向外側において、径方向に延伸して形成される。 (4) The internal reforming device 41 forms a peripheral reforming layer and a split reforming layer inside the wafer W to be processed. In the internal reforming device 41, a laser beam is emitted from a laser head (not shown) to the inside of the wafer to be processed W while the overlapped wafer T is rotated and held by a chuck (not shown). The laser head receives high-frequency pulsed laser light oscillated from a laser light oscillator (not shown), and has a wavelength that is transparent to the wafer W to be processed, for example, infrared light. The light is focused and irradiated on a predetermined position inside the processing wafer W. Thereby, the portion where the laser light is focused inside the wafer W to be processed is modified. In addition, as described later, the peripheral edge modified layer is formed along the boundary between the peripheral edge portion We to be removed and the central portion of the processing target wafer W. As will be described later, the split modified layer is formed to extend in the radial direction on the radially outside of the peripheral edge modified layer.
 また前記レーザヘッドは、図示しない空間光変調器をさらに有している。空間光変調器は、レーザ光を変調して出力する。具体的に空間光変調器は、レーザ光の焦点位置や位相を制御することができ、被処理ウェハWに照射されるレーザ光の形状や数(分岐数)を調整することができる。 The laser head further includes a spatial light modulator (not shown). The spatial light modulator modulates and outputs the laser light. Specifically, the spatial light modulator can control the focal position and phase of the laser light, and can adjust the shape and number (the number of branches) of the laser light applied to the processing target wafer W.
 表面改質装置42は、被処理ウェハWの酸化膜Fwの外周部を改質し、本実施形態では当該外周部を除去する。表面改質装置42では、酸化膜Fwの外周部に対してフッ酸等のエッチング液でウェットエッチングを行う。 The surface reforming device 42 reforms the outer peripheral portion of the oxide film Fw of the processing target wafer W, and removes the outer peripheral portion in the present embodiment. In the surface modification device 42, wet etching is performed on the outer peripheral portion of the oxide film Fw with an etching solution such as hydrofluoric acid.
 疎水化装置43は、重合ウェハTを有機溶剤に浸漬させて、未接合の酸化膜Fw、Fsの表面に例えばCH基(メチル基)を結合させる。接合装置40で接合された酸化膜Fw、Fsとの界面には、後述するように酸化膜Fw、Fsが接合された接合領域と、表面改質装置42で除去された酸化膜Fwに対応する未接合領域とが形成されている。疎水化装置43では、この未接合領域の酸化膜Fw、Fsの表面に形成されたダングリングボンドに、例えばCH基を結合させることで疎水化する。なお、酸化膜Fw、Fsの表面の疎水化は、CH基の結合に限定されるものではなく、例えば酸化膜Fw、Fsの表面に他の炭素を含む基を結合させてもよい。また、本実施形態では、重合ウェハTを有機溶剤に浸漬させたが、CH基を付与する方法はこれに限定されず、酸化膜Fw、Fsの表面に有機溶剤を供給すればよい。例えば酸化膜Fw、Fsの表面を有機溶剤雰囲気に曝露してもよい。 The hydrophobizing device 43 immerses the polymerized wafer T in an organic solvent to bond, for example, CH 3 groups (methyl groups) to the surfaces of the unbonded oxide films Fw and Fs. The interface between the oxide films Fw and Fs joined by the joining device 40 corresponds to the joining region where the oxide films Fw and Fs are joined and the oxide film Fw removed by the surface reforming device 42 as described later. An unjoined region is formed. In the hydrophobizing device 43, the dangling bonds formed on the surfaces of the oxide films Fw and Fs in the unbonded regions are hydrophobized by, for example, bonding CH 3 groups. Note that the hydrophobicity of the surfaces of the oxide films Fw and Fs is not limited to the bonding of the CH 3 group, and for example, a group containing another carbon may be bonded to the surfaces of the oxide films Fw and Fs. Further, in the present embodiment, the superposed wafer T is immersed in the organic solvent, but the method of providing the CH 3 group is not limited to this, and the organic solvent may be supplied to the surfaces of the oxide films Fw and Fs. For example, the surfaces of the oxide films Fw and Fs may be exposed to an organic solvent atmosphere.
 ウェハ搬送領域30のX軸正方向側には、加工装置50が配置されている。加工装置50では、被処理ウェハWに対して研削や洗浄などの加工処理が行われる。 加工 A processing apparatus 50 is disposed on the X-axis positive direction side of the wafer transfer area 30. In the processing apparatus 50, processing such as grinding and cleaning is performed on the wafer W to be processed.
 加工装置50は、回転テーブル60、搬送ユニット70、アライメントユニット80、第1の洗浄ユニット90、第2の洗浄ユニット100、粗研削ユニット110、中研削ユニット120、及び仕上研削ユニット130を有している。 The processing device 50 includes a rotary table 60, a transport unit 70, an alignment unit 80, a first cleaning unit 90, a second cleaning unit 100, a rough grinding unit 110, a medium grinding unit 120, and a finish grinding unit 130. I have.
 回転テーブル60は、回転機構(図示せず)によって回転自在に構成されている。回転テーブル60上には、重合ウェハTを吸着保持するチャック61が4つ設けられている。チャック61は、回転テーブル60と同一円周上に均等、すなわち90度毎に配置されている。4つのチャック61は、回転テーブル60が回転することにより、受渡位置A0及び加工位置A1~A3に移動可能になっている。なお、チャック61はチャックベース(図示せず)に保持され、回転機構(図示せず)によって回転可能に構成されている。 The rotary table 60 is configured to be rotatable by a rotating mechanism (not shown). On the turntable 60, four chucks 61 for holding the overlapped wafer T by suction are provided. The chucks 61 are evenly arranged on the same circumference as the rotary table 60, that is, are arranged at intervals of 90 degrees. The four chucks 61 can be moved to the delivery position A0 and the processing positions A1 to A3 by rotating the rotary table 60. Note that the chuck 61 is held by a chuck base (not shown), and is configured to be rotatable by a rotation mechanism (not shown).
 本実施形態では、受渡位置A0は回転テーブル60のX軸負方向側且つY軸負方向側の位置であり、受渡位置A0のX軸負方向側には、第2の洗浄ユニット100、アライメントユニット80及び第1の洗浄ユニット90が並べて配置される。アライメントユニット80と第1の洗浄ユニット90は上方からこの順で積層されて配置される。第1の加工位置A1は回転テーブル60のX軸正方向側且つY軸負方向側の位置であり、粗研削ユニット110が配置される。第2の加工位置A2は回転テーブル60のX軸正方向側且つY軸正方向側の位置であり、中研削ユニット120が配置される。第3の加工位置A3は回転テーブル60のX軸負方向側且つY軸正方向側の位置であり、仕上研削ユニット130が配置される。 In the present embodiment, the delivery position A0 is a position on the X-axis negative direction side and the Y-axis negative direction side of the turntable 60, and the second cleaning unit 100 and the alignment unit are located on the X-axis negative direction side of the delivery position A0. The 80 and the first cleaning unit 90 are arranged side by side. The alignment unit 80 and the first cleaning unit 90 are stacked and arranged in this order from above. The first processing position A1 is a position on the X-axis positive direction side and the Y-axis negative direction side of the turntable 60, and the coarse grinding unit 110 is disposed. The second processing position A2 is a position on the X-axis positive direction side and the Y-axis positive direction side of the turntable 60, and the medium grinding unit 120 is disposed. The third processing position A3 is a position on the X-axis negative direction side and the Y-axis positive direction side of the rotary table 60, and the finish grinding unit 130 is disposed.
 搬送ユニット70は、複数、例えば3つのアーム71を備えた多関節型のロボットである。3つのアーム71は、それぞれが旋回自在に構成されている。先端のアーム71には、重合ウェハTを吸着保持する搬送パッド72が取り付けられている。また、基端のアーム71は、アーム71を鉛直方向に移動させる移動機構73に取り付けられている。そして、かかる構成を備えた搬送ユニット70は、受渡位置A0、アライメントユニット80、第1の洗浄ユニット90、及び第2の洗浄ユニット100に対して、重合ウェハTを搬送できる。 The transfer unit 70 is an articulated robot having a plurality of, for example, three arms 71. Each of the three arms 71 is configured to be pivotable. A transfer pad 72 for sucking and holding the overlapped wafer T is attached to the tip arm 71. The base arm 71 is attached to a moving mechanism 73 that moves the arm 71 in the vertical direction. Then, the transfer unit 70 having such a configuration can transfer the overlapped wafer T to the delivery position A0, the alignment unit 80, the first cleaning unit 90, and the second cleaning unit 100.
 アライメントユニット80では、研削処理前の重合ウェハTの水平方向の向きを調節する。例えばチャック(図示せず)に保持された重合ウェハTを回転させながら、検出部(図示せず)で被処理ウェハWのノッチ部の位置を検出することで、当該ノッチ部の位置を調節して重合ウェハTの水平方向の向きを調節する。 In the alignment unit 80, the horizontal direction of the overlapped wafer T before the grinding process is adjusted. For example, the position of the notch portion is adjusted by detecting the position of the notch portion of the processing target wafer W by the detection unit (not shown) while rotating the overlapped wafer T held by the chuck (not shown). To adjust the horizontal direction of the overlapped wafer T.
 第1の洗浄ユニット90では、研削処理後の被処理ウェハWの裏面Wbを洗浄し、より具体的にはスピン洗浄する。 {Circle around (1)} The first cleaning unit 90 cleans the back surface Wb of the processed wafer W after the grinding process, and more specifically performs spin cleaning.
 第2の洗浄ユニット100では、研削処理後の被処理ウェハWが搬送パッド72に保持された状態の支持ウェハSの裏面Sbを洗浄するとともに、搬送パッド72を洗浄する。 {Circle around (2)} The second cleaning unit 100 cleans the back surface Sb of the support wafer S in a state where the wafer W after the grinding process is held on the transfer pad 72, and also cleans the transfer pad 72.
 粗研削ユニット110では、被処理ウェハWの裏面を粗研削する。粗研削ユニット110は、環状形状で回転自在な粗研削砥石(図示せず)を備えた粗研削部111を有している。また、粗研削部111は、支柱112に沿って鉛直方向及び水平方向に移動可能に構成されている。そして、チャック61に保持された被処理ウェハWの裏面を粗研削砥石に当接させた状態で、チャック61と粗研削砥石をそれぞれ回転させ、さらに粗研削砥石を下降させることによって、被処理ウェハWの裏面を粗研削する。 The rough grinding unit 110 roughly grinds the back surface of the wafer W to be processed. The coarse grinding unit 110 has a coarse grinding unit 111 provided with a rotatable coarse grinding wheel (not shown) having an annular shape. The rough grinding unit 111 is configured to be movable in the vertical and horizontal directions along the column 112. Then, with the back surface of the wafer W to be processed held by the chuck 61 being in contact with the rough grinding wheel, the chuck 61 and the rough grinding wheel are respectively rotated, and the rough grinding wheel is further lowered, whereby the wafer to be processed is lowered. The back surface of W is roughly ground.
 中研削ユニット120では、被処理ウェハWの裏面を中研削する。中研削ユニット120は、環状形状で回転自在な中研削砥石(図示せず)を備えた中研削部121を有している。また、中研削部121は、支柱122に沿って鉛直方向及び水平方向に移動可能に構成されている。なお、中研削砥石の砥粒の粒度は、粗研削砥石の砥粒の粒度より小さい。そして、チャック61に保持された被処理ウェハWの裏面を中研削砥石に当接させた状態で、チャック61と中研削砥石をそれぞれ回転させ、さらに中研削砥石を下降させることによって、裏面を中研削する。 The medium grinding unit 120 performs medium grinding on the back surface of the wafer W to be processed. The medium grinding unit 120 has a medium grinding unit 121 provided with an annular and rotatable medium grinding wheel (not shown). The middle grinding portion 121 is configured to be movable in the vertical and horizontal directions along the column 122. The grain size of the abrasive grains of the medium grinding wheel is smaller than the grain size of the abrasive grains of the coarse grinding wheel. Then, with the back surface of the wafer W to be processed held by the chuck 61 being in contact with the medium grinding wheel, the chuck 61 and the medium grinding wheel are respectively rotated, and the medium grinding wheel is further lowered, so that the back surface is centered. Grind.
 仕上研削ユニット130では、被処理ウェハWの裏面を仕上研削する。仕上研削ユニット130は、環状形状で回転自在な仕上研削砥石(図示せず)を備えた仕上研削部131を有している。また、仕上研削部131は、支柱132に沿って鉛直方向及び水平方向に移動可能に構成されている。なお、仕上研削砥石の砥粒の粒度は、中研削砥石の砥粒の粒度より小さい。そして、チャック61に保持された被処理ウェハWの裏面を仕上研削砥石に当接させた状態で、チャック61と仕上研削砥石をそれぞれ回転させ、さらに仕上研削砥石を下降させることによって、裏面を仕上研削する。 The finish grinding unit 130 finish-grinds the back surface of the wafer W to be processed. The finish grinding unit 130 has a finish grinding unit 131 having a ring-shaped rotatable finish grinding wheel (not shown). Further, the finish grinding section 131 is configured to be movable in the vertical and horizontal directions along the column 132. The grain size of the abrasive grains of the finish grinding wheel is smaller than the grain size of the abrasive grains of the medium grinding wheel. Then, while the back surface of the wafer W to be processed held by the chuck 61 is in contact with the finishing grinding wheel, the chuck 61 and the finishing grinding wheel are respectively rotated, and the finishing grinding wheel is further lowered to finish the back surface. Grind.
 なお、本実施形態においては、後述するように粗研削ユニット110(又は粗研削ユニット110及び中研削ユニット120)において被処理ウェハWの周縁部Weが除去され、加工装置50は周縁除去装置を構成している。 In the present embodiment, as described later, in the rough grinding unit 110 (or the rough grinding unit 110 and the middle grinding unit 120), the peripheral edge portion We of the processing target wafer W is removed, and the processing device 50 constitutes a peripheral edge removing device. are doing.
 以上のウェハ処理システム1には、制御装置140が設けられている。制御装置140は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1におけるウェハ処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、ウェハ処理システム1における後述のウェハ処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置140にインストールされたものであってもよい。 制 御 A control device 140 is provided in the wafer processing system 1 described above. The control device 140 is a computer, for example, and has a program storage unit (not shown). The program storage section stores a program for controlling wafer processing in the wafer processing system 1. The program storage unit also stores programs for controlling operations of driving systems such as the above-described various types of processing apparatuses and transfer apparatuses, and for realizing wafer processing to be described later in the wafer processing system 1. Note that the program may be recorded on a computer-readable storage medium H, and may be installed from the storage medium H to the control device 140.
 次に、表面改質装置42について説明する。図7に示すように表面改質装置42は、酸化膜Fwが上方を向いた状態で被処理ウェハWを保持するチャック150を有している。チャック150は、回転機構151によって鉛直軸回りに回転可能に構成されている。チャック150の上方には、酸化膜Fwの外周部にエッチング液Eを塗布するノズル152が設けられている。ノズル152は、エッチング液Eを貯留して供給するエッチング液供給源(図示せず)に連通している。またノズル152は、移動機構(図示せず)によってX軸方向、Y軸方向及びZ軸方向に移動可能に構成されている。 Next, the surface modification device 42 will be described. As shown in FIG. 7, the surface reforming apparatus 42 has a chuck 150 for holding the wafer W to be processed with the oxide film Fw facing upward. The chuck 150 is configured to be rotatable around a vertical axis by a rotation mechanism 151. Above the chuck 150, a nozzle 152 for applying the etching solution E to the outer peripheral portion of the oxide film Fw is provided. The nozzle 152 is in communication with an etchant supply source (not shown) that stores and supplies the etchant E. Further, the nozzle 152 is configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction by a moving mechanism (not shown).
 表面改質装置42では、図8(a)に示すように酸化膜Fwの外周部Fweの表層が、エッチング液Eによって除去される。そして、図8(b)に示すように外周部Fweでは、酸化膜Fw、Fsが接合処理時において接合されない。すなわち、酸化膜Fw、Fsが接合されると、当該酸化膜Fw、Fsの界面には、酸化膜Fw、Fsが接合された接合領域Acと外周部Fweに対応する未接合領域Aeが形成される。 で は In the surface reforming device 42, the surface layer of the outer peripheral portion Fwe of the oxide film Fw is removed by the etching solution E as shown in FIG. Then, as shown in FIG. 8B, in the outer peripheral portion Fwe, the oxide films Fw and Fs are not joined during the joining process. That is, when the oxide films Fw and Fs are joined, an unjoined region Ae corresponding to the outer peripheral portion Fwe and a joined region Ac where the oxide films Fw and Fs are joined are formed at the interface between the oxide films Fw and Fs. You.
 ここで、図4を用いて上述したように、ボンディングウェーブの端部では高圧な雰囲気になっており、この雰囲気が大気開放されて急激に大気圧まで減圧されることで、エッジボイドが発生する。この点、本実施形態では未接合領域Aeが形成されるので、ボンディングウェーブの端部の高圧な雰囲気が開放される空間が小さくなり、大気圧まで減圧されることがない。このように急激な減圧を抑えることで、エッジボイドを抑制することができる。 (4) Here, as described above with reference to FIG. 4, a high-pressure atmosphere is formed at the end of the bonding wave, and the atmosphere is released to the atmosphere and rapidly reduced to the atmospheric pressure, whereby an edge void is generated. In this regard, in the present embodiment, since the unjoined region Ae is formed, the space where the high-pressure atmosphere at the end of the bonding wave is opened is reduced, and the pressure is not reduced to the atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed.
 また図8に示した、除去される外周部Fweの厚みHは、表面から400nm以内であるのが望ましい。外周部Fweの厚みHが400nmより大きくなるに従い、ボンディングウェーブの端部の雰囲気が開放される空間は大きくなり、減圧度合が大きくなる。したがって、外周部Fweの厚みHは小さい方が好ましい。そして、本開示者らが実験を行ったところ、外周部Fweの厚みHが400nm以内であれば、確実にエッジボイドを抑制できることを確認した。 Also, the thickness H of the outer peripheral portion Fwe to be removed shown in FIG. 8 is desirably within 400 nm from the surface. As the thickness H of the outer peripheral portion Fwe becomes larger than 400 nm, the space where the atmosphere at the end of the bonding wave is opened increases, and the degree of pressure reduction increases. Therefore, the smaller the thickness H of the outer peripheral portion Fwe, the better. The present inventors conducted an experiment and confirmed that edge voids can be reliably suppressed if the thickness H of the outer peripheral portion Fwe is within 400 nm.
 さらに図8に示した未接合領域Aeの幅Laは、例えば4mm以内である。なお、この幅Laはエッジボイドの発生に寄与するものではなく、幅Laは例えば4mmと大きくても、エッジボイドを抑制することができる。但し、後述するように被処理ウェハWの有効領域を大きくするためには、幅Laはできるだけ小さい方が好ましい。 Further, the width La of the unjoined area Ae shown in FIG. 8 is, for example, within 4 mm. The width La does not contribute to the generation of edge voids. Even if the width La is as large as 4 mm, for example, the edge voids can be suppressed. However, in order to increase the effective area of the processing target wafer W as described later, it is preferable that the width La is as small as possible.
 次に、以上のように構成されたウェハ処理システム1を用いて行われるウェハ処理について説明する。 Next, wafer processing performed using the wafer processing system 1 configured as described above will be described.
 先ず、複数の被処理ウェハWを収納したカセットCw、複数の支持ウェハSを収納したカセットCsが、搬入出ステーション2のカセット載置台10に載置される。 First, the cassette Cw storing a plurality of wafers W to be processed and the cassette Cs storing a plurality of supporting wafers S are mounted on the cassette mounting table 10 of the loading / unloading station 2.
 次に、ウェハ搬送装置22によりカセットCw内の被処理ウェハWが取り出され、トランジション装置34に搬送される。続けて、ウェハ搬送装置32により、トランジション装置34の被処理ウェハWが取り出され、表面改質装置42に搬送される。表面改質装置42では、被処理ウェハWの酸化膜Fwの外周部Fweにエッチング液Eが供給され、図10(a)に示すように外周部Fweの表層が除去される(図9のステップP1)。この際、外周部Fweは、被処理ウェハWの端部からの距離L2が約0.5mmとなるように除去される。 Next, the wafer W to be processed in the cassette Cw is taken out by the wafer transfer device 22 and transferred to the transition device 34. Subsequently, the processing target wafer W of the transition device 34 is taken out by the wafer transfer device 32 and transferred to the surface reforming device 42. In the surface reforming device 42, the etchant E is supplied to the outer peripheral portion Fwe of the oxide film Fw of the processing target wafer W, and the surface layer of the outer peripheral portion Fwe is removed as shown in FIG. 10A (step in FIG. 9). P1). At this time, the outer peripheral portion Fwe is removed such that the distance L2 from the end of the processing target wafer W becomes about 0.5 mm.
 なお、このステップP1と並行して、ウェハ搬送装置22によりカセットCs内の支持ウェハSが取り出され、トランジション装置34を介してウェハ搬送装置32により、接合装置40に搬送される。 In parallel with Step P1, the support wafer S in the cassette Cs is taken out by the wafer transfer device 22 and transferred to the bonding device 40 by the wafer transfer device 32 via the transition device 34.
 次に、被処理ウェハWはウェハ搬送装置32により接合装置40に搬送される。この際、被処理ウェハWはウェハ搬送装置22又は反転装置(図示せず)によって表裏面が反転される。接合装置40では、図10(b)に示すように被処理ウェハWの酸化膜Fwと支持ウェハSの酸化膜Fsが接合され、重合ウェハTが形成される(図9のステップP2)。この際、外周部Fweでは酸化膜Fw、Fsが接合されず、当該酸化膜Fw、Fsの界面には接合領域Acと未接合領域Aeが形成される。そして、この未接合領域Aeによって、ボンディングウェーブの端部の高圧な雰囲気が開放される空間が小さくなり、大気圧まで減圧されることがない。このように急激な減圧を抑えることで、エッジボイドを抑制することができる。 Next, the processing target wafer W is transferred to the bonding device 40 by the wafer transfer device 32. At this time, the front and back surfaces of the processing target wafer W are reversed by the wafer transfer device 22 or the reversing device (not shown). In the bonding apparatus 40, as shown in FIG. 10B, the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S are bonded to form the overlapped wafer T (Step P2 in FIG. 9). At this time, the oxide films Fw and Fs are not bonded at the outer peripheral portion Fwe, and a bonded region Ac and an unbonded region Ae are formed at the interface between the oxide films Fw and Fs. The unbonded region Ae reduces the space at the end of the bonding wave where the high-pressure atmosphere is released, and does not reduce the pressure to the atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed.
 次に、重合ウェハTはウェハ搬送装置32により疎水化装置43に搬送される。疎水化装置43では、重合ウェハTを有機溶剤に浸漬させて、図10(c)に示すように未接合領域Aeの酸化膜Fw、Fsの表面にCH基を結合させる(図9のステップP3)。このように未接合領域Aeの酸化膜Fw、Fsの表面が疎水化されることで、例えば接合処理後に大気中の水蒸気によって当該酸化膜Fw、Fsが密着(接合)するのを抑制することができる。したがって、エッジボイドをより確実に抑制することができる。また、酸化膜Fw、Fsが密着すると、後述のステップP5において被処理ウェハWの周縁部Weを適切に除去できない場合があるが、当該酸化膜Fw、Fsの表面を疎水化することで、かかる周縁部Weの除去を適切に行うことができる。なお、例えばドライ環境など、周辺環境の湿度によっては、接合処理後に酸化膜Fw、Fsが密着しない場合がある。かかる場合は、ステップP3は不要となり省略することができる。 Next, the overlapped wafer T is transferred to the hydrophobizing device 43 by the wafer transfer device 32. In the hydrophobizing device 43, the polymerized wafer T is immersed in an organic solvent to bond CH 3 groups to the surfaces of the oxide films Fw and Fs in the unbonded region Ae as shown in FIG. 10C (step in FIG. 9). P3). By making the surfaces of the oxide films Fw and Fs in the unbonded region Ae hydrophobic as described above, it is possible to suppress the adhesion (bonding) of the oxide films Fw and Fs due to water vapor in the air after the bonding process, for example. it can. Therefore, edge voids can be suppressed more reliably. If the oxide films Fw and Fs are in close contact with each other, the peripheral portion We of the processing target wafer W may not be appropriately removed in step P5 described below. However, such a problem may be caused by making the surfaces of the oxide films Fw and Fs hydrophobic. The peripheral portion We can be appropriately removed. Note that the oxide films Fw and Fs may not adhere to each other after the bonding process depending on the humidity of the surrounding environment such as a dry environment. In such a case, Step P3 becomes unnecessary and can be omitted.
 次に、重合ウェハTはウェハ搬送装置32により内部改質装置41に搬送される。内部改質装置41では、被処理ウェハWを回転させながら、レーザヘッドから被処理ウェハWの内部にレーザ光を照射する。そして、図10(d)および図11に示すように被処理ウェハWの周縁部Weと中央部Wcの境界に沿って、当該被処理ウェハWの内部に環状の周縁改質層M1を形成する(図9のステップP4)。かかる周縁改質層M1は、接合領域Acと未接合領域Aeとの境界と一致するように、または当該境界よりも径方向内側に形成されることが好ましい。なお、図示の例においては、周縁改質層M1は被処理ウェハWの厚み方向に7箇所形成されているが、この周縁改質層M1の数は任意である。 Next, the overlapped wafer T is transferred to the internal reforming device 41 by the wafer transfer device 32. The internal reforming device 41 irradiates the inside of the processing target wafer W with laser light from the laser head while rotating the processing target wafer W. Then, as shown in FIG. 10D and FIG. 11, along the boundary between the peripheral portion We and the central portion Wc of the processing target wafer W, an annular peripheral modification layer M1 is formed inside the processing target wafer W. (Step P4 in FIG. 9). It is preferable that the peripheral edge modified layer M1 is formed so as to coincide with the boundary between the joined region Ac and the unjoined region Ae, or radially inward of the boundary. In the illustrated example, the peripheral edge modified layer M1 is formed at seven places in the thickness direction of the processing target wafer W, but the number of the peripheral edge modified layer M1 is arbitrary.
 なお、かかる周縁改質層M1の形成にあたっては、前記空間光変調器によってレーザヘッドから照射されるレーザ光が切り替えられ、その形状と数が調整される。具体的には、先ず、図12(a)に示すように、被処理ウェハWの厚み方向における表面Wa側に、レーザ光Lr1を照射して、周縁改質層M1(1)~(3)を形成する。レーザ光Lr1の集光点の数は、1つである(単焦点加工)。次に、図12(b)に示すように、周縁改質層M1(3)の上方側、すなわち、被処理ウェハWの厚み方向における裏面Wb側に、周縁改質層M1(4)~(7)を形成する。レーザ光Lr2の集光点の数は、例えば2つであり、すなわち、周縁改質層M1(4)、(5)または、周縁改質層M1(6)、(7)は同時に形成される(多焦点加工)。 In the formation of the peripheral edge modified layer M1, laser light emitted from a laser head is switched by the spatial light modulator, and the shape and number thereof are adjusted. Specifically, first, as shown in FIG. 12A, the surface Wa side in the thickness direction of the processing target wafer W is irradiated with the laser beam Lr1 to form the peripheral edge modified layers M1 (1) to M3 (3). To form The number of focal points of the laser beam Lr1 is one (single focus processing). Next, as shown in FIG. 12B, on the upper side of the peripheral edge modified layer M1 (3), that is, on the rear surface Wb side in the thickness direction of the processing target wafer W, the peripheral edge modified layer M1 (4) to ( 7) is formed. The number of focal points of the laser beam Lr2 is, for example, two, that is, the peripheral modified layers M1 (4) and (5) or the peripheral modified layers M1 (6) and (7) are formed at the same time. (Multi focus processing).
 なお、レーザ光Lr1、Lr2による周縁改質層M1の形成数、および、レーザ光Lr1、Lr2の集光点の数は任意である。ただし、被処理ウェハWのデバイス層D側に形成される周縁改質層M1(1)~(3)においては、デバイス層Dの方向へ進展する亀裂を制御、すなわち、デバイス層Dに損傷を与えることを抑制するため、前記単焦点加工により高精度に周縁改質層M1が形成されることが好ましい。一方、周縁改質層M1(4)~(7)は、デバイス層Dに損傷を与える可能性が周縁改質層M1(1)~(3)と比べて低いため、前記多焦点加工を行うことにより、内部改質装置41におけるスループットを向上させることができる。 The number of the peripheral edge modified layers M1 formed by the laser beams Lr1 and Lr2 and the number of converging points of the laser beams Lr1 and Lr2 are arbitrary. However, in the peripheral modified layers M1 (1) to M (3) formed on the device layer D side of the processing target wafer W, cracks that propagate in the direction of the device layer D are controlled, that is, damage to the device layer D is prevented. In order to suppress giving, it is preferable that the peripheral modified layer M1 is formed with high precision by the single focus processing. On the other hand, the possibility of damaging the device layer D of the peripheral modified layers M1 (4) to (7) is lower than that of the peripheral modified layers M1 (1) to (3). Thereby, the throughput in the internal reforming device 41 can be improved.
 次に、レーザヘッドを移動させて、レーザヘッドから被処理ウェハWの内部にレーザ光を照射する。そして、図10(d)および図11に示すように、周縁改質層M1の径方向外側に、被処理ウェハWの径方向に延伸する分割改質層M2を形成する(図9のステップP4)。なお、図示の例においては、分割改質層M2は被処理ウェハWの円周方向に8箇所、厚み方向に7箇所形成されているが、この分割改質層M2の数は任意である。 Next, the laser head is moved, and the inside of the wafer W to be processed is irradiated with laser light from the laser head. Then, as shown in FIG. 10D and FIG. 11, a divided modified layer M2 extending in the radial direction of the wafer W to be processed is formed outside the peripheral modified layer M1 in the radial direction (Step P4 in FIG. 9). ). In the illustrated example, the divided modified layers M2 are formed at eight locations in the circumferential direction and seven locations in the thickness direction of the wafer W to be processed, but the number of the divided modified layers M2 is arbitrary.
 なお、かかる分割改質層M2の形成にあたっては、前記空間光変調器によってレーザヘッドから照射されるレーザ光が切り替えられ、その形状と数が調整される。具体的には、図13に示すように、被処理ウェハWの内部にレーザ光Lr3を照射して、分割改質層M2を形成する。レーザ光Lr3の集光点の数は、例えば2つである(多焦点加工)。 In forming the split modified layer M2, the spatial light modulator switches the laser light emitted from the laser head, and adjusts the shape and number of the laser light. Specifically, as shown in FIG. 13, the inside of the processing target wafer W is irradiated with the laser beam Lr3 to form the divided modified layer M2. The number of focal points of the laser beam Lr3 is, for example, two (multi-focus processing).
 なお、レーザ光Lr3による分割改質層M2の形成数、および、レーザ光Lr3の集光点の数は任意である。かかる分割改質層M2は、後のエッジトリムにより除去される位置に形成され、また前述のようにデバイス層Dに損層を与える可能性が低いため、前記多焦点加工を行うことにより、内部改質装置41におけるスループットを向上させることができる。 The number of divided modified layers M2 formed by the laser light Lr3 and the number of converging points of the laser light Lr3 are arbitrary. The split modified layer M2 is formed at a position where it is removed by the subsequent edge trim, and has a low possibility of giving a damaged layer to the device layer D as described above. Throughput in the reformer 41 can be improved.
 次に、重合ウェハTはウェハ搬送装置32により加工装置50に搬送される。加工装置に搬送された重合ウェハTは、アライメントユニット80に受け渡される。アライメントユニット80では、被処理ウェハWの水平方向の向きが調節される。 Next, the overlapped wafer T is transferred to the processing device 50 by the wafer transfer device 32. The overlapped wafer T transferred to the processing device is transferred to the alignment unit 80. In the alignment unit 80, the horizontal direction of the processing target wafer W is adjusted.
 次に、重合ウェハTは搬送ユニット70により、アライメントユニット80から受渡位置A0に搬送され、当該受渡位置A0のチャック61に受け渡される。その後、チャック61を第1の加工位置A1に移動させる。そして、粗研削ユニット110によって、被処理ウェハWの裏面Wbが粗研削される(図9のステップP5)。 Next, the overlapped wafer T is transferred from the alignment unit 80 to the transfer position A0 by the transfer unit 70, and transferred to the chuck 61 at the transfer position A0. Thereafter, the chuck 61 is moved to the first processing position A1. Then, the back surface Wb of the processing target wafer W is roughly ground by the rough grinding unit 110 (Step P5 in FIG. 9).
 この裏面Wbの研削では、図10(d)に示すように被処理ウェハWの内部には、周縁改質層M1および分割改質層M2から板厚方向にクラックC1およびクラックC2が略直線状に進展し、裏面Wbと表面Waに到達する。また、裏面Wbの研削を進めていくと、図10(e)に示すように周縁改質層M1とクラックC1を基点に被処理ウェハWの周縁部Weが剥離して除去される。またこの際、分割改質層M2とクラックC2を基点に周縁部Weが小片化され、より容易に周縁部Weを除去することができる。なお、この裏面Wbの研削において、酸化膜Fw、Fsの界面には未接合領域Aeが形成されているので、周縁部Weを適切に除去することができる。 In the grinding of the back surface Wb, as shown in FIG. 10D, cracks C1 and C2 are substantially linearly formed in the thickness direction from the peripheral modified layer M1 and the divided modified layer M2 inside the wafer W to be processed. And reaches the back surface Wb and the front surface Wa. Further, as the grinding of the back surface Wb proceeds, as shown in FIG. 10E, the peripheral edge portion We of the processing target wafer W is peeled off and removed from the peripheral edge modified layer M1 and the crack C1 as a base point. Further, at this time, the peripheral edge portion We is fragmented based on the divided modified layer M2 and the crack C2, and the peripheral edge portion We can be more easily removed. In the grinding of the back surface Wb, since the unbonded region Ae is formed at the interface between the oxide films Fw and Fs, the peripheral portion We can be appropriately removed.
 また、ステップP1の処理前の被処理ウェハWの端部とステップP5の処理後の被処理ウェハWの端部との距離L2は、約0.5mmにできる。すなわち、有効領域はφ299mmの領域となる。したがって、図1に示した従来に比べて、有効領域を大きくできる。本実施形態ではエッジボイドを抑制できるため、有効領域を大きくできる。また、ステップP5では周縁改質層M1を基点に周縁部Weを除去できるので、周縁部Weの幅(トリム幅)を小さくして、有効面積をさらに大きくできる。例えば従来のように研削工具(ブレード)を用いてエッジトリムを行うと約2mmのトリム幅が必要になるが、本実施形態では研削工具を用いておらず、トリム幅を小さくできる。 {Circle around (2)} The distance L2 between the end of the processed wafer W before the processing in step P1 and the end of the processed wafer W after the processing in step P5 can be set to about 0.5 mm. That is, the effective area is an area of φ299 mm. Therefore, the effective area can be increased as compared with the conventional example shown in FIG. In the present embodiment, since the edge void can be suppressed, the effective area can be increased. Further, in Step P5, since the peripheral portion We can be removed starting from the peripheral modified layer M1, the width (trim width) of the peripheral portion We can be reduced, and the effective area can be further increased. For example, when edge trimming is performed using a grinding tool (blade) as in the related art, a trim width of about 2 mm is required. However, in this embodiment, no trimming tool is used, and the trim width can be reduced.
 次に、チャック61を第2の加工位置A2に移動させる。そして、中研削ユニット120によって、被処理ウェハWの裏面Wbが中研削される。なお、上述した粗研削ユニット110において、周縁部Weが完全に除去できない場合には、この中研削ユニット120で周縁部Weが完全に除去される。 Next, the chuck 61 is moved to the second processing position A2. Then, the back surface Wb of the wafer W to be processed is subjected to middle grinding by the middle grinding unit 120. In the case where the peripheral portion We cannot be completely removed in the above-described rough grinding unit 110, the peripheral portion We is completely removed by the middle grinding unit 120.
 次に、チャック61を第3の加工位置A3に移動させる。そして、仕上研削ユニット130によって、被処理ウェハWの裏面Wbが仕上研削される。 Next, the chuck 61 is moved to the third processing position A3. Then, the back surface Wb of the processing target wafer W is finish-ground by the finish grinding unit 130.
 次に、チャック61を受渡位置A0に移動させる。ここでは、洗浄液ノズル(図示せず)を用いて、被処理ウェハWの裏面Wbが洗浄液によって粗洗浄される。この際、裏面Wbの汚れをある程度まで落とす洗浄が行われる。 Next, the chuck 61 is moved to the delivery position A0. Here, the back surface Wb of the processing target wafer W is roughly cleaned with a cleaning liquid using a cleaning liquid nozzle (not shown). At this time, cleaning for removing stains on the back surface Wb to some extent is performed.
 次に、重合ウェハTは搬送ユニット70により、受渡位置A0から第2の洗浄ユニット100に搬送される。そして、第2の洗浄ユニット100では、被処理ウェハWが搬送パッド72に保持された状態で、支持ウェハSの裏面Sbが洗浄し、乾燥される。 Next, the overlapped wafer T is transferred from the delivery position A0 to the second cleaning unit 100 by the transfer unit 70. Then, in the second cleaning unit 100, the back surface Sb of the support wafer S is cleaned and dried while the processing target wafer W is held by the transfer pad 72.
 次に、重合ウェハTは搬送ユニット70により、第2の洗浄ユニット100から第1の洗浄ユニット90に搬送される。そして、第1の洗浄ユニット90では、洗浄液ノズル(図示せず)を用いて、被処理ウェハWの裏面Wbが洗浄液によって仕上洗浄される。この際、裏面Wbが所望の清浄度まで洗浄し乾燥される。 Next, the superposed wafer T is transferred from the second cleaning unit 100 to the first cleaning unit 90 by the transfer unit 70. Then, in the first cleaning unit 90, the back surface Wb of the processing target wafer W is finish-cleaned by the cleaning liquid using a cleaning liquid nozzle (not shown). At this time, the back surface Wb is washed to a desired degree of cleanliness and dried.
 その後、すべての処理が施された重合ウェハTは、ウェハ搬送装置32によりトランジション装置34に搬送され、さらにウェハ搬送装置22によりカセット載置台10のカセットCtに搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the overlapped wafer T that has been subjected to all the processes is transferred to the transition device 34 by the wafer transfer device 32, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 22. Thus, a series of wafer processing in the wafer processing system 1 ends.
 以上の第1の実施形態によれば、ステップP1で酸化膜Fwの外周部Fweの表層を除去しており、ステップP2で酸化膜Fw、Fsを接合する際に、当該酸化膜Fw、Fsの界面に未接合領域Aeが形成される。この未接合領域Aeによって、ボンディングウェーブ端部の雰囲気の急激な減圧を抑制することができ、その結果、エッジボイドを抑制することができる。 According to the first embodiment described above, the surface layer of the outer peripheral portion Fwe of the oxide film Fw is removed in step P1, and when the oxide films Fw and Fs are joined in step P2, the oxide films Fw and Fs are removed. An unbonded region Ae is formed at the interface. The unbonded region Ae can suppress a rapid pressure reduction of the atmosphere at the end of the bonding wave, and as a result, can suppress edge voids.
 また、ステップP3で未接合領域Aeの酸化膜Fw、Fsの表面にCH基を結合させて疎水化しているので、当該酸化膜Fw、Fsが密着(接合)するのを抑制することができる。このように未接合領域Aeを確保することができるので、エッジボイドをさらに抑制することができる。また、未接合領域Aeの酸化膜Fw、Fsの表面を疎水化することで、ステップP5において被処理ウェハWの周縁部Weの除去を適切に行うことができる。 Further, since the CH 3 groups are bonded to the surfaces of the oxide films Fw and Fs in the unbonded region Ae to make them hydrophobic in step P3, the adhesion (bonding) of the oxide films Fw and Fs can be suppressed. . Since the unjoined area Ae can be secured in this way, edge voids can be further suppressed. In addition, by making the surfaces of the oxide films Fw and Fs in the unbonded region Ae hydrophobic, the peripheral portion We of the processing target wafer W can be appropriately removed in Step P5.
 さらに、本実施形態ではエッジボイドを抑制することで、被処理ウェハWの有効領域も大きくすることができる。しかも、本実施形態では、ステップP5では改質層Mを基点に周縁部Weを除去できるので、周縁部Weの幅(トリム幅)を小さくして、有効面積をさらに大きくできる。具体的には、図1に示した従来の場合、処理前の被処理ウェハWの端部からエッジボイドVまでの距離L1は約7mmであり、有効領域はφ286mmの領域となる。これに対して、図9に示した本実施形態では、ステップP1の処理前の被処理ウェハWの端部とステップP5の処理後の被処理ウェハWの端部との距離L2は約0.5mmであり、有効領域はφ299mmの領域となる。このように本実施形態では、従来に比べて、被処理ウェハWの有効領域を大きくすることができ、製品となるチップを多く製造することができる。 (4) Further, in the present embodiment, by suppressing the edge voids, the effective area of the processing target wafer W can be increased. Moreover, in the present embodiment, since the peripheral portion We can be removed starting from the modified layer M in Step P5, the width (trim width) of the peripheral portion We can be reduced, and the effective area can be further increased. Specifically, in the case of the conventional example shown in FIG. 1, the distance L1 from the end of the processing target wafer W to the edge void V before processing is about 7 mm, and the effective area is an area of φ286 mm. On the other hand, in the present embodiment shown in FIG. 9, the distance L2 between the end of the processing target wafer W before the processing in step P1 and the end of the processing target wafer W after the processing in step P5 is about 0. 5 mm, and the effective area is an area of φ299 mm. As described above, in the present embodiment, the effective area of the processing target wafer W can be increased as compared with the related art, and a large number of chips as products can be manufactured.
 なお、本実施形態では、ステップP2において酸化膜Fw、Fsの活性化処理、親水化処理、接合処理、アニール処理を順次行った後、ステップP3において未接合領域Aeの酸化膜Fw、Fsの表面を疎水化した。この点、ステップP3は、ステップP2における親水化処理と接合処理の間で行ってもよいし、接合処理とアニール処理の間で行ってもよい。 In the present embodiment, the activation process, the hydrophilization process, the bonding process, and the annealing process of the oxide films Fw and Fs are sequentially performed in Step P2, and then, in Step P3, the surfaces of the oxide films Fw and Fs in the non-bonded region Ae. Was hydrophobized. In this regard, step P3 may be performed between the hydrophilic treatment and the bonding process in step P2, or may be performed between the bonding process and the annealing process.
 また、本実施形態のウェハ処理システム1は、接合装置40、内部改質装置41、表面改質装置42、疎水化装置43、加工装置50を備えていたが、その装置構成は任意である。例えば接合装置40と表面改質装置42が一のシステムに設けられ、内部改質装置41、疎水化装置43及び加工装置50が他のシステムに設けられていてもよい。 Also, the wafer processing system 1 of the present embodiment includes the bonding device 40, the internal reforming device 41, the surface reforming device 42, the hydrophobizing device 43, and the processing device 50, but the device configuration is arbitrary. For example, the joining device 40 and the surface reforming device 42 may be provided in one system, and the internal reforming device 41, the hydrophobizing device 43, and the processing device 50 may be provided in another system.
 また、例えば図14に示すようにウェハ処理システム1に内部改質装置41と加工装置50が設けられ、他のシステム(図示せず)に接合装置40、表面改質装置42及び疎水化装置43が設けられていてもよい。 Further, for example, as shown in FIG. 14, an internal reforming device 41 and a processing device 50 are provided in the wafer processing system 1, and a bonding device 40, a surface reforming device 42, and a hydrophobic device 43 are provided in another system (not shown). May be provided.
 かかる場合、図14に示すようにウェハ処理システム1の搬入出ステーション2には、複数の重合ウェハTをそれぞれ収容可能なカセットCtが搬入出される。そして、カセット載置台10には、これらカセットCtがX軸方向に一列に載置自在になっている。また、処理ステーション3には、加工装置50がウェハ搬送領域20に隣接して設けられている。内部改質装置41は、加工装置50の内部であって、搬送ユニット70のY軸正方向側且つ仕上研削ユニット130のX軸負方向側に設けられている。 In such a case, as shown in FIG. 14, a cassette Ct capable of accommodating a plurality of overlapped wafers T is loaded and unloaded into the loading and unloading station 2 of the wafer processing system 1. The cassettes Ct can be mounted on the cassette mounting table 10 in a line in the X-axis direction. In the processing station 3, a processing device 50 is provided adjacent to the wafer transfer area 20. The internal reforming device 41 is provided inside the processing device 50 and on the Y axis positive direction side of the transport unit 70 and the X axis negative direction side of the finish grinding unit 130.
 本例においては、ウェハ処理システム1の搬入出ステーション2には、外部システムにおいて上述したステップP1~P3が行われた重合ウェハTが搬入される。すなわち、搬入される重合ウェハTに対し、表面改質装置42で外周部Fweの表層が除去され(ステップP1)、接合装置40で酸化膜Fw、Fsが接合され(ステップP2)、疎水化装置43で酸化膜Fw、Fsが疎水化されている(ステップP3)。そして、ウェハ処理システム1では、重合ウェハTに対してステップP4~P5が行われる。すなわち、内部改質装置41で被処理ウェハWの内部に改質層Mが形成された後(ステップP4)、加工装置50で被処理ウェハWの裏面Wbが研削され、周縁部Weが除去される(ステップP5)。 In this example, the overlapped wafer T on which the above-described steps P1 to P3 have been performed in the external system is carried into the carry-in / out station 2 of the wafer processing system 1. That is, the surface layer of the outer peripheral portion Fwe is removed by the surface reforming device 42 from the loaded superposed wafer T (Step P1), and the oxide films Fw and Fs are joined by the joining device 40 (Step P2). At 43, the oxide films Fw and Fs are hydrophobized (step P3). Then, in the wafer processing system 1, steps P4 to P5 are performed on the overlapped wafer T. That is, after the reformed layer M is formed inside the processing target wafer W by the internal reforming device 41 (step P4), the back surface Wb of the processing target wafer W is ground by the processing device 50, and the peripheral edge We is removed. (Step P5).
 本例においても、上記第1の実施形態と同様の効果を享受することができる。すなわち、ウェハ処理システム1に搬入される重合ウェハTには未接合領域Aeが形成されているので、エッジボイドを抑制することができる。そして、この状態で、被処理ウェハWの周縁部Weの除去を適切に行うことができる。 に お い て Also in this example, the same effects as in the first embodiment can be enjoyed. That is, since the unbonded area Ae is formed in the overlapped wafer T carried into the wafer processing system 1, edge voids can be suppressed. Then, in this state, the peripheral portion We of the processing target wafer W can be appropriately removed.
 本例は、換言すれば下記のとおりである。
 基板を処理する基板処理システムであって、表面膜の外周部において当該表面膜の厚み方向に表面から400nm以内を除去された第1の基板と、第2の基板とが接合された重合基板に対し、除去対象の周縁部と中央部との境界に沿って前記第1の基板の内部に改質層を形成する内部改質装置と、前記改質層を基点に前記周縁部を除去する周縁除去装置と、を有する、基板処理システム。
 基板を処理する基板処理方法であって、表面膜の外周部において当該表面膜の厚み方向に表面から400nm以内を除去された第1の基板と、第2の基板とが接合された重合基板に対し、除去対象の周縁部と中央部との境界に沿って前記第1の基板の内部に改質層を形成する内部改質工程と、前記改質層を基点に前記周縁部を除去する周縁除去工程と、を有する、を有する、基板処理方法。
This example is, in other words, as follows.
A substrate processing system for processing a substrate, comprising: a first substrate having a thickness of 400 nm or less removed from a surface in a thickness direction of the surface film at an outer peripheral portion of the surface film; On the other hand, an internal reforming device that forms a modified layer inside the first substrate along a boundary between a peripheral portion and a central portion to be removed, and a peripheral edge that removes the peripheral portion based on the modified layer. A substrate processing system, comprising: a removing device.
A substrate processing method for processing a substrate, comprising: removing a first substrate having a thickness of 400 nm or less removed from a surface in a thickness direction of the surface film at an outer peripheral portion of the surface film; On the other hand, an internal reforming step of forming a modified layer inside the first substrate along a boundary between a peripheral portion to be removed and a central portion, and a peripheral edge for removing the peripheral portion from the modified layer as a base point And a removing step.
 基板を処理する基板処理システムであって、第2の基板の表面に形成された第2の表面膜と接合される前の、第1の基板の表面に形成された第1の表面膜の外周部を改質する表面改質装置を有する、基板処理システム。 A substrate processing system for processing a substrate, the outer periphery of a first surface film formed on a surface of a first substrate before being bonded to a second surface film formed on a surface of a second substrate. A substrate processing system having a surface modification device for modifying a part.
 また例えば、ウェハ処理システム1に、少なくとも接合装置40が設けられ、他のシステムに内部改質装置41、表面改質装置42及び疎水化装置43が設けられていてもよい。 For example, at least the bonding device 40 may be provided in the wafer processing system 1, and the internal reforming device 41, the surface reforming device 42, and the hydrophobizing device 43 may be provided in another system.
 かかる場合、ウェハ処理システム1においては、他のシステムにおいて被処理ウェハWの表面改質処理、すなわち、外周部Fweの表層が除去された被処理ウェハWがウェハ処理システム1に搬入され、その後、接合装置40において重合ウェハTが形成される。 In such a case, in the wafer processing system 1, the surface modification processing of the processing target wafer W in another system, that is, the processing target wafer W from which the surface layer of the outer peripheral portion Fwe has been removed is carried into the wafer processing system 1, and thereafter, The overlapped wafer T is formed in the joining device 40.
 本例は、換言すれば下記のとおりである。
 基板を処理する基板処理方法であって、表面改質工程により第1の表面膜の外周部が改質された第1の基板を準備する工程と、
前記第1の基板を準備する工程で準備された前記第1の基板の前記第1の表面膜と、第2の基板の表面に形成された第2の表面膜とを接合する接合工程と、を有する、基板処理方法。
This example is, in other words, as follows.
A substrate processing method for processing a substrate, comprising: preparing a first substrate having an outer peripheral portion of a first surface film modified by a surface modification step;
A bonding step of bonding the first surface film of the first substrate prepared in the step of preparing the first substrate and a second surface film formed on a surface of the second substrate; A substrate processing method comprising:
 次に、第2の実施形態にかかるウェハ処理システムの構成について説明する。図15は、ウェハ処理システム200の構成の概略を模式的に示す平面図である。なお、第2の実施形態にかかるウェハ処理システム200では、接合前にエッジトリムを行う。 Next, the configuration of the wafer processing system according to the second embodiment will be described. FIG. 15 is a plan view schematically showing the outline of the configuration of the wafer processing system 200. In the wafer processing system 200 according to the second embodiment, edge trimming is performed before bonding.
 ウェハ処理システム200は、第1の実施形態のウェハ処理システム1の構成において、内部改質装置41に代えて周縁除去装置210を設け、疎水化装置43に代えて親水化装置220を設けた構成を有している。 The wafer processing system 200 has a configuration in which, in the configuration of the wafer processing system 1 according to the first embodiment, a peripheral edge removing device 210 is provided instead of the internal reforming device 41, and a hydrophilic device 220 is provided instead of the hydrophobic device 43. have.
 周縁除去装置210は、例えばブレードなどの研削工具(図示せず)を用いて、被処理ウェハWの周縁部Weを除去する(エッジトリム)。この際、周縁部Weは、表面Waから裏面Wbまで完全に除去されてもよいが、本実施形態では裏面Wbがその後に研削されるため、表面Waから表層のみを除去する。 The peripheral edge removing device 210 removes the peripheral edge portion We of the processing target wafer W using a grinding tool (not shown) such as a blade (edge trim). At this time, the peripheral edge portion We may be completely removed from the front surface Wa to the back surface Wb. However, in the present embodiment, only the surface layer is removed from the front surface Wa because the back surface Wb is ground later.
 親水化装置220は、重合ウェハTを純水に浸漬させて、未接合領域Aeの酸化膜Fw、Fsの表面に例えばOH基を結合させる。具体的には、未接合領域Aeの酸化膜Fw、Fsの表面に形成されたダングリングボンドに、OH基を結合させることで親水化する。なお、本実施形態では、重合ウェハTを純水に浸漬させたが、OH基を付与する方法はこれに限定されず、酸化膜Fw、Fsの表面に水蒸気を供給すればよい。例えば酸化膜Fw、Fsの表面を高湿度雰囲気に曝露してもよい。 (4) The hydrophilizing device 220 immerses the superposed wafer T in pure water to bond, for example, OH groups to the surfaces of the oxide films Fw and Fs in the unbonded region Ae. Specifically, the dangling bonds formed on the surfaces of the oxide films Fw and Fs in the unbonded region Ae are made hydrophilic by bonding OH groups. In the present embodiment, the superposed wafer T is immersed in pure water, but the method of providing OH groups is not limited to this, and it is sufficient to supply water vapor to the surfaces of the oxide films Fw and Fs. For example, the surfaces of the oxide films Fw and Fs may be exposed to a high humidity atmosphere.
 次に、以上のように構成されたウェハ処理システム200を用いて行われるウェハ処理について説明する。なお、本実施形態において、第1の実施形態と同様の処理については詳細な説明を省略する。 Next, wafer processing performed using the wafer processing system 200 configured as described above will be described. Note that, in the present embodiment, a detailed description of the same processing as in the first embodiment will be omitted.
 先ず、ウェハ搬送装置22によりカセットCw内の被処理ウェハWが取り出され、トランジション装置34に搬送される。続けて、ウェハ搬送装置32により、トランジション装置34の被処理ウェハWが取り出され、周縁除去装置210に搬送される。周縁除去装置210では、図17(a)に示すように被処理ウェハWの周縁部Weの表層が除去される(図16のステップQ1)。この際、周縁部Weの幅L3(トリム幅)は約2mmである。また、周縁部Weの表層が除去されると共に、当該周縁部Weにおけるデバイス層Dと酸化膜Fwも除去される。 First, the wafer W to be processed in the cassette Cw is taken out by the wafer transfer device 22 and transferred to the transition device 34. Subsequently, the wafer W to be processed in the transition device 34 is taken out by the wafer transfer device 32 and transferred to the peripheral edge removing device 210. In the peripheral edge removing device 210, as shown in FIG. 17A, the surface layer of the peripheral edge portion We of the processing target wafer W is removed (Step Q1 in FIG. 16). At this time, the width L3 (trim width) of the peripheral edge portion We is about 2 mm. In addition, the surface layer of the peripheral portion We is removed, and the device layer D and the oxide film Fw in the peripheral portion We are also removed.
 次に、被処理ウェハWはウェハ搬送装置32により表面改質装置42に搬送される。表面改質装置42では、被処理ウェハWの酸化膜Fwの外周部Fweにエッチング液Eが供給され、図17(b)に示すように外周部Fweの表層が除去される(図16のステップQ2)。この際、外周部Fweは周縁部Weの内側端部から内側に除去され、当該外周部Fweの幅は約0.5mmである。 Next, the wafer W to be processed is transferred to the surface reforming device 42 by the wafer transfer device 32. In the surface reforming device 42, the etchant E is supplied to the outer peripheral portion Fwe of the oxide film Fw of the processing target wafer W, and the surface layer of the outer peripheral portion Fwe is removed as shown in FIG. 17B (step in FIG. 16). Q2). At this time, the outer peripheral portion Fwe is removed inward from the inner end of the peripheral edge portion We, and the width of the outer peripheral portion Fwe is about 0.5 mm.
 なお、このステップQ1、Q2と並行して、ウェハ搬送装置22によりカセットCs内の支持ウェハSが取り出され、トランジション装置34を介してウェハ搬送装置32により、接合装置40に搬送される。 In parallel with steps Q1 and Q2, the support wafer S in the cassette Cs is taken out by the wafer transfer device 22 and transferred to the bonding device 40 by the wafer transfer device 32 via the transition device 34.
 次に、被処理ウェハWはウェハ搬送装置32により接合装置40に搬送される。接合装置40では、図17(c)に示すように被処理ウェハWの酸化膜Fwと支持ウェハSの酸化膜Fsが接合され、重合ウェハTが形成される(図16のステップQ3)。この際、外周部Fweでは酸化膜Fw、Fsが接合されず、当該酸化膜Fw、Fsの界面には接合領域Acと未接合領域Aeが形成される。そして、この未接合領域Aeによって、ボンディングウェーブの端部の高圧な雰囲気が開放される空間が小さくなり、大気圧まで減圧されることがない。このように急激な減圧を抑えることで、エッジボイドを抑制することができる。 Next, the processing target wafer W is transferred to the bonding device 40 by the wafer transfer device 32. In the bonding apparatus 40, as shown in FIG. 17C, the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S are bonded to form the overlapped wafer T (Step Q3 in FIG. 16). At this time, the oxide films Fw and Fs are not bonded at the outer peripheral portion Fwe, and a bonded region Ac and an unbonded region Ae are formed at the interface between the oxide films Fw and Fs. The unbonded region Ae reduces the space at the end of the bonding wave where the high-pressure atmosphere is released, and does not reduce the pressure to the atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed.
 次に、被処理ウェハWはウェハ搬送装置32により親水化装置220に搬送される。親水化装置220では、重合ウェハTを純水に浸漬させて、図17(d)に示すように未接合領域Aeの酸化膜Fw、Fsの表面にOH基を結合させる(図16のステップQ4)。このように未接合領域Aeの酸化膜Fw、Fsの表面が親水化されることで、当該酸化膜Fw、Fsが水素結合して密着する。そして、酸化膜Fw、Fsが全面で接合される。この際、さらにアニール処理を行ってもよい。なお、例えばステップQ3で酸化膜Fw、Fsが接合された後、例えば大気中の水蒸気によって自然に未接合領域Aeの酸化膜Fw、Fsが接合される場合には、ステップQ4は不要となり省略することができる。 Next, the wafer W to be processed is transferred by the wafer transfer device 32 to the hydrophilizing device 220. In the hydrophilizing device 220, the superposed wafer T is immersed in pure water to bond OH groups to the surfaces of the oxide films Fw and Fs in the unbonded region Ae as shown in FIG. 17D (step Q4 in FIG. 16). ). As described above, the surfaces of the oxide films Fw and Fs in the unbonded region Ae are made hydrophilic, so that the oxide films Fw and Fs are bonded by hydrogen bonding. Then, the oxide films Fw and Fs are joined on the entire surface. At this time, an annealing process may be further performed. For example, after the oxide films Fw and Fs are joined in step Q3, if the oxide films Fw and Fs in the unjoined region Ae are naturally joined by, for example, water vapor in the air, step Q4 is unnecessary and is omitted. be able to.
 次に、重合ウェハTはウェハ搬送装置32により加工装置50に搬送される。加工装置50では、第1の実施形態と同様の処理が行われる。そして、図17(e)に示すように被処理ウェハWの裏面Wbが研削される(図16のステップQ5)。 Next, the overlapped wafer T is transferred to the processing device 50 by the wafer transfer device 32. In the processing device 50, the same processing as in the first embodiment is performed. Then, as shown in FIG. 17E, the back surface Wb of the processing target wafer W is ground (Step Q5 in FIG. 16).
 その後、すべての処理が施された重合ウェハTは、ウェハ搬送装置32によりトランジション装置34に搬送され、さらにウェハ搬送装置22によりカセット載置台10のカセットCtに搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the overlapped wafer T that has been subjected to all the processes is transferred to the transition device 34 by the wafer transfer device 32, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 22. Thus, a series of wafer processing in the wafer processing system 1 ends.
 以上の第2の実施形態においても、上記第1の実施形態と同様の効果を享受することができる。すなわち、ステップQ2で酸化膜Fwの外周部Fweの表層を除去しており、ステップQ3で酸化膜Fw、Fsを接合する際に、当該酸化膜Fw、Fsの界面に未接合領域Aeが形成される。この未接合領域Aeによって、ボンディングウェーブ端部の雰囲気の急激な減圧を抑制することができ、その結果、エッジボイドを抑制することができる。 に お い て In the second embodiment as well, the same effects as in the first embodiment can be obtained. That is, the surface layer of the outer peripheral portion Fwe of the oxide film Fw is removed in step Q2, and when the oxide films Fw and Fs are joined in step Q3, an unjoined region Ae is formed at the interface between the oxide films Fw and Fs. You. The unbonded region Ae can suppress a rapid pressure reduction of the atmosphere at the end of the bonding wave, and as a result, can suppress edge voids.
 また、ステップQ4で未接合領域Aeの酸化膜Fw、Fsの表面にOH基を結合させて親水化しているので、当該酸化膜Fw、Fsを密着(接合)させることができる。そして、酸化膜Fw、Fsを全面で接合することができるので、被処理ウェハWの有効領域を大きくすることができる。 {Circle around (4)} Since the OH groups are bonded to the surfaces of the oxide films Fw and Fs in the unbonded region Ae in the step Q4 to make the surfaces hydrophilic, the oxide films Fw and Fs can be adhered (joined). Since the oxide films Fw and Fs can be bonded on the entire surface, the effective area of the wafer W to be processed can be increased.
 さらに、本実施形態ではエッジボイドを抑制し、また未接合領域Aeの酸化膜Fw、Fsを密着させることで、被処理ウェハWの有効領域を大きくすることができる。具体的には、図1に示した従来の場合、処理前の被処理ウェハWの端部からエッジボイドVまでの距離L1は約7mmであり、有効領域はφ286mmの領域となる。これに対して、図17に示した本実施形態では、ステップQ1の処理前の被処理ウェハWの端部とステップQ5の処理後の被処理ウェハWの端部との距離L3は約2mmであり、有効領域はφ296mmの領域となる。このように本実施形態では、従来に比べて、被処理ウェハWの有効領域を大きくすることができ、製品となるチップを多く製造することができる。 {Circle around (4)} In the present embodiment, the effective area of the wafer W to be processed can be increased by suppressing edge voids and making the oxide films Fw and Fs of the unbonded area Ae adhere to each other. Specifically, in the case of the conventional example shown in FIG. 1, the distance L1 from the end of the processing target wafer W to the edge void V before processing is about 7 mm, and the effective area is an area of φ286 mm. On the other hand, in the present embodiment shown in FIG. 17, the distance L3 between the end of the processing target wafer W before the processing in step Q1 and the end of the processing target wafer W after the processing in step Q5 is about 2 mm. Yes, the effective area is an area of φ296 mm. As described above, in the present embodiment, the effective area of the processing target wafer W can be increased as compared with the related art, and a large number of chips as products can be manufactured.
 なお、本実施形態では、ステップQ3において酸化膜Fw、Fsの活性化処理、親水化処理、接合処理、アニール処理を順次行った後、ステップQ4において未接合領域Aeの酸化膜Fw、Fsの表面を親水化した。この点、ステップQ4は、ステップQ3における親水化処理と接合処理の間で行ってもよいし、接合処理とアニール処理の間で行ってもよい。かかる場合、ステップQ4におけるアニール処理を省略できる。 In the present embodiment, the activation process, the hydrophilization process, the bonding process, and the annealing process of the oxide films Fw and Fs are sequentially performed in step Q3, and then, in step Q4, the surfaces of the oxide films Fw and Fs in the unbonded region Ae are processed. Was made hydrophilic. In this regard, step Q4 may be performed between the hydrophilic treatment and the bonding processing in step Q3, or may be performed between the bonding processing and the annealing processing. In such a case, the annealing process in step Q4 can be omitted.
 また、本実施形態のウェハ処理システム1は、接合装置40、表面改質装置42、加工装置50、周縁除去装置210、親水化装置220を備えていたが、その装置構成は任意である。例えば接合装置40、表面改質装置42、周縁除去装置210及び親水化装置220が一のシステムに設けられ、加工装置50が他のシステムに設けられていてもよい。 Also, although the wafer processing system 1 of the present embodiment includes the bonding device 40, the surface reforming device 42, the processing device 50, the peripheral edge removing device 210, and the hydrophilizing device 220, the device configuration is arbitrary. For example, the joining device 40, the surface modification device 42, the peripheral edge removing device 210, and the hydrophilizing device 220 may be provided in one system, and the processing device 50 may be provided in another system.
 以上の第1の実施形態と第2の実施形態では、表面改質装置42はウェットエッチングを行って酸化膜Fwの外周部Fweを除去していたが、外周部Fweを除去する方法はこれに限定されない。例えば図18に示すように表面改質装置230は、酸化膜Fwが上方を向いた状態で被処理ウェハWを保持するチャック231を有している。チャック231は、回転機構232によって鉛直軸回りに回転可能に構成されている。チャック231の上方には、外周部Fweに押圧され、酸化膜Fwの除去を行うための研磨部材233が設けられている。研磨部材233は、移動機構(図示せず)によってZ軸方向に移動可能に構成されている。 In the first and second embodiments described above, the surface modification device 42 removes the outer peripheral portion Fwe of the oxide film Fw by performing wet etching, but the method of removing the outer peripheral portion Fwe is not limited to this. Not limited. For example, as shown in FIG. 18, the surface reforming apparatus 230 includes a chuck 231 that holds the wafer W to be processed with the oxide film Fw facing upward. The chuck 231 is configured to be rotatable around a vertical axis by a rotation mechanism 232. Above the chuck 231, a polishing member 233 pressed by the outer peripheral portion Fwe to remove the oxide film Fw is provided. The polishing member 233 is configured to be movable in the Z-axis direction by a moving mechanism (not shown).
 このように研磨部材233を用いて外周部Fweの除去を行うことにより、酸化膜Fwの表面にはダメージ層が形成されるため、エッジボイドVの発生を抑制すると同時に、適切に未接合領域Aeの再密着を抑制することができる。 By removing the outer peripheral portion Fwe using the polishing member 233 as described above, a damage layer is formed on the surface of the oxide film Fw, so that the generation of the edge void V is suppressed and the unbonded region Ae is appropriately removed. Re-adhesion can be suppressed.
 また、研磨部材233の表面粒度、すなわち、研磨部材233の砥粒径を任意に選択することができるため、酸化膜Fwの膜除去レートや、膜除去後の酸化膜Fwの表面粗さを任意に調節することができる。これにより、エッジボイドVの発生や未接合領域Aeの再密着を更に適切に抑制することができる。 Further, since the surface grain size of the polishing member 233, that is, the abrasive grain size of the polishing member 233 can be arbitrarily selected, the film removal rate of the oxide film Fw and the surface roughness of the oxide film Fw after the film removal are arbitrary. Can be adjusted. Thereby, generation of the edge void V and re-adhesion of the unjoined area Ae can be more appropriately suppressed.
 なお、酸化膜Fwの除去にあたっては、例えば酸化膜Fwの厚みより大きな砥粒径を有する研磨部材233を用いることにより、図19(a)に示すように、被処理ウェハWの径方向外側に向けて傾斜が形成されるように、すなわち、側面視において径方向外側に向けて酸化膜Fwの厚みが小さくなるように外周部Fweを除去してもよい。 In removing the oxide film Fw, for example, by using a polishing member 233 having an abrasive grain diameter larger than the thickness of the oxide film Fw, as shown in FIG. The outer peripheral portion Fwe may be removed so that an inclination is formed, that is, such that the thickness of the oxide film Fw decreases toward the radially outward side in a side view.
 このように外周部Fweに傾斜を形成した場合、図19(b)に示すように酸化膜Fw、Fsの界面には、外周方向に向けて徐々に空間が拡がるように未接合領域Aeが形成される。これにより、接合に際しては、前記したボンディングウェーブの端部の高圧な雰囲気が外周方向に向けて徐々に大気圧まで減圧されていくため、すなわち、急激な減圧を抑えることができるため、適切にエッジボイドVを抑制することができる。 When the inclination is formed in the outer peripheral portion Fwe in this way, as shown in FIG. 19B, an unbonded region Ae is formed at the interface between the oxide films Fw and Fs so that the space gradually expands in the outer peripheral direction. Is done. Thereby, at the time of joining, since the high-pressure atmosphere at the end of the bonding wave is gradually reduced in pressure toward the outer periphery toward the atmospheric pressure, that is, the rapid pressure reduction can be suppressed, so that the edge void can be appropriately reduced. V can be suppressed.
 このように、表面改質装置においては、被処理ウェハWの径方向外側に向けて傾斜が形成されるように外周部Fweの表面を除去することが好ましい。上記の説明においては、研磨部材233の砥粒径と酸化膜Fwの厚みの差により傾斜を形成したが、例えば予め傾斜を形成することができるような形状を有する研磨部材を押圧してもよいし、例えば研磨部材233の押圧方向等を工夫することにより傾斜を形成してもよい。また、このような外周部Fweへの傾斜の形成は、表面改質装置42において、すなわちウェットエッチングにより酸化膜Fwの外周部Fweを除去する場合においても行ってもよい。かかる場合、例えばエッチング液の供給角度の制御や、エッチング液の供給量の制御を行うことにより、外周方向に向けて傾斜を形成する。 As described above, in the surface reforming apparatus, it is preferable to remove the surface of the outer peripheral portion Fwe so that the inclined surface is formed radially outward of the processing target wafer W. In the above description, the inclination is formed by the difference between the abrasive grain size of the polishing member 233 and the thickness of the oxide film Fw. However, for example, a polishing member having a shape capable of forming the inclination in advance may be pressed. However, the inclination may be formed by devising the pressing direction of the polishing member 233, for example. The formation of the slope on the outer peripheral portion Fwe may also be performed in the surface reforming device 42, that is, when the outer peripheral portion Fwe of the oxide film Fw is removed by wet etching. In such a case, for example, by controlling the supply angle of the etchant or the supply amount of the etchant, the inclination is formed toward the outer peripheral direction.
 なお、上述のように研磨部材233を用いて酸化膜Fwの外周部Fweを除去する場合、酸化膜Fwの除去屑(以下、「デブリ」という。)が発生する。当該デブリは、ウェハ同士の接合不良や、製品デバイスへの不良を引き起こす可能性があるため、被処理ウェハWの表面、特にデバイス層Dの表面に対して付着することを防止する必要がある。 In the case where the outer peripheral portion Fwe of the oxide film Fw is removed using the polishing member 233 as described above, debris for removing the oxide film Fw (hereinafter, referred to as “debris”) is generated. Since the debris may cause defective bonding between wafers or defective product devices, it is necessary to prevent the debris from adhering to the surface of the wafer W to be processed, particularly to the surface of the device layer D.
 そこで、前記デブリの被処理ウェハWへの付着を防止するため、研磨部材233を用いて酸化膜Fwの除去を行う表面改質装置230には、図20(a)に示すように、デブリを拡散させるための流体ノズル244が設けられていることが望ましい。流体ノズル244は、例えば被処理ウェハWの周縁部We上方に設けられている。また、流体ノズル244からは例えば純水やエアー等が供給され、研磨面から発生したデブリを外周方向外側へと拡散させることができる。これにより、研磨により発生したデブリが被処理ウェハWの径方向内側へと飛散し、被処理ウェハWの表面に付着することを抑制することができる。なお、流体ノズル244は、発生したデブリをより確実に外周方向外側へと飛散させるため、例えば被処理ウェハWの中央部の上方や、被処理ウェハWの裏面側に更に設けられていてもよい。 Therefore, in order to prevent the debris from adhering to the processing target wafer W, the surface reforming device 230 that removes the oxide film Fw using the polishing member 233, as shown in FIG. Desirably, a fluid nozzle 244 for diffusing is provided. The fluid nozzle 244 is provided, for example, above the peripheral edge portion We of the processing target wafer W. Further, for example, pure water, air, or the like is supplied from the fluid nozzle 244, and debris generated from the polished surface can be diffused outward in the outer peripheral direction. Thereby, it is possible to suppress the debris generated by the polishing from scattering to the inside in the radial direction of the processing target wafer W and adhering to the surface of the processing target wafer W. The fluid nozzle 244 may be further provided, for example, above a central portion of the processing target wafer W or on a back surface side of the processing target wafer W in order to more reliably scatter generated debris outward in the outer peripheral direction. .
 なお、表面改質装置230の構成は発生したデブリを外周方向へ飛散させることができる構成であればよく、上述した構成には限定されない。例えば図20(b)に示すように、被処理ウェハWにおける径方向内側が陽圧(図20(b)における「+」)、外側が負圧(図20(b)における「-」)となるように表面改質装置230内部の圧力を制御してもよい。これにより表面改質装置230においては被処理ウェハWの径方向内側から外側に向けての気流が形成され、発生したデブリの外周方向への飛散を適切に行うことができる。また、かかる場合、研磨される外周部Fweの外周方向外側に、例えば真空ポンプなどの吸引機構245が設けられることにより、更に適切に径方向内側から外側に向けての気流を形成することができる。 The configuration of the surface reforming device 230 may be any configuration as long as the generated debris can be scattered in the outer peripheral direction, and is not limited to the configuration described above. For example, as shown in FIG. 20B, the inside of the wafer W to be processed in the radial direction is positive pressure (“+” in FIG. 20B), and the outside is negative pressure (“−” in FIG. 20B). The pressure inside the surface reforming device 230 may be controlled so as to be as follows. As a result, in the surface reforming device 230, an airflow is formed from the radially inner side to the outer side of the processing target wafer W, and the generated debris can be appropriately scattered in the outer peripheral direction. In such a case, by providing the suction mechanism 245 such as a vacuum pump on the outer peripheral side of the outer peripheral portion Fwe to be polished, it is possible to more appropriately form an airflow from the radially inner side to the outer side. .
 なお、上述したように大きな砥粒径を有する研磨部材233を用いて酸化膜Fwの外周部Fweの除去を行う場合、後に行われる改質層Mの形成(図9のステップP4)において、トリミング加工位置と、周縁部Weおよび中央部Wcの境界とのアライメントを適切に行うことができない場合がある。これは、例えば図21(a)に示すように、大きな砥粒径を有する研磨部材233により、周縁部Weと中央部Wcとの境界、すなわち除去対象としての周縁部Weの内周側端部のキワ(以下、単に「キワ」という場合がある。)が粗くなり、径方向においてトリミング加工位置を適切に設定できなくなることに起因する。 When the outer peripheral portion Fwe of the oxide film Fw is removed by using the polishing member 233 having a large abrasive particle diameter as described above, trimming is performed later in forming the modified layer M (Step P4 in FIG. 9). There is a case where the alignment between the processing position and the boundary between the peripheral edge portion We and the central portion Wc cannot be appropriately performed. For example, as shown in FIG. 21A, the polishing member 233 having a large abrasive particle diameter causes the boundary between the peripheral portion We and the central portion Wc, that is, the inner peripheral end of the peripheral portion We to be removed. (Hereinafter sometimes simply referred to as “edge”) becomes coarse, and the trimming processing position cannot be appropriately set in the radial direction.
 一方、本開示者は、小さな砥粒径を有する研磨部材234を用いて酸化膜Fwの外周部Fweの除去を行った場合、図21(b)に示すように、周縁部Weのキワの加工精度が向上し、径方向においてトリミング加工位置を適切に設定することができるようになることを知見した。 On the other hand, when the outer peripheral portion Fwe of the oxide film Fw is removed by using the polishing member 234 having a small abrasive particle diameter, the present inventor processes the edge of the peripheral portion We as shown in FIG. It has been found that the accuracy is improved and the trimming processing position can be appropriately set in the radial direction.
 そこで、研磨により酸化膜Fwの外周部Fweの除去を行うにあたっては、図22に示すように、まず、周縁部Weのキワにおいて小さな砥粒径を有する研磨部材234を用いて研磨を行い、第1の研磨領域234aを形成する。第1の研磨領域234aにおいては、小さな砥粒径を有する研磨部材234により研磨が行われるため、第1の研磨領域234aの内周側端部、すなわち、周縁部Weのキワにおける加工精度を向上する。そして、これに続けて、周縁部Weのキワに研磨部材234による研削領域を残すようにして、すなわち、第1の研磨領域234aの内周側端部から径双方外側へ距離L離隔させた位置において、被処理ウェハWのエッジにかけて大きな砥粒径を有する研磨部材233による研磨を行い、第2の研磨領域233aを形成する。 Therefore, when removing the outer peripheral portion Fwe of the oxide film Fw by polishing, first, as shown in FIG. 22, polishing is performed using a polishing member 234 having a small abrasive particle diameter at the edge of the peripheral edge We. One polishing region 234a is formed. In the first polishing region 234a, the polishing is performed by the polishing member 234 having a small abrasive particle diameter, so that the processing accuracy of the inner peripheral end of the first polishing region 234a, that is, the peripheral edge portion We is improved. I do. Then, subsequently to this, a grinding area by the polishing member 234 is left on the edge of the peripheral edge We, that is, a position separated from the inner peripheral end of the first polishing area 234a by a distance L to both radial outer sides. Then, polishing is performed by the polishing member 233 having a large abrasive particle diameter toward the edge of the processing target wafer W to form a second polishing region 233a.
 なお、かかる第1の研磨領域234a及び第2の研磨領域233aにおいて、適切に未接合領域Aeを形成し、また、当該未接合領域Aeにおける再密着を抑制するためには、酸化膜Fwの表面が粗された第2の研磨領域233aの面積が大きいことが好ましい。すなわち、第1の研磨領域234aは、前記アライメント処理において必要となる周縁部Weのキワの加工精度を確保できれば足るものであり、前記距離Lは小さいことが望ましい。具体的には、距離Lは、少なくとも第2の研磨領域233aを形成する研磨部材233の砥粒径よりも大きくなるように設定されることにより、適切に前記アライメント処理を行うことができる。 Note that, in the first polishing region 234a and the second polishing region 233a, in order to appropriately form the unbonded region Ae and to suppress re-adhesion in the unbonded region Ae, the surface of the oxide film Fw must be formed. It is preferable that the area of the roughened second polishing region 233a is large. That is, the first polishing region 234a is sufficient if the processing accuracy of the edge of the peripheral portion We required in the alignment processing can be ensured, and the distance L is desirably small. Specifically, by setting the distance L to be larger than at least the abrasive grain size of the polishing member 233 forming the second polishing region 233a, the alignment processing can be appropriately performed.
 これにより、周縁部Weのキワの加工精度が上昇することにより、改質層Mの形成(図9のステップP4)におけるアライメントを適切に行うことができることに加え、被処理ウェハWのエッジにかけての酸化膜Fwの表面にはダメージ層が形成され、エッジボイドVの発生を抑制すると同時に、適切に未接合領域Aeの再密着を抑制することができる。また、研磨部材233の砥粒径を任意に選択することができるため、酸化膜Fwの膜除去レートや、膜除去後の酸化膜Fwの表面粗さを任意に調節することができる。これにより、エッジボイドVの発生や未接合領域Aeの再密着を更に適切に抑制することができる。 As a result, the processing accuracy of the edge of the peripheral portion We is increased, so that the alignment in the formation of the modified layer M (Step P4 in FIG. 9) can be appropriately performed, and the edge of the wafer W to be processed can be formed. A damage layer is formed on the surface of the oxide film Fw, so that the generation of the edge voids V can be suppressed and, at the same time, the re-adhesion of the unjoined region Ae can be appropriately suppressed. Further, since the abrasive particle size of the polishing member 233 can be arbitrarily selected, the film removal rate of the oxide film Fw and the surface roughness of the oxide film Fw after the film removal can be arbitrarily adjusted. Thereby, generation of the edge void V and re-adhesion of the unjoined area Ae can be more appropriately suppressed.
 なお、図22に示した例においては、第1の研磨領域234aを形成した後に、第2の研磨領域233aを形成したが、研磨部材233、234による加工順序はこれには限られない。例えば、第2の研磨領域233aを形成した後に、第1の研磨領域234aを形成してもよい。 In the example shown in FIG. 22, the second polishing region 233a is formed after forming the first polishing region 234a, but the processing order by the polishing members 233 and 234 is not limited to this. For example, after forming the second polishing region 233a, the first polishing region 234a may be formed.
 また、小さな砥粒径を有する研磨部材234による周縁部Weのキワの研削は、例えば図19に示したように被処理ウェハWの径方向外側に向けて傾斜を形成する場合において行われてもよい。 In addition, the grinding of the edges of the peripheral portion We by the polishing member 234 having a small abrasive particle diameter may be performed, for example, in a case where a slope is formed radially outward of the processing target wafer W as illustrated in FIG. Good.
 以上の第1の実施形態と第2の実施形態では、表面改質装置42はウェットエッチングを行って酸化膜Fwの外周部Fweを除去していたが、当該外周部Fweを除去する方法はこれに限定されない。例えば外周部Fweに対して酸化膜Fwを透過しない波長を有するレーザ光、例えば紫外光を照射して、当該外周部Fweを除去してもよい。 In the first and second embodiments described above, the surface modification device 42 removes the outer peripheral portion Fwe of the oxide film Fw by performing wet etching. It is not limited to. For example, the outer peripheral portion Fwe may be removed by irradiating the outer peripheral portion Fwe with laser light having a wavelength that does not pass through the oxide film Fw, for example, ultraviolet light.
 また、表面改質装置42は、酸化膜Fwの外周部Fweの改質処理として、当該外周部Fweを除去していたが、外周部Fweを突出させてもよい。かかる場合、図23に示すように表面改質装置240は、酸化膜Fwが上方を向いた状態で被処理ウェハWを保持するチャック241を有している。チャック241は、回転機構242によって鉛直軸回りに回転可能に構成されている。チャック241の上方には、外周部Fweにレーザ光Rを照射するレーザヘッド243が設けられている。レーザ光Rは、例えば紫外光が用いられる。またレーザヘッド243は、移動機構(図示せず)によってX軸方向、Y軸方向及びZ軸方向に移動可能に構成されている。 {Circle around (2)} Although the surface modification device 42 removes the outer peripheral portion Fwe as the modification process of the outer peripheral portion Fwe of the oxide film Fw, the outer peripheral portion Fwe may be made to project. In such a case, as shown in FIG. 23, the surface reforming device 240 has a chuck 241 that holds the processing target wafer W with the oxide film Fw facing upward. The chuck 241 is configured to be rotatable around a vertical axis by a rotation mechanism 242. Above the chuck 241, a laser head 243 for irradiating the laser beam R to the outer peripheral portion Fwe is provided. As the laser light R, for example, ultraviolet light is used. The laser head 243 is configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction by a moving mechanism (not shown).
 表面改質装置240では、図24(a)に示すようにレーザ光Rによって外周部Fweが突出する。そして、図24(b)に示すように外周部Fweでは、酸化膜Fw、Fsが接合されない。すなわち、酸化膜Fw、Fsが接合されると、当該酸化膜Fw、Fsの界面には、酸化膜Fw、Fsが接合された接合領域Acと外周部Fweに対応する未接合領域Aeが形成される。 で は In the surface reforming device 240, the outer peripheral portion Fwe is projected by the laser beam R as shown in FIG. Then, as shown in FIG. 24B, the oxide films Fw and Fs are not joined at the outer peripheral portion Fwe. That is, when the oxide films Fw and Fs are joined, an unjoined region Ae corresponding to the outer peripheral portion Fwe and a joined region Ac where the oxide films Fw and Fs are joined are formed at the interface between the oxide films Fw and Fs. You.
 かかる場合、図8に示した外周部Fweを除去する場合と同様に、本実施形態では未接合領域Aeが形成されるので、ボンディングウェーブの端部の高圧な雰囲気が開放される空間が小さくなり、大気圧まで減圧されることがない。このように急激な減圧を抑えることで、エッジボイドを抑制することができる。しかも、外周部Fweの突出を周方向に不連続に形成することで、ボンディングウェーブの端部の高圧な雰囲気を重合ウェハTの外部に逃がすことができる。そうすると、外周部Fweで結露したとしても、水蒸気を重合ウェハTの外部に逃がすことができる。 In such a case, as in the case of removing the outer peripheral portion Fwe shown in FIG. 8, the unjoined region Ae is formed in the present embodiment, so that the space where the high-pressure atmosphere at the end of the bonding wave is released becomes smaller. It is not reduced to atmospheric pressure. By suppressing such rapid pressure reduction, edge voids can be suppressed. Moreover, by forming the protrusion of the outer peripheral portion Fwe discontinuously in the circumferential direction, the high-pressure atmosphere at the end of the bonding wave can be released to the outside of the overlapped wafer T. Then, even if dew condensation occurs at the outer peripheral portion Fwe, the water vapor can escape to the outside of the superposed wafer T.
 また、表面改質装置240では、外周部Fweを突出させる際にレーザ光Rを用いるが、このレーザ光Rによって外周部Fweの頂部が荒らされ、当該外周部Fweが粗面化される。かかる場合、外周部Fweにおいて酸化膜Fw、Fsが接合されるのをさらに抑制することができ、すなわち未接合領域Aeをより確実に形成することができる。その結果、急激な減圧を抑えて、エッジボイドを抑制することができる。 {Circle around (4)} In the surface reforming device 240, the laser beam R is used when projecting the outer peripheral portion Fwe. However, the laser light R roughens the top of the outer peripheral portion Fwe and roughens the outer peripheral portion Fwe. In such a case, the bonding of the oxide films Fw and Fs at the outer peripheral portion Fwe can be further suppressed, that is, the unbonded region Ae can be formed more reliably. As a result, sharp voids can be suppressed, and edge voids can be suppressed.
 なお、この外周部Fweの粗面化は、表面改質装置42を用いて外周部Fweの表層を除去する場合にも行ってもよい。 The roughening of the outer peripheral portion Fwe may be performed even when the surface layer of the outer peripheral portion Fwe is removed by using the surface reforming device 42.
 なお、表面改質装置240における外周部Fweの除去、すなわち、レーザ光Rによる外周部Fweの除去においても、前記表面改質装置230における研磨部材233による外周部Fweの除去と同様にデブリが発生する。 In the removal of the outer peripheral portion Fwe in the surface reforming device 240, that is, in the removal of the outer peripheral portion Fwe by the laser beam R, debris is generated similarly to the removal of the outer peripheral portion Fwe by the polishing member 233 in the surface reforming device 230. I do.
 レーザ光Rの照射により発生するデブリは、レーザ光Rの照射点近傍の開放空間側へと拡散しやすい傾向がある。すなわち、例えばレーザ光Rが被処理ウェハWの中央部付近の酸化膜Fwに照射された場合、デブリはレーザ光Rの照射点を中心とした全周方向に拡散する。一方、例えばレーザ光Rが被処理ウェハWの外縁部付近の酸化膜Fwに照射された場合、デブリは開放空間である被処理ウェハWの外周方向外側へと拡散しやすくなる。 デ Debris generated by the irradiation of the laser light R tends to diffuse easily to the open space side near the irradiation point of the laser light R. That is, for example, when the laser light R is irradiated on the oxide film Fw near the center of the processing target wafer W, the debris diffuses in the entire circumferential direction around the irradiation point of the laser light R. On the other hand, for example, when the laser light R is irradiated on the oxide film Fw near the outer edge portion of the processing target wafer W, the debris easily diffuses to the outer peripheral direction of the processing target wafer W which is an open space.
 以上の傾向を鑑み、レーザ光Rによる酸化膜Fwの除去は、外周部Fweを被処理ウェハWの径方向に対して複数の領域に分割し、当該複数の領域の径方向外側から内側に向けて順に行われるようにしてもよい。図25は、酸化膜Fwの外周部Fweを、例えば径方向において2つの環状領域に分割した場合における領域分布を示している。図25に示すように外周部Fweは、径方向外側から順に環状領域Fwe1、Fwe2に分割されている。 In consideration of the above tendency, the removal of the oxide film Fw by the laser beam R is performed by dividing the outer peripheral portion Fwe into a plurality of regions in the radial direction of the processing target wafer W and inward from the radially outer side of the plurality of regions. May be performed in order. FIG. 25 shows a region distribution when the outer peripheral portion Fwe of the oxide film Fw is divided into, for example, two annular regions in the radial direction. As shown in FIG. 25, the outer peripheral portion Fwe is divided into annular regions Fwe1 and Fwe2 in order from the outside in the radial direction.
 レーザ光Rによる外周部Fweの除去にあたっては、先ず、環状領域Fwe1上のレーザ光の照射点Pt(1)にレーザ光Rが照射され、照射点Pt(1)における酸化膜Fwが除去される。このとき、照射点Pt(1)が位置する環状領域Fwe1は、図26(a)に示すように、被処理ウェハWの外周方向外側の開放空間に面しているため、発生したデブリは当該開放空間へと拡散される。 In removing the outer peripheral portion Fwe by the laser light R, first, the irradiation point Pt (1) of the laser light on the annular region Fwe1 is irradiated with the laser light R, and the oxide film Fw at the irradiation point Pt (1) is removed. . At this time, since the annular region Fwe1 where the irradiation point Pt (1) is located faces an open space on the outer side in the outer peripheral direction of the processing target wafer W as shown in FIG. Spread into open space.
 照射点Pt(1)において酸化膜Fwが除去されると、続いて被処理ウェハWが回転し、照射点Pt(2)に対してレーザ光Rが照射される。照射点Pt(2)は照射点Pt(1)に隣接して設定される。このとき、照射点Pt(2)は環状領域Fwe1に位置するとともに、既に酸化膜Fwが除去された照射点Pt(1)とも面しているため、これによりデブリが被処理ウェハWの径方向内側に拡散することが更に確実に抑制される。かかる一連のレーザ光Rの照射動作と被処理ウェハWの回転動作を繰り返し行うことにより、環状領域Fwe1の全周にわたって酸化膜Fwが除去される。 (4) When the oxide film Fw is removed at the irradiation point Pt (1), the wafer W to be processed subsequently rotates, and the irradiation point Pt (2) is irradiated with the laser beam R. The irradiation point Pt (2) is set adjacent to the irradiation point Pt (1). At this time, the irradiation point Pt (2) is located in the annular region Fwe1 and also faces the irradiation point Pt (1) from which the oxide film Fw has already been removed. Diffusion to the inside is more reliably suppressed. The oxide film Fw is removed over the entire circumference of the annular region Fwe1 by repeating such a series of the irradiation operation of the laser beam R and the rotation operation of the processing target wafer W.
 環状領域Fwe1の酸化膜Fwの除去が終了すると、続いてレーザヘッド243が環状領域Fwe2の上方へと移動し、環状領域Fwe2の酸化膜Fwの除去が開始される。この際、既に環状領域Fwe1の酸化膜Fwの除去が完了しているため、図26(b)に示すように、環状領域Fwe2は被処理ウェハWの外周方向外側の開放空間に面しており、発生したデブリは当該開放空間へと拡散される。そして、環状領域Fwe2においても前記一連のレーザ光Rの照射動作と被処理ウェハWの回転動作が繰り返し行われ、環状領域Fwe2の全周にわたって酸化膜Fwが除去される。 (4) When the removal of the oxide film Fw from the annular region Fwe1 is completed, the laser head 243 subsequently moves above the annular region Fwe2, and the removal of the oxide film Fw from the annular region Fwe2 is started. At this time, since the removal of the oxide film Fw from the annular region Fwe1 has already been completed, the annular region Fwe2 faces the open space on the outer side in the outer peripheral direction of the processing target wafer W, as shown in FIG. The generated debris is diffused into the open space. Then, also in the annular region Fwe2, the above series of irradiation operation of the laser beam R and the rotation operation of the processing target wafer W are repeatedly performed, and the oxide film Fw is removed over the entire circumference of the annular region Fwe2.
 以上の動作によれば、レーザ光Rの照射点は常に被処理ウェハWの外周方向外側の開放空間に面しているため、デブリの被処理ウェハWの径方向内側への拡散を抑制することができ、被処理ウェハWへの付着を適切に抑制することができる。また、以上の動作によればデブリの飛散方向を被処理ウェハWの外周方向かつ、ひとつ前のレーザ光Rの照射点方向へと指向することができるため、被処理ウェハWへの付着を更に適切に抑制することができるとともに、表面改質装置240における排気設備の構成を簡略化することが可能になる。 According to the above operation, since the irradiation point of the laser beam R always faces the open space on the outer side in the outer peripheral direction of the processing target wafer W, it is possible to suppress the diffusion of debris to the radially inner side of the processing target wafer W. Thus, adhesion to the processing target wafer W can be appropriately suppressed. Further, according to the above operation, the scattering direction of the debris can be directed to the outer peripheral direction of the processing target wafer W and to the irradiation point direction of the immediately preceding laser beam R, so that the adhesion to the processing target wafer W is further improved. In addition to being able to appropriately suppress, it is possible to simplify the configuration of the exhaust equipment in the surface reforming device 240.
 なお、レーザ光の照射により発生するデブリの被処理ウェハWへの付着を更に適切に防止するため、表面改質装置240には、表面改質装置230と同様に例えば流体ノズル等が設けられていてもよい。また当然に、表面改質装置240の内部圧力を制御して被処理ウェハWの径方向内側から外側に向けての気流が発生するように構成してもよいし、吸引機構が設けられていてもよい。 The surface reforming device 240 is provided with, for example, a fluid nozzle or the like in the same manner as the surface reforming device 230 in order to more appropriately prevent the debris generated by the laser light irradiation from adhering to the processing target wafer W. You may. Naturally, the internal pressure of the surface reforming device 240 may be controlled to generate an airflow from the radially inner side to the outer side of the processing target wafer W, or a suction mechanism may be provided. Is also good.
 また更に、環状領域Fwe2におけるレーザ光の照射点深さは、環状領域Fwe1におけるレーザ光の照射点深さよりも浅くなるように制御されてもよい。すなわち、図27に示すように、被処理ウェハWの径方向外側に向けて、徐々に酸化膜Fwの除去厚みが大きくなるようにレーザ光Rの照射点深さを変えてもよい。これにより、外周部Fweの表面が略傾斜を有するように除去されるため、上述した傾斜を有する外周部Fweと同様の効果を享受することができ、エッジボイドVの発生や未接合領域Aeの再密着を適切に抑制することができる。なお、かかる際、各環状領域における除去厚みの差H2は、400nm以内であるのが望ましい。 Further, the irradiation point depth of the laser beam in the annular region Fwe2 may be controlled to be smaller than the irradiation point depth of the laser beam in the annular region Fwe1. That is, as shown in FIG. 27, the irradiation point depth of the laser beam R may be changed so that the removal thickness of the oxide film Fw gradually increases toward the outside in the radial direction of the processing target wafer W. As a result, since the surface of the outer peripheral portion Fwe is removed so as to have a substantially inclined surface, the same effects as those of the outer peripheral portion Fwe having the above-described inclined surface can be enjoyed, and the generation of the edge void V and the reconnection of the unjoined region Ae can be achieved. Adhesion can be appropriately suppressed. In this case, it is desirable that the difference H2 in the removal thickness in each annular region is within 400 nm.
 なお、以上の説明においては外周部Fweを径方向に2分割する場合を例に説明を行ったが、外周部Fweの分割数はこれに限定されず、任意の分割数で酸化膜Fwの表面の除去を行うことができる。かかる際、分割数を増やすことにより、前記略傾斜の分解能を高めることができ、エッジボイドVの発生や未接合領域Aeの再密着の抑制効果を更に適切に享受することができる。 In the above description, the case where the outer peripheral portion Fwe is divided into two in the radial direction has been described as an example, but the number of divisions of the outer peripheral portion Fwe is not limited to this, and the surface of the oxide film Fw may be arbitrarily divided. Can be removed. In such a case, by increasing the number of divisions, the resolution of the above-mentioned substantially tilt can be increased, and the effect of suppressing the generation of the edge void V and the re-adhesion of the unjoined region Ae can be more appropriately enjoyed.
 以上の実施形態では、被処理ウェハWの表面Waと支持ウェハSの表面Saのそれぞれに酸化膜Fw、Fsが形成された場合について説明したが、表面膜はこれに限定されない。例えばSiC膜、SiCN膜などが形成されていてもよい。また、上記第2の実施形態は、被処理ウェハWの周縁部Weを除去せず残す場合、すなわちステップQ1を行わない場合にも適用することができる。 In the above embodiment, the case where the oxide films Fw and Fs are formed on the surface Wa of the processing target wafer W and the surface Sa of the support wafer S has been described, but the surface film is not limited to this. For example, a SiC film, a SiCN film, or the like may be formed. The second embodiment can also be applied to a case where the peripheral edge portion We of the processing target wafer W is left without being removed, that is, a case where Step Q1 is not performed.
 なお、以上の実施形態においては、外周部Fweにおける酸化膜Fwを除去することにより未接合領域Aeを形成したが、未接合領域Aeの形成方法はこれに限られるものではない。 In the above embodiment, the unbonded region Ae is formed by removing the oxide film Fw in the outer peripheral portion Fwe, but the method of forming the unbonded region Ae is not limited to this.
 前述したように、被処理ウェハWの酸化膜Fwと支持ウェハSの酸化膜Fsは、酸化膜Fw、Fsの表面に形成されたダングリングボンドにOH基を付与して親水化し、酸化膜Fwと酸化膜Fsとが水素結合によって接合される。 As described above, the oxide film Fw of the processing target wafer W and the oxide film Fs of the support wafer S are made hydrophilic by imparting OH groups to the dangling bonds formed on the surfaces of the oxide films Fw and Fs. And oxide film Fs are joined by hydrogen bonding.
 そこで、第3の実施形態にかかるウェハ処理システムが備える表面改質装置330においては、接合前の被処理ウェハWの酸化膜Fwに対して疎水化材を供給することにより、未接合領域Aeを形成する。具体的には、表面改質装置330においては、酸化膜Fwの外周部Fweに対してシリル化材Gを供給することにより、外周部Fweの疎水化、撥水化を行う。 Therefore, in the surface reforming apparatus 330 provided in the wafer processing system according to the third embodiment, the unbonded area Ae is supplied by supplying the hydrophobic material to the oxide film Fw of the processing target wafer W before the bonding. Form. Specifically, in the surface modification device 330, the outer peripheral portion Fwe is made hydrophobic and water repellent by supplying the silylating material G to the outer peripheral portion Fwe of the oxide film Fw.
 以下、第3の実施形態にかかる表面改質装置330について、図面を参照しながら説明する。図28は、表面改質装置330の構成の概略を模式的に示す側面図である。図29は第3の実施形態にかかるウェハ処理システムにおけるウェハ処理の主な工程を示すフローチャートである。また、図30は第3の実施形態におけるウェハ処理の様子を示す説明図である。なお、本実施形態において、上述した第1、第2の実施形態と実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, a surface modification device 330 according to the third embodiment will be described with reference to the drawings. FIG. 28 is a side view schematically showing the outline of the configuration of the surface reforming device 330. FIG. 29 is a flowchart showing main steps of wafer processing in the wafer processing system according to the third embodiment. FIG. 30 is an explanatory diagram showing a state of wafer processing in the third embodiment. In the present embodiment, elements having substantially the same functional configuration as those of the above-described first and second embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図28に示すように表面改質装置330は、酸化膜Fwが上方を向いた状態で被処理ウェハWを保持するチャック350を有している。チャック350は、回転機構351によって鉛直軸回りに回転可能に構成されている。チャック350の上方には、酸化膜Fwの外周部にシリル化材Gを塗布するノズル352が設けられている。ノズル352は、シリル化材Gを貯留して供給するシリル化材供給源(図示せず)に連通している。またノズル352は、移動機構(図示せず)によってX軸方向、Y軸方向及びZ軸方向に移動可能に構成されている。 表面 As shown in FIG. 28, the surface reforming apparatus 330 has a chuck 350 for holding the wafer W to be processed with the oxide film Fw facing upward. The chuck 350 is configured to be rotatable around a vertical axis by a rotation mechanism 351. Above the chuck 350, a nozzle 352 for applying the silylating material G to the outer peripheral portion of the oxide film Fw is provided. The nozzle 352 communicates with a silylating material supply source (not shown) that stores and supplies the silylating material G. The nozzle 352 is configured to be movable in the X-axis direction, the Y-axis direction, and the Z-axis direction by a moving mechanism (not shown).
 第3の実施形態にかかるウェハ処理システムにおいては、先ず、ウェハ搬送装置22によりカセットCw内の被処理ウェハWが取り出され、トランジション装置34に搬送される。続けて、ウェハ搬送装置32により、トランジション装置34の被処理ウェハWが取り出され、表面改質装置330に搬送される。表面改質装置330では、接合が行われる前(図29のステップU2の前)に、シリル化材Gによって酸化膜Fwの外周部Fweに形成されたダングリングボンドにシリル基(Si-R)が付与される(図29のステップU1)。これにより、図30(a)に示すように、外周部Fweにはシリル化領域Fwsが形成される。 In the wafer processing system according to the third embodiment, first, the wafer to be processed W in the cassette Cw is taken out by the wafer transfer device 22 and transferred to the transition device 34. Subsequently, the processing target wafer W of the transition device 34 is taken out by the wafer transfer device 32 and transferred to the surface reforming device 330. In the surface reforming device 330, before the bonding is performed (before step U2 in FIG. 29), the dangling bond formed on the outer peripheral portion Fwe of the oxide film Fw by the silylation material G is added to a silyl group (Si—R). (Step U1 in FIG. 29). As a result, as shown in FIG. 30A, a silylation region Fws is formed in the outer peripheral portion Fwe.
 外周部Fweにシリル化領域Fwsが形成された被処理ウェハWは、続いて、ウェハ搬送装置32により接合装置40に搬送される。接合装置40では、酸化膜Fwは、接合に先だって活性化され親水化される。なお、外周部FweにはステップU1においてシリル基が付与されている。これにより接合装置40における親水化処理においては、外周部Fweの親水化が行われない。具体的には、親水化処理は前述のように酸化膜Fwに形成されたダングリングボンドにOH基が付与されることにより行われている。ここで、外周部Fweには既にシリル基は付与されることで、疎水化、撥水化されているため、外周部FweにOH基が付与されることが阻害される。 (4) The processed wafer W having the silylated region Fws formed in the outer peripheral portion Fwe is subsequently transferred to the bonding device 40 by the wafer transfer device 32. In the bonding device 40, the oxide film Fw is activated and hydrophilized prior to bonding. Note that a silyl group is provided to the outer peripheral portion Fwe in step U1. Thus, in the hydrophilic treatment in the bonding device 40, the outer peripheral portion Fwe is not hydrophilized. Specifically, the hydrophilic treatment is performed by giving an OH group to the dangling bond formed on the oxide film Fw as described above. Here, since the silyl group has already been imparted to the outer peripheral portion Fwe, it has been rendered hydrophobic and water repellent, so that the OH group is not imparted to the outer peripheral portion Fwe.
 酸化膜Fwが、活性化、親水化されると、続いて図30(b)に示すように被処理ウェハWの酸化膜Fwと、予め活性化、親水化が施された支持ウェハSの酸化膜Fsとが接合され、重合ウェハTが形成される(図29のステップU2)。この際、外周部Fweでは酸化膜Fw、Fsが接合されず、当該酸化膜Fw、Fsの界面には接合領域Acと未接合領域Aeが形成される。 When the oxide film Fw is activated and hydrophilized, subsequently, as shown in FIG. 30B, the oxide film Fw of the processing target wafer W and the oxidation of the support wafer S which has been activated and hydrophilized in advance are oxidized. The film Fs is bonded to form the overlapped wafer T (Step U2 in FIG. 29). At this time, the oxide films Fw and Fs are not bonded at the outer peripheral portion Fwe, and a bonded region Ac and an unbonded region Ae are formed at the interface between the oxide films Fw and Fs.
 次に、重合ウェハTはウェハ搬送装置32により内部改質装置41に搬送される。内部改質装置41では、被処理ウェハWを回転させながら、レーザヘッドから被処理ウェハWの内部にレーザ光を照射する。そして、図30(c)に示すように被処理ウェハWの周縁部Weと中央部Wcの境界に沿って、当該被処理ウェハWの内部に環状の周縁改質層M1を形成する(図29のステップU3)。またさらに、レーザヘッドを移動させて、周縁改質層M1の径方向外側に、被処理ウェハWの径方向に延伸する分割改質層M2を形成する。 Next, the overlapped wafer T is transferred to the internal reforming device 41 by the wafer transfer device 32. The internal reforming device 41 irradiates the inside of the processing target wafer W with laser light from the laser head while rotating the processing target wafer W. Then, as shown in FIG. 30C, along the boundary between the peripheral edge portion We and the central portion Wc of the processing target wafer W, an annular peripheral modification layer M1 is formed inside the processing target wafer W (FIG. 29). Step U3). Further, by moving the laser head, a divided modified layer M2 extending in the radial direction of the processing target wafer W is formed radially outside the peripheral modified layer M1.
 次に、重合ウェハTは搬送ユニット70により、アライメントユニット80を介して加工装置50に搬送される。そして、当該加工装置50で被処理ウェハWの裏面Wbが研削され、図30(d)に示すように、周縁部Weが除去される(図29のステップU4)。 Next, the overlapped wafer T is transferred by the transfer unit 70 to the processing device 50 via the alignment unit 80. Then, the back surface Wb of the processing target wafer W is ground by the processing apparatus 50, and the peripheral edge We is removed as shown in FIG. 30D (step U4 in FIG. 29).
 その後、すべての処理が施された重合ウェハTは、ウェハ搬送装置32によりトランジション装置34に搬送され、さらにウェハ搬送装置22によりカセット載置台10のカセットCtに搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the overlapped wafer T that has been subjected to all the processes is transferred to the transition device 34 by the wafer transfer device 32, and further transferred to the cassette Ct of the cassette mounting table 10 by the wafer transfer device 22. Thus, a series of wafer processing in the wafer processing system 1 ends.
 本実施形態にかかる一連のウェハ処理によれば、第1、第2の実施形態と異なり、未接合領域Aeにおいて酸化膜Fwの除去や表面の粗面化が行われていない。すなわち、本実施形態にかかるボンディングウェーブBの端部の高圧な雰囲気は、被処理ウェハWの端部において開放され、図30(b)に示したようにエッジボイドVが発生する。しかしながら、前述のように酸化膜Fwの除去や表面の粗面化が行われていないため、エッジボイドVの発生位置が被処理ウェハWの端部側、すなわち、除去対象としての周縁部Weの外周部Fweにおいて形成される。これにより、エッジボイドを発生させたとしても外周部Fweはデバイスの形成部ではないため、実質的に半導体デバイスの製造工程に影響を与えることがない。 According to the series of wafer processing according to the present embodiment, unlike the first and second embodiments, the removal of the oxide film Fw and the roughening of the surface are not performed in the unbonded region Ae. That is, the high-pressure atmosphere at the end of the bonding wave B according to the present embodiment is released at the end of the wafer W to be processed, and an edge void V is generated as shown in FIG. However, since the removal of the oxide film Fw and the roughening of the surface are not performed as described above, the position where the edge void V is generated is on the end side of the processing target wafer W, that is, the outer periphery of the peripheral edge We to be removed. It is formed at the portion Fwe. Thus, even if edge voids are generated, the outer peripheral portion Fwe is not a device forming portion, and thus does not substantially affect the semiconductor device manufacturing process.
 なお、酸化膜Fwの外周部Fweのシリル化は、被処理ウェハWの接合前であれば任意のタイミングで行うことができる。すなわち、上記実施形態例においては、接合前であって、酸化膜Fwの活性化前にシリル化処理を行ったが、例えば活性化処理と親水化処理との間に行われてもよいし、親水化処理を行った後に行ってもよい。いずれの場合であっても、接合工程において酸化膜Fwと酸化膜Fsとの水素結合前に外周部Fweのシリル化を行うことにより、適切に未接合領域Aeを形成することができる。 外 周 The silylation of the outer peripheral portion Fwe of the oxide film Fw can be performed at an arbitrary timing before the bonding of the processing target wafer W. That is, in the above embodiment, the silylation process is performed before the bonding and before the activation of the oxide film Fw, but may be performed between the activation process and the hydrophilization process, for example. It may be performed after performing the hydrophilic treatment. In any case, by performing silylation of the outer peripheral portion Fwe before hydrogen bonding between the oxide film Fw and the oxide film Fs in the bonding process, the unbonded region Ae can be appropriately formed.
 また、上記実施例によれば酸化膜Fwの外周部Fweのシリル化を行うことにより未接合領域Aeを形成したが、外周部Fweの疎水化、撥水化を行うことができるものであれば、外周部Fweの疎水化方法はこれに限られない。例えば、前述したようにダングリングボンドにメチル基を付与することにより、外周部Fweの疎水化が行われてもよい。また、例えば酸化膜Fwの外周部Fweに離型剤が供給されてもよい。 Further, according to the above embodiment, the unbonded region Ae is formed by performing silylation on the outer peripheral portion Fwe of the oxide film Fw. However, if the outer peripheral portion Fwe can be made hydrophobic and water repellent, it can be formed. The method of making the outer peripheral portion Fwe hydrophobic is not limited to this. For example, by imparting a methyl group to the dangling bond as described above, the outer peripheral portion Fwe may be made hydrophobic. Further, for example, a release agent may be supplied to the outer peripheral portion Fwe of the oxide film Fw.
 なお、以上の第1~第3の実施形態によれば、被処理ウェハWの薄化は、加工装置における裏面Wbの研削により行われたが、被処理ウェハWの薄化方法はこれに限られない。例えば、図31(a)に示すように被処理ウェハWの内部に、周縁改質層M1と被処理ウェハWの面方向に沿って内部面改質層M3を形成する。なお、周縁改質層M1と内部面改質層M3の形成順序は任意に決定することができる。そして、図31(b)に示すように、周縁改質層M1を基点とする被処理ウェハWのエッジトリム、および、内部面改質層M3を起点とする被処理ウェハWの裏面Wb側の分離を行う。このように、内部面改質層M3を基点として裏面Wb側を分離することにより、被処理ウェハWを薄化することができる。 According to the first to third embodiments, the thinning of the processing target wafer W is performed by grinding the back surface Wb in the processing apparatus, but the method of thinning the processing target wafer W is not limited to this. I can't. For example, as shown in FIG. 31A, the peripheral surface modified layer M1 and the internal surface modified layer M3 are formed along the surface direction of the processed wafer W inside the processed wafer W. The order of forming the peripheral edge modified layer M1 and the internal surface modified layer M3 can be arbitrarily determined. Then, as shown in FIG. 31B, the edge trim of the wafer W to be processed starting from the peripheral edge modified layer M1 and the rear surface Wb side of the wafer W to be processed starting from the internal surface modified layer M3. Perform separation. As described above, by separating the back surface Wb side from the internal surface modified layer M3 as a base point, the wafer W to be processed can be thinned.
 上述のように、本実施の形態に係るウェハ処理においては、外周部Fweに未接合領域Aeが形成されているため、当該外周部Fweの再密着が抑制され、適切に周縁部Weの剥離を行うことができる。また、このように内部面改質層M3を基点とする分離により被処理ウェハWの薄化を行うことにより、従来のように薄化、エッジトリムのために裏面Wb、端面の研削を行う必要がない。すなわち、被処理ウェハWの薄化、エッジトリムにあたり、研削屑が発生することがなくなると共に、消耗品である研削工具を設ける必要がなくなり、装置構成を簡易化することができる。 As described above, in the wafer processing according to the present embodiment, since the unjoined region Ae is formed in the outer peripheral portion Fwe, the re-adhesion of the outer peripheral portion Fwe is suppressed, and the peeling of the peripheral edge portion We is appropriately performed. It can be carried out. In addition, by performing the thinning of the processing target wafer W by the separation based on the internal surface modified layer M3 as described above, it is necessary to grind the back surface Wb and the end surface for thinning and edge trim as in the related art. There is no. That is, when thinning and edge trimming of the wafer W to be processed, grinding chips are not generated, and there is no need to provide a grinding tool which is a consumable product, so that the apparatus configuration can be simplified.
 また、このように内部面改質層M3の形成により被処理ウェハWを薄化する場合、かかる被処理ウェハWの薄化とエッジトリムは同時に行われてもよい。具体的には、図32(a)に示すように形成される周縁改質層M1の上端を、内部面改質層M3が形成される高さと略一致させる。そして、かかる状態で周縁改質層M1と内部面改質層M3を基点に、被処理ウェハWの裏面Wb側を分離することにより、図32(b)に示すように、周縁部Weは裏面Wb側のウェハと一体となって除去される。 In the case where the processing target wafer W is thinned by forming the internal surface modified layer M3 in this manner, the processing target wafer W may be thinned and the edge trim may be performed simultaneously. Specifically, the upper end of the peripheral edge modified layer M1 formed as shown in FIG. 32A is made substantially coincident with the height at which the internal surface modified layer M3 is formed. Then, in this state, by separating the back surface Wb side of the processing target wafer W from the peripheral modified layer M1 and the internal surface modified layer M3 as a base point, the peripheral portion We is formed on the rear surface as shown in FIG. It is removed integrally with the wafer on the Wb side.
 本エッジトリム方法においても、上述のように、本実施の形態に係るウェハ処理においては、外周部Fweに未接合領域Aeが形成されているため、当該外周部Fweの再密着が抑制され、適切に周縁部Weの剥離を行うことができる。また、従来は被処理ウェハWの薄化のための研削とエッジトリムのための研削がそれぞれ行われていたのに対し、被処理ウェハWの薄化とエッジトリムを同時に行うことができる。また上述したように、内部面改質層M3を基点とする分離により被処理ウェハWの薄化を行うことにより、従来のように薄化、エッジトリムのために裏面Wb、端面の研削を行う必要がない。すなわち、被処理ウェハWの薄化、エッジトリムにあたり、研削屑が発生することがなくなると共に、消耗品である研削工具を設ける必要がなくなり、装置構成を簡易化することができる。 Also in the present edge trimming method, as described above, in the wafer processing according to the present embodiment, since the unjoined region Ae is formed in the outer peripheral portion Fwe, re-adhesion of the outer peripheral portion Fwe is suppressed, and The peripheral portion We can be peeled off. Further, conventionally, grinding for thinning of the processing target wafer W and grinding for edge trimming are performed, respectively. However, thinning and edge trimming of the processing target wafer W can be performed simultaneously. In addition, as described above, the wafer W to be processed is thinned by separation with the internal surface reforming layer M3 as a base point, so that the back surface Wb and the end surface are ground for thinning and edge trim as in the related art. No need. That is, when thinning and edge trimming of the wafer W to be processed, grinding chips are not generated, and there is no need to provide a grinding tool which is a consumable product, so that the apparatus configuration can be simplified.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 実 施 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The above embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
  1、200 ウェハ処理システム
  40 接合装置
  42 表面改質装置
  Fs、Fw 酸化膜
  S 支持ウェハ
  T 重合ウェハ
  W 被処理ウェハ
1, 200 Wafer processing system 40 Bonding device 42 Surface modification device Fs, Fw Oxide film S Support wafer T Polymerized wafer W Wafer to be processed

Claims (26)

  1. 基板を処理する基板処理システムであって、
    第2の基板の表面に形成された第2の表面膜と接合される前の、第1の基板の表面に形成された第1の表面膜の外周部を改質する表面改質装置を有する、基板処理システム。
    A substrate processing system for processing a substrate,
    A surface modifying device for modifying an outer peripheral portion of the first surface film formed on the surface of the first substrate before being bonded to the second surface film formed on the surface of the second substrate; , Substrate processing system.
  2. 前記表面改質装置で外周部が改質された前記第1の基板の前記第1の表面膜と、第2の基板の表面に形成された第2の表面膜とを接合する接合装置を有する、請求項1に記載の基板処理システム。 A bonding apparatus for bonding the first surface film of the first substrate, the outer peripheral portion of which has been modified by the surface reforming device, to a second surface film formed on the surface of the second substrate; The substrate processing system according to claim 1.
  3. 前記表面改質装置は、前記第1の表面膜の外周部を除去する、請求項1または2に記載の基板処理システム。 The substrate processing system according to claim 1, wherein the surface modification device removes an outer peripheral portion of the first surface film.
  4. 前記表面改質装置は、前記第1の表面膜の厚み方向に表面から400nm以内を除去する、請求項3に記載の基板処理システム。 4. The substrate processing system according to claim 3, wherein the surface modification device removes a portion within 400 nm from a surface in a thickness direction of the first surface film. 5.
  5. 前記表面改質装置は、前記第1の表面膜の外周部を、側面視において径方向外側に向けて、前記第1の表面膜の厚みが小さくなるように除去する、請求項3又は4に記載の基板処理システム。 5. The surface modification device according to claim 3, wherein the outer peripheral portion of the first surface film is removed radially outward in a side view so that the thickness of the first surface film is reduced. The substrate processing system as described in the above.
  6. 前記第1の表面膜の外周部は、径方向に対して複数の環状領域に分割され、
    前記表面改質装置における前記第1の表面膜の外周部の除去は、径方向外側に位置する前記環状領域から、径方向内側に位置する前記環状領域に向けて順次行われる、請求項3~5のいずれか一項に記載の基板処理システム。
    An outer peripheral portion of the first surface film is divided into a plurality of annular regions in a radial direction,
    The removal of the outer peripheral portion of the first surface film in the surface reforming device is performed sequentially from the annular region located radially outward to the annular region located radially inside. 6. The substrate processing system according to claim 5.
  7. 前記表面改質装置の内部には、前記第1の表面膜の径方向内側から径方向外側に向けての気流が形成される、請求項3~6のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 3 to 6, wherein an airflow is formed inside the surface reforming device from a radially inner side to a radially outer side of the first surface film. .
  8. 接合された前記第1の表面膜と前記第2の表面膜との界面には、前記第1の表面膜と前記第2の表面膜が接合された接合領域と、前記表面改質装置で除去された前記第1の表面膜に対応する未接合領域とが形成され、
    前記基板処理システムは、前記未接合領域における前記第1の表面膜と前記第2の表面膜を親水化する親水化装置を有する、請求項3~7のいずれか一項に記載の基板処理システム。
    At the interface between the bonded first surface film and the second surface film, a bonding area where the first surface film and the second surface film are bonded, and a removal area by the surface reforming device And an unbonded region corresponding to the first surface film thus formed,
    The substrate processing system according to any one of claims 3 to 7, wherein the substrate processing system includes a hydrophilizing device that hydrophilizes the first surface film and the second surface film in the unbonded region. .
  9. 前記表面改質装置で前記第1の表面膜の外周部を改質する前に、前記第1の基板の周縁部を除去する周縁除去装置を有する、請求項8に記載の基板処理システム。 9. The substrate processing system according to claim 8, further comprising: a peripheral removal device that removes a peripheral portion of the first substrate before modifying the peripheral portion of the first surface film by the surface modifying device.
  10. 前記表面改質装置は、前記第1の表面膜の外周部を突出させる、請求項1に記載の基板処理システム。 The substrate processing system according to claim 1, wherein the surface reforming device projects an outer peripheral portion of the first surface film.
  11. 前記表面改質装置は、前記第1の表面膜の外周部を粗面化する、請求項1~10のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 1 to 10, wherein the surface reforming device roughens an outer peripheral portion of the first surface film.
  12. 前記表面改質装置は、前記第1の表面膜の外周部を、径方向外側に向けて、前記第1の表面膜の表面粗さが大きくなるように粗面化する、請求項11に記載の基板処理システム。 12. The surface modification device according to claim 11, wherein an outer peripheral portion of the first surface film is roughened so that a surface roughness of the first surface film is increased radially outward. Substrate processing system.
  13. 前記表面改質装置は、前記第1の表面膜の外周部をシリル化する、請求項1または2に記載の基板処理システム。 3. The substrate processing system according to claim 1, wherein the surface modification device silylates an outer peripheral portion of the first surface film. 4.
  14. 基板を処理する基板処理方法であって、
    第2の基板の表面に形成された第2の表面膜と接合される前の、第1の基板の表面に形成された第1の表面膜の外周部を改質することを含む、基板処理方法。
    A substrate processing method for processing a substrate, comprising:
    A substrate processing including modifying an outer peripheral portion of the first surface film formed on the surface of the first substrate before being bonded to the second surface film formed on the surface of the second substrate; Method.
  15. 外周部が改質された前記第1の基板の前記第1の表面膜と、第2の基板の表面に形成された第2の表面膜とを接合することを含む、請求項14に記載の基板処理方法。 The method according to claim 14, further comprising joining the first surface film of the first substrate whose outer peripheral portion is modified and a second surface film formed on the surface of the second substrate. Substrate processing method.
  16. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の外周部を除去する、請求項14または15に記載の基板処理方法。 16. The substrate processing method according to claim 14, wherein the outer peripheral portion of the first surface film is removed in the modification of the outer peripheral portion of the first surface film.
  17. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の厚み方向に表面から400nm以内を除去する、請求項16に記載の基板処理方法。 17. The substrate processing method according to claim 16, wherein in modifying the outer peripheral portion of the first surface film, a portion within 400 nm from the surface in the thickness direction of the first surface film is removed.
  18. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の外周部を、側面視において径方向外側に向けて、前記第1の表面膜の厚みが小さくなるように除去する、請求項16又は17に記載の基板処理方法。 In the modification of the outer peripheral portion of the first surface film, the outer peripheral portion of the first surface film is removed radially outward in a side view so as to reduce the thickness of the first surface film. The substrate processing method according to claim 16.
  19. 前記第1の表面膜の外周部は、径方向に対して複数の環状領域に分割され、
    前記第1の表面膜の外周部の除去は、径方向外側に位置する前記環状領域から、径方向内側に位置する前記環状領域に向けて順次行われる、請求項16~18のいずれか一項に記載の基板処理方法。
    An outer peripheral portion of the first surface film is divided into a plurality of annular regions in a radial direction,
    19. The method according to claim 16, wherein the removal of the outer peripheral portion of the first surface film is performed sequentially from the annular region located radially outward to the annular region located radially inside. 3. The substrate processing method according to 1.
  20. 前記第1の表面膜の外周部の改質においては、前記第1の表面膜の径方向内側から径方向外側に向けての気流が形成される、請求項16~19のいずれか一項に記載の基板処理方法。 The method according to any one of claims 16 to 19, wherein in modifying the outer peripheral portion of the first surface film, an airflow is formed from a radially inner side to a radially outer side of the first surface film. The substrate processing method described in the above.
  21. 接合された前記第1の表面膜と前記第2の表面膜との界面には、前記第1の表面膜と前記第2の表面膜が接合された接合領域と、前記第1の表面膜の外周部を改質で除去された前記第1の表面膜に対応する未接合領域とが形成され、
    前記基板処理方法は、前記未接合領域における前記第1の表面膜と前記第2の表面膜を親水化することを含む、請求項16~20のいずれか一項に記載の基板処理方法。
    At the interface between the bonded first surface film and the second surface film, a bonding region where the first surface film and the second surface film are bonded, and a bonding region of the first surface film An unbonded region corresponding to the first surface film whose outer peripheral portion has been removed by the modification is formed,
    The substrate processing method according to any one of claims 16 to 20, wherein the substrate processing method includes hydrophilizing the first surface film and the second surface film in the unbonded region.
  22. 前記第1の表面膜の外周部を改質する前に、前記第1の基板の周縁部を除去することを含む、請求項21に記載の基板処理方法。 22. The substrate processing method according to claim 21, further comprising removing a peripheral portion of the first substrate before modifying an outer peripheral portion of the first surface film.
  23. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の外周部を突出させる、請求項14または15に記載の基板処理方法。 16. The substrate processing method according to claim 14, wherein in modifying the outer peripheral portion of the first surface film, the outer peripheral portion of the first surface film is projected.
  24. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の外周部を粗面化する、請求項14~23のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 14 to 23, wherein in modifying the outer peripheral portion of the first surface film, the outer peripheral portion of the first surface film is roughened.
  25. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の外周部を、径方向外側に向けて、前記第1の表面膜の表面粗さが大きくなるように粗面化する、請求項24に記載の基板処理方法。 In the modification of the outer peripheral portion of the first surface film, the outer peripheral portion of the first surface film is roughened so that the surface roughness of the first surface film increases toward the outside in the radial direction. The substrate processing method according to claim 24, wherein
  26. 前記第1の表面膜の外周部の改質において、前記第1の表面膜の外周部をシリル化する、請求項14または15に記載の基板処理方法。 16. The substrate processing method according to claim 14, wherein, in the modification of the outer peripheral portion of the first surface film, the outer peripheral portion of the first surface film is silylated.
PCT/JP2019/025817 2018-07-12 2019-06-28 Substrate processing system and substrate processing method WO2020012986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530108A JP7058737B2 (en) 2018-07-12 2019-06-28 Board processing system and board processing method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018132246 2018-07-12
JP2018-132246 2018-07-12
JP2018171229 2018-09-13
JP2018-171229 2018-09-13
JP2019026834 2019-02-18
JP2019-026834 2019-02-18

Publications (1)

Publication Number Publication Date
WO2020012986A1 true WO2020012986A1 (en) 2020-01-16

Family

ID=69141461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025817 WO2020012986A1 (en) 2018-07-12 2019-06-28 Substrate processing system and substrate processing method

Country Status (3)

Country Link
JP (1) JP7058737B2 (en)
TW (1) TWI795577B (en)
WO (1) WO2020012986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199585A1 (en) * 2020-04-02 2021-10-07 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020124580A1 (en) * 2020-03-27 2021-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. WAFER BONDING METHOD
US11437344B2 (en) 2020-03-27 2022-09-06 Taiwan Semiconductor Manufacturing Co., Ltd. Wafer bonding method
TWI799989B (en) * 2021-09-13 2023-04-21 日商雅馬哈智能機器控股股份有限公司 Surface treatment equipment and semiconductor device manufacturing equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056910A (en) * 2012-09-12 2014-03-27 Tokyo Electron Ltd Application processing device, joint system, application processing method, program, and computer storage medium
JP2015207691A (en) * 2014-04-22 2015-11-19 東京エレクトロン株式会社 Substrate processing system, substrate processing method, program, and computer storage medium
JP2017034107A (en) * 2015-08-03 2017-02-09 東京エレクトロン株式会社 Joining device, joining system, joining method, program and computer storage medium
JP2018043340A (en) * 2016-09-15 2018-03-22 株式会社荏原製作所 Substrate processing method and substrate processing device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263425A (en) * 1991-02-18 1992-09-18 Toshiba Corp Grinding device for semiconductor substrate and method thereof
JPH0981904A (en) * 1995-09-13 1997-03-28 Sony Corp Production of magnetic head
JP4306540B2 (en) 2004-06-09 2009-08-05 セイコーエプソン株式会社 Thin processing method of semiconductor substrate
JP2006108532A (en) * 2004-10-08 2006-04-20 Disco Abrasive Syst Ltd Method of grinding wafer
US20060284167A1 (en) * 2005-06-17 2006-12-21 Godfrey Augustine Multilayered substrate obtained via wafer bonding for power applications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056910A (en) * 2012-09-12 2014-03-27 Tokyo Electron Ltd Application processing device, joint system, application processing method, program, and computer storage medium
JP2015207691A (en) * 2014-04-22 2015-11-19 東京エレクトロン株式会社 Substrate processing system, substrate processing method, program, and computer storage medium
JP2017034107A (en) * 2015-08-03 2017-02-09 東京エレクトロン株式会社 Joining device, joining system, joining method, program and computer storage medium
JP2018043340A (en) * 2016-09-15 2018-03-22 株式会社荏原製作所 Substrate processing method and substrate processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199585A1 (en) * 2020-04-02 2021-10-07 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus
JPWO2021199585A1 (en) * 2020-04-02 2021-10-07
JP7354420B2 (en) 2020-04-02 2023-10-02 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
TW202006871A (en) 2020-02-01
JP7058737B2 (en) 2022-04-22
TWI795577B (en) 2023-03-11
JPWO2020012986A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
JP7357101B2 (en) Substrate processing system, substrate processing method, and computer storage medium
JP7109537B2 (en) Substrate processing system and substrate processing method
WO2020012986A1 (en) Substrate processing system and substrate processing method
JP6934563B2 (en) Board processing system and board processing method
JP7058738B2 (en) Board processing system and board processing method
JP7133633B2 (en) Processing system and processing method
JP7086201B2 (en) Board processing system and board processing method
JP2021100071A (en) Substrate processing apparatus and method for processing substrate
TWI836786B (en) Substrate processing system, substrate processing method, and computer storage medium
KR102656400B1 (en) Substrate processing system and substrate processing method
TWI837149B (en) Substrate processing system and substrate processing method
JP2021040075A (en) Substrate processing apparatus and substrate processing method
KR20240045348A (en) Substrate processing system and substrate processing method
WO2020170597A1 (en) Substrate processing device and substrate processing method
JP2020198365A (en) Substrate processing system and substrate processing method
JP2020198367A (en) Substrate processing system and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530108

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834278

Country of ref document: EP

Kind code of ref document: A1