JP2022143053A - Power conversion device and washing machine including the same - Google Patents

Power conversion device and washing machine including the same Download PDF

Info

Publication number
JP2022143053A
JP2022143053A JP2021043384A JP2021043384A JP2022143053A JP 2022143053 A JP2022143053 A JP 2022143053A JP 2021043384 A JP2021043384 A JP 2021043384A JP 2021043384 A JP2021043384 A JP 2021043384A JP 2022143053 A JP2022143053 A JP 2022143053A
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
rectifier circuit
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021043384A
Other languages
Japanese (ja)
Inventor
健士郎 美内
Kenshiro Miuchi
幸利 平野
Yukitoshi Hirano
龍 古川
Ryo Furukawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2021043384A priority Critical patent/JP2022143053A/en
Publication of JP2022143053A publication Critical patent/JP2022143053A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a washing machine that controls an output voltage at a constant level while maintaining a power factor of a power supply circuit at the maximum value even when a large power supply voltage fluctuation occurs.SOLUTION: A power conversion device is configured to obtain a DC output from an AC power source through a rectifier circuit capable of being switched to a full-wave rectifier circuit and a double voltage rectifier circuit and to short-circuit the AC power source by a pulse signal with a delay time and pulse width based on a zero crossing point of an AC voltage. The power conversion device is configured to perform a power factor improvement control corresponding to power supply fluctuations by setting a delay time in advance as a value corresponding to an input current or input power and determining a pulse width to control a DC voltage at a constant level when the rectifier circuit is switched to the full-wave rectifier circuit and the double-voltage rectifier circuit for operation when the power supply voltage is within a predetermined range and set the delay time in advance as a value corresponding to the input current or input power to perform a control with a pulse width preset corresponding to the DC voltage when the power supply voltage is out of the predetermined range.SELECTED DRAWING: Figure 1

Description

本発明は、交流電力を直流電力に変換する電力変換装置及びそれを備えた洗濯機に関する。 The present invention relates to a power converter that converts AC power into DC power and a washing machine equipped with the same.

電力変換装置の一例として、交流電源の半周期に1回もしくは複数回の短絡動作を行い、力率を改善する電力変換装置を特許文献1が開示している。特許文献1は電源装置に接続した電源回路の出力電圧や電源電圧などの内部的状態に基づいて短絡手段の短絡開始時刻(ディレイ時間)と短絡期間(パルス幅)とを決定して、負荷の状態に応じて力率を最適点に制御する方法を開示している。特許文献1は電源回路の出力電圧から電源電圧を推定することで、電源電圧の変動に応じた短絡期間になるように制御を行い、力率を改善している。 As an example of a power converter, Patent Literature 1 discloses a power converter that improves the power factor by performing a short-circuit operation once or a plurality of times in a half cycle of an AC power supply. In Patent Document 1, a short-circuit start time (delay time) and a short-circuit period (pulse width) of a short-circuit means are determined based on an internal state such as an output voltage and a power supply voltage of a power supply circuit connected to a power supply device, and a load is controlled. A method is disclosed for controlling the power factor to an optimum point depending on the conditions. In Patent Document 1, the power factor is improved by estimating the power supply voltage from the output voltage of the power supply circuit and controlling the short-circuit period according to the fluctuation of the power supply voltage.

特開2006-180700号公報Japanese Patent Application Laid-Open No. 2006-180700

特許文献1では、電源電圧±5%以内の変動に応じて最適な短絡期間となる様に制御を行っているが、電源電圧±5%を超えた場合はパルス幅が一定となる様制御をしている。また、電源電圧の検出回路を設けておらず、予めシミュレーションによって導出した電源回路の出力電圧と電源電圧の関係式に基づき、検出した電源回路の出力電圧から電源電圧を推定していた。 In Patent Document 1, control is performed so that the optimum short-circuit period is obtained according to fluctuations within ±5% of the power supply voltage. is doing. In addition, no power supply voltage detection circuit is provided, and the power supply voltage is estimated from the detected output voltage of the power supply circuit based on the relational expression between the output voltage of the power supply circuit and the power supply voltage derived in advance by simulation.

しかしながら電源電圧±5%を超えた大幅な電源電圧の変動に応じた力率の改善については考慮されていない。 However, no consideration is given to improving the power factor in response to a large power supply voltage fluctuation exceeding ±5% of the power supply voltage.

以上のことから本発明の目的は、大幅な電源電圧変動が生じた場合においても電源回路の力率を最大値に保ちながら出力電圧を一定に制御する電力変換装置及びそれを備えた洗濯機を提供することである。 In view of the above, an object of the present invention is to provide a power conversion device and a washing machine equipped with the same, which control the output voltage to be constant while maintaining the power factor of the power supply circuit at the maximum value even when the power supply voltage fluctuates significantly. to provide.

以上のことから本発明においては、「交流電源から全波整流回路及び倍電圧整流回路に切り替え可能な整流回路を介して直流出力を得るとともに、交流電源を交流電圧のゼロクロス点を基準とする遅れ時間及びパルス幅のパルス信号により短絡するように構成された電力変換装置であって、整流回路を全波整流回路及び倍電圧整流回路に切り替え運用するときに、電源電圧が所定範囲内にある時は、遅れ時間を入力電流もしくは入力電力に対応した値として予め設定し、直流電圧を一定に制御するようにパルス幅を決定して、電源変動に対応した力率改善制御を行い、電源電圧が所定範囲外にある時は、遅れ時間を入力電流もしくは入力電力に対応した値として予め設定し、直流電圧に応じた予め設定したパルス幅とする制御を行うことを特徴とする電力変換装置」としたものである。 From the above, in the present invention, "a DC output is obtained through a rectifier circuit that can be switched from an AC power supply to a full-wave rectifier circuit and a voltage doubler rectifier circuit, and the AC power supply is delayed with respect to the zero crossing point of the AC voltage. A power conversion device that is configured to short-circuit by a pulse signal of time and pulse width, and when the power supply voltage is within a predetermined range when the rectifier circuit is switched between a full-wave rectifier circuit and a voltage doubler rectifier circuit. , the delay time is set in advance as a value corresponding to the input current or input power, the pulse width is determined so as to control the DC voltage constant, and the power factor improvement control corresponding to the power supply fluctuation is performed. When it is outside the predetermined range, the delay time is set in advance as a value corresponding to the input current or input power, and control is performed to set the pulse width in advance according to the DC voltage." It is what I did.

本発明によれば、±5%以上の電源電圧変動が生じた場合においても電源回路の力率を最大値に保ちながら出力電圧を一定に制御することができる。 According to the present invention, even when the power supply voltage fluctuates by ±5% or more, the output voltage can be controlled to be constant while maintaining the power factor of the power supply circuit at the maximum value.

本発明の実施例に係る電力変換装置を用いたモータ制御装置の基本構成例を示す図。1 is a diagram showing a basic configuration example of a motor control device using a power conversion device according to an embodiment of the present invention; FIG. 電力変換装置の効率、力率、直流電圧の入力電流依存性を説明するための図。FIG. 4 is a diagram for explaining the efficiency, power factor, and input current dependency of a DC voltage of a power conversion device; 特許文献1の電力変換装置での効率、力率、直流電圧の変化とパルス幅との関係を説明するための図。FIG. 4 is a diagram for explaining the relationship between changes in efficiency, power factor, DC voltage, and pulse width in the power converter of Patent Literature 1; 本発明に係る電力変換装置での効率、力率、直流電圧の変化とパルス幅との関係を説明するための図。FIG. 4 is a diagram for explaining the relationship between efficiency, power factor, change in DC voltage, and pulse width in the power converter according to the present invention; 倍電圧制御回路に切り替え後における電力変換装置での効率、力率、直流電圧の変化とパルス幅との関係を説明するための図。FIG. 4 is a diagram for explaining the relationship between changes in efficiency, power factor, DC voltage, and pulse width in the power conversion device after switching to the voltage doubler control circuit;

以下本発明の実施例について図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に係る電力変換装置を用いたモータ制御装置の基本構成例を示す図である。本実施例の電力変換装置1は図1に示すように、単相の交流電源2の一方の出力端に一端を接続したリアクトル3と、そのリアクトル3を介して交流電源2を短絡する短絡手段4と、交流電源2に接続していない側のリアクトル3の他端とリアクトル3が接続していない側の交流電源2の他端との間に入力電流検出回路12を介して接続した整流回路5と、整流回路5の直流出力の両端に直列接続した平滑コンデンサ6と、整流回路5の交流入力の一方と、平滑コンデンサ6を構成する平滑コンデンサ7と平滑コンデンサ8との接続点の間に接続した整流回路切替手段9と、交流電源2のゼロクロスを検出するゼロクロス検出回路10と、前記平滑コンデンサ6の両端の直流電圧Vdを入力しゼロクロス信号50を基準タイミングとして短絡手段4を動作させる短絡パルス信号51を出力し、整流回路切替手段9に整流回路切替信号52を出力する制御回路11と、前記交流電源2から入力される入力電流Isを検出し、制御回路11に入力電流検出信号53を出力する入力電流検出回路12と、制御回路11に交流電源2の電源電圧信号55を出力する電源電圧検出回路16を備えている。 FIG. 1 is a diagram showing a basic configuration example of a motor control device using a power conversion device according to an embodiment of the present invention. As shown in FIG. 1, the power converter 1 of the present embodiment includes a reactor 3 having one end connected to one output end of a single-phase AC power supply 2, and short-circuit means for short-circuiting the AC power supply 2 via the reactor 3. 4 and a rectifier circuit connected via an input current detection circuit 12 between the other end of the reactor 3 that is not connected to the AC power supply 2 and the other end of the AC power supply 2 that is not connected to the reactor 3. 5, a smoothing capacitor 6 connected in series to both ends of the DC output of the rectifier circuit 5, one of the AC inputs of the rectifier circuit 5, and a connection point between the smoothing capacitor 7 and the smoothing capacitor 8 constituting the smoothing capacitor 6. The connected rectifier circuit switching means 9, the zero cross detection circuit 10 for detecting the zero cross of the AC power supply 2, and the DC voltage Vd across the smoothing capacitor 6 are inputted to operate the short circuit means 4 with the zero cross signal 50 as a reference timing. A control circuit 11 that outputs a pulse signal 51 and outputs a rectifier circuit switching signal 52 to the rectifier circuit switching means 9, and an input current Is that is input from the AC power supply 2 is detected and an input current detection signal 53 is sent to the control circuit 11. and a power supply voltage detection circuit 16 for outputting a power supply voltage signal 55 of the AC power supply 2 to the control circuit 11 .

図1には、電力変換装置1の直流出力Vdに接続したインバータ回路13と電動機を内蔵した圧縮機14とを備えたモータ駆動システム15を合わせて示す。ここで、制御回路11は、例えばワンチップマイクロコンピュータなどの半導体集積回路(IC)で構成しており、全ての動作をソフトウェア処理で実行している。 FIG. 1 also shows a motor drive system 15 including an inverter circuit 13 connected to the DC output Vd of the power converter 1 and a compressor 14 containing an electric motor. Here, the control circuit 11 is composed of, for example, a semiconductor integrated circuit (IC) such as a one-chip microcomputer, and executes all operations by software processing.

ゼロクロス検出回路10は、交流電源2の両端の電圧を入力し、交流電源2の交流電圧(以下、電源電圧Vsと略記する。)がゼロクロス点を通過し極性が変わるタイミングでHigh信号からLow信号に、もしくはLow信号からHigh信号に切り替わるゼロクロス信号50を出力する。このゼロクロス信号50は制御回路11へ入力される。 The zero-cross detection circuit 10 receives the voltage across the AC power supply 2, and changes from a High signal to a Low signal at the timing when the AC voltage of the AC power supply 2 (hereinafter abbreviated as power supply voltage Vs) passes through the zero-cross point and the polarity changes. , or a zero-cross signal 50 that switches from a Low signal to a High signal. This zero cross signal 50 is input to the control circuit 11 .

制御回路11は、入力されたゼロクロス信号50の立ち上がりもしくは立ち下りを基準タイミングとして、そこから短絡手段4が短絡動作を開始するまでの期間(以下、ディレイ時間Td)および短絡する期間(以下、パルス幅Tw)を設定し、短絡パルス信号51(High、Low信号)を短絡手段4に出力する。ディレイ時間Tdおよびパルス幅Twは、制御回路11に予め記憶させるか、制御回路11で計算して求める。 The control circuit 11 uses the rise or fall of the input zero-cross signal 50 as a reference timing, and the period until the short-circuiting means 4 starts the short-circuiting operation (hereinafter referred to as delay time Td) and the short-circuiting period (hereinafter referred to as pulse width Tw), and outputs a short-circuit pulse signal 51 (High and Low signals) to the short-circuit means 4 . The delay time Td and the pulse width Tw are stored in advance in the control circuit 11 or calculated by the control circuit 11 .

短絡手段4は短絡パルス信号51に従って短絡開閉動作を行う。本実施例では、制御回路11から出力される短絡パルス信号51がHighの時に、短絡手段4は短絡動作する。短絡手段4は、ダイオードブリッジとIGBTもしくは、バイポーラトランジスタ、MOSFETなどの電力半導体スイッチング素子で構成しており、短絡パルス信号51に従ってリアクトル3を介して交流電源2を短絡する。この短絡開閉動作によって交流電源2の力率を改善する。 The short-circuit means 4 performs short-circuit opening/closing operation according to the short-circuit pulse signal 51 . In this embodiment, when the short-circuit pulse signal 51 output from the control circuit 11 is High, the short-circuit means 4 performs a short-circuit operation. The short-circuiting means 4 is composed of a power semiconductor switching element such as a diode bridge and an IGBT, a bipolar transistor, or a MOSFET, and short-circuits the AC power supply 2 via the reactor 3 according to the short-circuit pulse signal 51 . The power factor of the AC power supply 2 is improved by this short-circuit switching operation.

整流回路切替え手段9は、パワーリレー、トライアック、ダイオードブリッジと電力半導体スイッチング素子(IGBT、バイポーラトランジスタ、MOSFET)の組み合わせなどによる双方向スイッチで構成され、制御回路11が出力する整流回路切替信号52(High、Low信号)に応じて整流回路5を切り替える。本実施例では、整流回路切替信号52がLow信号のときに整流回路5を全波整流回路に切り替え、High信号のときに倍電圧整流回路に切り替える。 The rectifier circuit switching means 9 is composed of a bidirectional switch such as a combination of a power relay, a triac, a diode bridge and a power semiconductor switching element (IGBT, bipolar transistor, MOSFET). The rectifier circuit 5 is switched according to the high and low signals). In this embodiment, the rectifier circuit 5 is switched to a full-wave rectifier circuit when the rectifier circuit switching signal 52 is a Low signal, and switched to a voltage doubler rectifier circuit when it is a High signal.

制御回路11は、ゼロクロス信号50と、平滑コンデンサ6の両端の直流電圧Vdである直流電圧値54と、入力電流検出信号53と、交流電源2の電源電圧値55を入力し、短絡パルス信号51と、整流回路切替信号52を出力する。 The control circuit 11 inputs a zero-cross signal 50, a DC voltage value 54 that is the DC voltage Vd across the smoothing capacitor 6, an input current detection signal 53, and a power supply voltage value 55 of the AC power supply 2, and generates a short-circuit pulse signal 51 , the rectifier circuit switching signal 52 is output.

本実施例の電力変換装置1は、交流電源2を電源半周期に一回もしくは複数回、リアクトル3を介して短絡する動作を行って、電源電流の通流角を広げ電源力率を改善しながら、交流電力を直流電力に変換する。本実施例の電力変換装置1は、整流回路切替手段9を備えていて、整流回路5を全波整流回路あるいは倍電圧整流回路に切り替えて動作させる。そのため、パルス幅Twで直流電圧Vdを制御することに加え、幅広い範囲の直流電圧Vdを出力できる。 The power converter 1 of the present embodiment short-circuits the AC power supply 2 via the reactor 3 once or multiple times in a half cycle of the power supply to widen the conduction angle of the power supply current and improve the power factor of the power supply. while converting AC power into DC power. The power conversion device 1 of this embodiment includes a rectifier circuit switching means 9, which switches the rectifier circuit 5 to a full-wave rectifier circuit or a voltage doubler rectifier circuit to operate. Therefore, in addition to controlling the DC voltage Vd with the pulse width Tw, a wide range of DC voltages Vd can be output.

本実施例の電力変換装置1の入力電流Isに対する、ディレイ時間Tdと、パルス幅Twと、効率と、力率と、直流電圧Vdとの関係を、図2を用いて説明する。図2は、入力電流Isを変化した場合に、力率が最大となるようにディレイ時間Tdとパルス幅Twとを変えた実験結果である。図2の横軸は入力電流Isであって、図2の(a)に効率と力率を、図2の(b)に直流電圧を、図2の(c)にディレイ時間Tdとパルス幅Twとを示す。ここで、図2の横軸に入力電流を記載したが、横軸を入力電力としても同様である。以下、本実施例では横軸が入力電流の場合を説明する。 The relationship between the delay time Td, the pulse width Tw, the efficiency, the power factor, and the DC voltage Vd with respect to the input current Is of the power converter 1 of this embodiment will be described with reference to FIG. FIG. 2 shows experimental results obtained by changing the delay time Td and the pulse width Tw so that the power factor is maximized when the input current Is is changed. The horizontal axis of FIG. 2 is the input current Is, the efficiency and power factor in FIG. 2(a), the DC voltage in FIG. 2(b), and the delay time Td and pulse width in FIG. 2(c). Tw. Here, although the horizontal axis of FIG. 2 represents the input current, the same applies if the horizontal axis represents the input power. In this embodiment, the case where the horizontal axis represents the input current will be described below.

図2は全波整流回路及び倍電圧整流回路の実験結果である。図2の区間Aは全波整流回路で動作する入力電流範囲を示し、区間Bと区間Cとは倍電圧整流回路で動作する入力電流範囲であり、区間Cでは区間Bより負荷が重い。電源装置の起動時(入力電流がゼロ近傍)では区間Aの全波整流回路動作し、入力電流Isの増加に伴って区間Bの倍電圧整流回路動作に移行する。入力電流Isが減少していくと区間Bの倍電圧整流回路動作から区間Aの全波整流回路動作へと移行するが、区間Aと区間Bとの入力電流値53が重複する部分がありヒステリシスを持たせてあるために円滑に移行できる。 FIG. 2 shows experimental results of a full-wave rectifier circuit and a voltage doubler rectifier circuit. Section A in FIG. 2 indicates the input current range in which the full-wave rectifier circuit operates. Sections B and C indicate the input current range in which the voltage doubler rectifier circuit operates. When the power supply device is started (when the input current is near zero), the full-wave rectifier circuit operates in section A, and shifts to the voltage doubler rectifier circuit operation in section B as the input current Is increases. As the input current Is decreases, the operation of the voltage doubler rectifier circuit in Section B shifts to the operation of the full-wave rectifier circuit in Section A. You can move smoothly because you have

区間A、区間Bの入力電流Isの場合、図2の(c)に示すようにディレイ時間Tdが入力電流Isに対して単調減少し、パルス幅Twが単調増加しており、ディレイ時間Tdとパルス幅Twとの和が一定値になっている。すなわち、ディレイ時間Tdとパルス幅Twとが相互に関連付けられており、どちらか一方を決定すれば、他方を決定できる関係になっている。言い換えると、検出した入力電流Isが区間A、区間Bであれば、ディレイ時間Tdとパルス幅Twとを決定できる。また、図2の(b)に示すように、直流電圧Vdは、入力電流Isに対してほぼ一定値である。 In the case of the input current Is in sections A and B, the delay time Td monotonously decreases with respect to the input current Is, and the pulse width Tw monotonously increases, as shown in FIG. The sum with the pulse width Tw is a constant value. That is, the delay time Td and the pulse width Tw are associated with each other, and if one of them is determined, the other can be determined. In other words, if the detected input current Is is in section A and section B, the delay time Td and the pulse width Tw can be determined. Further, as shown in FIG. 2(b), the DC voltage Vd is substantially constant with respect to the input current Is.

図1に例示する本発明が適用可能な電力変換回路と、この電力変換回路における図2で示した各種の事象に鑑み、区間A、区間Bの制御に関して電力変換装置1のディレイ時間Tdとパルス幅Twを決定する手法としては以下の第1、第2、第3の手法が知られている。このうち第3の手法が特許文献1に記載の手法であり、本発明の実施例に係る第4の手法は第3の手法をさらに発展させたものである。 In view of the power conversion circuit illustrated in FIG. 1 to which the present invention can be applied and the various events shown in FIG. As methods for determining the width Tw, the following first, second, and third methods are known. Among these methods, the third method is the method described in Patent Document 1, and the fourth method according to the embodiment of the present invention is a further development of the third method.

まずディレイ時間Tdとパルス幅Twとを決定する第1の方法として、直流電圧Vdを一定にするようにパルス幅Twを制御し、かつディレイ時間Tdとパルス幅Twとの和が一定になるようにするものがある。この方法は、短絡手段で短絡開始する時点を直流電圧が一定になるように制御して、短絡動作を終了する時点を一定にすることと同じである。これにより、図2に示す区間Aおよび区間Bでは直流電圧Vdを一定に制御すると同時に最大力率で運転が可能となる。なお、区間A、区間Bに入っているか否かの判定は電流検出信号を用いて判定する。 First, as a first method for determining the delay time Td and the pulse width Tw, the pulse width Tw is controlled so as to keep the DC voltage Vd constant, and the sum of the delay time Td and the pulse width Tw is kept constant. there is something to do This method is the same as controlling the point at which the short-circuiting device starts short-circuiting so that the DC voltage becomes constant, and the point at which the short-circuiting operation ends. As a result, in the sections A and B shown in FIG. 2, it is possible to control the DC voltage Vd to be constant and at the same time to operate at the maximum power factor. It should be noted that the current detection signal is used to determine whether or not it is in section A or section B. FIG.

ディレイ時間Tdとパルス幅Twとを決定する第2の方法として、入力電流検出回路 12からの入力電流検出信号53に応じて、ディレイ時間Tdとパルス幅Twを相互に関連付けずに、入力電流検出信号に応じてそれぞれ独立にディレイ時間Tdとパルス幅Twとを決定するものがある。高い力率で運転できるディレイ時間Tdとパルス幅Twとを、シミュレーションで予め求めて、ディレイ時間Tdの値を入力電流Isから求める関数と、パルス幅Twの値を入力電流Isから求める関数とを予め制御回路11に入力しておく。この方法はディレイ時間Tdおよびパルス幅Twを簡便に求める良い方法である。 As a second method for determining the delay time Td and the pulse width Tw, the input current is detected according to the input current detection signal 53 from the input current detection circuit 12 without correlating the delay time Td and the pulse width Tw. There is one that independently determines the delay time Td and the pulse width Tw according to the signal. The delay time Td and the pulse width Tw that enable operation at a high power factor are obtained in advance by simulation, and a function that obtains the value of the delay time Td from the input current Is and a function that obtains the value of the pulse width Tw from the input current Is. It is input to the control circuit 11 in advance. This method is a good method for easily obtaining the delay time Td and the pulse width Tw.

次に、交流電源2の電源電圧Vsの変動に対応した、ディレイ時間Tdとパルス幅Twとを決定する第3の方法を説明する。この方法では、図2で示した関係を利用して入力電流Isとディレイ時間Tdの関係に従ってディレイ時間Tdを決定する。一方、パルス幅Twは直流電圧Vdを一定にするように決定する。なお、ディレイ時間Tdを入力電流Isで求める関数は、予め実験やシミュレーションで求めた。 Next, a third method for determining the delay time Td and the pulse width Tw corresponding to fluctuations in the power supply voltage Vs of the AC power supply 2 will be described. In this method, the relationship shown in FIG. 2 is used to determine the delay time Td according to the relationship between the input current Is and the delay time Td. On the other hand, the pulse width Tw is determined so as to keep the DC voltage Vd constant. Note that the function for obtaining the delay time Td from the input current Is was obtained in advance through experiments and simulations.

この第3の方法に関し、図3に、横軸にパルス幅Twを採用した場合の、効率や力率や直流電圧Vdの電源電圧Vs依存性を示すように、第3の方法は交流電源2の電源電圧Vsの変動に対応できる点に特徴を有する。図3によれば、電源電圧Vsの変動(VS:95%、100%、105%)に伴って効率や力率や直流電圧が変動するが、これらのグラフの概形は変わらない。言い換えると、電源電圧に応じて効率と力率とは図3に示すパルス幅TwがTwA、TwB、TwCの各値で極大値のピークを持つ2次関数状に変化する。また、直流電圧Vdは、単調増加関数的に変化する。また、図3のパルス幅TwがTwA、TwB、TwCの各値で、直流電圧Vdが等しいことがわかる。つまり、電源電圧Vsが変化しても直流電圧Vdが一定になるようにパルス幅Tw(TwA、TwB、TwC)を制御すれば、力率を最大値に制御できる。 Regarding this third method, as shown in FIG. It is characterized in that it can cope with fluctuations in the power supply voltage Vs. According to FIG. 3, the efficiency, power factor, and DC voltage fluctuate as the power supply voltage Vs fluctuates (VS: 95%, 100%, 105%), but the outlines of these graphs do not change. In other words, the efficiency and the power factor change according to the power supply voltage in the form of a quadratic function in which the pulse width Tw shown in FIG. 3 has maximum peaks at TwA, TwB, and TwC. Also, the DC voltage Vd changes in a monotonically increasing function. Also, it can be seen that the DC voltage Vd is the same when the pulse width Tw in FIG. 3 is TwA, TwB, and TwC. That is, the power factor can be controlled to the maximum value by controlling the pulse width Tw (TwA, TwB, TwC) so that the DC voltage Vd remains constant even if the power supply voltage Vs changes.

この第3の方法では、図2の区間Aと、区間Bとで、ディレイ時間Tdを入力電流Isもしくは入力電力に対応した値として予め設定しておき、直流電圧Vdを一定に制御するようにパルス幅Twを決定して、電源変動に対応した力率改善制御をする。然るに、図3に示したように、前記条件が成り立つ範囲が電源変動は定格電圧の±5%程度である。 In this third method, the delay time Td is set in advance as a value corresponding to the input current Is or the input power in the interval A and the interval B in FIG. 2, and the DC voltage Vd is controlled to be constant. The pulse width Tw is determined to perform power factor improvement control corresponding to power fluctuations. However, as shown in FIG. 3, the range in which the above conditions are satisfied is about ±5% of the rated voltage.

ディレイ時間Tdとパルス幅Twとを決定する第4の方法として本発明においては、電源電圧検出回路16より出力された電源電圧値55に応じてパルス幅Twを変更することで、定格電圧の±5%を超える電圧変動にも対応する。この点に関して第3の方法を採用する特許文献1では、定格電圧の±5%を超える電圧変動が生じた場合、パルス幅Twを制限値、例えば最小パルス幅101や、最大パルス幅102に固定していた。そのため、図4のように定格電圧の±5%を超える電圧変動範囲においては、効率、力率が最大とならない制御としていた。 As a fourth method for determining the delay time Td and the pulse width Tw, in the present invention, by changing the pulse width Tw according to the power supply voltage value 55 output from the power supply voltage detection circuit 16, ± It can handle voltage fluctuations of more than 5%. In Patent Document 1, which adopts the third method in this regard, when a voltage fluctuation exceeding ±5% of the rated voltage occurs, the pulse width Tw is fixed to a limit value, for example, the minimum pulse width 101 or the maximum pulse width 102. Was. Therefore, in the voltage fluctuation range exceeding ±5% of the rated voltage as shown in FIG. 4, the efficiency and the power factor are not maximized.

本発明の第4の方法においては、定格電圧±5%程度までは特許文献1と同様に、前記第3の方法でパルス幅Twを決定するが、それ以上の電源変動が生じたときは図5のように予めシミュレーションにより決定した、電源電圧値55に応じた最適なパルス幅Twとする。これによって、従来技術では最適化されていなかった±5%以上の電源電圧変動が生じた場合においても、電源回路の力率を最大値に保ちながら出力電圧を一定に制御することができる。 In the fourth method of the present invention, the pulse width Tw is determined by the third method as in Patent Document 1 up to about ±5% of the rated voltage. 5, the optimal pulse width Tw corresponding to the power supply voltage value 55 determined in advance by simulation. As a result, even if the power supply voltage fluctuates by ±5% or more, which has not been optimized in the prior art, the power factor of the power supply circuit can be maintained at the maximum value and the output voltage can be controlled to be constant.

次に図2の区間Cの制御方法を説明する。図2の区間Cでは、先に述べたディレイ時間Tdとパルス幅Twの和が一定になるという条件が成立しないが、ディレイ時間Tdを固定値にして、パルス幅Twを変更して直流電圧Vdを一定に保つことができる。つまり、ディレイ時間Tdを固定し、直流電圧Vdを一定に保つようにパルス幅Twを制御すれば、力率を最大値にした動作ができる。この場合にも、電源電圧Vsの大きさに対応したディレイ時間Td(固定値)を制御回路11に記憶し、電源電圧Vsの大きさに基づいてその固定値を変更すれば、電源電圧Vsの変動にも対応ができる。 Next, a control method for section C in FIG. 2 will be described. In section C of FIG. 2, the condition that the sum of the delay time Td and the pulse width Tw is constant does not hold, but the delay time Td is set to a fixed value and the pulse width Tw is changed to change the DC voltage Vd. can be kept constant. In other words, by fixing the delay time Td and controlling the pulse width Tw so as to keep the DC voltage Vd constant, the power factor can be maximized. Also in this case, if the delay time Td (fixed value) corresponding to the magnitude of the power supply voltage Vs is stored in the control circuit 11 and the fixed value is changed based on the magnitude of the power supply voltage Vs, the power supply voltage Vs It can also handle changes.

以上の実施例で説明したように、電源電圧Vsの半周期に一回もしくは複数回、電源を短絡する力率改善回路を備えた本発明の電源装置は、力率を最大値に保ちながら直流電圧Vdを一定に制御できる。 As described in the above embodiments, the power supply apparatus of the present invention, which is equipped with a power factor correction circuit that short-circuits the power supply once or multiple times in a half cycle of the power supply voltage Vs, maintains the power factor at the maximum value while maintaining the DC current. Voltage Vd can be controlled to be constant.

また、本発明の電源装置を洗濯機などの家電製品に使用することで、家庭用電源の電圧変動が生じた場合においても、安定した直流電圧Vdを実現することができる。 Further, by using the power supply device of the present invention in a home appliance such as a washing machine, it is possible to realize a stable DC voltage Vd even when the voltage of the home power source fluctuates.

1…電力変換装置、2…交流電源、3…リアクトル、4…短絡手段、5…整流回路、6…平滑コンデンサ、7…平滑コンデンサ、8…平滑コンデンサ、9…整流回路切替手段、10…ゼロクロス検出回路、11…制御回路、12…入力電流検出回路、13…インバータ回路、14…圧縮機、15…モータ駆動システム、16…電源電圧検出回路、50…ゼロクロス信号、51…短絡パルス信号、52…整流回路切替信号、53…入力電流検出信号、54…直流電圧値、55…電源電圧値、101…最小パルス幅、102…最大パルス幅 DESCRIPTION OF SYMBOLS 1... Power converter, 2... AC power supply, 3... Reactor, 4... Short circuit means, 5... Rectifier circuit, 6... Smoothing capacitor, 7... Smoothing capacitor, 8... Smoothing capacitor, 9... Rectifier circuit switching means, 10... Zero crossing Detection circuit 11 Control circuit 12 Input current detection circuit 13 Inverter circuit 14 Compressor 15 Motor drive system 16 Power supply voltage detection circuit 50 Zero cross signal 51 Short circuit pulse signal 52 Rectifier circuit switching signal 53 Input current detection signal 54 DC voltage value 55 Power supply voltage value 101 Minimum pulse width 102 Maximum pulse width

Claims (3)

交流電源から全波整流回路及び倍電圧整流回路に切り替え可能な整流回路を介して直流出力を得るとともに、前記交流電源を交流電圧のゼロクロス点を基準とする遅れ時間及びパルス幅のパルス信号により短絡するように構成された電力変換装置であって、
前記整流回路を全波整流回路及び倍電圧整流回路に切り替え運用するときに、電源電圧が所定範囲内にある時は、前記遅れ時間を入力電流もしくは入力電力に対応した値として予め設定し、直流電圧を一定に制御するように前記パルス幅を決定して、電源変動に対応した力率改善制御を行い、前記電源電圧が所定範囲外にある時は、前記遅れ時間を入力電流もしくは入力電力に対応した値として予め設定し、直流電圧に応じた予め設定したパルス幅とする制御を行うことを特徴とする電力変換装置。
A DC output is obtained from an AC power supply through a rectifier circuit that can be switched to a full-wave rectifier circuit and a voltage doubler rectifier circuit, and the AC power supply is short-circuited by a pulse signal having a delay time and a pulse width based on the zero cross point of the AC voltage. A power conversion device configured to
When the rectifier circuit is switched between a full-wave rectifier circuit and a voltage doubler rectifier circuit, and the power supply voltage is within a predetermined range, the delay time is set in advance as a value corresponding to the input current or the input power, and the DC The pulse width is determined so as to control the voltage to be constant, power factor improvement control corresponding to power supply fluctuations is performed, and when the power supply voltage is outside a predetermined range, the delay time is adjusted to the input current or input power. A power converter characterized in that a corresponding value is set in advance and control is performed to set the pulse width in advance according to the DC voltage.
請求項1に記載の電力変換装置であって、
前記整流回路を全波整流回路から倍電圧整流回路に切り替え後に、前記遅れ時間を固定値にして、前記パルス幅を変更して直流電圧を一定に保つことを特徴とする電力変換装置。
The power converter according to claim 1,
After switching the rectifier circuit from a full-wave rectifier circuit to a voltage doubler rectifier circuit, the power conversion device is characterized in that the delay time is set to a fixed value and the pulse width is changed to keep the DC voltage constant.
請求項1または請求項2に記載の電力変換装置を備えた洗濯機。 A washing machine comprising the power converter according to claim 1 or 2.
JP2021043384A 2021-03-17 2021-03-17 Power conversion device and washing machine including the same Pending JP2022143053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021043384A JP2022143053A (en) 2021-03-17 2021-03-17 Power conversion device and washing machine including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021043384A JP2022143053A (en) 2021-03-17 2021-03-17 Power conversion device and washing machine including the same

Publications (1)

Publication Number Publication Date
JP2022143053A true JP2022143053A (en) 2022-10-03

Family

ID=83453857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021043384A Pending JP2022143053A (en) 2021-03-17 2021-03-17 Power conversion device and washing machine including the same

Country Status (1)

Country Link
JP (1) JP2022143053A (en)

Similar Documents

Publication Publication Date Title
JP5026553B2 (en) Motor drive device having function of dynamically switching conversion operation mode of AC / DC converter
KR101457569B1 (en) Rectifier circuit and motor driving device using the same
KR20160122923A (en) Apparatus and method for generating offset voltage of 3-phase inverter
JP6731639B2 (en) Power converter
TW200924366A (en) Matrix converter
JP3848903B2 (en) Power converter
US11387745B2 (en) Rectifier and motor control apparatus having power regeneration function
CN110870198B (en) Drive device, control method, and storage medium
US20170054404A1 (en) Motor drive apparatus having function of suppressing temporal variation of regenerative current
WO2020059814A1 (en) Motor control device, motor system and inverter control method
JP2022143053A (en) Power conversion device and washing machine including the same
US10848072B2 (en) Power supply control device, power conversion system, and power supply control method
RU2426218C2 (en) Method to control electric motor operation
JP3774329B2 (en) Inverter device
JP4248560B2 (en) Power converter
JP6522227B2 (en) Converter circuit, inverter circuit and power converter for air conditioner
JP4134625B2 (en) PWM power converter and conversion method
WO2019026729A1 (en) Power supply device, driving device, control method, and program
JP2006158001A (en) Inverter device
JP6959167B2 (en) Power factor improvement circuit
JP7267450B2 (en) Power converters, motor drives, blowers, compressors and air conditioners
JP6567234B1 (en) Power converter
JP3633564B2 (en) Inverter device for induction machine drive
JP5540566B2 (en) Rectifier
KR100521087B1 (en) A control apparatus and method of inverter