WO2020012802A1 - Converter device, control signal specifying method and program - Google Patents

Converter device, control signal specifying method and program Download PDF

Info

Publication number
WO2020012802A1
WO2020012802A1 PCT/JP2019/021030 JP2019021030W WO2020012802A1 WO 2020012802 A1 WO2020012802 A1 WO 2020012802A1 JP 2019021030 W JP2019021030 W JP 2019021030W WO 2020012802 A1 WO2020012802 A1 WO 2020012802A1
Authority
WO
WIPO (PCT)
Prior art keywords
input current
period
current
current value
control signal
Prior art date
Application number
PCT/JP2019/021030
Other languages
French (fr)
Japanese (ja)
Inventor
貴政 渡辺
真一 小宮
清水 健志
角藤 清隆
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2020012802A1 publication Critical patent/WO2020012802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal

Definitions

  • the present invention relates to a converter device, a control signal specifying method, and a program.
  • the converter device is a device that converts AC power into DC power.
  • the converter device is required to improve conversion efficiency when converting AC power to DC power.
  • Patent Literature 1 discloses, as a related technique, a technique relating to synchronous rectification control for improving efficiency by turning on a MOS transistor even during a part of a period during which an input current of a converter device flows.
  • the object of the present invention is to provide a converter device, a control signal specifying method, and a program that can solve the above-mentioned problems.
  • the converter device has an input current acquisition unit that acquires a current value of an input current input from an AC power supply, and whether the current value of the input current is equal to or less than a predetermined current value
  • An input current determination unit that determines whether or not, when the input current determination unit determines that the current value of the input current is equal to or less than a predetermined current value, for a half cycle of the AC voltage output from the AC power supply,
  • a first period specifying unit that specifies a first period that is a certain period in which the input current of the current value is expected to flow, and a control that specifies a control signal that turns on the switching element based on the first period
  • a signal specifying unit specifies a control signal that turns on the switching element based on the first period
  • the control signal specifying unit may specify a control signal for turning on a switching element based on the first period or the third period.
  • the third period may be within the half cycle.
  • the converter device according to any one of the first to third aspects has two switching elements, and rectifies the power output from the AC power supply. And a control signal output unit that outputs the control signal to one of the two switching elements in the half cycle in which the control signal is applied.
  • the current value of the input current is less than a half cycle before the control signal is applied.
  • the current value of the input current in a half cycle may be used.
  • the current value of the input current is a current value of the input current in a half cycle immediately before a half cycle to which the control signal is applied. You may.
  • the current value of the input current is the current value of the input current in a plurality of past half cycles. May be the average value.
  • the converter device includes a zero-crossing detector that detects a zero-crossing point of the AC voltage, and a converter based on the zero-crossing point.
  • a reference specifying unit that specifies a reference timing of the half cycle.
  • the converter device according to any one of the first to eighth aspects further comprises an input current that specifies a current value of the input current based on a physical quantity related to the input current.
  • An input current obtaining unit configured to obtain the current value specified by the input current specifying unit.
  • a control signal specifying method includes obtaining a current value of an input current input from an AC power supply, and determining whether the current value of the input current is equal to or less than a predetermined current value. And determining that the current value of the input current is equal to or less than a predetermined current value, it is expected that the input current of the current value flows for a half cycle of the AC voltage output from the AC power supply. Specifying a first period, which is a predetermined period, and specifying a control signal for turning on the switching element based on the first period.
  • the program obtains a current value of an input current input from an AC power supply, and determines whether the current value of the input current is equal to or less than a predetermined current value. And determining that the current value of the input current is equal to or less than a predetermined current value, it is expected that the input current of the current value flows for a half cycle of the AC voltage output from the AC power supply. Specifying a first period, which is a predetermined period, and specifying a control signal for turning on the switching element based on the first period.
  • the control signal specifying method, and the program according to the embodiment of the present invention when performing synchronous rectification control in the converter device, efficiency can be improved regardless of the magnitude of the input current of the converter device.
  • FIG. 1 is a diagram illustrating a configuration of a motor drive device according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a power supply voltage, an input current, and a control signal according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration of a converter control unit according to an embodiment of the present invention.
  • FIG. 4 is a diagram for explaining a period during which a switching element is turned on in one embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a configuration of a control signal generation unit according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a processing flow of a converter control unit according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of a power supply voltage, an input current, and a control signal according to another embodiment of the present invention.
  • FIG. 2 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • FIG. 1 is a diagram showing a configuration of a motor drive device 1 according to one embodiment of the present invention.
  • the motor drive device 1 includes a converter device 2 and an inverter device 3, as shown in FIG.
  • a first terminal of converter device 2 is connected to a first terminal of AC power supply 4.
  • a second terminal of converter device 2 is connected to a second terminal of AC power supply 4.
  • the third terminal of converter device 2 is connected to the first terminal of inverter device 3.
  • the fourth terminal of converter device 2 is connected to the second terminal of inverter device 3.
  • the third terminal of the inverter device 3 is connected to the first terminal of the motor 5.
  • the fourth terminal of the inverter device 3 is connected to the second terminal of the motor 5.
  • the fifth terminal of the inverter device 3 is connected to the third terminal of the motor 5.
  • the motor driving device 1 is a device that converts AC power from an AC power supply 4 into DC power by a converter device 2, converts the DC power into three-phase AC power by an inverter device 3, and outputs the three-phase AC power to a motor 5.
  • the AC power supply 4 supplies single-phase AC power to the converter device 2.
  • the AC power supply 4 supplies, for example, a voltage described as a power supply voltage in FIG. 2 and a current described as an input current in FIG.
  • the motor 5 rotates according to the three-phase AC power supplied from the inverter device 3.
  • the motor 5 is, for example, a compressor motor used in an air conditioner.
  • the converter device 2 includes a rectifier circuit 21, an input current identification unit 22, a zero-cross detection unit 23, and a converter control unit 24, as shown in FIG.
  • the rectifier circuit 21 includes a bridge circuit 200, a reactor 211, and a capacitor 216, as shown in FIG.
  • the bridge circuit 200 includes diodes 212a and 213a, capacitors 212b and 213b, resistors 212c and 213c, and switching elements 214 and 215.
  • Converter device 2 performs switching element 214 or 215 during a certain first period including at least a part of a period in which the input current is expected to flow when the input current supplied from AC power supply 4 is equal to or less than a predetermined current value.
  • Converter device 2 outputs the DC power to inverter device 3.
  • the first terminal of the reactor 211 is connected to the anode of the diode 212a, the first terminal of the resistor 212c, and the first terminal of the switching element 214, respectively.
  • the cathode of the diode 212a is connected to the first terminal of the capacitor 212b, the cathode of the diode 213a, the first terminal of the capacitor 213b, and the first terminal of the capacitor 216, respectively.
  • a second terminal of the capacitor 212b is connected to a second terminal of the resistor 213c.
  • the anode of the diode 213a is connected to the first terminal of the resistor 213c and the first terminal of the switching element 215, respectively.
  • the second terminal of the switching element 214 is connected to the second terminal of the switching element 215 and the second terminal of the capacitor 216, respectively.
  • the second terminal of the reactor 211 is connected to the first terminal of the rectifier circuit 21.
  • the anode of the diode 213a is connected to the second terminal of the rectifier circuit 21.
  • the cathode of the diode 212a is connected to the third terminal of the rectifier circuit 21.
  • the second terminal of the switching element 214 is connected to the fourth terminal of the rectifier circuit 21.
  • the third terminal of the switching element 214 is connected to the fifth terminal of the rectifier circuit 21.
  • the third terminal of the switching element 215 is connected to the sixth terminal of the rectifier circuit 21.
  • a circuit including the diode 212a, the capacitor 212b, and the resistor 212c is referred to as a first circuit 212.
  • a circuit including the diode 213a, the capacitor 213b, and the resistor 213c is referred to as a second circuit 213.
  • the first terminal of the rectifier circuit 21 is connected to the first terminal of the input current specifying unit 22 and the first terminal of the zero-cross detecting unit 23, respectively.
  • a second terminal of the rectifier circuit 21 is connected to a second terminal of the zero-cross detector 23.
  • the fifth terminal of the rectifier circuit 21 is connected to the first terminal of the converter control unit 24.
  • a sixth terminal of the rectifier circuit 21 is connected to a second terminal of the converter control unit 24.
  • a second terminal of the input current specifying unit 22 is connected to a third terminal of the converter control unit 24.
  • a third terminal of the zero-crossing detector 23 is connected to a fourth terminal of the converter controller 24.
  • the first terminal of the rectifier circuit 21 is connected to the first terminal of the converter device 2.
  • the second terminal of the rectifier circuit 21 is connected to the second terminal of the converter device 2.
  • the third terminal of the rectifier circuit 21 is connected to the third terminal of the converter device 2.
  • the fourth terminal of the rectifier circuit 21 is connected to the fourth terminal of the converter device 2.
  • Reactor 211 is a reactor provided to realize a boost operation.
  • the bridge circuit 200 rectifies AC power to DC power based on the control of the converter control unit 24.
  • Each of the switching elements 214 and 215 is, for example, a super-junction MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), or the like.
  • FIG. 1 shows an example in which each of the switching elements 214 and 215 is a super junction MOSFET.
  • the first terminal is a drain
  • the second terminal is a source
  • the third terminal is a gate. As shown in FIG.
  • the switching element 214 has a transistor part 214a and a parasitic diode 214b between the source and the drain. Further, as shown in FIG. 1, the switching element 215 has a transistor portion 215a and a parasitic diode 215b between the source and the drain.
  • the capacitor 216 is a capacitor for smoothing the DC power output from the bridge circuit 200. By the capacitor 216, a DC voltage with a small fluctuation in the voltage value is supplied from the converter device 2 to the inverter device 3.
  • the capacitor 216 is, for example, an electrolytic capacitor.
  • the input current specifying unit 22 specifies the current value of the input current supplied from the AC power supply 4 to the converter device 2 for each cycle sufficiently shorter than the cycle of the AC voltage output from the AC power supply 4.
  • the input current specifying unit 22 includes a current sensor provided between the AC power supply 4 and the converter device 2, and specifies a current value (an example of a physical quantity related to the input current) of the input current read by the current sensor. I do.
  • the input current specifying unit 22 includes a shunt resistor provided between the AC power supply 4 and the converter device 2, and the potential difference between both ends of the shunt resistor (an example of a physical quantity related to the input current) is represented by a resistance value.
  • the current value may be specified by division.
  • the input current specifying unit 22 gives the current value of the detected input current to the converter control unit 24.
  • the zero-crossing detector 23 detects the zero-crossing point of the voltage output from the AC power supply 4.
  • the zero-cross point indicates a timing at which the voltage output from the AC power supply 4 crosses zero volts, and the timing becomes a reference timing in the processing of the motor driving device 1.
  • the zero-cross detection unit 23 generates a zero-cross signal including information on a zero-cross point.
  • the zero-cross detector 23 outputs a zero-cross signal to the converter controller 24.
  • Converter control unit 24 receives input current information from input current specifying unit 22.
  • the converter control unit 24 controls a period during which each of the switching elements 214 and 215 is turned on and a period during which the switching elements 214 and 215 are turned off.
  • the converter control unit 24 does not turn on both the switching elements 214 and 215 at the same time, turns off both the switching elements 214 and 215, or turns off the switching element 214 and turns on the switching element 215.
  • the converter control unit 24 does not turn on both of the switching elements 214 and 215 at the same time. Are turned off, or the switching element 214 is turned on and the switching element 215 is turned off.
  • each of the switching elements 214 and 215 is a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is higher than the potential of the second terminal, and the converter control unit 24 turns off both the switching elements 214 and 215.
  • condition 1 current flows from the first terminal of the AC power supply 4 to the reactor 211, the first circuit 212, the capacitor 216, the parasitic diode 215b, and the second terminal of the AC power supply 4, and the capacitor 216 is charged. Is done.
  • each of the switching elements 214 and 215 is a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is higher than the potential of the second terminal, and the switching element 214 is off and the switching element 215 is on.
  • condition 2 current flows from the first terminal of the AC power supply 4 to the reactor 211, the first circuit 212, the capacitor 216, the transistor unit 215a, and the second terminal of the AC power supply 4, and the capacitor 216 is charged. Is done.
  • condition 2 the voltage between the source and the drain of the transistor portion 215a is almost zero, whereas in the case of the condition 1, a voltage drop of a forward voltage occurs in the parasitic diode 215b. Therefore, when supplying current to converter device 2 from the first terminal of AC power supply 4, converter control unit 24 sets switching element 215 to a lower state than switching switching element 215 to an off state and flowing current to parasitic diode 215 b.
  • the efficiency can be improved by the amount of the forward voltage generated by the parasitic diode 215b.
  • each of the switching elements 214 and 215 is a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is lower than the potential of the second terminal, and the converter control unit 24 turns off both the switching elements 214 and 215.
  • condition 3 current flows from the second terminal of the AC power supply 4 to the second circuit 213, the capacitor 216, the parasitic diode 214b, the reactor 211, and the first terminal of the AC power supply 4, and the capacitor 216 is charged. Is done.
  • the switching elements 214 and 215 are each a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is lower than the potential of the second terminal, and the switching element 214 is on and the switching element 215 is off.
  • the converter control unit 24 turns off the switching element 215 to flow the current to the parasitic diode 215b when supplying the current from the first terminal of the AC power supply 4 to the converter device 2. Rather, it is a control unit that improves the efficiency by turning on the switching element 215 and causing a current to flow through the transistor unit 215a. Further, the converter control unit 24 according to the embodiment of the present invention turns off the switching element 214 to flow the current to the parasitic diode 214b when supplying the current to the converter device 2 from the second terminal of the AC power supply 4. Rather, it is a control unit that improves efficiency by turning on the switching element 214 and flowing current to the transistor unit 214a.
  • the converter control unit 24 includes a reference specifying unit 241, an input current acquisition unit 242, a control signal generation unit 243, and a storage unit 244, as shown in FIG.
  • the reference specifying unit 241 specifies a reference timing.
  • the reference specifying unit 241 acquires a zero cross signal from the zero cross detection unit 23.
  • the reference specifying unit 241 specifies a reference timing indicated by the acquired zero-cross signal.
  • the reference specifying unit 241 outputs the specified reference timing to the control signal generation unit 243.
  • the input current obtaining unit 242 detects the current value of the input current from the input current specifying unit 22 (that is, the current value of the input current input from the AC power supply 4 to the converter device 2) and detects the input current of the input current specifying unit 22. Acquire at each timing.
  • the input current acquisition unit 242 outputs the acquired current value to the control signal generation unit 243.
  • the control signal generation unit 243 acquires the reference timing from the reference identification unit 241. Further, the control signal generation unit 243 acquires the current value of the input current from the input current acquisition unit 242. The control signal generation unit 243 sets the phase at the reference timing acquired from the reference identification unit 241 as the reference 0 degree of the phase ⁇ . Then, the control signal generator 243 calculates the effective value of the input current based on the reference of the phase ⁇ . For example, the control signal generation unit 243 calculates the effective value of the input current by averaging the integrated value of the current values of the input current acquired from the input current acquisition unit 242 according to the phase of the phase ⁇ from the reference. .
  • the input current specifying unit 22 includes a current sensor (for example, a current transformer)
  • the input current is full-wave rectified by the bridge circuit 200 via the current transformer, and charges the capacitor 216.
  • the control signal generator 243 reads the voltage level in a state smoothed by the capacitor 216. Then, the control signal generator 243 may calculate the effective value of the input current by converting the read voltage value into a current value that is associated with the voltage value on a one-to-one basis.
  • a conversion table indicating the correspondence between the voltage value and the current value is created in advance and stored in the storage unit 244, and the control signal generation unit 243 reads the conversion table. Then, the read voltage value may be converted into the effective value of the current.
  • the control signal generator 243 compares the calculated effective value of the input current with the effective value of the input current in the data table TBL1.
  • the control signal generation unit 243 specifies the effective value of the input current closest to the calculated effective value of the input current in the data table TBL1 based on the comparison result.
  • the control signal generation unit 243 specifies the adjustment amount of the phase associated with the specified input current in the data table TBL1.
  • the control signal generation unit 243 adjusts the phase by the amount of phase adjustment specified based on the phase of the power supply voltage (that is, based on the zero-cross point). Then, the control signal generation unit 243 outputs the control signal whose phase has been adjusted to each of the switching elements 214 and 215.
  • the control signal generation unit 243 switches the switching element during a certain first period including at least a part of a period in which the input current is expected to flow. A signal for turning on the switch is specified.
  • the control signal generation unit 243 causes the switching element (the switching element 214 or 215) that is controlled to be in the off state from the phase 0 degree to 180 degrees to the phase 0 level. (The timing when the input current starts to flow in the second period is an example of the first timing, and the input current flows in the second period).
  • the signal to be turned on is specified in a third period which is the sum of a period in which the period disappears is an example of a second timing) and a period extended to at least one of immediately before and after the period.
  • the control signal generation unit 243 may set a current threshold value larger than the noise (for example, the current threshold value shown in FIG. 4) so that the noise when the current value of the input current is zero is not erroneously detected as the input current. (Threshold value 3 amps) is set in advance. Each time the control signal generation unit 243 obtains the current value of the input current from the input current identification unit 22, it compares the obtained current value of the input current with the current threshold value.
  • the control signal generation unit 243 specifies a period in which the current value of the input current exceeds the current threshold (for example, a period ⁇ 1 shown in FIG. 4) based on the comparison result. For each value of the period ⁇ 1 during which the current value of the input current exceeds the current threshold value (the phase difference between the start phase and the end phase of the period ⁇ 1), the period from when the input current starts flowing until when the input current ends (for example, the storage unit 244 stores in advance a period ⁇ 2 shown in FIG. 4), that is, ⁇ 1 and ⁇ 2, which are phase correction values for specifying the second period, in association with each other.
  • the correction value ⁇ 1 is a correction value for extending the period immediately before.
  • the correction value ⁇ 2 is a correction value for extending the period immediately after.
  • the control signal generation unit 243 determines that there is a period ⁇ 1 in which the current value of the input current exceeds the current threshold based on the comparison result, the control unit 243 extends the period ⁇ 1 by ⁇ 1 immediately before and ⁇ 2 by immediately after.
  • the period ⁇ 2 is a period in which ⁇ is extended both immediately before and immediately after the period ⁇ 2 by at least one of ⁇ and the period ⁇ 2.
  • the three periods are specified as periods during which the switching elements are turned on.
  • control signal generation unit 243 determines that there is no period ⁇ 1 in which the current value of the input current exceeds the current threshold based on the comparison result, the control signal generation unit 243 performs a certain first period (see, for example, FIG. The period ⁇ 3) is specified as a period during which the switching element is turned on. Then, the control signal generation unit 243 specifies a signal for turning on the switching element during the specified period. The control signal generation unit 243 delays the phase of the specified signal by 180 degrees, and uses the switching element (switching element 214) as a first control signal that is a control signal of the next half cycle (an example of a half cycle in which the control signal is applied). Or 215).
  • control signal generation unit 243 outputs a second control signal for turning the switching element, which has been controlled to the on state during the phase of 0 to 180 degrees, to the off state for the next half cycle from the phase of 0 to 180 degrees. Identify between degrees. Then, the control signal generation unit 243 outputs the second control signal specified in the next half cycle to a switching element (switching element 215 or 214) different from the switching element that outputs the first control signal. Note that the extension to the third period including the second period in which the input current is detected is limited at the beginning of the half period. Further, the extension to the third period including the second period in which the input current is detected is limited at the end of the half period.
  • control signal generation unit 243 performs control to turn on the switching element 215 during the phase from 0 degrees to 180 degrees, and the input current identification unit 22 detects the input current shown in FIG.
  • the unit 243 specifies a signal whose period has been extended by the phase ⁇ before and after the period in which the input current shown in FIG. 2 has a positive current value.
  • the control signal generator 243 adds a phase of 180 degrees to the phase of the generated signal. That is, the control signal generation unit 243 sets the specified signal as a control signal for the switching element 214 in the next half cycle (a period from a phase of 180 degrees to a phase of 360 degrees).
  • the control signal generator 243 outputs the control signal to the switching element 214 during a period from 180 degrees to 360 degrees in phase.
  • the control signal generation unit 243 specifies a control signal that turns off the switching element 215 during a period from 180 degrees to 360 degrees in phase.
  • the control signal generation unit 243 outputs the specified control signal to the switching element 215 during a period from 180 degrees to 360 degrees in phase. Thereafter, the control signal generation unit 243 performs the same process as the above process also during the period in which the input current shown in FIG. 2 is a negative current value, so that the next half cycle is performed based on the third period every half cycle.
  • the control signal of the cycle is specified, and the specified control signal is output to each of the switching elements 214 and 215.
  • the control signal generation unit 243 includes an example of an input current determination unit, an example of a first period identification unit, an example of a second period identification unit, an example of a third period identification unit, an example of a control signal identification unit, and an example of a control signal output unit. This is an example. That is, as shown in FIG. 5, the control signal generation unit 243 includes an input current determination unit, a first period identification unit, a second period identification unit, a third period identification unit, a control signal identification unit, and a control signal output unit. .
  • the input current determination unit determines whether the current value of the input current is equal to or less than a predetermined current value.
  • the first period identification unit determines the input current of the current value for a half cycle of the AC voltage output from the AC power supply 4 Is specified as a first period, which is a certain period in which is expected to flow.
  • the control signal specifying unit specifies a control signal for turning on the switching element based on the first period.
  • the second period identification unit determines a half cycle of the AC voltage output from the AC power supply 4 based on the current value of the input current.
  • the third period specifying unit specifies a third period that is a sum of the extended period when extending to at least one of immediately before the first timing or immediately after the second timing and the second period.
  • the control signal output unit outputs the control signal to one of the two switching elements in a half cycle of the AC voltage to which the control signal is applied.
  • the control signal specifying section may specify a control signal for turning on the switching element based on the first period or the third period.
  • the storage unit 244 stores various information necessary for the processing performed by the converter control unit 24.
  • the storage unit 244 stores, for each value of the period ⁇ 1 in which the current value of the input current exceeds the current threshold, a period from the start of the input current to the end of the flow (for example, a period ⁇ 2 illustrated in FIG. 4), That is, ⁇ 1 and ⁇ 2, which are the phase correction values for specifying the second period, are stored in advance in association with each other.
  • the inverter device 3 includes an IPM (Intelligent Power Module) 31 and an inverter control unit 32.
  • the IPM 31 generates three-phase AC power from DC power based on control by the inverter control unit 32.
  • the IPM 31 supplies the generated three-phase AC power to the motor.
  • the IPM 31 is, for example, a bridge circuit including six switching elements.
  • the inverter control unit 32 controls the IPM 31. Specifically, inverter control unit 32 causes IPM 31 to generate three-phase AC power from DC power. For example, when the IPM 31 is a bridge circuit including six switching elements, the inverter control unit 32 switches between a period in which each of the six switching elements is turned on and a period in which the six switching elements are turned off. , The IPM 31 generates three-phase AC power from DC power.
  • the input current specifying unit 22 detects an input current supplied from the AC power supply 4 to the converter device 2 at every cycle that is sufficiently shorter than the cycle of the AC voltage output from the AC power supply 4.
  • the input current specifying unit 22 gives the current value of the detected input current to the converter control unit 24.
  • the zero-crossing detector 23 detects the zero-crossing point of the voltage output from the AC power supply 4.
  • the zero-cross detection unit 23 generates a zero-cross signal including information on a zero-cross point.
  • the zero-cross detector 23 outputs a zero-cross signal to the converter controller 24.
  • the reference specifying unit 241 acquires a zero-cross signal from the zero-cross detection unit 23 (Step S1).
  • the reference specifying unit 241 specifies a reference timing indicated by the acquired zero-cross signal (Step S2).
  • the reference specifying unit 241 outputs the specified reference timing to the control signal generation unit 243.
  • the input current acquisition unit 242 acquires the current value of the input current from the input current identification unit 22 for each input current detection timing of the input current identification unit 22 (step S3).
  • the input current acquisition unit 242 outputs the acquired current value to the control signal generation unit 243.
  • the control signal generation unit 243 acquires the reference timing from the reference identification unit 241. Further, the control signal generation unit 243 acquires the current value of the input current from the input current acquisition unit 242. The control signal generation unit 243 sets the phase at the reference timing acquired from the reference identification unit 241 as the reference 0 degree of the phase ⁇ (Step S4). The control signal generation unit 243 turns on the switching element (the switching element 214 or 215) that is controlled to be in the off state from the phase 0 to 180 degrees in the third period from the phase 0 to 180 degrees. The first control signal to be set is specified (Step S5).
  • the control signal generation unit 243 sets a current threshold value larger than the noise (for example, as shown in FIG. 4) so that the noise when the current value of the input current is zero is not erroneously detected as the input current.
  • the current threshold value shown is 3 amps).
  • the control signal generation unit 243 sets the current value of the acquired input current every time the current value of the input current is acquired from the input current identification unit 22 in each half cycle, with the half cycle as one period based on the phase 0 degree. And its current threshold value (Step S5a).
  • the control signal generator 243 determines whether the current value of the input current exceeds the current threshold (Step S5b).
  • step S5c determines whether the target half cycle has ended.
  • the control signal generation unit 243 returns to the process of step S5a.
  • the control signal generation unit 243 sets the switching element to the ON state for a certain first period (for example, period ⁇ 3 shown in FIG. 4). The first control signal for turning on the switching element during the first period is specified (step S5d).
  • control signal generating section 243 When determining that the current value of the input current has exceeded the current threshold value (YES in step S5b), control signal generating section 243 specifies the phase at that time as the phase indicating the start of period ⁇ 1 (step S5e). ). The control signal generator 243 compares the current value of the next input current with the current threshold (step S5f). The control signal generation unit 243 determines whether or not the current value of the input current is equal to or smaller than the current threshold in the comparison result (Step S5g). When the control signal generation unit 243 determines that the current value of the input current is not equal to or smaller than the first current threshold value (NO in step S5g), the process returns to step S5f.
  • control signal generation section 243 specifies the phase at that time as the phase indicating the end of period ⁇ 1 (step S5g). S5h). That is, the control signal generation unit 243 specifies the value of the period ⁇ 1.
  • the control signal generation unit 243 specifies the correction values ⁇ 1 and ⁇ 2 of the phase associated with the value of the specified period ⁇ 1 in the storage unit 244 (Step S5i).
  • the control signal generation unit 243 extends the period ⁇ 1 by the phase ⁇ 1 immediately before and by the phase ⁇ 2 immediately after. That is, the control signal generation unit 243 specifies the period ⁇ 2 (Step S5j).
  • the control signal generator 243 extends the period ⁇ 2 by the phase ⁇ immediately before and immediately after (step S5k), sets the extended period as a third period in which the switching element is turned on, and sets the switching element in the third period.
  • the first control signal to be turned on is specified (step S51).
  • the control signal generation unit 243 delays the phase of the first control signal specified by the processing of step S5d or step S51 by 180 degrees, and switches the first control signal to the switching element (switching element 214 or 215) in the next half cycle. (Step S6). Further, the control signal generation unit 243 converts the second control signal that turns the switching element, which has been controlled to the on state during the phase of 0 to 180 degrees, to the off state for the next half cycle, from the phase of 0 to 180 degrees (Step S7). The control signal generator 243 delays the phase of the specified second control signal by 180 degrees, and outputs the second control signal to the switching element (switching element 215 or 214) during the next half cycle (step S8). ). The control signal generator 243 returns the process to step S1.
  • input current obtaining section 242 obtains a current value of an input current input from AC power supply 4.
  • the control signal generation unit 243 determines whether the current value of the input current is equal to or less than a predetermined current value.
  • the control signal generation unit 243 determines the current value for a half cycle of the AC voltage output from the AC power supply 4. A first period, which is a fixed period in which the input current having a value is expected to flow, is specified.
  • the control signal generating unit 243 (an example of a control signal specifying unit) specifies a control signal for turning on the switching element based on the first period. By doing so, the converter device 2 of the motor drive device 1 can perform synchronous rectification even during a period in which the input current is a relatively small current value equal to or less than the predetermined current value.
  • the predetermined current value can be set to an arbitrary current value as long as noise is not erroneously detected.
  • the converter device 2 reliably improves the efficiency by the voltage drop due to the forward voltage of the diode as compared with a rectifier circuit that does not perform synchronous rectification. Can be. Therefore, when synchronous rectification control is performed in converter device 2, regardless of the magnitude of the input current of converter device 2, efficiency can be improved even when the magnitude of the input current is relatively small.
  • the control signal generator 243 controls the switching element 214 or 215 to be turned off every half cycle from the reference timing.
  • the control signal generation unit 243 instead of controlling the switching element 214 or 215 to be in the OFF state every half cycle from the reference timing, the control signal generation unit 243 outputs the input current from the AC power supply 4.
  • a PAM (Pulse Amplitude Modulation) control signal as shown in FIG. 7 is used so as to approach the cycle of the AC voltage and approximate a sine wave (that is, to reduce the harmonic distortion to a desired distortion rate or less).
  • the PAM control may be performed.
  • the control signal generation unit 243 may use a PWM (Pulse Width Modulation) generation technique of generating a PAM control signal according to the input current.
  • PWM Pulse Width Modulation
  • the input current changes from the waveform shown by the solid line in FIG. 7 to, for example, the waveform shown by the broken line in FIG.
  • the distortion rate is improved. Note that the extension of the input current to the third period immediately before the detected second period is limited to the beginning of the half period. The extension of the input current to the third period immediately after the detected second period is limited to the end of the half cycle.
  • the control signal generation unit 243 switches from the second period in which the input current is detected to the third cycle. Do not extend the period.
  • the bridge circuit 200 has been described as including the first circuit 212 including the diode 212a and the second circuit 213 including the diode 213a.
  • the first circuit 212 and the second circuit 213 may be switching elements.
  • the bridge circuit 200 according to the embodiment of the present invention includes the first circuit 212 and the second circuit 213 which are switching elements because diodes, resistors, and capacitors are generally cheaper than switching elements. An effect that it can be realized at lower cost than in another embodiment can be expected.
  • control signal generation unit 243 has been described as specifying the control signal of the next half cycle based on the input current in the immediately preceding half cycle.
  • the control signal generation unit 243 replaces the immediately preceding half cycle with a half cycle before the immediately preceding half cycle (however, there is no sharp change in the input current, that is, the control signal
  • the control signal may be specified based on the input current in an arbitrary half cycle in the past period that was the same as the input current when applying the signal.
  • control signal generator 243 may specify the control signal based on the average current value of the input current in a plurality of past half cycles.
  • the storage unit and other storage devices in each embodiment of the present invention may be provided anywhere as long as appropriate information is transmitted and received.
  • a plurality of storage units and other storage devices may exist in a range where appropriate information is transmitted and received, and may store data in a distributed manner.
  • the order of the processes may be changed within a range where an appropriate process is performed.
  • FIG. 8 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
  • the computer 50 includes a CPU 60, a main memory 70, a storage 80, and an interface 90.
  • each of the above-described converter control unit 24, inverter control unit 32, and other control devices is implemented in a computer 50.
  • each processing unit described above is stored in the storage 80 in the form of a program.
  • the CPU 60 reads the program from the storage 80, expands the program in the main memory 70, and executes the above-described processing according to the program. Further, the CPU 60 secures a storage area corresponding to each of the above-described storage units in the main memory 70 according to a program.
  • Examples of the storage 80 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Documentary Discrete Memory). And a semiconductor memory.
  • the storage 80 may be an internal medium directly connected to the bus of the computer 50, or may be an external medium connected to the computer 50 via the interface 90 or a communication line. When the program is distributed to the computer 50 via a communication line, the computer 50 that has received the program may load the program into the main memory 70 and execute the above-described processing.
  • storage 80 is a non-transitory tangible storage medium.
  • the program may implement a part of the functions described above. Further, the program may be a file that can realize the above-described functions in combination with a program already recorded in the computer system, that is, a so-called difference file (difference program).
  • difference file difference program
  • the control signal specifying method, and the program according to the embodiment of the present invention when performing synchronous rectification control in the converter device, efficiency can be improved regardless of the magnitude of the input current of the converter device.

Abstract

A converter device comprises: an input current acquisition unit that acquires a current value of an input current inputted from an AC power source; an input current determination unit that determines whether or not the current value of the input current is equal to or less than a predetermined current value; a first period specifying unit that, when the input current determination unit determines that the current value of the input current is equal to or less than a predetermined current value, specifies a first period, which is a constant period in which the input current of said current value is expected to flow, with respect to a half cycle of an AC voltage output from the AC power source; and a control signal specifying unit that specifies a control signal for turning on a switching element based on the first period.

Description

コンバータ装置、制御信号特定方法及びプログラムConverter device, control signal specifying method, and program
 本発明は、コンバータ装置、制御信号特定方法及びプログラムに関する。
 本願は、2018年7月13日に日本に出願された特願2018-133125号について優先権を主張し、その内容をここに援用する。
The present invention relates to a converter device, a control signal specifying method, and a program.
This application claims the priority of Japanese Patent Application No. 2018-133125 filed on July 13, 2018, the contents of which are incorporated herein by reference.
 コンバータ装置は、交流電力を直流電力に変換する装置である。コンバータ装置では、交流電力を直流電力に変換するときの変換効率の向上が求められている。
 特許文献1には、関連する技術として、コンバータ装置の入力電流が流れている期間のごく一部においてもMOSトランジスタをオン状態にして、効率を改善する同期整流制御に関する技術が記載されている。
The converter device is a device that converts AC power into DC power. The converter device is required to improve conversion efficiency when converting AC power to DC power.
Patent Literature 1 discloses, as a related technique, a technique relating to synchronous rectification control for improving efficiency by turning on a MOS transistor even during a part of a period during which an input current of a converter device flows.
特開2018-007328号公報JP 2018-007328 A
 ところで、コンバータ装置において同期整流制御を行う場合、コンバータ装置の入力電流の大きさに関わらず(すなわち、入力電流が大きい場合であっても、比較的小さい場合であっても)、効率を向上させることのできる技術が求められる。 By the way, when synchronous rectification control is performed in the converter device, the efficiency is improved regardless of the magnitude of the input current of the converter device (that is, whether the input current is large or relatively small). Technology that can do it is required.
 本発明は、上記の課題を解決することのできるコンバータ装置、制御信号特定方法及びプログラムを提供することを目的としている。 The object of the present invention is to provide a converter device, a control signal specifying method, and a program that can solve the above-mentioned problems.
 本発明の第1の態様によれば、コンバータ装置は、交流電源から入力される入力電流の電流値を取得する入力電流取得部と、前記入力電流の電流値が所定の電流値以下であるか否かを判定する入力電流判定部と、前記入力電流判定部が前記入力電流の電流値が所定の電流値以下であると判定した場合、前記交流電源から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定する第1期間特定部と、前記第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定する制御信号特定部と、を備える。 According to the first aspect of the present invention, the converter device has an input current acquisition unit that acquires a current value of an input current input from an AC power supply, and whether the current value of the input current is equal to or less than a predetermined current value An input current determination unit that determines whether or not, when the input current determination unit determines that the current value of the input current is equal to or less than a predetermined current value, for a half cycle of the AC voltage output from the AC power supply, A first period specifying unit that specifies a first period that is a certain period in which the input current of the current value is expected to flow, and a control that specifies a control signal that turns on the switching element based on the first period A signal specifying unit.
 本発明の第2の態様によれば、第1の態様におけるコンバータ装置は、前記入力電流判定部が前記入力電流の電流値が所定の電流値を超えると判定した場合、前記入力電流の電流値に基づいて、前記交流電源から出力される交流電圧の半周期について、前記入力電流が流れ始める第1タイミングから流れなくなる第2タイミングまでの第2期間を特定する第2期間特定部と、前記第1タイミングの直前または前記第2タイミングの直後の少なくとも一方に延長したときの延長した期間と、前記第2期間との総和である第3期間を特定する第3期間特定部と、を備え、前記制御信号特定部は、前記第1期間または前記第3期間に基づいて、スイッチング素子をオン状態にする制御信号を特定するものであってもよい。 According to a second aspect of the present invention, in the converter device according to the first aspect, when the input current determination unit determines that the current value of the input current exceeds a predetermined current value, the current value of the input current A second period specifying unit that specifies a second period from a first timing at which the input current starts flowing to a second timing at which the input current stops flowing, for a half cycle of the AC voltage output from the AC power supply, based on A third period specifying unit that specifies a third period that is a sum of an extended period when extending to at least one of immediately before one timing or immediately after the second timing, and a third period that is a sum of the second period; The control signal specifying unit may specify a control signal for turning on a switching element based on the first period or the third period.
 本発明の第3の態様によれば、第2の態様におけるコンバータ装置において、前記第3期間は、前記半周期内にあってもよい。 According to a third aspect of the present invention, in the converter device according to the second aspect, the third period may be within the half cycle.
 本発明の第4の態様によれば、第1の態様から第3の態様の何れか1つにおけるコンバータ装置は、2つのスイッチング素子を有し、前記交流電源の出力する電力を整流するブリッジ回路と、前記制御信号を適用する前記半周期において、前記2つのスイッチング素子の一方へ前記制御信号を出力する制御信号出力部と、を備えるものであってもよい。 According to a fourth aspect of the present invention, the converter device according to any one of the first to third aspects has two switching elements, and rectifies the power output from the AC power supply. And a control signal output unit that outputs the control signal to one of the two switching elements in the half cycle in which the control signal is applied.
 本発明の第5の態様によれば、第1の態様から第4の態様の何れか1つにおけるコンバータ装置において、前記入力電流の電流値は、前記制御信号が適用される半周期より前の半周期における入力電流の電流値であってもよい。 According to a fifth aspect of the present invention, in the converter device according to any one of the first to fourth aspects, the current value of the input current is less than a half cycle before the control signal is applied. The current value of the input current in a half cycle may be used.
 本発明の第6の態様によれば、第5の態様におけるコンバータ装置において、前記入力電流の電流値は、前記制御信号が適用される半周期の直前の半周期における入力電流の電流値であってもよい。 According to a sixth aspect of the present invention, in the converter device according to the fifth aspect, the current value of the input current is a current value of the input current in a half cycle immediately before a half cycle to which the control signal is applied. You may.
 本発明の第7の態様によれば、第1の態様から第4の態様の何れか1つにおけるコンバータ装置において、前記入力電流の電流値は、過去の複数の半周期における入力電流の電流値の平均値であってもよい。 According to a seventh aspect of the present invention, in the converter device according to any one of the first to fourth aspects, the current value of the input current is the current value of the input current in a plurality of past half cycles. May be the average value.
 本発明の第8の態様によれば、第1の態様から第7の態様の何れか1つにおけるコンバータ装置は、前記交流電圧のゼロクロス点を検出するゼロクロス検出部と、前記ゼロクロス点に基づいて前記半周期の基準となるタイミングを特定する基準特定部と、を備えるものであってもよい。 According to an eighth aspect of the present invention, the converter device according to any one of the first to seventh aspects includes a zero-crossing detector that detects a zero-crossing point of the AC voltage, and a converter based on the zero-crossing point. A reference specifying unit that specifies a reference timing of the half cycle.
 本発明の第9の態様によれば、第1の態様から第8の態様の何れか1つにおけるコンバータ装置は、前記入力電流に係る物理量に基づいて前記入力電流の電流値を特定する入力電流特定部、を備え、前記入力電流取得部は、前記入力電流特定部が特定した前記電流値を取得するものであってもよい。 According to a ninth aspect of the present invention, the converter device according to any one of the first to eighth aspects further comprises an input current that specifies a current value of the input current based on a physical quantity related to the input current. An input current obtaining unit configured to obtain the current value specified by the input current specifying unit.
 本発明の第10の態様によれば、制御信号特定方法は、交流電源から入力される入力電流の電流値を取得することと、前記入力電流の電流値が所定の電流値以下であるか否かを判定することと、前記入力電流の電流値が所定の電流値以下であると判定した場合、前記交流電源から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定することと、前記第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定することと、を含む。 According to a tenth aspect of the present invention, a control signal specifying method includes obtaining a current value of an input current input from an AC power supply, and determining whether the current value of the input current is equal to or less than a predetermined current value. And determining that the current value of the input current is equal to or less than a predetermined current value, it is expected that the input current of the current value flows for a half cycle of the AC voltage output from the AC power supply. Specifying a first period, which is a predetermined period, and specifying a control signal for turning on the switching element based on the first period.
 本発明の第11の態様によれば、プログラムは、コンピュータに、交流電源から入力される入力電流の電流値を取得することと、前記入力電流の電流値が所定の電流値以下であるか否かを判定することと、前記入力電流の電流値が所定の電流値以下であると判定した場合、前記交流電源から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定することと、前記第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定することと、を実行させる。 According to an eleventh aspect of the present invention, the program obtains a current value of an input current input from an AC power supply, and determines whether the current value of the input current is equal to or less than a predetermined current value. And determining that the current value of the input current is equal to or less than a predetermined current value, it is expected that the input current of the current value flows for a half cycle of the AC voltage output from the AC power supply. Specifying a first period, which is a predetermined period, and specifying a control signal for turning on the switching element based on the first period.
 本発明の実施形態によるコンバータ装置、制御信号特定方法及びプログラムによれば、コンバータ装置において同期整流制御を行う場合、コンバータ装置の入力電流の大きさに関わらず効率を向上させることができる。 According to the converter device, the control signal specifying method, and the program according to the embodiment of the present invention, when performing synchronous rectification control in the converter device, efficiency can be improved regardless of the magnitude of the input current of the converter device.
本発明の一実施形態によるモータ駆動装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a motor drive device according to an embodiment of the present invention. 本発明の一実施形態における電源電圧、入力電流、制御信号の一例を示す図である。FIG. 3 is a diagram illustrating an example of a power supply voltage, an input current, and a control signal according to an embodiment of the present invention. 本発明の一実施形態によるコンバータ制御部の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a converter control unit according to an embodiment of the present invention. 本発明の一実施形態におけるスイッチング素子をオン状態にする期間を説明するための図である。FIG. 4 is a diagram for explaining a period during which a switching element is turned on in one embodiment of the present invention. 本発明の一実施形態による制御信号生成部の構成の一例を示す図である。FIG. 3 is a diagram illustrating an example of a configuration of a control signal generation unit according to an embodiment of the present invention. 本発明の一実施形態によるコンバータ制御部の処理フローを示す図である。FIG. 4 is a diagram illustrating a processing flow of a converter control unit according to an embodiment of the present invention. 本発明の別の実施形態における電源電圧、入力電流、制御信号の一例を示す図である。FIG. 9 is a diagram illustrating an example of a power supply voltage, an input current, and a control signal according to another embodiment of the present invention. 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。FIG. 2 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
<実施形態>
 以下、図面を参照しながら実施形態について詳しく説明する。
 本発明の一実施形態によるモータ駆動装置について説明する。
 図1は、本発明の一実施形態によるモータ駆動装置1の構成を示す図である。モータ駆動装置1は、図1に示すように、コンバータ装置2、インバータ装置3、を備える。
 コンバータ装置2の第1端子は、交流電源4の第1端子に接続される。コンバータ装置2の第2端子は、交流電源4の第2端子に接続される。コンバータ装置2の第3端子は、インバータ装置3の第1端子に接続される。コンバータ装置2の第4端子は、インバータ装置3の第2端子に接続される。インバータ装置3の第3端子は、モータ5の第1端子に接続される。インバータ装置3の第4端子は、モータ5の第2端子に接続される。インバータ装置3の第5端子は、モータ5の第3端子に接続される。モータ駆動装置1は、交流電源4からの交流電力をコンバータ装置2によって直流電力に変換し、その直流電力をインバータ装置3によって三相交流電力に変換してモータ5に出力する装置である。
<Embodiment>
Hereinafter, embodiments will be described in detail with reference to the drawings.
A motor driving device according to an embodiment of the present invention will be described.
FIG. 1 is a diagram showing a configuration of a motor drive device 1 according to one embodiment of the present invention. The motor drive device 1 includes a converter device 2 and an inverter device 3, as shown in FIG.
A first terminal of converter device 2 is connected to a first terminal of AC power supply 4. A second terminal of converter device 2 is connected to a second terminal of AC power supply 4. The third terminal of converter device 2 is connected to the first terminal of inverter device 3. The fourth terminal of converter device 2 is connected to the second terminal of inverter device 3. The third terminal of the inverter device 3 is connected to the first terminal of the motor 5. The fourth terminal of the inverter device 3 is connected to the second terminal of the motor 5. The fifth terminal of the inverter device 3 is connected to the third terminal of the motor 5. The motor driving device 1 is a device that converts AC power from an AC power supply 4 into DC power by a converter device 2, converts the DC power into three-phase AC power by an inverter device 3, and outputs the three-phase AC power to a motor 5.
 交流電源4は、単相の交流電力をコンバータ装置2に供給する。交流電源4は、例えば、図2において電源電圧と記載されている電圧と、図2において入力電流と記載されている電流とをコンバータ装置2に供給する。
 モータ5は、インバータ装置3から供給される三相交流電力に応じて回転する。モータ5は、例えば、空気調和機に用いられる圧縮機モータである。
The AC power supply 4 supplies single-phase AC power to the converter device 2. The AC power supply 4 supplies, for example, a voltage described as a power supply voltage in FIG. 2 and a current described as an input current in FIG.
The motor 5 rotates according to the three-phase AC power supplied from the inverter device 3. The motor 5 is, for example, a compressor motor used in an air conditioner.
 コンバータ装置2は、図1に示すように、整流回路21、入力電流特定部22、ゼロクロス検出部23、コンバータ制御部24を備える。整流回路21は、図1に示すように、ブリッジ回路200、リアクタ211、コンデンサ216を備える。ブリッジ回路200は、ダイオード212a、213a、コンデンサ212b、213b、抵抗212c、213c、スイッチング素子214、215を備える。
 コンバータ装置2は、交流電源4から供給される入力電流が所定の電流値以下である場合にその入力電流が流れると予想した期間の少なくとも一部を含む一定の第1期間にスイッチング素子214または215に電流を流し、入力電流が所定の電流値と超える場合にその入力電流の流れる第2期間と、その第2期間の直前及び直後の少なくとも一方へ延びた期間との総和である第3期間において、スイッチング素子214または215に電流を流すこと(すなわち、同期整流制御を行うこと)により、交流電源4からの交流電力を効率よく直流電力に変換する装置である。コンバータ装置2は、その直流電力をインバータ装置3に出力する。
The converter device 2 includes a rectifier circuit 21, an input current identification unit 22, a zero-cross detection unit 23, and a converter control unit 24, as shown in FIG. The rectifier circuit 21 includes a bridge circuit 200, a reactor 211, and a capacitor 216, as shown in FIG. The bridge circuit 200 includes diodes 212a and 213a, capacitors 212b and 213b, resistors 212c and 213c, and switching elements 214 and 215.
Converter device 2 performs switching element 214 or 215 during a certain first period including at least a part of a period in which the input current is expected to flow when the input current supplied from AC power supply 4 is equal to or less than a predetermined current value. And when the input current exceeds a predetermined current value, in a third period which is the sum of a second period in which the input current flows and a period extending to at least one of immediately before and immediately after the second period. This is a device that efficiently converts AC power from the AC power supply 4 to DC power by flowing a current through the switching element 214 or 215 (that is, performing synchronous rectification control). Converter device 2 outputs the DC power to inverter device 3.
 整流回路21において、リアクタ211の第1端子は、ダイオード212aのアノード、抵抗212cの第1端子、スイッチング素子214の第1端子それぞれに接続される。ダイオード212aのカソードは、コンデンサ212bの第1端子、ダイオード213aのカソード、コンデンサ213bの第1端子、コンデンサ216の第1端子それぞれに接続される。コンデンサ212bの第2端子は、抵抗213cの第2端子に接続される。ダイオード213aのアノードは、抵抗213cの第1端子、スイッチング素子215の第1端子それぞれに接続される。スイッチング素子214の第2端子は、スイッチング素子215の第2端子、コンデンサ216の第2端子それぞれに接続される。リアクタ211の第2端子は、整流回路21の第1端子に接続される。ダイオード213aのアノードは、整流回路21の第2端子に接続される。ダイオード212aのカソードは、整流回路21の第3端子に接続される。スイッチング素子214の第2端子は、整流回路21の第4端子に接続される。スイッチング素子214の第3端子は、整流回路21の第5端子に接続される。スイッチング素子215の第3端子は、整流回路21の第6端子に接続される。
 なお、ダイオード212a、コンデンサ212b、抵抗212cから成る回路を第1回路212と呼ぶ。また、ダイオード213a、コンデンサ213b、抵抗213cから成る回路を第2回路213と呼ぶ。
In the rectifier circuit 21, the first terminal of the reactor 211 is connected to the anode of the diode 212a, the first terminal of the resistor 212c, and the first terminal of the switching element 214, respectively. The cathode of the diode 212a is connected to the first terminal of the capacitor 212b, the cathode of the diode 213a, the first terminal of the capacitor 213b, and the first terminal of the capacitor 216, respectively. A second terminal of the capacitor 212b is connected to a second terminal of the resistor 213c. The anode of the diode 213a is connected to the first terminal of the resistor 213c and the first terminal of the switching element 215, respectively. The second terminal of the switching element 214 is connected to the second terminal of the switching element 215 and the second terminal of the capacitor 216, respectively. The second terminal of the reactor 211 is connected to the first terminal of the rectifier circuit 21. The anode of the diode 213a is connected to the second terminal of the rectifier circuit 21. The cathode of the diode 212a is connected to the third terminal of the rectifier circuit 21. The second terminal of the switching element 214 is connected to the fourth terminal of the rectifier circuit 21. The third terminal of the switching element 214 is connected to the fifth terminal of the rectifier circuit 21. The third terminal of the switching element 215 is connected to the sixth terminal of the rectifier circuit 21.
Note that a circuit including the diode 212a, the capacitor 212b, and the resistor 212c is referred to as a first circuit 212. A circuit including the diode 213a, the capacitor 213b, and the resistor 213c is referred to as a second circuit 213.
 整流回路21の第1端子は、入力電流特定部22の第1端子、ゼロクロス検出部23の第1端子それぞれに接続される。整流回路21の第2端子は、ゼロクロス検出部23の第2端子に接続される。整流回路21の第5端子は、コンバータ制御部24の第1端子に接続される。整流回路21の第6端子は、コンバータ制御部24の第2端子に接続される。入力電流特定部22の第2端子は、コンバータ制御部24の第3端子に接続される。ゼロクロス検出部23の第3端子は、コンバータ制御部24の第4端子に接続される。
 整流回路21の第1端子は、コンバータ装置2の第1端子に接続される。整流回路21の第2端子は、コンバータ装置2の第2端子に接続される。整流回路21の第3端子は、コンバータ装置2の第3端子に接続される。整流回路21の第4端子は、コンバータ装置2の第4端子に接続される。
The first terminal of the rectifier circuit 21 is connected to the first terminal of the input current specifying unit 22 and the first terminal of the zero-cross detecting unit 23, respectively. A second terminal of the rectifier circuit 21 is connected to a second terminal of the zero-cross detector 23. The fifth terminal of the rectifier circuit 21 is connected to the first terminal of the converter control unit 24. A sixth terminal of the rectifier circuit 21 is connected to a second terminal of the converter control unit 24. A second terminal of the input current specifying unit 22 is connected to a third terminal of the converter control unit 24. A third terminal of the zero-crossing detector 23 is connected to a fourth terminal of the converter controller 24.
The first terminal of the rectifier circuit 21 is connected to the first terminal of the converter device 2. The second terminal of the rectifier circuit 21 is connected to the second terminal of the converter device 2. The third terminal of the rectifier circuit 21 is connected to the third terminal of the converter device 2. The fourth terminal of the rectifier circuit 21 is connected to the fourth terminal of the converter device 2.
 リアクタ211は、昇圧動作を実現するために設けられるリアクタである。
 ブリッジ回路200は、コンバータ制御部24による制御に基づいて、交流電力を直流電力に整流する。スイッチング素子214、215それぞれは、例えば、スーパージャンクションMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等である。図1は、スイッチング素子214、215それぞれがスーパージャンクションMOSFETである場合の例を示している。スイッチング素子214、215それぞれがスーパージャンクションMOSFETである場合、スイッチング素子214、215それぞれにおいて、第1端子はドレインであり、第2端子はソースであり、第3端子はゲートである。スイッチング素子214は、図1に示すように、トランジスタ部214a、ソース-ドレイン間の寄生ダイオード214bを有する。また、スイッチング素子215は、図1に示すように、トランジスタ部215a、ソース-ドレイン間の寄生ダイオード215bを有する。
Reactor 211 is a reactor provided to realize a boost operation.
The bridge circuit 200 rectifies AC power to DC power based on the control of the converter control unit 24. Each of the switching elements 214 and 215 is, for example, a super-junction MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor), an IGBT (Insulated Gate Bipolar Transistor), or the like. FIG. 1 shows an example in which each of the switching elements 214 and 215 is a super junction MOSFET. When each of the switching elements 214 and 215 is a super junction MOSFET, in each of the switching elements 214 and 215, the first terminal is a drain, the second terminal is a source, and the third terminal is a gate. As shown in FIG. 1, the switching element 214 has a transistor part 214a and a parasitic diode 214b between the source and the drain. Further, as shown in FIG. 1, the switching element 215 has a transistor portion 215a and a parasitic diode 215b between the source and the drain.
 コンデンサ216は、ブリッジ回路200の出力する直流電力を平滑化するコンデンサである。コンデンサ216によって、電圧値の変動の少ない直流電圧がコンバータ装置2からインバータ装置3へ供給される。コンデンサ216は、例えば、電解コンデンサである。 The capacitor 216 is a capacitor for smoothing the DC power output from the bridge circuit 200. By the capacitor 216, a DC voltage with a small fluctuation in the voltage value is supplied from the converter device 2 to the inverter device 3. The capacitor 216 is, for example, an electrolytic capacitor.
 入力電流特定部22は、交流電源4からコンバータ装置2へ供給される入力電流の電流値を、交流電源4が出力する交流電圧の周期よりも充分に短い周期ごとに特定する。例えば、入力電流特定部22は、交流電源4とコンバータ装置2との間に設けられた電流センサを含み、その電流センサの読み取った入力電流の電流値(入力電流に係る物理量の一例)を特定する。また、例えば、入力電流特定部22は、交流電源4とコンバータ装置2との間に設けられたシャント抵抗を含み、そのシャント抵抗の両端の電位差(入力電流に係る物理量の一例)を抵抗値で除算して電流値を特定するものであってもよい。
 入力電流特定部22は、検出した入力電流の電流値をコンバータ制御部24に与える。
The input current specifying unit 22 specifies the current value of the input current supplied from the AC power supply 4 to the converter device 2 for each cycle sufficiently shorter than the cycle of the AC voltage output from the AC power supply 4. For example, the input current specifying unit 22 includes a current sensor provided between the AC power supply 4 and the converter device 2, and specifies a current value (an example of a physical quantity related to the input current) of the input current read by the current sensor. I do. In addition, for example, the input current specifying unit 22 includes a shunt resistor provided between the AC power supply 4 and the converter device 2, and the potential difference between both ends of the shunt resistor (an example of a physical quantity related to the input current) is represented by a resistance value. The current value may be specified by division.
The input current specifying unit 22 gives the current value of the detected input current to the converter control unit 24.
 ゼロクロス検出部23は、交流電源4が出力する電圧のゼロクロス点を検出する。ゼロクロス点は、交流電源4が出力する電圧がゼロボルトを交差するタイミングを示し、そのタイミングがモータ駆動装置1の処理において基準のタイミングとなる。ゼロクロス検出部23は、ゼロクロス点の情報を含むゼロクロス信号を生成する。ゼロクロス検出部23は、ゼロクロス信号をコンバータ制御部24に出力する。 The zero-crossing detector 23 detects the zero-crossing point of the voltage output from the AC power supply 4. The zero-cross point indicates a timing at which the voltage output from the AC power supply 4 crosses zero volts, and the timing becomes a reference timing in the processing of the motor driving device 1. The zero-cross detection unit 23 generates a zero-cross signal including information on a zero-cross point. The zero-cross detector 23 outputs a zero-cross signal to the converter controller 24.
 コンバータ制御部24は、入力電流特定部22から入力電流の情報を受ける。コンバータ制御部24は、スイッチング素子214、215それぞれのオン状態となる期間とオフ状態となる期間とを制御する。
 コンバータ制御部24は、スイッチング素子214、215の両方を同時にオン状態にすることはなく、スイッチング素子214、215の両方をオフ状態にし、または、スイッチング素子214をオフ状態かつスイッチング素子215をオン状態にする。また、コンバータ制御部24は、交流電源4の第1端子の電位が第2端子の電位よりも低い場合、スイッチング素子214、215の両方を同時にオン状態にすることはなく、スイッチング素子214、215の両方をオフ状態にし、または、スイッチング素子214をオン状態かつスイッチング素子215をオフ状態にする。
Converter control unit 24 receives input current information from input current specifying unit 22. The converter control unit 24 controls a period during which each of the switching elements 214 and 215 is turned on and a period during which the switching elements 214 and 215 are turned off.
The converter control unit 24 does not turn on both the switching elements 214 and 215 at the same time, turns off both the switching elements 214 and 215, or turns off the switching element 214 and turns on the switching element 215. To When the potential of the first terminal of the AC power supply 4 is lower than the potential of the second terminal, the converter control unit 24 does not turn on both of the switching elements 214 and 215 at the same time. Are turned off, or the switching element 214 is turned on and the switching element 215 is turned off.
 例えば、スイッチング素子214、215それぞれがスーパージャンクションMOSFETであり、交流電源4の第1端子の電位が第2端子の電位よりも高く、コンバータ制御部24がスイッチング素子214、215の両方をオフ状態にした場合(条件1の場合)、交流電源4の第1端子からリアクタ211、第1回路212、コンデンサ216、寄生ダイオード215b、交流電源4の第2端子へと電流が流れて、コンデンサ216が充電される。
 また、例えば、スイッチング素子214、215それぞれがスーパージャンクションMOSFETであり、交流電源4の第1端子の電位が第2端子の電位よりも高く、スイッチング素子214がオフ状態かつスイッチング素子215がオン状態である場合(条件2の場合)、交流電源4の第1端子からリアクタ211、第1回路212、コンデンサ216、トランジスタ部215a、交流電源4の第2端子へと電流が流れて、コンデンサ216が充電される。
 なお、条件2の場合においてトランジスタ部215aのソース-ドレイン間電圧はほぼゼロであるのに対して、条件1の場合における寄生ダイオード215bでは順方向電圧分の電圧降下が生じる。そのため、コンバータ制御部24は、交流電源4の第1端子からコンバータ装置2に電流を供給する場合には、スイッチング素子215をオフ状態にして寄生ダイオード215bに電流を流すよりも、スイッチング素子215をオン状態にしてトランジスタ部215aに電流を流した方が寄生ダイオード215bによる順方向電圧の分だけ効率をよくすることができる。
For example, each of the switching elements 214 and 215 is a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is higher than the potential of the second terminal, and the converter control unit 24 turns off both the switching elements 214 and 215. In this case (condition 1), current flows from the first terminal of the AC power supply 4 to the reactor 211, the first circuit 212, the capacitor 216, the parasitic diode 215b, and the second terminal of the AC power supply 4, and the capacitor 216 is charged. Is done.
Further, for example, each of the switching elements 214 and 215 is a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is higher than the potential of the second terminal, and the switching element 214 is off and the switching element 215 is on. In some cases (condition 2), current flows from the first terminal of the AC power supply 4 to the reactor 211, the first circuit 212, the capacitor 216, the transistor unit 215a, and the second terminal of the AC power supply 4, and the capacitor 216 is charged. Is done.
In the case of the condition 2, the voltage between the source and the drain of the transistor portion 215a is almost zero, whereas in the case of the condition 1, a voltage drop of a forward voltage occurs in the parasitic diode 215b. Therefore, when supplying current to converter device 2 from the first terminal of AC power supply 4, converter control unit 24 sets switching element 215 to a lower state than switching switching element 215 to an off state and flowing current to parasitic diode 215 b. When the transistor is turned on and a current flows through the transistor portion 215a, the efficiency can be improved by the amount of the forward voltage generated by the parasitic diode 215b.
 また、スイッチング素子214、215それぞれがスーパージャンクションMOSFETであり、交流電源4の第1端子の電位が第2端子の電位よりも低く、コンバータ制御部24がスイッチング素子214、215の両方をオフ状態にした場合(条件3の場合)、交流電源4の第2端子から第2回路213、コンデンサ216、寄生ダイオード214b、リアクタ211、交流電源4の第1端子へと電流が流れて、コンデンサ216が充電される。
 また、スイッチング素子214、215それぞれがスーパージャンクションMOSFETであり、交流電源4の第1端子の電位が第2端子の電位よりも低く、スイッチング素子214がオン状態かつスイッチング素子215がオフ状態である場合(条件4の場合)、交流電源4の第2端子から第2回路213、コンデンサ216、トランジスタ部214a、リアクタ211、交流電源4の第1端子へと電流が流れて、コンデンサ216が充電される。
 なお、条件4の場合においてトランジスタ部214aのソース-ドレイン間電圧はほぼゼロであるのに対して、条件3の場合における寄生ダイオード214bでは順方向電圧分の電圧降下が生じる。そのため、コンバータ制御部24は、交流電源4の第2端子からコンバータ装置2に電流を供給する場合には、スイッチング素子214をオフ状態にして寄生ダイオード214bに電流を流すよりも、スイッチング素子214をオン状態にしてトランジスタ部214aに電流を流した方が寄生ダイオード214bによる順方向電圧の分だけ効率をよくすることができる。
Further, each of the switching elements 214 and 215 is a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is lower than the potential of the second terminal, and the converter control unit 24 turns off both the switching elements 214 and 215. In this case (condition 3), current flows from the second terminal of the AC power supply 4 to the second circuit 213, the capacitor 216, the parasitic diode 214b, the reactor 211, and the first terminal of the AC power supply 4, and the capacitor 216 is charged. Is done.
When the switching elements 214 and 215 are each a super junction MOSFET, the potential of the first terminal of the AC power supply 4 is lower than the potential of the second terminal, and the switching element 214 is on and the switching element 215 is off. (In the case of condition 4), current flows from the second terminal of the AC power supply 4 to the second circuit 213, the capacitor 216, the transistor unit 214a, the reactor 211, and the first terminal of the AC power supply 4, and the capacitor 216 is charged. .
In the case of the condition 4, the voltage between the source and the drain of the transistor unit 214a is almost zero, whereas in the case of the condition 3, a voltage drop of the forward voltage occurs in the parasitic diode 214b. Therefore, when a current is supplied from the second terminal of the AC power supply 4 to the converter device 2, the converter control unit 24 sets the switching element 214 to be OFF rather than flowing the current to the parasitic diode 214 b by turning off the switching element 214. When the current is supplied to the transistor portion 214a in the ON state, the efficiency can be improved by the forward voltage generated by the parasitic diode 214b.
 すなわち、本発明の一実施形態によるコンバータ制御部24は、交流電源4の第1端子からコンバータ装置2に電流を供給する場合に、スイッチング素子215をオフ状態にして寄生ダイオード215bに電流を流すのではなく、スイッチング素子215をオン状態にしてトランジスタ部215aに電流を流すことによって効率をよくする制御部である。また、本発明の一実施形態によるコンバータ制御部24は、交流電源4の第2端子からコンバータ装置2に電流を供給する場合に、スイッチング素子214をオフ状態にして寄生ダイオード214bに電流を流すのではなく、スイッチング素子214をオン状態にしてトランジスタ部214aに電流を流すことによって効率をよくする制御部である。 That is, the converter control unit 24 according to the embodiment of the present invention turns off the switching element 215 to flow the current to the parasitic diode 215b when supplying the current from the first terminal of the AC power supply 4 to the converter device 2. Rather, it is a control unit that improves the efficiency by turning on the switching element 215 and causing a current to flow through the transistor unit 215a. Further, the converter control unit 24 according to the embodiment of the present invention turns off the switching element 214 to flow the current to the parasitic diode 214b when supplying the current to the converter device 2 from the second terminal of the AC power supply 4. Rather, it is a control unit that improves efficiency by turning on the switching element 214 and flowing current to the transistor unit 214a.
 コンバータ制御部24は、図3に示すように、基準特定部241、入力電流取得部242、制御信号生成部243、記憶部244を備える。
 基準特定部241は、基準となるタイミングを特定する。例えば、基準特定部241は、ゼロクロス検出部23からゼロクロス信号を取得する。基準特定部241は、取得したゼロクロス信号の示す基準のタイミングを特定する。基準特定部241は、特定した基準のタイミングを制御信号生成部243に出力する。
The converter control unit 24 includes a reference specifying unit 241, an input current acquisition unit 242, a control signal generation unit 243, and a storage unit 244, as shown in FIG.
The reference specifying unit 241 specifies a reference timing. For example, the reference specifying unit 241 acquires a zero cross signal from the zero cross detection unit 23. The reference specifying unit 241 specifies a reference timing indicated by the acquired zero-cross signal. The reference specifying unit 241 outputs the specified reference timing to the control signal generation unit 243.
 入力電流取得部242は、入力電流特定部22から入力電流の電流値(すなわち、交流電源4からコンバータ装置2へ入力される入力電流の電流値)を、入力電流特定部22の入力電流の検出タイミングごとに取得する。入力電流取得部242は、取得した電流値を制御信号生成部243に出力する。 The input current obtaining unit 242 detects the current value of the input current from the input current specifying unit 22 (that is, the current value of the input current input from the AC power supply 4 to the converter device 2) and detects the input current of the input current specifying unit 22. Acquire at each timing. The input current acquisition unit 242 outputs the acquired current value to the control signal generation unit 243.
 制御信号生成部243は、基準特定部241から基準のタイミングを取得する。また、制御信号生成部243は、入力電流取得部242から入力電流の電流値を取得する。制御信号生成部243は、基準特定部241から取得した基準のタイミングにおける位相を位相θの基準0度とする。そして、制御信号生成部243は、位相θの基準に基づいて、入力電流の実効値を算出する。
 例えば、制御信号生成部243は、位相θの基準からの位相に応じて、入力電流取得部242から取得した入力電流の電流値の積算値を二乗平均して、入力電流の実効値を算出する。
 また、例えば、入力電流特定部22が電流センサ(例えば、カレントトランス)を備える場合には、入力電流は、カレントトランスを介して、ブリッジ回路200で全波整流され、コンデンサ216を充電する。制御信号生成部243は、このコンデンサ216によって平滑された状態の電圧レベルを読み取る。そして、制御信号生成部243は、読み取った電圧値をその電圧値に一対一で関連付けられた電流値に変換することで、入力電流の実効値を算出すればよい。なお、電圧値から電流値へ変換する場合には、電圧値と電流値との対応関係を示す変換テーブルを予め作成して記憶部244に記憶させ、制御信号生成部243が、その変換テーブルを用いて読み取った電圧値を電流の実効値に変換すればよい。
The control signal generation unit 243 acquires the reference timing from the reference identification unit 241. Further, the control signal generation unit 243 acquires the current value of the input current from the input current acquisition unit 242. The control signal generation unit 243 sets the phase at the reference timing acquired from the reference identification unit 241 as the reference 0 degree of the phase θ. Then, the control signal generator 243 calculates the effective value of the input current based on the reference of the phase θ.
For example, the control signal generation unit 243 calculates the effective value of the input current by averaging the integrated value of the current values of the input current acquired from the input current acquisition unit 242 according to the phase of the phase θ from the reference. .
For example, when the input current specifying unit 22 includes a current sensor (for example, a current transformer), the input current is full-wave rectified by the bridge circuit 200 via the current transformer, and charges the capacitor 216. The control signal generator 243 reads the voltage level in a state smoothed by the capacitor 216. Then, the control signal generator 243 may calculate the effective value of the input current by converting the read voltage value into a current value that is associated with the voltage value on a one-to-one basis. When converting from a voltage value to a current value, a conversion table indicating the correspondence between the voltage value and the current value is created in advance and stored in the storage unit 244, and the control signal generation unit 243 reads the conversion table. Then, the read voltage value may be converted into the effective value of the current.
 制御信号生成部243は、算出した入力電流の実効値と、データテーブルTBL1における入力電流の実効値とを比較する。制御信号生成部243は、比較結果に基づいて、算出した入力電流の実効値に最も近い入力電流の実効値を、データテーブルTBL1において特定する。制御信号生成部243は、データテーブルTBL1において、特定した入力電流に関連付けられている位相の調整量を特定する。
 制御信号生成部243は、電源電圧の位相を基準に(すなわち、ゼロクロス点を基準に)特定した位相の調整量だけ位相を調整する。
 そして、制御信号生成部243は、位相を調整した制御信号をスイッチング素子214、215それぞれに出力する。
The control signal generator 243 compares the calculated effective value of the input current with the effective value of the input current in the data table TBL1. The control signal generation unit 243 specifies the effective value of the input current closest to the calculated effective value of the input current in the data table TBL1 based on the comparison result. The control signal generation unit 243 specifies the adjustment amount of the phase associated with the specified input current in the data table TBL1.
The control signal generation unit 243 adjusts the phase by the amount of phase adjustment specified based on the phase of the power supply voltage (that is, based on the zero-cross point).
Then, the control signal generation unit 243 outputs the control signal whose phase has been adjusted to each of the switching elements 214 and 215.
 制御信号生成部243は、交流電源4から供給される入力電流が所定の電流値以下である場合に、その入力電流が流れると予想した期間の少なくとも一部を含む一定の第1期間にスイッチング素子をオン状態にする信号を特定する。また、制御信号生成部243は、入力電流が所定の電流値を超える場合に、位相0度から180度までの間オフ状態に制御されているスイッチング素子(スイッチング素子214または215)を、位相0度から180度までの間に入力電流特定部22が入力電流を検出した第2期間(第2期間において入力電流が流れ始めるタイミングが第1タイミングの一例であり、第2期間において入力電流が流れなくなるタイミングが第2タイミングの一例である)と、その期間の直前及び直後の少なくとも一方に延長した期間との総和である第3期間に、オン状態にする信号を特定する。
 例えば、制御信号生成部243は、入力電流の電流値がゼロである場合のノイズを入力電流として誤検出しないように、ノイズよりも大きい値の電流しきい値(例えば、図4に示す電流しきい値3アンペア)を予め設定する。制御信号生成部243は、入力電流特定部22から入力電流の電流値を取得する度に、取得した入力電流の電流値とその電流しきい値とを比較する。
 制御信号生成部243は、比較結果に基づいて、入力電流の電流値が電流しきい値を超えている期間(例えば、図4に示す期間β1)を特定する。入力電流の電流値が電流しきい値を超えている期間β1の値(期間β1の始まりの位相と終わりの位相との位相差)ごとに、入力電流が流れ始めてから流れ終わるまでの期間(例えば、図4に示す期間β2)、すなわち第2期間を特定するための位相の補正値であるθ1、θ2を関連付けて、例えば、記憶部244が予め記憶する。補正値θ1は、期間を直前へ延長する補正値である。補正値θ2は、期間を直後へ延長する補正値である。制御信号生成部243は、比較結果に基づいて、入力電流の電流値が電流しきい値を超えている期間β1があると判定した場合、その期間β1を直前へθ1延長し直後へθ2延長した期間β2に対して、さらに、直前及び直後の少なくとも一方へαだけ延長した期間(図4に示す例では、期間β2に対して、直前及び直後の両方にそれぞれαを延長した期間)である第3期間を、スイッチング素子をオン状態にする期間と特定する。また、制御信号生成部243は、比較結果に基づいて、入力電流の電流値が電流しきい値を超えている期間β1がないと判定した場合、一定の第1期間(例えば、図4に示す期間β3)を、スイッチング素子をオン状態にする期間と特定する。そして、制御信号生成部243は、特定した期間にスイッチング素子をオン状態にする信号を特定する。
 制御信号生成部243は、特定した信号の位相を180度遅延させて、次の半周期(制御信号を適用する半周期の一例)の制御信号である第1制御信号としてスイッチング素子(スイッチング素子214または215)に出力する。また、制御信号生成部243は、位相0度から180度までの間にオン状態に制御されたスイッチング素子を次の半周期の間オフ状態にする第2制御信号を、その位相0度から180度までの間に特定する。そして、制御信号生成部243は、次の半周期に特定した第2制御信号を、第1制御信号を出力するスイッチング素子とは別のスイッチング素子(スイッチング素子215または214)に出力する。
 なお、入力電流の検出された第2期間を含む第3期間への延長は、その半周期の期間の始まりが限界となる。また、入力電流の検出された第2期間を含む第3期間への延長は、その半周期の期間の終わりが限界となる。
When the input current supplied from the AC power supply 4 is equal to or less than a predetermined current value, the control signal generation unit 243 switches the switching element during a certain first period including at least a part of a period in which the input current is expected to flow. A signal for turning on the switch is specified. In addition, when the input current exceeds a predetermined current value, the control signal generation unit 243 causes the switching element (the switching element 214 or 215) that is controlled to be in the off state from the phase 0 degree to 180 degrees to the phase 0 level. (The timing when the input current starts to flow in the second period is an example of the first timing, and the input current flows in the second period). The signal to be turned on is specified in a third period which is the sum of a period in which the period disappears is an example of a second timing) and a period extended to at least one of immediately before and after the period.
For example, the control signal generation unit 243 may set a current threshold value larger than the noise (for example, the current threshold value shown in FIG. 4) so that the noise when the current value of the input current is zero is not erroneously detected as the input current. (Threshold value 3 amps) is set in advance. Each time the control signal generation unit 243 obtains the current value of the input current from the input current identification unit 22, it compares the obtained current value of the input current with the current threshold value.
The control signal generation unit 243 specifies a period in which the current value of the input current exceeds the current threshold (for example, a period β1 shown in FIG. 4) based on the comparison result. For each value of the period β1 during which the current value of the input current exceeds the current threshold value (the phase difference between the start phase and the end phase of the period β1), the period from when the input current starts flowing until when the input current ends (for example, For example, the storage unit 244 stores in advance a period β2 shown in FIG. 4), that is, θ1 and θ2, which are phase correction values for specifying the second period, in association with each other. The correction value θ1 is a correction value for extending the period immediately before. The correction value θ2 is a correction value for extending the period immediately after. When the control signal generation unit 243 determines that there is a period β1 in which the current value of the input current exceeds the current threshold based on the comparison result, the control unit 243 extends the period β1 by θ1 immediately before and θ2 by immediately after. In the example shown in FIG. 4, the period β2 is a period in which α is extended both immediately before and immediately after the period β2 by at least one of α and the period β2. The three periods are specified as periods during which the switching elements are turned on. In addition, when the control signal generation unit 243 determines that there is no period β1 in which the current value of the input current exceeds the current threshold based on the comparison result, the control signal generation unit 243 performs a certain first period (see, for example, FIG. The period β3) is specified as a period during which the switching element is turned on. Then, the control signal generation unit 243 specifies a signal for turning on the switching element during the specified period.
The control signal generation unit 243 delays the phase of the specified signal by 180 degrees, and uses the switching element (switching element 214) as a first control signal that is a control signal of the next half cycle (an example of a half cycle in which the control signal is applied). Or 215). In addition, the control signal generation unit 243 outputs a second control signal for turning the switching element, which has been controlled to the on state during the phase of 0 to 180 degrees, to the off state for the next half cycle from the phase of 0 to 180 degrees. Identify between degrees. Then, the control signal generation unit 243 outputs the second control signal specified in the next half cycle to a switching element (switching element 215 or 214) different from the switching element that outputs the first control signal.
Note that the extension to the third period including the second period in which the input current is detected is limited at the beginning of the half period. Further, the extension to the third period including the second period in which the input current is detected is limited at the end of the half period.
 例えば、位相0度から180度までの間に制御信号生成部243がスイッチング素子215をオン状態にする制御を行い、入力電流特定部22が図2に示す入力電流を検出した場合、制御信号生成部243は、図2に示す入力電流が正の電流値である期間から前後それぞれに位相α分だけ期間を延ばした信号を特定する。そして、制御信号生成部243は、生成した信号の位相に対して位相180度を加える。すなわち、制御信号生成部243は、特定した信号を次の半周期(位相180度から360度までの期間)におけるスイッチング素子214の制御信号とする。制御信号生成部243は、位相180度から360度までの期間にその制御信号をスイッチング素子214に出力する。また、制御信号生成部243は、スイッチング素子215を、位相180度から360度までの期間オフ状態にする制御信号を特定する。制御信号生成部243は、特定した制御信号を位相180度から360度までの期間にスイッチング素子215に出力する。それ以降、制御信号生成部243は、図2に示す入力電流が負の電流値である期間についても上記処理と同様の処理を行うことで、半周期ごとに第3期間に基づいて次の半周期の制御信号を特定し、特定した制御信号をスイッチング素子214、215それぞれに出力する。
 制御信号生成部243は、入力電流判定部の一例、第1期間特定部の一例、第2期間特定部の一例、第3期間特定部の一例、制御信号特定部の一例、制御信号出力部の一例である。すなわち、制御信号生成部243は、図5に示すように、入力電流判定部、第1期間特定部、第2期間特定部、第3期間特定部、制御信号特定部、制御信号出力部を含む。
For example, when the control signal generation unit 243 performs control to turn on the switching element 215 during the phase from 0 degrees to 180 degrees, and the input current identification unit 22 detects the input current shown in FIG. The unit 243 specifies a signal whose period has been extended by the phase α before and after the period in which the input current shown in FIG. 2 has a positive current value. Then, the control signal generator 243 adds a phase of 180 degrees to the phase of the generated signal. That is, the control signal generation unit 243 sets the specified signal as a control signal for the switching element 214 in the next half cycle (a period from a phase of 180 degrees to a phase of 360 degrees). The control signal generator 243 outputs the control signal to the switching element 214 during a period from 180 degrees to 360 degrees in phase. In addition, the control signal generation unit 243 specifies a control signal that turns off the switching element 215 during a period from 180 degrees to 360 degrees in phase. The control signal generation unit 243 outputs the specified control signal to the switching element 215 during a period from 180 degrees to 360 degrees in phase. Thereafter, the control signal generation unit 243 performs the same process as the above process also during the period in which the input current shown in FIG. 2 is a negative current value, so that the next half cycle is performed based on the third period every half cycle. The control signal of the cycle is specified, and the specified control signal is output to each of the switching elements 214 and 215.
The control signal generation unit 243 includes an example of an input current determination unit, an example of a first period identification unit, an example of a second period identification unit, an example of a third period identification unit, an example of a control signal identification unit, and an example of a control signal output unit. This is an example. That is, as shown in FIG. 5, the control signal generation unit 243 includes an input current determination unit, a first period identification unit, a second period identification unit, a third period identification unit, a control signal identification unit, and a control signal output unit. .
 入力電流判定部は、入力電流の電流値が所定の電流値以下であるか否かを判定する。
 第1期間特定部は、入力電流判定部が入力電流の電流値が所定の電流値以下であると判定した場合、交流電源4から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定する。
 制御信号特定部は、第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定する。
 第2期間特定部は、入力電流判定部が入力電流の電流値が所定の電流値を超えると判定した場合、入力電流の電流値に基づいて、交流電源4から出力される交流電圧の半周期について、入力電流が流れ始める第1タイミングから流れなくなる第2タイミングまでの第2期間を特定する。
 第3期間特定部は、第1タイミングの直前または第2タイミングの直後の少なくとも一方に延長したときの延長した期間と、第2期間との総和である第3期間を特定する。
 制御信号出力部は、制御信号を適用する交流電圧の半周期において、2つのスイッチング素子の一方へ制御信号を出力する。
 なお、制御信号特定部は、第1期間または第3期間に基づいて、スイッチング素子をオン状態にする制御信号を特定するものであってもよい。
The input current determination unit determines whether the current value of the input current is equal to or less than a predetermined current value.
When the input current determination unit determines that the current value of the input current is equal to or less than the predetermined current value, the first period identification unit determines the input current of the current value for a half cycle of the AC voltage output from the AC power supply 4 Is specified as a first period, which is a certain period in which is expected to flow.
The control signal specifying unit specifies a control signal for turning on the switching element based on the first period.
When the input current determination unit determines that the current value of the input current exceeds a predetermined current value, the second period identification unit determines a half cycle of the AC voltage output from the AC power supply 4 based on the current value of the input current. Regarding the above, the second period from the first timing at which the input current starts flowing to the second timing at which the input current stops flowing is specified.
The third period specifying unit specifies a third period that is a sum of the extended period when extending to at least one of immediately before the first timing or immediately after the second timing and the second period.
The control signal output unit outputs the control signal to one of the two switching elements in a half cycle of the AC voltage to which the control signal is applied.
The control signal specifying section may specify a control signal for turning on the switching element based on the first period or the third period.
 記憶部244は、コンバータ制御部24が行う処理に必要な種々の情報を記憶する。例えば、記憶部244は、入力電流の電流値が電流しきい値を超えている期間β1の値ごとに、入力電流が流れ始めてから流れ終わるまでの期間(例えば、図4に示す期間β2)、すなわち第2期間を特定するための位相の補正値であるθ1、θ2を関連付けて予め記憶する。 (4) The storage unit 244 stores various information necessary for the processing performed by the converter control unit 24. For example, the storage unit 244 stores, for each value of the period β1 in which the current value of the input current exceeds the current threshold, a period from the start of the input current to the end of the flow (for example, a period β2 illustrated in FIG. 4), That is, θ1 and θ2, which are the phase correction values for specifying the second period, are stored in advance in association with each other.
 インバータ装置3は、IPM(Intelligent Power Module)31、インバータ制御部32を備える。
 IPM31は、インバータ制御部32による制御に基づいて、直流電力から三相交流電力を生成する。IPM31は、生成した三相交流電力をモータに供給する。IPM31は、例えば、6つのスイッチング素子から成るブリッジ回路である。
The inverter device 3 includes an IPM (Intelligent Power Module) 31 and an inverter control unit 32.
The IPM 31 generates three-phase AC power from DC power based on control by the inverter control unit 32. The IPM 31 supplies the generated three-phase AC power to the motor. The IPM 31 is, for example, a bridge circuit including six switching elements.
 インバータ制御部32は、IPM31を制御する。具体的には、インバータ制御部32は、IPM31に直流電力から三相交流電力を生成させる。例えば、IPM31が6つのスイッチング素子から成るブリッジ回路である場合、インバータ制御部32は、6つのスイッチング素子それぞれのオン状態となる期間とオフ状態となる期間とを切り替えることによって、6つのスイッチング素子それぞれに流れる電流を制御することで、IPM31に直流電力から三相交流電力を生成させる。 (4) The inverter control unit 32 controls the IPM 31. Specifically, inverter control unit 32 causes IPM 31 to generate three-phase AC power from DC power. For example, when the IPM 31 is a bridge circuit including six switching elements, the inverter control unit 32 switches between a period in which each of the six switching elements is turned on and a period in which the six switching elements are turned off. , The IPM 31 generates three-phase AC power from DC power.
 次に、本発明の一実施形態によるコンバータ制御部24の処理について説明する。
 ここでは、図6に示すコンバータ制御部24の処理について説明する。
 入力電流特定部22は、交流電源4からコンバータ装置2へ供給される入力電流を、交流電源4が出力する交流電圧の周期よりも充分に短い周期ごとに検出する。入力電流特定部22は、検出した入力電流の電流値をコンバータ制御部24に与える。
Next, processing of the converter control unit 24 according to the embodiment of the present invention will be described.
Here, the process of converter control unit 24 shown in FIG. 6 will be described.
The input current specifying unit 22 detects an input current supplied from the AC power supply 4 to the converter device 2 at every cycle that is sufficiently shorter than the cycle of the AC voltage output from the AC power supply 4. The input current specifying unit 22 gives the current value of the detected input current to the converter control unit 24.
 ゼロクロス検出部23は、交流電源4が出力する電圧のゼロクロス点を検出する。ゼロクロス検出部23は、ゼロクロス点の情報を含むゼロクロス信号を生成する。ゼロクロス検出部23は、ゼロクロス信号をコンバータ制御部24に出力する。 The zero-crossing detector 23 detects the zero-crossing point of the voltage output from the AC power supply 4. The zero-cross detection unit 23 generates a zero-cross signal including information on a zero-cross point. The zero-cross detector 23 outputs a zero-cross signal to the converter controller 24.
 基準特定部241は、ゼロクロス検出部23からゼロクロス信号を取得する(ステップS1)。基準特定部241は、取得したゼロクロス信号の示す基準のタイミングを特定する(ステップS2)。基準特定部241は、特定した基準のタイミングを制御信号生成部243に出力する。 (4) The reference specifying unit 241 acquires a zero-cross signal from the zero-cross detection unit 23 (Step S1). The reference specifying unit 241 specifies a reference timing indicated by the acquired zero-cross signal (Step S2). The reference specifying unit 241 outputs the specified reference timing to the control signal generation unit 243.
 入力電流取得部242は、入力電流特定部22から入力電流の電流値を、入力電流特定部22の入力電流の検出タイミングごとに取得する(ステップS3)。入力電流取得部242は、取得した電流値を制御信号生成部243に出力する。 (4) The input current acquisition unit 242 acquires the current value of the input current from the input current identification unit 22 for each input current detection timing of the input current identification unit 22 (step S3). The input current acquisition unit 242 outputs the acquired current value to the control signal generation unit 243.
 制御信号生成部243は、基準特定部241から基準のタイミングを取得する。また、制御信号生成部243は、入力電流取得部242から入力電流の電流値を取得する。制御信号生成部243は、基準特定部241から取得した基準のタイミングにおける位相を位相θの基準0度とする(ステップS4)。制御信号生成部243は、位相0度から180度までの間オフ状態に制御されているスイッチング素子(スイッチング素子214または215)を、位相0度から180度までの間に第3期間に、オン状態にする第1制御信号を特定する(ステップS5)。 The control signal generation unit 243 acquires the reference timing from the reference identification unit 241. Further, the control signal generation unit 243 acquires the current value of the input current from the input current acquisition unit 242. The control signal generation unit 243 sets the phase at the reference timing acquired from the reference identification unit 241 as the reference 0 degree of the phase θ (Step S4). The control signal generation unit 243 turns on the switching element (the switching element 214 or 215) that is controlled to be in the off state from the phase 0 to 180 degrees in the third period from the phase 0 to 180 degrees. The first control signal to be set is specified (Step S5).
 具体的には、制御信号生成部243は、入力電流の電流値がゼロである場合のノイズを入力電流として誤検出しないように、ノイズよりも大きい値の電流しきい値(例えば、図4に示す電流しきい値3アンペア)を予め設定する。制御信号生成部243は、位相0度を基準に半周期を1つの期間として、各半周期において、入力電流特定部22から入力電流の電流値を取得する度に、取得した入力電流の電流値とその電流しきい値とを比較する(ステップS5a)。制御信号生成部243は、入力電流の電流値が電流しきい値を超えているか否かを判定する(ステップS5b)。 Specifically, the control signal generation unit 243 sets a current threshold value larger than the noise (for example, as shown in FIG. 4) so that the noise when the current value of the input current is zero is not erroneously detected as the input current. The current threshold value shown is 3 amps). The control signal generation unit 243 sets the current value of the acquired input current every time the current value of the input current is acquired from the input current identification unit 22 in each half cycle, with the half cycle as one period based on the phase 0 degree. And its current threshold value (Step S5a). The control signal generator 243 determines whether the current value of the input current exceeds the current threshold (Step S5b).
 制御信号生成部243は、入力電流の電流値が電流しきい値以下であると判定した場合(ステップS5bにおいてNO)、対象とする半周期が終了したか否かを判定する(ステップS5c)。
 制御信号生成部243は、対象とする半周期が終了していないと判定した場合(ステップS5cにおいてNO)、ステップS5aの処理に戻す。
 また、制御信号生成部243は、対象とする半周期が終了したと判定した場合(ステップS5cにおいてYES)、一定の第1期間(例えば、図4に示す期間β3)を、スイッチング素子をオン状態にする第1期間とし、その第1期間にスイッチング素子をオン状態にする第1制御信号を特定する(ステップS5d)。
When determining that the current value of the input current is equal to or smaller than the current threshold value (NO in step S5b), the control signal generation unit 243 determines whether the target half cycle has ended (step S5c).
When determining that the target half cycle has not ended (NO in step S5c), the control signal generation unit 243 returns to the process of step S5a.
When determining that the target half cycle has ended (YES in step S5c), the control signal generation unit 243 sets the switching element to the ON state for a certain first period (for example, period β3 shown in FIG. 4). The first control signal for turning on the switching element during the first period is specified (step S5d).
 また、制御信号生成部243は、入力電流の電流値が電流しきい値を超えたと判定した場合(ステップS5bにおいてYES)、そのときの位相を期間β1の始まりを示す位相と特定する(ステップS5e)する。制御信号生成部243は、次の入力電流の電流値と電流しきい値とを比較する(ステップS5f)。制御信号生成部243は、比較結果において入力電流の電流値が電流しきい値以下であるか否かを判定する(ステップS5g)。
 制御信号生成部243は、入力電流の電流値が第1電流しきい値以下でないと判定した場合(ステップS5gにおいてNO)、ステップS5fの処理に戻す。
 また、制御信号生成部243は、入力電流の電流値が電流しきい値以下であると判定した場合(ステップS5gにおいてYES)、そのときの位相を期間β1の終わりを示す位相と特定する(ステップS5h)。すなわち、制御信号生成部243は、期間β1の値を特定する。制御信号生成部243は、記憶部244において、特定した期間β1の値に関連付けられている位相の補正値θ1、θ2を特定する(ステップS5i)。制御信号生成部243は、期間β1を、直前へ位相θ1だけ延ばし、直後へ位相θ2だけ延ばす。すなわち、制御信号生成部243は、期間β2を特定する(ステップS5j)。制御信号生成部243は、期間β2を、直前と直後それぞれへ位相αだけ延ばし(ステップS5k)、その延ばした期間をスイッチング素子をオン状態にする第3期間とし、その第3期間にスイッチング素子をオン状態にする第1制御信号を特定する(ステップS5l)。
When determining that the current value of the input current has exceeded the current threshold value (YES in step S5b), control signal generating section 243 specifies the phase at that time as the phase indicating the start of period β1 (step S5e). ). The control signal generator 243 compares the current value of the next input current with the current threshold (step S5f). The control signal generation unit 243 determines whether or not the current value of the input current is equal to or smaller than the current threshold in the comparison result (Step S5g).
When the control signal generation unit 243 determines that the current value of the input current is not equal to or smaller than the first current threshold value (NO in step S5g), the process returns to step S5f.
When determining that the current value of the input current is equal to or smaller than the current threshold value (YES in step S5g), control signal generation section 243 specifies the phase at that time as the phase indicating the end of period β1 (step S5g). S5h). That is, the control signal generation unit 243 specifies the value of the period β1. The control signal generation unit 243 specifies the correction values θ1 and θ2 of the phase associated with the value of the specified period β1 in the storage unit 244 (Step S5i). The control signal generation unit 243 extends the period β1 by the phase θ1 immediately before and by the phase θ2 immediately after. That is, the control signal generation unit 243 specifies the period β2 (Step S5j). The control signal generator 243 extends the period β2 by the phase α immediately before and immediately after (step S5k), sets the extended period as a third period in which the switching element is turned on, and sets the switching element in the third period. The first control signal to be turned on is specified (step S51).
 制御信号生成部243は、ステップS5dまたはステップS5lの処理によって特定した第1制御信号の位相を180度遅延させて、その第1制御信号を次の半周期にスイッチング素子(スイッチング素子214または215)に出力する(ステップS6)。また、制御信号生成部243は、位相0度から180度までの間にオン状態に制御されたスイッチング素子を次の半周期の間オフ状態にする第2制御信号を、位相0度から180度までの間に特定する(ステップS7)。制御信号生成部243は、特定した第2制御信号の位相を180度遅延させて、その第2制御信号を次の半周期の間にスイッチング素子(スイッチング素子215または214)に出力する(ステップS8)。制御信号生成部243は、ステップS1に処理を戻す。 The control signal generation unit 243 delays the phase of the first control signal specified by the processing of step S5d or step S51 by 180 degrees, and switches the first control signal to the switching element (switching element 214 or 215) in the next half cycle. (Step S6). Further, the control signal generation unit 243 converts the second control signal that turns the switching element, which has been controlled to the on state during the phase of 0 to 180 degrees, to the off state for the next half cycle, from the phase of 0 to 180 degrees (Step S7). The control signal generator 243 delays the phase of the specified second control signal by 180 degrees, and outputs the second control signal to the switching element (switching element 215 or 214) during the next half cycle (step S8). ). The control signal generator 243 returns the process to step S1.
 以上、本発明の一実施形態によるモータ駆動装置1について説明した。
 本発明の一実施形態によるコンバータ装置2において、入力電流取得部242は、交流電源4から入力される入力電流の電流値を取得する。制御信号生成部243(入力電流判定部の一例)は、入力電流の電流値が所定の電流値以下であるか否かを判定する。制御信号生成部243(第1期間特定部の一例)は、入力電流の電流値が所定の電流値以下であると判定した場合、交流電源4から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定する。制御信号生成部243(制御信号特定部の一例)は、第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定する。
 こうすることで、モータ駆動装置1のコンバータ装置2は、入力電流が所定の電流値以下である比較的小さい電流値の期間にも同期整流を行うことができる。所定の電流値は、ノイズを誤検出しない範囲で任意の電流値に設定できる。そして、コンバータ装置2は、入力電流が所定の電流値以下であると判定した場合に同期整流を行わない整流回路に比べてダイオードの順方向電圧による電圧降下の分だけ確実に効率をよくすることができる。そのため、コンバータ装置2において同期整流制御を行う場合、コンバータ装置2の入力電流の大きさに関わらず、入力電流の大きさが比較的小さい場合であっても効率を向上させることができる。
The motor drive device 1 according to one embodiment of the present invention has been described above.
In converter device 2 according to one embodiment of the present invention, input current obtaining section 242 obtains a current value of an input current input from AC power supply 4. The control signal generation unit 243 (an example of an input current determination unit) determines whether the current value of the input current is equal to or less than a predetermined current value. When determining that the current value of the input current is equal to or less than the predetermined current value, the control signal generation unit 243 (an example of a first period specifying unit) determines the current value for a half cycle of the AC voltage output from the AC power supply 4. A first period, which is a fixed period in which the input current having a value is expected to flow, is specified. The control signal generating unit 243 (an example of a control signal specifying unit) specifies a control signal for turning on the switching element based on the first period.
By doing so, the converter device 2 of the motor drive device 1 can perform synchronous rectification even during a period in which the input current is a relatively small current value equal to or less than the predetermined current value. The predetermined current value can be set to an arbitrary current value as long as noise is not erroneously detected. When the input current is determined to be equal to or less than the predetermined current value, the converter device 2 reliably improves the efficiency by the voltage drop due to the forward voltage of the diode as compared with a rectifier circuit that does not perform synchronous rectification. Can be. Therefore, when synchronous rectification control is performed in converter device 2, regardless of the magnitude of the input current of converter device 2, efficiency can be improved even when the magnitude of the input current is relatively small.
 なお、本発明の一実施形態では、制御信号生成部243は、基準のタイミングから半周期ごとにスイッチング素子214または215をオフ状態に制御するものとして説明した。しかしながら、本発明の別の実施形態では、制御信号生成部243は、基準のタイミングから半周期ごとにスイッチング素子214または215をオフ状態に制御する代わりに、入力電流を、交流電源4の出力する交流電圧の周期に近づけるとともに、正弦波に近づけるように(すなわち、高調波歪みを所望の歪み率以下にするように)、例えば、図7に示すようなPAM(Pulse Amplitude Modulation)制御信号を用いたPAM制御を行うものであってもよい。なお、この場合、制御信号生成部243は、入力電流に応じてPAM制御信号を生成するPWM(Pulse Width Modulation)生成技術を用いればよい。制御信号生成部243がPAM制御を行った場合には、入力電流は、図7において実線によって示される波形から例えば図7において破線によって示される波形になる。その結果、歪み率は改善される。なお、入力電流の検出された第2期間の直前への延長による第3期間への延長は、その半周期の期間の始まりが限界となる。また、入力電流の検出された第2期間の直後への延長による第3期間への延長は、その半周期の期間の終わりが限界となる。そのため、PAM制御によって入力電流波形が交流電源4の出力する交流電圧の周期と同様の周期まで改善された場合には、制御信号生成部243は、入力電流の検出された第2期間から第3期間への延長を行わない。 In the embodiment of the present invention, the control signal generator 243 controls the switching element 214 or 215 to be turned off every half cycle from the reference timing. However, in another embodiment of the present invention, instead of controlling the switching element 214 or 215 to be in the OFF state every half cycle from the reference timing, the control signal generation unit 243 outputs the input current from the AC power supply 4. For example, a PAM (Pulse Amplitude Modulation) control signal as shown in FIG. 7 is used so as to approach the cycle of the AC voltage and approximate a sine wave (that is, to reduce the harmonic distortion to a desired distortion rate or less). The PAM control may be performed. In this case, the control signal generation unit 243 may use a PWM (Pulse Width Modulation) generation technique of generating a PAM control signal according to the input current. When the control signal generator 243 performs the PAM control, the input current changes from the waveform shown by the solid line in FIG. 7 to, for example, the waveform shown by the broken line in FIG. As a result, the distortion rate is improved. Note that the extension of the input current to the third period immediately before the detected second period is limited to the beginning of the half period. The extension of the input current to the third period immediately after the detected second period is limited to the end of the half cycle. Therefore, when the input current waveform is improved to the same cycle as the cycle of the AC voltage output from the AC power supply 4 by the PAM control, the control signal generation unit 243 switches from the second period in which the input current is detected to the third cycle. Do not extend the period.
 なお、本発明の一実施形態では、ブリッジ回路200は、ダイオード212aを含む第1回路212と、ダイオード213aを含む第2回路213とを含むものとして説明した。しかしながら、本発明の別の実施形態では、第1回路212、第2回路213は、スイッチング素子であってもよい。第1回路212、第2回路213が、スイッチング素子である場合、第1回路212、第2回路213における電圧降下が改善され、さらに効率が向上する。なお、一般的に、スイッチング素子よりもダイオード、抵抗、コンデンサの方が安価であるという理由により、本発明の一実施形態におけるブリッジ回路200は、第1回路212、第2回路213がスイッチング素子である別の実施形態に比べて安価に実現できるという効果が期待できる。 In the embodiment of the present invention, the bridge circuit 200 has been described as including the first circuit 212 including the diode 212a and the second circuit 213 including the diode 213a. However, in another embodiment of the present invention, the first circuit 212 and the second circuit 213 may be switching elements. When the first circuit 212 and the second circuit 213 are switching elements, the voltage drop in the first circuit 212 and the second circuit 213 is improved, and the efficiency is further improved. In general, the bridge circuit 200 according to the embodiment of the present invention includes the first circuit 212 and the second circuit 213 which are switching elements because diodes, resistors, and capacitors are generally cheaper than switching elements. An effect that it can be realized at lower cost than in another embodiment can be expected.
 なお、本発明の上記各実施形態では、制御信号生成部243は、次の半周期の制御信号を直前の半周期における入力電流に基づいて特定するものとして説明した。しかしながら、本発明の別の実施形態では、制御信号生成部243は、直前の半周期の代わりに、直前の半周期より前の半周期(ただし、急激な入力電流の変化がない、すなわち、制御信号を適用するときの入力電流と同様の入力電流であった過去の期間における任意の半周期)における入力電流に基づいて、制御信号を特定するものであってもよい。なお、過去の期間における任意の半周期は、予め実験などを行って入力電流の波形が所定の違いの範囲内となる過去の期間を決定し、決定した期間内の任意の半周期とすればよい。
 また、本発明の別の実施形態では、制御信号生成部243は、過去の複数の半周期における入力電流の平均電流値に基づいて、制御信号を特定するものであってもよい。
In the above embodiments of the present invention, the control signal generation unit 243 has been described as specifying the control signal of the next half cycle based on the input current in the immediately preceding half cycle. However, in another embodiment of the present invention, the control signal generation unit 243 replaces the immediately preceding half cycle with a half cycle before the immediately preceding half cycle (however, there is no sharp change in the input current, that is, the control signal The control signal may be specified based on the input current in an arbitrary half cycle in the past period that was the same as the input current when applying the signal. Note that an arbitrary half cycle in the past period is determined by performing an experiment or the like in advance and determining a past period in which the waveform of the input current is within a predetermined difference range, and as an arbitrary half cycle in the determined period. Good.
In another embodiment of the present invention, the control signal generator 243 may specify the control signal based on the average current value of the input current in a plurality of past half cycles.
 なお、本発明の各実施形態における記憶部、その他の記憶装置等は、適切な情報の送受信が行われる範囲においてどこに備えられていてもよい。また、記憶部、その他の記憶装置等は、適切な情報の送受信が行われる範囲において複数存在しデータを分散して記憶していてもよい。 Note that the storage unit and other storage devices in each embodiment of the present invention may be provided anywhere as long as appropriate information is transmitted and received. A plurality of storage units and other storage devices may exist in a range where appropriate information is transmitted and received, and may store data in a distributed manner.
 なお、本発明の実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。 In the process according to the embodiment of the present invention, the order of the processes may be changed within a range where an appropriate process is performed.
 本発明の実施形態について説明したが、上述のコンバータ制御部24、インバータ制御部32、その他の制御装置は内部に、コンピュータシステムを有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
 図8は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 コンピュータ50は、図8に示すように、CPU60、メインメモリ70、ストレージ80、インターフェース90を備える。
 例えば、上述のコンバータ制御部24、インバータ制御部32、その他の制御装置のそれぞれは、コンピュータ50に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ80に記憶されている。CPU60は、プログラムをストレージ80から読み出してメインメモリ70に展開し、当該プログラムに従って上記処理を実行する。また、CPU60は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ70に確保する。
Although the embodiment of the present invention has been described, the above-described converter control unit 24, inverter control unit 32, and other control devices may include a computer system therein. The above-described process is stored in a computer-readable recording medium in the form of a program, and the program is read and executed by the computer to perform the process. Specific examples of the computer are shown below.
FIG. 8 is a schematic block diagram illustrating a configuration of a computer according to at least one embodiment.
As shown in FIG. 8, the computer 50 includes a CPU 60, a main memory 70, a storage 80, and an interface 90.
For example, each of the above-described converter control unit 24, inverter control unit 32, and other control devices is implemented in a computer 50. The operation of each processing unit described above is stored in the storage 80 in the form of a program. The CPU 60 reads the program from the storage 80, expands the program in the main memory 70, and executes the above-described processing according to the program. Further, the CPU 60 secures a storage area corresponding to each of the above-described storage units in the main memory 70 according to a program.
 ストレージ80の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ80は、コンピュータ50のバスに直接接続された内部メディアであってもよいし、インターフェース90または通信回線を介してコンピュータ50に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ50に配信される場合、配信を受けたコンピュータ50が当該プログラムをメインメモリ70に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ80は、一時的でない有形の記憶媒体である。 Examples of the storage 80 include a hard disk drive (HDD), a solid state drive (SSD), a magnetic disk, a magneto-optical disk, a CD-ROM (Compact Disc Read Only Memory), and a DVD-ROM (Digital Documentary Discrete Memory). And a semiconductor memory. The storage 80 may be an internal medium directly connected to the bus of the computer 50, or may be an external medium connected to the computer 50 via the interface 90 or a communication line. When the program is distributed to the computer 50 via a communication line, the computer 50 that has received the program may load the program into the main memory 70 and execute the above-described processing. In at least one embodiment, storage 80 is a non-transitory tangible storage medium.
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。 The program may implement a part of the functions described above. Further, the program may be a file that can realize the above-described functions in combination with a program already recorded in the computer system, that is, a so-called difference file (difference program).
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例であり、発明の範囲を限定しない。これらの実施形態は、発明の要旨を逸脱しない範囲で、種々の追加、種々の省略、種々の置き換え、種々の変更を行ってよい。 Although some embodiments of the present invention have been described, these embodiments are examples and do not limit the scope of the invention. In these embodiments, various additions, various omissions, various substitutions, and various modifications may be made without departing from the spirit of the invention.
 本発明の実施形態によるコンバータ装置、制御信号特定方法及びプログラムによれば、コンバータ装置において同期整流制御を行う場合、コンバータ装置の入力電流の大きさに関わらず効率を向上させることができる。 According to the converter device, the control signal specifying method, and the program according to the embodiment of the present invention, when performing synchronous rectification control in the converter device, efficiency can be improved regardless of the magnitude of the input current of the converter device.
1・・・モータ駆動装置
2・・・コンバータ装置
3・・・インバータ装置
4・・・交流電源
5・・・モータ
21・・・整流回路
22・・・入力電流特定部
23・・・ゼロクロス検出部
24・・・コンバータ制御部
31・・・IPM
32・・・インバータ制御部
50・・・コンピュータ
60・・・CPU
70・・・メインメモリ
80・・・ストレージ
90・・・インターフェース
200・・・ブリッジ回路
211・・・リアクタ
212・・・第1回路
212a、213a・・・ダイオード
212b、213b、216・・・コンデンサ
212c、213c・・・抵抗
213・・・第2回路
214、215・・・スイッチング素子
241・・・基準特定部
242・・・入力電流取得部
243・・・制御信号生成部
DESCRIPTION OF SYMBOLS 1 ... Motor drive device 2 ... Converter device 3 ... Inverter device 4 ... AC power supply 5 ... Motor 21 ... Rectifier circuit 22 ... Input current specifying part 23 ... Zero cross detection Unit 24: Converter control unit 31: IPM
32 ... Inverter control unit 50 ... Computer 60 ... CPU
70 main memory 80 storage 90 interface 200 bridge circuit 211 reactor 212 first circuits 212a and 213a diodes 212b, 213b and 216 capacitors 212c, 213c ... resistor 213 ... second circuit 214, 215 ... switching element 241 ... reference identification unit 242 ... input current acquisition unit 243 ... control signal generation unit

Claims (11)

  1.  交流電源から入力される入力電流の電流値を取得する入力電流取得部と、
     前記入力電流の電流値が所定の電流値以下であるか否かを判定する入力電流判定部と、
     前記入力電流判定部が前記入力電流の電流値が所定の電流値以下であると判定した場合、前記交流電源から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定する第1期間特定部と、
     前記第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定する制御信号特定部と、
     を備えるコンバータ装置。
    An input current acquisition unit that acquires a current value of an input current input from the AC power supply,
    An input current determination unit that determines whether the current value of the input current is equal to or less than a predetermined current value,
    When the input current determination unit determines that the current value of the input current is equal to or less than a predetermined current value, it is expected that the input current having the current value flows for a half cycle of the AC voltage output from the AC power supply. A first period specifying unit that specifies a first period that is a certain period;
    A control signal specifying unit that specifies a control signal for turning on the switching element based on the first period;
    A converter device comprising:
  2.  前記入力電流判定部が前記入力電流の電流値が所定の電流値を超えると判定した場合、前記入力電流の電流値に基づいて、前記交流電源から出力される交流電圧の半周期について、前記入力電流が流れ始める第1タイミングから流れなくなる第2タイミングまでの第2期間を特定する第2期間特定部と、
     前記第1タイミングの直前または前記第2タイミングの直後の少なくとも一方に延長したときの延長した期間と、前記第2期間との総和である第3期間を特定する第3期間特定部と、
     を備え、
     前記制御信号特定部は、
     前記第1期間または前記第3期間に基づいて、スイッチング素子をオン状態にする制御信号を特定する、
     請求項1に記載のコンバータ装置。
    When the input current determination unit determines that the current value of the input current exceeds a predetermined current value, based on the current value of the input current, for the half cycle of the AC voltage output from the AC power supply, A second period specifying unit that specifies a second period from a first timing at which a current starts flowing to a second timing at which the current stops flowing;
    A third period specifying unit that specifies a third period that is a sum of an extended period when extending to at least one of immediately before the first timing or immediately after the second timing, and a third period that is a sum of the second period and
    With
    The control signal identification unit,
    A control signal for turning on a switching element is specified based on the first period or the third period,
    The converter device according to claim 1.
  3.  前記第3期間は、
     前記半周期内にある、
     請求項2に記載のコンバータ装置。
    In the third period,
    Within the half cycle,
    The converter device according to claim 2.
  4.  2つのスイッチング素子を有し、前記交流電源の出力する電力を整流するブリッジ回路と、
     前記制御信号を適用する前記半周期において、前記2つのスイッチング素子の一方へ前記制御信号を出力する制御信号出力部と、
     を備える請求項1から請求項3の何れか一項に記載のコンバータ装置。
    A bridge circuit having two switching elements and rectifying power output from the AC power supply;
    A control signal output unit that outputs the control signal to one of the two switching elements in the half cycle in which the control signal is applied;
    The converter device according to any one of claims 1 to 3, further comprising:
  5.  前記入力電流の電流値は、
     前記制御信号が適用される半周期より前の半周期における入力電流の電流値である、
     請求項1から請求項4の何れか一項に記載のコンバータ装置。
    The current value of the input current is
    The current value of the input current in a half cycle before the half cycle to which the control signal is applied,
    The converter device according to any one of claims 1 to 4.
  6.  前記入力電流の電流値は、
     前記制御信号が適用される半周期の直前の半周期における入力電流の電流値である、
     請求項5に記載のコンバータ装置。
    The current value of the input current is
    The current value of the input current in a half cycle immediately before the half cycle to which the control signal is applied,
    The converter device according to claim 5.
  7.  前記入力電流の電流値は、
     過去の複数の半周期における入力電流の電流値の平均値である、
     請求項1から請求項4の何れか一項に記載のコンバータ装置。
    The current value of the input current is
    The average value of the current values of the input current in a plurality of past half cycles,
    The converter device according to any one of claims 1 to 4.
  8.  前記交流電圧のゼロクロス点を検出するゼロクロス検出部と、
     前記ゼロクロス点に基づいて前記半周期の基準となるタイミングを特定する基準特定部と、
     を備える請求項1から請求項7の何れか一項に記載のコンバータ装置。
    A zero-cross detection unit that detects a zero-cross point of the AC voltage,
    A reference specifying unit that specifies a reference timing of the half cycle based on the zero cross point,
    The converter device according to any one of claims 1 to 7, further comprising:
  9.  前記入力電流に係る物理量に基づいて前記入力電流の電流値を特定する入力電流特定部、
     を備え、
     前記入力電流取得部は、
     前記入力電流特定部が特定した前記電流値を取得する、
     請求項1から請求項8の何れか一項に記載のコンバータ装置。
    An input current specifying unit that specifies a current value of the input current based on a physical quantity related to the input current;
    With
    The input current acquisition unit,
    Acquiring the current value specified by the input current specifying unit,
    The converter device according to any one of claims 1 to 8.
  10.  交流電源から入力される入力電流の電流値を取得することと、
     前記入力電流の電流値が所定の電流値以下であるか否かを判定することと、
     前記入力電流の電流値が所定の電流値以下であると判定した場合、前記交流電源から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定することと、
     前記第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定することと、
     を含む制御信号特定方法。
    Obtaining the current value of the input current input from the AC power supply;
    Determining whether the current value of the input current is equal to or less than a predetermined current value;
    When it is determined that the current value of the input current is equal to or less than a predetermined current value, a half period of the AC voltage output from the AC power supply is a certain period in which the input current of the current value is expected to flow. Specifying one period,
    Specifying a control signal for turning on the switching element based on the first period;
    And a control signal specifying method.
  11.  コンピュータに、
     交流電源から入力される入力電流の電流値を取得することと、
     前記入力電流の電流値が所定の電流値以下であるか否かを判定することと、
     前記入力電流の電流値が所定の電流値以下であると判定した場合、前記交流電源から出力される交流電圧の半周期について、当該電流値の入力電流が流れると予想した一定の期間である第1期間を特定することと、
     前記第1期間に基づいて、スイッチング素子をオン状態にする制御信号を特定することと、
     を実行させるプログラム。
    On the computer,
    Obtaining the current value of the input current input from the AC power supply;
    Determining whether the current value of the input current is equal to or less than a predetermined current value;
    When it is determined that the current value of the input current is equal to or less than a predetermined current value, a half period of the AC voltage output from the AC power supply is a certain period in which the input current of the current value is expected to flow. Specifying one period,
    Specifying a control signal for turning on the switching element based on the first period;
    A program that executes
PCT/JP2019/021030 2018-07-13 2019-05-28 Converter device, control signal specifying method and program WO2020012802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018133125A JP7080121B2 (en) 2018-07-13 2018-07-13 Converter device, control signal identification method and program
JP2018-133125 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020012802A1 true WO2020012802A1 (en) 2020-01-16

Family

ID=69141523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021030 WO2020012802A1 (en) 2018-07-13 2019-05-28 Converter device, control signal specifying method and program

Country Status (2)

Country Link
JP (1) JP7080121B2 (en)
WO (1) WO2020012802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074950A (en) * 2008-09-18 2010-04-02 Seiko Epson Corp Commutation controller, full-wave rectifier, electric power receiver, electronic apparatus, and contactless power transmission system
JP2011103717A (en) * 2009-11-10 2011-05-26 Shindengen Electric Mfg Co Ltd Resonant converter
JP2014090544A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Dc power-supply device, refrigeration cycle device, air conditioner, and refrigerator
JP2017055581A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド DC power supply device and air conditioner
WO2018074274A1 (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074950A (en) * 2008-09-18 2010-04-02 Seiko Epson Corp Commutation controller, full-wave rectifier, electric power receiver, electronic apparatus, and contactless power transmission system
JP2011103717A (en) * 2009-11-10 2011-05-26 Shindengen Electric Mfg Co Ltd Resonant converter
JP2014090544A (en) * 2012-10-29 2014-05-15 Mitsubishi Electric Corp Dc power-supply device, refrigeration cycle device, air conditioner, and refrigerator
JP2017055581A (en) * 2015-09-10 2017-03-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド DC power supply device and air conditioner
WO2018074274A1 (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner

Also Published As

Publication number Publication date
JP7080121B2 (en) 2022-06-03
JP2020014274A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
AU2015389306B2 (en) Step-up device and converter device
TW201044766A (en) Power supply device
JP6671126B2 (en) DC power supply and air conditioner
JP2010136493A (en) Power unit
JP6731639B2 (en) Power converter
WO2016103328A1 (en) Switching device, motor drive device, power conversion device, and switching method
JP2015208109A (en) Dc power supply device and air conditioner using the same
JP5656695B2 (en) Electric motor drive device and air conditioner
WO2020012787A1 (en) Converter device, control signal specification method, and program
WO2020012802A1 (en) Converter device, control signal specifying method and program
JP7136613B2 (en) Converter device, control switching method and program
WO2020012803A1 (en) Converter device, control signal generation method, and program
JP6358508B2 (en) Unbalance correction device, unbalance correction method, and program
JP6522227B2 (en) Converter circuit, inverter circuit and power converter for air conditioner
JP2020096527A (en) Dc power supply unit and air conditioner
JP5716682B2 (en) DC power supply
JP2009273242A (en) Dc power unit and air conditioner having the same
JP6199253B2 (en) Power converter and control method thereof
KR102332398B1 (en) Voltage control apparatus
JP7283923B2 (en) Control device, motor system, control method and program
US20240072680A1 (en) Power conversion apparatus, motor drive apparatus, and air conditioner
KR20190021672A (en) Power transforming apparatus and air conditioner including the same
CN111033990A (en) Power conversion device and inverter circuit
JP2022143053A (en) Power conversion device and washing machine including the same
JP6277699B2 (en) Power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834115

Country of ref document: EP

Kind code of ref document: A1