WO2020012724A1 - 無線通信デバイス - Google Patents

無線通信デバイス Download PDF

Info

Publication number
WO2020012724A1
WO2020012724A1 PCT/JP2019/012076 JP2019012076W WO2020012724A1 WO 2020012724 A1 WO2020012724 A1 WO 2020012724A1 JP 2019012076 W JP2019012076 W JP 2019012076W WO 2020012724 A1 WO2020012724 A1 WO 2020012724A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
resonance
rfid tag
wireless communication
communication device
Prior art date
Application number
PCT/JP2019/012076
Other languages
English (en)
French (fr)
Inventor
紀行 植木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019535412A priority Critical patent/JP6658975B1/ja
Priority to CN201990000809.0U priority patent/CN215119247U/zh
Priority to DE212019000288.9U priority patent/DE212019000288U1/de
Publication of WO2020012724A1 publication Critical patent/WO2020012724A1/ja
Priority to US17/108,130 priority patent/US11380996B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07786Antenna details the antenna being of the HF type, such as a dipole
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/0772Physical layout of the record carrier
    • G06K19/0773Physical layout of the record carrier the record carrier comprising means to protect itself against external heat sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • the present invention relates to a wireless communication device provided with an antenna, and particularly to a wireless communication device such as an RFID (Radio Frequency Identification) tag that performs short-range communication via an inductive electromagnetic field or an electromagnetic wave.
  • a wireless communication device such as an RFID (Radio Frequency Identification) tag that performs short-range communication via an inductive electromagnetic field or an electromagnetic wave.
  • RFID Radio Frequency Identification
  • An RFID tag which is one form of a wireless communication device, communicates with a reader / writer so that reading and writing of predetermined information is performed in a contactless manner. For example, by attaching RFID tags to all products, so-called self-checkout is performed smoothly. In addition, sales and distribution status management, such as ensuring traceability and marketing, is smoothly performed.
  • the LF band of 135 kHz or less As the frequency of the communication signal of the RFID tag, the LF band of 135 kHz or less, the HF band of 13.56 MHz, the UHF band of 860 MHz to 960 MHz, and the microwave band of 2.45 GHz are mainly used.
  • the RFID tag of the type attached to is an RFID tag using the UHF band.
  • a metal material such as an antenna pattern, which is a metal film, is formed on a base material such as paper or resin together with an RFIC (Radio-Frequency Integrated Circuit) element.
  • RFIC Radio-Frequency Integrated Circuit
  • Patent Document 1 has a base material on which an IC chip and an antenna pattern are mounted made of a flame retardant material. Therefore, combustion of the base material is suppressed.
  • the metal material portion formed on the base material will be discharged continuously over time, and this is not a configuration that can reliably prevent the risk of ignition of the base material and the possibility of igniting a product.
  • An object of the present invention is to provide a wireless communication device that can prevent ignition and combustion even in a situation where it is attached to food and receives high-frequency power for heating food.
  • a wireless communication device is a wireless communication device for transmitting and receiving a communication signal, and includes a base material, an antenna pattern formed on the base material, and a power supply circuit connected to the antenna pattern.
  • the antenna pattern is characterized in that a line width of a harmonic current concentrated portion where a current is strong at a harmonic resonance frequency higher than a resonance frequency at a frequency of the communication signal is smaller than a line width of another portion.
  • the wireless communication device when the frequency of the communication signal is lower than the frequency of the microwave for heating the electromagnetic wave, the wireless communication device resonates with the microwave for heating the electromagnetic wave. Therefore, when the wireless communication device receives the microwave for heating the electromagnetic wave, it generates heat intensively at the harmonic current concentration location due to Joule heat.
  • the harmonic current concentration point is a narrow line width portion (hereinafter referred to as a "narrow width portion"), the narrow portion of the antenna pattern or the substrate on which the narrow width portion of the antenna pattern is disposed is melted by heating. And melted or cut by sublimation. That is, the antenna patterns are separated at the narrow portions.
  • the antenna pattern When the antenna pattern is separated at the narrow portion, the antenna pattern no longer resonates (harmonic resonance) with the microwave for heating the electromagnetic wave, so that the heat generation of the antenna pattern is not maintained, and the temperature rise due to the harmonic resonance stops. Is done. Therefore, ignition of the wireless communication device or the product portion to which the wireless communication device is attached is prevented.
  • the present invention it is possible to obtain a wireless communication device that can be prevented from firing or burning even when receiving high-frequency electric power for heating food attached to food or the like.
  • FIG. 1A is a plan view of the RFID tag 101 according to the first embodiment
  • FIGS. 1B and 1C are diagrams showing an intensity distribution of a current flowing through an antenna pattern of the RFID tag 101. is there.
  • FIG. 1D is a plan view of the RFID tag showing a state after the melting of the antenna pattern or the cutting of the antenna pattern by sublimation.
  • FIGS. 2A, 2B, 2C, and 2D show examples of a resonance mode at a frequency of a communication signal or a resonance mode at a frequency of a microwave for heating an electromagnetic wave. It is.
  • FIG. 3A is a plan view of the RFID tag 102 according to the second embodiment, and FIGS.
  • FIGS. 3B and 3C are diagrams showing the intensity distribution of a current flowing through the antenna pattern of the RFID tag 102. is there.
  • FIG. 4 is a diagram illustrating an example of a product to which an RFID tag is attached, and is a perspective view of a lunch box 201 to which the RFID tag 102 is attached.
  • FIG. 5 is an exploded perspective view showing the configuration of the RFIC package 3 mounted on the land patterns 6 (6a, 6b) of the antenna patterns 2A, 2B.
  • FIG. 6 is a plan view of an RFID tag 103A according to the third embodiment.
  • FIG. 7 is a plan view of another RFID tag 103B according to the third embodiment.
  • FIG. 8A is a plan view of yet another RFID tag 103C according to the third embodiment.
  • FIG. 8B and 8C are diagrams showing the intensity distribution of the current flowing through the antenna pattern of the RFID tag 103C.
  • FIG. 9 is a plan view showing an example of an antenna pattern of a conventional RFID tag including meander line antenna patterns 2A and 2B.
  • FIG. 10 is a plan view of an RFID tag as a comparative example.
  • a wireless communication device is a wireless communication device for transmitting and receiving a communication signal, and is connected to a base material, an antenna pattern formed on the base material, and the antenna pattern.
  • each part of the wireless communication device is microwave-heated.
  • the antenna pattern is quickly cut at a predetermined location, thereby preventing ignition due to heat generation of the antenna pattern.
  • the antenna pattern is a pattern that forms a dipole-type electric field antenna having the power supply circuit connected to a power supply end and an open end.
  • the current concentration point is on the way from the power supply end to the open end.
  • the resonance at the frequency of the communication signal is a quarter-wave resonance from a power supply end to an open end, and the harmonic resonance is from a power supply end to an open end. ⁇ wavelength resonance.
  • the resonance at the frequency of the communication signal is a ⁇ wavelength resonance from the power supply end to the open end, and the harmonic resonance is from the power supply end to the open end.
  • the antenna pattern has a meandering line shape.
  • the frequency of the communication signal is a UHF band frequency
  • the frequency of the harmonic resonance is a frequency of 2.4 GHz or more and 2.5 GHz or less.
  • RFID tags are wireless communication devices
  • an “unmanned convenience store” when a shopping basket containing a product with an “RFID tag” is placed on a checkout stand, information from the “RFID tag” is read and the price of the product is displayed. .
  • the purchaser inserts cash into the cash slot as a product price or inserts a credit card to complete the payment and automatically receives the product packed in the shopping bag, so that the product at the ⁇ unmanned convenience store '' Can complete the purchase.
  • the electromagnetic wave heating device described in the following embodiments will be described as a so-called “microwave oven” that performs dielectric heating, but the electromagnetic wave heating device in the present invention is directed to a heating device having a function of performing dielectric heating. .
  • an RFID tag attached to the product will be described as an example of a wireless communication device.
  • FIG. 1A is a plan view of the RFID tag 101 according to the first embodiment
  • FIGS. 1B and 1C are diagrams showing the intensity distribution of a current flowing through the antenna pattern of the RFID tag 101. is there.
  • FIG. 1D is a plan view of the RFID tag showing a state of the antenna pattern after being cut off by melting or cut by sublimation.
  • the RFID tag 101 supplies power to an insulating or dielectric substrate 1, antenna patterns 2A and 2B formed on the substrate 1, and antenna patterns 2A and 2B. And a power supply circuit 90 for performing the operation.
  • the RFID tag 101 is configured to perform wireless communication (transmission / reception) using a high-frequency signal including a frequency (carrier frequency) of a communication signal in the UHF band.
  • the UHF band is a frequency band from 860 MHz to 960 MHz.
  • the frequency of the communication signal in the UHF band is an example of the “frequency of the communication signal” in the present invention.
  • the power supply circuit 90 is, for example, an RFIC element, an RFIC package, or the like, which will be described later.
  • a flexible film material or a flame-retardant film material is used as the base material 1.
  • the outer shape of the substrate 1 in a plan view is rectangular.
  • the thickness of the substrate 1 may be as thin as 38 ⁇ m or less.
  • a flame-retardant film is used for the base material 1
  • a flame-retardant film material to be used for example, addition of a halogen-based flame-retardant material to a resin material such as PET (polyethylene terephthalate) resin and PPS (polyphenylene sulfide) resin
  • a film coated with a flame-retardant coating material is used.
  • a resin material having a high function in terms of heat resistance, hydrolysis resistance, and chemical resistance such as heat resistant PEN (polyethylene naphthalate) resin can be used.
  • the base material 1 does not necessarily require a flame-retardant material, and may be made of, for example, paper.
  • the antenna patterns 2A and 2B are formed by a film of a conductive material such as an aluminum foil or a copper foil.
  • a power supply circuit 90 is electrically connected to the antenna patterns 2A and 2B formed on the surface of the substrate 1.
  • the antenna patterns 2A and 2B extend from the feed circuit 90 in opposite directions.
  • the waveform of the current shown in FIG. 1 (B) is a current distribution at the fundamental wave resonance in which a 1/4 wavelength standing wave is generated in each of the first antenna pattern 2A and the second antenna pattern 2B from the feeding end to the open end. Is shown.
  • the RFID tag 101 thus resonates at the frequency of the communication signal.
  • the antenna patterns 2A and 2B of the RFID tag 101 according to the present embodiment function as a dipole-type electric field antenna during communication as the RFID tag.
  • the waveform of the current shown in FIG. 1 (C) shows the current distribution at the harmonic resonance in which a standing wave of 1 / wavelength is generated in each of the first antenna pattern 2A and the second antenna pattern 2B from the feeding end to the open end. Is shown.
  • the RFID tag 101 resonates in a harmonic manner at the frequency of the microwave for heating the electromagnetic wave.
  • the line width of the first antenna pattern 2A and the second antenna pattern 2B is different from the connection end FE of the feeding circuit 90 to the open end. It is not constant up to the OE, and has a narrow portion NP with a narrow line width in the middle. That is, each of the antenna patterns 2A and 2B has the first wide portion WP1 from the connection end FE of the power supply circuit 90 to the narrow portion NP, and the second wide portion WP2 from the narrow portion NP to the open end OE.
  • the microwave causes the antenna patterns 2A and 2B to resonate at a higher harmonic, and a higher harmonic current as shown in FIG. 1C flows.
  • the narrow portion NP is a harmonic current concentrated portion where the current is strong at the harmonic resonance frequency.
  • this “harmonic current concentrated portion” is the narrow portion NP, the current in the narrow portion NP is even stronger than in the first wide portion WP1 and the second wide portion WP2. Therefore, the energy of the microwave for heating the electromagnetic wave is concentrated in the narrow portion NP.
  • the energy of the microwave for heating the electromagnetic wave is intensively consumed in the narrow portion NP, and the temperature of the narrow portion NP is increased by Joule heat.
  • the temperature of the narrow portion NP exceeds a certain threshold, the narrow portion NP is melted and melted or cut by sublimation. That is, the narrow portion NP where the current of the harmonic current is strong acts like a “fuse” for the microwave for heating the electromagnetic wave.
  • the relationship between the line widths of the wide portions WP1, WP2 and the narrow portion NP is as follows. It is preferable that the relationship (cross sectional area of wide portion / cross sectional area of narrow portion) exceeds 2. This is the same in other embodiments described below.
  • the second wide portions WP2 of the antenna patterns 2A and 2B are isolated. Does not work, and the effective line length of the antenna patterns 2A and 2B is reduced. In this state, the harmonic resonance shown in FIG. 1 (C) does not hold, and even if the irradiation of the microwave for heating the electromagnetic wave continues, the above-mentioned harmonic current does not flow through the antenna patterns 2A and 2B, and the temperature rise stops. Does not ignite.
  • the narrow portions NP of the antenna patterns 2A and 2B are melted and blown or cut by sublimation.
  • the base material 1 near the narrow portions NP has a narrow width.
  • the antenna pattern 2A, 2B may be separated at the narrow portion NP due to melting or sublimation due to the temperature rise of the portion NP.
  • the antenna patterns 2A and 2B resonate at the fundamental wave at a quarter wavelength at the frequency of the communication signal, and resonate at the half wavelength at the electromagnetic wave heating frequency (second harmonic resonance).
  • the resonance mode at the frequency of the communication signal and the resonance mode at the electromagnetic wave heating frequency there are other combinations of the resonance mode at the frequency of the communication signal and the resonance mode at the electromagnetic wave heating frequency.
  • FIG. 2 (A), 2 (B), 2 (C), and 2 (D) show current distribution examples of a resonance mode at a frequency of a communication signal or a resonance mode at a frequency of a microwave for heating an electromagnetic wave.
  • FIG. The resonance mode shown in FIG. 2A is the resonance mode already shown in FIG. 1B, and at the resonance frequency fo, the fundamental wave resonates at a quarter wavelength from the feeding end to the open end.
  • harmonic resonance occurs at a resonance frequency of 2fo at a half wavelength from the power supply end to the open end.
  • FIG. 2C is the resonance mode already shown in FIG. 1C.
  • harmonic resonance occurs at / wavelength from the feeding end to the open end.
  • harmonic resonance occurs at one wavelength from the feeding end to the open end.
  • 2A, 2B, 2C, and 2D the amplitude directions of the current distribution and the voltage distribution are normalized. The same applies to the current distribution and the voltage distribution described below.
  • the current density on the antenna patterns 2A and 2B is increased. And a high current density region HC having a high density is generated.
  • FIG. 2B an example in which the high current density region HC where the current is strong is made to be a narrow portion on the antenna patterns 2A and 2B has already been shown in FIG. 1C.
  • the high current density region HC may be a narrow portion.
  • FIG. 9 is a plan view showing an example of an antenna pattern of a conventional RFID tag having meander line antenna patterns 2A and 2B.
  • FIG. 9 shows an inductance component L of a conductor pattern and a capacitance component C between adjacent conductor patterns.
  • the fundamental wave resonance and the harmonic resonance of the antenna patterns 2A and 2B require that the antenna pattern be formed in a meandering line shape.
  • Different effects That is, when the antenna pattern is formed in a meander line shape, the inductance component L and the capacitance component C increase due to the adjacent conductor patterns, and the resonance frequency shifts to a lower band.
  • the harmonic resonance is greatly affected by the inductance component L and the capacitance component C as compared with the fundamental wave resonance. Therefore, the amount of low-frequency shift of the resonance frequency in the meander line shape is larger in the harmonic resonance than in the fundamental wave resonance.
  • the condition is likely to be such that the antenna patterns 2A and 2B resonate at the fundamental wave frequency at the frequency of the communication signal in the UHF band from 860 MHz to 960 MHz, and resonate at the electromagnetic wave heating frequency of 2.45 GHz (second harmonic resonance).
  • FIG. 3A is a plan view of the RFID tag 102 according to the second embodiment
  • FIGS. 3B and 3C are diagrams showing the intensity distribution of a current flowing through the antenna pattern of the RFID tag 102. is there.
  • FIG. 10 is a plan view of an RFID tag as a comparative example.
  • the RFID tag 102 is connected to an insulating or dielectric substrate 1, antenna patterns 2A and 2B formed on the substrate 1, and the antenna patterns 2A and 2B. And an RFIC package 3.
  • FIG. 4 is a diagram illustrating an example of a product to which an RFID tag is attached, and is a perspective view of a lunch box 201 to which an RFID tag 102 is attached.
  • the RFID tag 102 of the present embodiment is configured to perform wireless communication (transmission / reception) using a high-frequency signal including the frequency (carrier frequency) of a communication signal in the UHF band.
  • the UHF band is a frequency band from 860 MHz to 960 MHz.
  • the frequency of the communication signal in the UHF band is an example of the “frequency of the communication signal” in the present invention.
  • the antenna patterns 2A and 2B are formed by a film of a conductive material such as an aluminum foil or a copper foil.
  • the RFIC package 3 is mounted on the antenna patterns 2A and 2B formed on the surface of the base 1, and the RFIC package 3 and the antenna patterns 2A and 2B are electrically connected.
  • electrically connected means that high-frequency signals are transmitted and connected or coupled so as to be operable, and is limited to direct-current and direct connection. Not something.
  • the antenna patterns 2A and 2B have a meander line shape, and meander line shapes meandering from the first land pattern 6a on which the RFIC package 3 is mounted and having a plurality of folded portions FP.
  • a meander-line shaped second antenna pattern 2B having a plurality of folded portions and extending meandering from the first antenna pattern 2A and the second land pattern 6b on which the RFIC package 3 is mounted is respectively provided to extend. That is, the meander-line-shaped first antenna pattern 2A extends from the first land pattern 6a toward one end in the longitudinal direction of the substrate 1 (in the -X direction). Further, a meandering second antenna pattern 2B extends from the second land pattern 6b toward the other longitudinal end of the base 1 (in the + X direction).
  • the antenna patterns 2A and 2B function as dipole-type electric field antennas.
  • the folded portion FP of the antenna patterns 2A, 2B is a location where the extending direction of the antenna patterns 2A, 2B is reversed.
  • the antenna patterns 2A and 2B include conductor patterns OP which are opposed to each other by being folded at the folded portion FP.
  • the antenna patterns 2A and 2B are made of a metal material having high conductivity such as an aluminum electrode or a copper electrode. Note that a carbon-based material other than the metal material may be used for the antenna patterns 2A and 2B.
  • the line width of the first antenna pattern 2A and the second antenna pattern 2B is not constant from the connection end FE of the RFIC package 3 to the open end OE, but is narrow in the middle. It has a narrow portion NP. That is, each of the antenna patterns 2A and 2B has the first wide portion WP1 from the connection end FE of the RFIC package 3 to the narrow portion NP, and the second wide portion WP2 from the narrow portion NP to the open end OE.
  • the RFID tag of the comparative example shown in FIG. 10 differs from the RFID tag shown in FIG. 10 in that the RFID tag includes the narrow portion NP and the wide portions WP1 and WP2.
  • the microwave for heating the electromagnetic wave when the microwave for heating the electromagnetic wave is irradiated, the microwave causes the antenna patterns 2A and 2B to resonate at higher harmonics, and the higher harmonic current shown in FIG. 3C flows.
  • the narrow portion NP is a harmonic current concentrated portion where the current is strong at the frequency of the harmonic resonance.
  • this “harmonic current concentrated portion” is the narrow portion NP, the current in the narrow portion NP is even stronger than in the first wide portion WP1 and the second wide portion WP2. Therefore, as in the case of the RFID tag 101 shown in the first embodiment, the energy of the microwave for heating electromagnetic waves is concentrated in the narrow portion NP.
  • the energy of the microwave for heating the electromagnetic wave is intensively consumed in the narrow portion NP, and the temperature of the narrow portion NP is increased by Joule heat.
  • the temperature of the narrow portion NP exceeds a certain threshold, the narrow portion NP is melted and melted or cut by sublimation.
  • the interval between the conductor patterns OP facing each other in the narrow portion NP is smaller, so that the Joule heat The locations of occurrence are concentrated, and the effect of increasing the temperature of the narrow portion NP is high. Therefore, the time from when the microwave for electromagnetic wave heating is irradiated to when the antenna patterns 2A and 2B are separated at the narrow portion NP can be shortened.
  • FIG. 5 is an exploded perspective view showing the configuration of the RFIC package 3 mounted on the land patterns 6 (6a, 6b) of the antenna patterns 2A, 2B.
  • the RFIC package 3 according to the first embodiment is configured by a multilayer substrate including three layers.
  • the multilayer substrate of the RFIC package 3 is made of a resin material such as polyimide or liquid crystal polymer, and is formed by laminating three flexible insulating sheets 12A, 12B, and 12C.
  • the insulating sheets 12A, 12B, and 12C have a substantially rectangular shape in plan view, and have a substantially rectangular shape in the present embodiment.
  • the RFIC package 3 shown in FIG. 5 shows a state where the RFIC package 3 shown in FIG.
  • the RFIC package 3 includes an RFIC chip 9, a plurality of inductance elements 10A, 10B, 10C, 10D, and an antenna pattern 2A, on a three-layer substrate (insulating sheets 12A, 12B, 12C). External connection terminals 11 (11a, 11b) connected to 2B are formed at desired positions.
  • the external connection terminals 11a and 11b are formed on a first insulating sheet 12A serving as a lowermost layer (a substrate facing the antenna patterns 2A and 2B) and are located at positions facing the land patterns 6a and 6b of the antenna patterns 2A and 2B. Is formed.
  • the four inductance elements 10A, 10B, 10C, and 10D are separately formed on the second insulating sheet 12B and the third insulating sheet 12C. That is, the first insulating element 10A and the second inductance element 10B are formed on the third insulating sheet 12C, which is the uppermost layer (the layer described at the bottom in FIG. 5), and the second insulating layer 12B, which is the intermediate layer, is formed.
  • a third inductance element 10C and a fourth inductance element 10D are formed on the insulating sheet 12B.
  • the external connection terminals 11a and 11b and the four inductance elements 10A, 10B, 10C and 10D are formed by a conductor pattern made of a conductive material such as an aluminum foil and a copper foil.
  • the RFIC chip 9 is mounted on the third insulating sheet 12C, which is the uppermost layer, at the center in the longitudinal direction (X direction in FIG. 5).
  • the RFIC chip 9 has a structure in which an RF circuit is formed on a semiconductor substrate made of a semiconductor such as silicon.
  • the first inductance element 10A formed in a spiral shape on one side in the longitudinal direction (the + X direction side in FIG. 5) on the third insulating sheet 12C is provided with a land 10Aa on one input / output terminal 9a of the RFIC chip 9. Connected through.
  • the second inductance element 10B formed in a spiral shape on the other side in the longitudinal direction on the third insulating sheet 12C (the side in the ⁇ X direction in FIG. 5) is landed on the other input / output terminal 9b of the RFIC chip 9. It is connected via 10Ba.
  • a spiral third inductance element 10C is formed on one side in the longitudinal direction (the + X direction side in FIG. 5) on the second insulating sheet 12B as an intermediate layer.
  • a spiral fourth inductance element 10D is formed on the other side in the longitudinal direction (the ⁇ X direction side in FIG. 5).
  • the outer peripheral end of the spiral third inductance element 10C is directly connected to the outer peripheral end of the spiral fourth inductance element 10D.
  • the land 10Ca which is an end on the inner peripheral side of the third inductance element 10C, has a spiral shape on the third insulating sheet 12C via an interlayer connection conductor such as a via conductor penetrating the second insulating sheet 12B.
  • One inductance element 10A is connected to a land 10Ab which is an inner peripheral end.
  • the land 10Ca which is the inner peripheral end of the third inductance element 10C, is provided on the first insulating sheet 12A via an interlayer connection conductor such as a through-hole conductor penetrating the first insulating sheet 12A serving as the lowermost layer. Is connected to the first external connection terminal 11a.
  • the land 10Da which is the inner peripheral end of the fourth inductance element 10D, has a spiral second shape on the third insulating sheet 12C via an interlayer connection conductor such as a through-hole conductor penetrating the second insulating sheet 12B.
  • the inductance element 10B is connected to a land 10Bb which is an inner peripheral end.
  • the land 10Da which is the inner peripheral end of the fourth inductance element 10D, is provided on the first insulating sheet 12A via an interlayer connection conductor such as a through-hole conductor penetrating the first insulating sheet 12A serving as the lowermost layer. Is connected to the second external connection terminal 11b.
  • the first external connection terminals 11a on the first insulating sheet 12A are disposed so as to be connected to the first land patterns 6a of the first antenna patterns 2A formed on the base material 1. Further, the second external connection terminals 11b on the first insulating sheet 12A are provided so as to be connected to the second land patterns 6b of the second antenna patterns 2B formed on the base material 1.
  • the through hole 13 for accommodating the RFIC chip 9 mounted on the third insulating sheet 12C is formed in the second insulating sheet 12B as the intermediate layer.
  • the RFIC chip 9 is provided between the first inductance element 10A and the second inductance element 10B, and between the third inductance element 10C and the fourth inductance element 10D. Therefore, the RFIC chip 9 functions as a shield, and the magnetic field coupling and the electric field coupling between the first inductance element 10A and the second inductance element 10B are suppressed.
  • the third inductance element 10C and the fourth inductance element 10D Magnetic field coupling and electric field coupling are suppressed. As a result, in the RFIC package 3, narrowing of the communication signal pass band is suppressed, and the pass band is widened.
  • the form in which the RFIC package 3 is mounted on the antenna patterns 2A and 2B is illustrated, but the RFIC chip 9 may be mounted directly on the antenna patterns 2A and 2B. Further, at this time, the inductor configured as the plurality of inductance elements 10A, 10B, 10C, and 10D in the RFIC package 3 may be formed on the base material 1 by a loop-shaped pattern.
  • FIG. 6 is a plan view of the RFID tag 103A according to the third embodiment.
  • the RFID tag 103A includes an insulator or dielectric substrate 1, antenna patterns 2A and 2B formed on the substrate 1, and an RFIC package 3 connected to the antenna patterns 2A and 2B.
  • the line width of the first antenna pattern 2A and the second antenna pattern 2B is not constant from the connection end FE to the open end OE of the RFIC package 3, and has a narrow portion NP with a small line width in the middle. That is, each of the antenna patterns 2A and 2B has the first wide portion WP1 from the connection end FE of the RFIC package 3 to the narrow portion NP, and the second wide portion WP2 from the narrow portion NP to the open end OE.
  • the shape of the first antenna pattern 2A and the shape of the second antenna pattern 2B are in point symmetry with respect to the RFIC package 3.
  • the relationship between the shapes of the two antenna patterns 2A and 2B may be either line symmetric or point symmetric. Further, it may be asymmetric.
  • FIG. 7 is a plan view of another RFID tag 103B according to the third embodiment.
  • the shape of the conductor pattern of the narrow portion NP is different from that of the RFID tag 102 shown in FIG.
  • the conductor patterns of the antenna patterns 2A and 2B are opposed to each other by being folded at the folded portion FP.
  • the narrow portion NP is smaller than the conductor patterns of the wider portions WP1 and WP2. It has a narrow space between them.
  • FIG. 8A is a plan view of yet another RFID tag 103C according to the third embodiment.
  • FIGS. 8B and 8C are diagrams showing the intensity distribution of the current flowing through the antenna pattern of the RFID tag 103C.
  • the antenna patterns 2A and 2B of the RFID tag 103C have the first wide portion WP1 from the connection end FE of the RFIC package 3 to the first narrow portion NP1, and the first narrow portion NP1 to the second narrow portion NP2.
  • the microwave causes the antenna patterns 2A and 2B to resonate by one wavelength (harmonic resonance), and a harmonic current shown in FIG.
  • the narrow portions NP1 and NP2 are harmonic current concentrated portions where the current is strong at the frequency of the harmonic resonance. Therefore, the energy of the microwave for heating electromagnetic waves is concentrated in the narrow portions NP1 and NP2. That is, the energy of the microwave for heating electromagnetic waves is intensively consumed in the narrow portions NP1 and NP2, and the narrow portions NP1 and NP2 are heated by Joule heat.
  • the antenna patterns 2A and 2B are separated by the first narrow portion NP1 or the second narrow portion NP2.
  • the antenna patterns 2A and 2B receive the microwave for heating the electromagnetic wave and resonate at higher harmonics, so that the antenna patterns 2A and 2B may have the narrow portion NP at a location where the harmonic current is concentrated. . Further, the narrow portion NP may be provided on only one of the first antenna pattern 2A and the second antenna pattern 2B. Even in this case, if the antenna patterns 2A and 2B are separated by the narrow portion NP due to the harmonic resonance, the effective lengths of the antenna patterns 2A and 2B are shortened, and the harmonic resonance is not maintained, and the harmonic current is reduced. Heat generation is stopped.
  • the narrow portions NP of the antenna patterns 2A and 2B are discontinuously adjacent to the wide portions WP1 and WP2. Between the portions WP1, WP2, etc., the line width may change continuously.
  • the antenna patterns 2A and 2B have an example in which the narrow width portion NP and the wide width portions WP1 and WP2 have two types of line widths.
  • the line width such as 2B may have a plurality of types of line widths that change stepwise.
  • the present invention makes it possible to build a system for automating the accounting and bagging of purchased products at a store such as a convenience store that handles a wide variety of products such as food and daily necessities. It is intended to provide a wireless communication device that can make a significant progress toward practical use of an “unmanned convenience store”.
  • the present invention is highly versatile and useful as a wireless communication device attached to a product, and is particularly necessary for realizing an “unmanned convenience store”.
  • FE feeding circuit connection end FP: folded portion HC: high current density region
  • NP narrow width portion
  • NP1 first narrow width portion
  • NP2 second narrow width portion
  • OE open end
  • OP conductive pattern WP1 facing each other: first Wide portion WP2 Second wide portion WP3
  • RFIC package 6 Land pattern 6a First land pattern 6b Second land pattern 9, RFIC chips 9a, 9b, input / output terminals 10A, first inductance element 10B, second inductance element 10C, third inductance element 10D, fourth inductance elements 10Aa, 10Ab, 10Ba, 10Bb, 10Ca, 10Da lands 11 External connection terminal 11a First external connection terminal 11b Second external connection terminal 12A First insulating sheet 1 B ... second insulating sheet 12C ... third insulating sheet 13 ... through hole 90 ... feeder circuit 101,102,103A, 103B, 103C ... RFID tag 201 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

無線通信デバイスの一例であるRFIDタグ(102)は、通信信号を送受信するための無線通信デバイスである。RFIDタグ(102)は、基材(1)と、基材(1)に形成されたアンテナパターン(2A,2B)と、アンテナパターン(2A,2B)に接続された、給電回路であるRFICパッケージ(3)と、を備える。アンテナパターン(2A,2B)は、通信信号の周波数での共振周波数より高い高調波共振の周波数で電流の強い高調波電流集中箇所の線幅が他の箇所の線幅より細い。この構造により、食品などに付されて、食品加熱用の高周波電力を受ける状況でも、発火や燃焼を防止できる。

Description

無線通信デバイス
 本発明は、アンテナを備えた無線通信デバイス、特に、誘導電磁界又は電磁波を介して、近距離通信を行うRFID(Radio Frequency Identification)タグ等の無線通信デバイスに関する。
 無線通信デバイスの一形態であるRFIDタグは、リーダー・ライターとの通信を行って、所定の情報の読み書きが非接触で行われるため、様々な場面で利用される。例えば、全ての商品にRFIDタグを貼付しておくことにより、所謂セルフレジがスムースに行われる。また、トレーサビリティの確保やマーケティング等、販売・物流状況管理が円滑に行われる。
 一方、コンビニエンスストアやスーパーマーケットなどの販売店においては多種多様な商品が取り扱われており、商品としての食料品の中には、商品購入の直後に商品を温めて持ち帰ったり、購入者がその場で直ぐに飲食したりする場合がある。例えば弁当や総菜は、販売店において電磁波加熱装置、所謂「電子レンジ」を用いて加熱される場合がある。
 ところが、RFIDタグが付された商品を電子レンジで加熱すると、次のような不具合が生じる場合がある。
 RFIDタグの通信信号の周波数としては、135kHz以下のLF帯、13.56MHz等のHF帯、860MHz~960MHz帯などのUHF帯、2.45GHz等のマイクロ波帯が主に使用されるが、現在、食品に貼付されるタイプのRFIDタグはUHF帯を利用するRFIDタグである。UHF帯を利用するRFIDタグは、RFIC(Radio-Frequency Integrated Circuit)素子と共に、金属膜体であるアンテナパターンなどの金属材料が紙や樹脂等の基材上に形成されている。
 このようなRFIDタグが付された商品が電子レンジで加熱されると、商品と共にRFIDタグに電子レンジからの電磁波のエネルギーが吸収される。これにより、
 ・上記金属材料部分において電界強度が高くなる箇所での放電
 ・金属材料部分に過電流が流れることによる金属材料の発熱・昇華
 ・RFIDタグの基材の発熱
 等によってRFIDタグ又はRFIDタグが貼付された商品部分が発火するおそれがある。特に、コンビニエンスストアに設置されている電子レンジは3kW程度の大出力の電磁波が庫内に放射されて、加熱開始直後にRFIDタグが一気に加熱されるので、条件が揃えば上記発火のおそれも高いといえる。
 上記のような「RFIDタグ」における発火の危険性を少なくすることを目的として、「難燃性タグ」の構成が提案されている(特許文献1参照)。
特開2006-338563号公報
 特許文献1に開示された「難燃性タグ」は、ICチップ及びアンテナパターンが実装される基材を難燃性材料で構成したものである。このため、基材の燃焼は抑制される。しかし、基材上に形成された金属材料部分においては時間的に連続して放電する可能性が高く、基材が発火する危険性や商品に引火する可能性を確実に防止できる構成ではない。
 本発明の目的は、食品などに付されて、食品加熱用の高周波電力を受ける状況でも、発火や燃焼を防止することのできる無線通信デバイスを提供することにある。
 本発明の一態様の無線通信デバイスは、通信信号を送受信するための無線通信デバイスであって、基材と、前記基材に形成されたアンテナパターンと、前記アンテナパターンに接続された給電回路と、を備え、前記アンテナパターンは、前記通信信号の周波数での共振周波数より高い高調波共振の周波数で電流の強い高調波電流集中箇所の線幅が他の箇所の線幅より細い、ことを特徴とする。
 上記構造によれば、通信信号の周波数が電磁波加熱用のマイクロ波の周波数より低い場合に、無線通信デバイスは電磁波加熱用のマイクロ波で高調波共振する。したがって、無線通信デバイスが電磁波加熱用のマイクロ波を受けると、ジュール熱により上記高調波電流集中箇所で集中的に発熱する。しかも、この高調波電流集中箇所は線幅の細い部分(以下「狭幅部」)であるので、アンテナパターンの狭幅部もしくはアンテナパターンの狭幅部が配された基材が昇温によって融解して溶断するか、昇華によって切断される。つまり、アンテナパターンは狭幅部で分離される。狭幅部でアンテナパターンが分離されると、アンテナパターンはもはや上記電磁波加熱用のマイクロ波では共振(高調波共振)しないので、アンテナパターンの発熱は持続されず、高調波共振による温度上昇は停止される。そのため、無線通信デバイス又は無線通信デバイスが貼付された商品部分の発火が防止される。
 本発明によれば、食品などに付されて、食品加熱用の高周波電力を受ける状況でも、発火や燃焼を防止することのできる無線通信デバイスが得られる。
図1(A)は第1の実施形態に係るRFIDタグ101の平面図であり、図1(B)、図1(C)はRFIDタグ101のアンテナパターンに流れる電流の強度分布を示す図である。図1(D)はアンテナパターンの、融解による溶断、又は昇華による切断の後の状態を示すRFIDタグの平面図である。 図2(A)、図2(B)、図2(C)、図2(D)は、通信信号の周波数での共振モード又は電磁波加熱用マイクロ波の周波数での共振モードの例を示す図である。 図3(A)は第2の実施形態に係るRFIDタグ102の平面図であり、図3(B)、図3(C)はRFIDタグ102のアンテナパターンに流れる電流の強度分布を示す図である。 図4は、RFIDタグが付された商品の一例を示す図であり、RFIDタグ102が付された弁当201の斜視図である。 図5は、アンテナパターン2A,2Bのランドパターン6(6a,6b)上に実装されるRFICパッケージ3の構成を示す分解斜視図である。 図6は第3の実施形態に係るRFIDタグ103Aの平面図である。 図7は第3の実施形態に係る別のRFIDタグ103Bの平面図である。 図8(A)は第3の実施形態に係る更に別のRFIDタグ103Cの平面図である。図8(B)、図8(C)はRFIDタグ103Cのアンテナパターンに流れる電流の強度分布を示す図である。 図9は、ミアンダライン状のアンテナパターン2A,2Bを備える従来のRFIDタグのアンテナパターンの例を示す平面図である。 図10は比較例としてのRFIDタグの平面図である。
 まず、本発明に係る無線通信デバイスにおける各種態様の構成について記載する。
 本発明に係る第1の態様の無線通信デバイスは、通信信号を送受信するための無線通信デバイスであって、基材と、前記基材に形成されたアンテナパターンと、前記アンテナパターンに接続されたRFIC素子と、を備え、前記アンテナパターンは、前記通信信号の周波数での共振周波数より高い高調波共振の周波数で電流の強い高調波電流集中箇所の線幅が他の箇所の線幅より細い。
 上記のように構成された第1の態様の無線通信デバイスは、例えば電子レンジの庫内でマイクロ波の照射を受けると、無線通信デバイスの各部がマイクロ波加熱されるが、アンテナパターンが、その所定箇所で速やかに切断されて、アンテナパターンの発熱に起因する発火が防止される。
 本発明に係る第2の態様の無線通信デバイスでは、前記アンテナパターンは、給電端に前記給電回路が接続され、先端が開放端であるダイポール型の電界アンテナを構成するパターンであり、前記高調波電流集中箇所は、前記給電端から前記開放端までの途中にある。
 本発明に係る第3の態様の無線通信デバイスでは、前記通信信号の周波数での共振は給電端から開放端までにおいて1/4波長共振であり、前記高調波共振は給電端から開放端までにおいて1/2波長共振である。
 本発明に係る第4の態様の無線通信デバイスでは、前記通信信号の周波数での共振は給電端から開放端までにおいて3/4波長共振であり、前記高調波共振は給電端から開放端までにおいて1波長共振である。
 本発明に係る第5の態様の無線通信デバイスでは、前記アンテナパターンはミアンダライン状である。
 本発明に係る第6の態様の無線通信デバイスでは、前記通信信号の周波数はUHF帯の周波数であり、前記高調波共振の周波数は2.4GHz以上2.5GHz以下の周波数である。
 無線通信デバイスが付された商品を販売するコンビニエンスストアやスーパーマーケットでは、食品、日用雑貨品などの多種多様な商品が取り扱われる。近年、コンビニエンスストアに関して、購入した商品の会計、及び袋詰めを自動化する「無人コンビニエンスストア」の実用化に向けて、各種実験が行われている。
 「無人コンビニエンスストア」における商品会計の自動化のために、無線通信デバイスである「RFIDタグ」を全ての商品に付して対応することが考えられている。「無人コンビニエンスストア」においては、「RFIDタグ」が付された商品を収容した買い物カゴが精算台に置かれると、「RFIDタグ」からの情報が読み取られて商品代金が表示されるシステムである。購入者は、商品代金としての現金を現金投入口に投入するか、クレジットカードを差し込んで支払いを済ませて、自動的に買い物袋に詰められた商品を受け取ることにより、「無人コンビニエンスストア」における商品の購入を完了することができる。
 以下、本発明に係る無線通信デバイスの具体的な例示としての実施形態について、添付の図面を参照しつつ説明する。本発明に係る無線通信デバイスが付される商品としては、所謂「コンビニエンスストア」や「スーパーマーケット」などの販売店において取り扱われる全ての商品が対象である。
 なお、以下の実施形態において説明する電磁波加熱装置としては、誘電加熱を行う所謂「電子レンジ」で説明するが、本発明おける電磁波加熱装置としては誘電加熱を行う機能を有する加熱装置が対象となる。また、以下の実施形態では、上記商品に付されるRFIDタグを無線通信デバイスの一例として説明する。
 以降、本発明を実施するための複数の形態を順次示す。各実施形態で参照する各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する場合がある。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1(A)は第1の実施形態に係るRFIDタグ101の平面図であり、図1(B)、図1(C)はRFIDタグ101のアンテナパターンに流れる電流の強度分布を示す図である。さらに、図1(D)はアンテナパターンの、融解による溶断、又は昇華による切断の後の状態を示すRFIDタグの平面図である。
 図1(A)に示すように、RFIDタグ101は、絶縁体又は誘電体の基材1と、この基材1に形成されたアンテナパターン2A,2Bと、アンテナパターン2A,2Bに対して給電する給電回路90とを備える。
 本実施形態のRFIDタグ101は、UHF帯の通信信号の周波数(キャリア周波数)を含む高周波信号で無線通信(送受信)するよう構成されている。UHF帯とは、860MHzから960MHzの周波数帯域である。ここで、UHF帯の通信信号の周波数は本発明における「通信信号の周波数」の一例である。
 給電回路90は、例えば後に例示するRFIC素子やRFICパッケージ等である。本実施形態のRFIDタグ101において、基材1として、可撓性を有するフィルム材料又は難燃性のフィルム材料が用いられる。基材1の平面視での外形は矩形状である。また、基材1が難燃性ではない通常のフィルム材料の場合は、基材1の厚みを38μm以下の薄さにしてもよい。これにより、基材1は、燃焼するまでに溶けて変形するので、基材形状を保てないようにすることができる。
 基材1に難燃性フィルムを採用する場合、用いられる難燃性フィルム材料としては、例えばPET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂などの樹脂材料にハロゲン系難燃材料の添加や、難燃性コーティング材料を塗工したフィルムが用いられる。また、基材1の材料としては、耐熱性を有するPEN(ポリエチレンナフタレート)樹脂などの耐熱性、耐加水分解性、耐薬品性の面で高機能を有する樹脂材料を用いることも可能である。なお、基材1には必ずしも難燃性材料が必要なわけではなく、例えば紙材により構成することも可能である。
 基材1の表面には、アルミニウム箔、銅箔などの導電材料の膜体によるアンテナパターン2A,2Bが形成されている。また、基材1の表面に形成されたアンテナパターン2A,2Bには給電回路90が電気的に接続されている。
 図1(A)に示すように、アンテナパターン2A,2Bは、給電回路90から互いに反対方向にそれぞれ延伸されている。
 図1(B)に示す電流の波形は、第1アンテナパターン2A及び第2アンテナパターン2Bに、給電端から開放端までにおいてそれぞれ1/4波長の定在波が生じる基本波共振での電流分布を示している。RFIDタグ101は、通信信号の周波数でこのように基本波共振する。このように、本実施形態のRFIDタグ101のアンテナパターン2A,2Bは、RFIDタグとしての通信時にダイポール型の電界アンテナとして作用する。
 図1(C)に示す電流の波形は、第1アンテナパターン2A及び第2アンテナパターン2Bに、給電端から開放端までにおいてそれぞれ1/2波長の定在波が生じる高調波共振での電流分布を示している。RFIDタグ101は電磁波加熱用のマイクロ波の周波数でこのように高調波共振する。
 図1(A)、図1(B)、図1(C)に表れているように、第1アンテナパターン2Aと第2アンテナパターン2Bの線幅は、給電回路90の接続端FEから開放端OEまで一定ではなく、途中に線幅の狭い狭幅部NPを有する。つまり、アンテナパターン2A,2Bは、給電回路90の接続端FEから狭幅部NPまでに第1広幅部WP1、狭幅部NPから開放端OEまでに第2広幅部WP2をそれぞれ有する。
 RFIDタグ101がリーダー・ライターと通信する状態では、図1(B)に示すように基本波共振の電流が分布する。この通信状態では狭幅部NPへの電流集中が強くないので、線幅が細いことによる損失は殆どなく、アンテナ効率の低下は殆どない。
 一方、電磁波加熱用のマイクロ波が照射される状態では、このマイクロ波でアンテナパターン2A,2Bは高調波共振し、図1(C)に示すような高調波電流が流れる。この状態で、狭幅部NPは、図1(C)に示すように、上記高調波共振の周波数で電流の強い高調波電流集中箇所である。しかも、この「高調波電流集中箇所」は狭幅部NPであるので、狭幅部NPの電流は第1広幅部WP1及び第2広幅部WP2より尚更強い。そのため、電磁波加熱用マイクロ波のエネルギーは狭幅部NPに集中する。つまり、電磁波加熱用マイクロ波のエネルギーは狭幅部NPで集中的に消費され、狭幅部NPはジュール熱によって昇温する。狭幅部NPの温度が或るしきい値を超えると、狭幅部NPは融解して溶断するか、昇華によって切断される。つまり、高調波電流の電流が強い狭幅部NPは、電磁波加熱用マイクロ波に対する「ヒューズ」のように作用する。
 上記広幅部WP1,WP2、狭幅部NPの線幅の関係は、広幅部が300μm以上、狭幅部が150μm以下の様に、アンテナパターン2A,2Bの狭幅部に対する広幅部の断面積比(広幅部断面積/狭幅部断面積)が2を超える関係であることが好ましい。このことは以降に示す別の実施形態においても同様である。
 図1(D)に示したように、アンテナパターン2A,2Bが狭幅部NPで分離されると、アンテナパターン2A,2Bの第2広幅部WP2は孤立するので、アンテナパターン(放射素子)としては作用しなくなり、アンテナパターン2A,2Bの実効線長は短くなる。この状態では図1(C)に示した高調波共振は成り立たなくなり、電磁波加熱用マイクロ波の照射が続いても、アンテナパターン2A,2Bに上記高調波電流が流れず、昇温は停止し、発火には至らない。
 以上に示した例では、アンテナパターン2A,2Bの狭幅部NP自身が融解して溶断するか、昇華によって切断される例を示したが、狭幅部NPの付近の基材1が狭幅部NPの昇温により、融解や昇華し、その結果としてアンテナパターン2A,2Bが狭幅部NPで分離されてもよい。
 以上に示した例では、アンテナパターン2A,2Bが通信信号の周波数で1/4波長で基本波共振し、電磁波加熱用周波数で1/2波長で高調波共振(2次高調波共振)する例を取り上げたが、次に例示するように、通信信号の周波数での共振モードと電磁波加熱用周波数での共振モードにはその他の組み合わせもある。
 図2(A)、図2(B)、図2(C)、図2(D)は、通信信号の周波数での共振モード又は電磁波加熱用マイクロ波の周波数での共振モードの例を電流分布及び電圧分布で示す図である。図2(A)で示す共振モードは、図1(B)で既に示した共振モードであり、共振周波数foにて、給電端から開放端までにおいて1/4波長で基本波共振する。図2(B)で示す共振モードは共振周波数2foにて、給電端から開放端までにおいて1/2波長で高調波共振する。図2(C)で示す共振モードは、図1(C)で既に示した共振モードであり、共振周波数3foにて、給電端から開放端までにおいて3/4波長で高調波共振する。図2(D)で示す共振モードでは、共振周波数4foにて、給電端から開放端までにおいて1波長で高調波共振する。なお、図2(A)、図2(B)、図2(C)、図2(D)において、電流分布及び電圧分布の振幅方向は正規化して表している。このことは以降に示す電流分布及び電圧分布についても同様である。
 電磁波加熱用マイクロ波の周波数で、図2(B)、図2(C)、図2(D)に示すような高次の共振モードが生じる条件では、アンテナパターン2A,2B上で、電流密度の高い高電流密度領域HCが生じる。図2(B)において、アンテナパターン2A,2B上で、電流の強い高電流密度領域HCを狭幅部とした例は、図1(C)において既に示した。これと同様に、図2(C)、図2(D)に示したような高調波共振のモードについても、高電流密度領域HCを狭幅部とすればよい。
《第2の実施形態》
 第2の実施形態では、ミアンダライン状のアンテナパターンを備えるRFIDタグについて示す。
 まず、基本共振と高調波共振について、ミアンダライン状のアンテナパターンを備えるRFIDタグと、第1の実施形態で示したような直線状のアンテナパターンを備えるRFIDとの違いについて述べる。
 図9は、ミアンダライン状のアンテナパターン2A,2Bを備える従来のRFIDタグのアンテナパターンの例を示す平面図である。図9には、導体パターンのインダクタンス成分Lと、隣接する導体パターン間の容量成分Cを表している。アンテナを小型化する手法としてアンテナパターンをミアンダライン状にすることは一般的であるが、このアンテナパターン2A,2Bの基本波共振と高調波共振とでは、アンテナパターンをミアンダライン状にすることの効果が異なる。つまり、アンテナパターンをミアンダライン状にすると、導体パターン同士の隣接によって、上記インダクタンス成分Lも容量成分Cも増大して、共振周波数は低域にシフトする。ただし、基本波共振では電流電圧の最大点が一箇所生じるだけであるが、高調波共振では電流電圧の最大点が複数箇所に生じる。そのため、高調波共振は基本波共振に比べて、インダクタンス成分L及び容量成分Cの影響を大きく受ける。したがって、高調波共振は基本波共振に比べて、上記ミアンダライン状にすることによる共振周波数の低域シフト量が大きい。例えばアンテナパターン2A,2Bが860MHzから960MHzのUHF帯の通信信号の周波数で基本波共振し、電磁波加熱用周波数2.45GHzで高調波共振(2次高調波共振)する、という条件になりやすい。
 図3(A)は第2の実施形態に係るRFIDタグ102の平面図であり、図3(B)、図3(C)はRFIDタグ102のアンテナパターンに流れる電流の強度分布を示す図である。また、図10は比較例としてのRFIDタグの平面図である。
 図3(A)に示すように、RFIDタグ102は、絶縁体又は誘電体の基材1と、この基材1に形成されたアンテナパターン2A,2Bと、アンテナパターン2A,2Bに接続されたRFICパッケージ3とを備える。
 図4は、RFIDタグが付された商品の一例を示す図であり、RFIDタグ102が付された弁当201の斜視図である。
 本実施形態のRFIDタグ102は、UHF帯の通信信号の周波数(キャリア周波数)を含む高周波信号で無線通信(送受信)するよう構成されている。UHF帯とは、860MHzから960MHzの周波数帯域である。ここで、UHF帯の通信信号の周波数は本発明における「通信信号の周波数」の一例である。
 基材1の表面には、アルミニウム箔、銅箔などの導電材料の膜体によるアンテナパターン2A,2Bが形成されている。また、基材1の表面に形成されたアンテナパターン2A,2Bには、RFICパッケージ3が実装されており、RFICパッケージ3とアンテナパターン2A,2Bとが電気的に接続されている。なお、「電気的に接続」とは、高周波信号が伝達され、動作可能なように互いが接続あるいは結合されていることを意味し、直流的、直接的に接続されていることに限定されるものではない。
 図3(A)に示すように、アンテナパターン2A,2Bはミアンダライン状であり、RFICパッケージ3が実装される第1ランドパターン6aから複数の折り返し部FPを有して蛇行するミアンダライン状の第1アンテナパターン2A、及びRFICパッケージ3が実装される第2ランドパターン6bから複数の折り返し部分を有して蛇行するミアンダライン状の第2アンテナパターン2Bがそれぞれ延設されて構成されている。つまり、第1ランドパターン6aからミアンダライン状の第1アンテナパターン2Aが、基材1における長手方向の一方端に向かって(-X方向に)延設されている。また、第2ランドパターン6bからミアンダライン状の第2アンテナパターン2Bが、基材1における長手方向の他方端に向かって(+X方向に)延設されている。
 上記構成により、アンテナパターン2A,2Bは、ダイポール型の電界アンテナとして作用する。
 アンテナパターン2A,2Bの折り返し部FPとは、アンテナパターン2A,2Bの延びる方向が反転する箇所である。アンテナパターン2A,2Bは折り返し部FPで折り返されることによって、互いに対向する導体パターンOPを含む。
 上述のとおり、アンテナパターン2A,2Bとしてはアルミニウム電極や銅電極など導電率の高い金属材料である。なお、アンテナパターン2A,2Bとして、金属材料以外でカーボン系の材料を用いてもよい。
 図3(A)に表れているように、第1アンテナパターン2Aと第2アンテナパターン2Bの線幅は、RFICパッケージ3の接続端FEから開放端OEまで一定ではなく、途中に線幅の狭い狭幅部NPを有する。つまり、アンテナパターン2A,2Bは、RFICパッケージ3の接続端FEから狭幅部NPまでに第1広幅部WP1、狭幅部NPから開放端OEまでに第2広幅部WP2をそれぞれ有する。このように、狭幅部NP及び広幅部WP1,WP2を備える点で、図10に示した比較例としてのRFIDタグとは異なる。
 RFIDタグ102がリーダー・ライターと通信する状態では、図3(B)に示すように基本波共振の電流が分布する。この通信状態では狭幅部NPへの電流集中が強くないので、線幅が細いことによる損失は殆どない。むしろ、電流の強い第1広幅部WP1の線幅が太いことにより、低損失化が図れる。
 一方、電磁波加熱用のマイクロ波が照射される状態では、このマイクロ波でアンテナパターン2A,2Bは高調波共振し、図3(C)に示す高調波電流が流れる。この状態で、狭幅部NPは、図3(A)、図3(C)に示すように、上記高調波共振の周波数で電流の強い高調波電流集中箇所である。しかも、この「高調波電流集中箇所」は狭幅部NPであるので、狭幅部NPの電流は第1広幅部WP1及び第2広幅部WP2より尚更強い。そのため、第1の実施形態で示したRFIDタグ101と同様に、電磁波加熱用マイクロ波のエネルギーは狭幅部NPに集中する。つまり、電磁波加熱用マイクロ波のエネルギーは狭幅部NPで集中的に消費され、狭幅部NPはジュール熱によって昇温する。狭幅部NPの温度が或るしきい値を超えると狭幅部NPは融解して溶断するか、昇華によって切断される。
 第1の実施形態で示したRFIDタグ101に比べて、この第2の実施形態のRFIDタグ102では、狭幅部NPでの、互いに対向する導体パターンOPの間隔が狭いので、上記ジュール熱の発生箇所が集中して、狭幅部NPの昇温効果が高い。そのため、電磁波加熱用マイクロ波が照射されてから、アンテナパターン2A,2Bが狭幅部NPで分離されるまでの時間を短縮化できる。
 図5は、アンテナパターン2A,2Bのランドパターン6(6a,6b)上に実装されるRFICパッケージ3の構成を示す分解斜視図である。図5に示すように、第1の実施形態におけるRFICパッケージ3は、三層からなる多層基板で構成されている。具体的には、RFICパッケージ3の多層基板は、ポリイミド、液晶ポリマーなどの樹脂材料から作製されており、可撓性を有する三つの絶縁シート12A,12B,12Cが積層されて構成されている。絶縁シート12A,12B,12Cは、平面視が略四角形状であり、本実施形態においては略長方形の形状を有している。図5に示すRFICパッケージ3は、図3(A)に示したRFICパッケージ3を裏返して三層を分解した状態を示している。
 図5に示すように、RFICパッケージ3は、三層の基板(絶縁シート12A,12B,12C)上において、RFICチップ9と、複数のインダクタンス素子10A,10B,10C,10Dと、アンテナパターン2A,2Bに接続される外部接続端子11(11a,11b)と、が所望の位置に形成されている。
 外部接続端子11a,11bは、最下層(アンテナパターン2A,2Bに対向する基板)となる第1絶縁シート12Aに形成されており、アンテナパターン2A,2Bのランドパターン6a,6bに対向する位置に形成されている。4つのインダクタンス素子10A,10B,10C,10Dは、第2絶縁シート12B及び第3絶縁シート12Cに2つずつ分かれて形成されている。即ち、最上層(図5においては最も下に記載されている層)となる第3絶縁シート12Cには第1インダクタンス素子10A及び第2インダクタンス素子10Bが形成されており、中間層となる第2絶縁シート12Bには第3インダクタンス素子10C及び第4インダクタンス素子10Dが形成されている。
 本実施形態におけるRFICパッケージ3においては、外部接続端子11a,11b及び4つのインダクタンス素子10A,10B,10C,10Dは、アルミニウム箔、銅箔などの導電材料により作製される導体パターンにより構成される。
 図5に示すように、RFICチップ9は、最上層である第3絶縁シート12C上に長手方向(図5におけるX方向)の中央部分に実装されている。RFICチップ9は、シリコンなどの半導体を素材とする半導体基板にRF回路が形成された構造を有する。第3絶縁シート12C上の長手方向の一方側(図5においては+X方向の側)において渦巻き状に形成されている第1インダクタンス素子10Aは、RFICチップ9の一方の入出力端子9aにランド10Aaを介して接続されている。第3絶縁シート12C上の長手方向の他方側(図5においては-X方向の側)において渦巻き状に形成されている第2インダクタンス素子10Bは、RFICチップ9の他方の入出力端子9bにランド10Baを介して接続されている。
 中間層である第2絶縁シート12B上の長手方向の一方側(図5においては+X方向の側)には、渦巻き状の第3インダクタンス素子10Cが形成されており、第2絶縁シート12B上の長手方向の他方側(図5においては-X方向の側)には、渦巻き状の第4インダクタンス素子10Dが形成されている。渦巻き状の第3インダクタンス素子10Cの外周側の端部と、渦巻き状の第4インダクタンス素子10Dの外周側の端部は直接接続されている。一方、第3インダクタンス素子10Cの内周側の端部であるランド10Caは、第2絶縁シート12Bを貫通するビア導体などの層間接続導体を介して、第3絶縁シート12C上の渦巻き状の第1インダクタンス素子10Aの内周側の端部であるランド10Abに接続されている。また、第3インダクタンス素子10Cの内周側の端部であるランド10Caは、最下層となる第1絶縁シート12Aを貫通するスルーホール導体などの層間接続導体を介して、第1絶縁シート12A上の第1外部接続端子11aに接続されている。
 第4インダクタンス素子10Dの内周側の端部であるランド10Daは、第2絶縁シート12Bを貫通するスルーホール導体などの層間接続導体を介して、第3絶縁シート12C上の渦巻き状の第2インダクタンス素子10Bの内周側の端部であるランド10Bbに接続されている。また、第4インダクタンス素子10Dの内周側の端部であるランド10Daは、最下層となる第1絶縁シート12Aを貫通するスルーホール導体などの層間接続導体を介して、第1絶縁シート12A上の第2外部接続端子11bに接続されている。
 第1絶縁シート12A上の第1外部接続端子11aは、基材1上に形成された第1アンテナパターン2Aの第1ランドパターン6aに接続されるよう配設されている。また、第1絶縁シート12A上の第2外部接続端子11bは、基材1上に形成された第2アンテナパターン2Bの第2ランドパターン6bに接続されるよう配設されている。
 また、中間層である第2絶縁シート12Bには、第3絶縁シート12C上に実装されたRFICチップ9が収容される貫通孔13が形成されている。RFICチップ9は、第1インダクタンス素子10Aと第2インダクタンス素子10Bとの間、及び第3インダクタンス素子10Cと第4インダクタンス素子10Dとの間に配設されている。このため、RFICチップ9がシールドとして機能し、第1インダクタンス素子10Aと第2インダクタンス素子10Bとの間における磁界結合及び電界結合が抑制され、同様に、第3インダクタンス素子10Cと第4インダクタンス素子10Dとの間における磁界結合及び電界結合が抑制される。その結果、RFICパッケージ3においては、通信信号の通過帯域が狭くなることが抑制されており、通過帯域を広いものとしている。
 本実施形態では、RFICパッケージ3がアンテナパターン2A,2B上に実装された形態を例示したが、RFICチップ9を直接アンテナパターン2A,2B上に実装してもよい。また、このとき、RFICパッケージ3において複数のインダクタンス素子10A,10B,10C,10Dとして構成されていたインダクタを、ループ状のパターンによって基材1上に構成してもよい。
《第3の実施形態》
 第3の実施形態では、アンテナパターンの形状が第2の実施形態で示した例とは異なる幾つかのRFIDタグについて、各図を参照して示す。
 図6は第3の実施形態に係るRFIDタグ103Aの平面図である。このRFIDタグ103Aは、絶縁体又は誘電体の基材1と、この基材1に形成されたアンテナパターン2A,2Bと、アンテナパターン2A,2Bに接続されたRFICパッケージ3とを備える。第1アンテナパターン2Aと第2アンテナパターン2Bの線幅は、RFICパッケージ3の接続端FEから開放端OEまで一定ではなく、途中に線幅の狭い狭幅部NPを有する。つまり、アンテナパターン2A,2Bは、RFICパッケージ3の接続端FEから狭幅部NPまでに第1広幅部WP1、狭幅部NPから開放端OEまでに第2広幅部WP2をそれぞれ有する。
 RFIDタグ103Aは、図3(A)に示したRFIDタグ102とは異なり、第1アンテナパターン2Aと第2アンテナパターン2Bの形状はRFICパッケージ3を中心として点対称の関係にある。このように、二つのアンテナパターン2A,2Bの形状の関係は線対称、点対称のいずれでもよい。さらに、非対称であってもよい。
 図7は第3の実施形態に係る別のRFIDタグ103Bの平面図である。図3(A)に示したRFIDタグ102とは、狭幅部NPの導体パターンの形状が異なる。RFIDタグ103Bにおいては、アンテナパターン2A,2Bは、折り返し部FPで折り返されることによって導体パターンが互いに対向するが、広幅部WP1,WP2に比べて、狭幅部NPは、対向する導体パターンの線間の狭い箇所を有する。
 電磁波加熱用のマイクロ波が照射される状態で、RFIDタグ103Bの狭幅部NPに高調波電流が集中する。図7に示したように、狭幅部NPにおいては、線幅が細いだけでなく、線間も狭いため、狭幅部NPにおける昇温効果が高い。そのため、電磁波加熱用のマイクロ波が照射されてから、アンテナパターン2A,2Bの狭幅部NPが分離されるまでの時間を短縮化できる。
 図8(A)は第3の実施形態に係る更に別のRFIDタグ103Cの平面図である。図8(B)、図8(C)はRFIDタグ103Cのアンテナパターンに流れる電流の強度分布を示す図である。RFIDタグ103Cのアンテナパターン2A,2Bは、RFICパッケージ3の接続端FEから第1狭幅部NP1までに第1広幅部WP1を有し、第1狭幅部NP1から第2狭幅部NP2までに第2広幅部WP2を有し、第2狭幅部NP2から開放端OEまでに第3広幅部WP3を有する。つまり、アンテナパターン2A,2Bはそれぞれ二つの狭幅部NP1,NP2を有する。
 RFIDタグ103Cがリーダー・ライターと通信する状態では、図8(B)に示すように3/4波長共振の電流が分布する。この通信状態では狭幅部NPへの電流集中が強くないので、線幅が細いことによる損失は殆どない。
 一方、電磁波加熱用のマイクロ波が照射される状態では、このマイクロ波でアンテナパターン2A,2Bは1波長共振(高調波共振)し、図8(C)に示す高調波電流が流れる。この状態で、狭幅部NP1,NP2は、図8(A)、図8(C)に示すように、上記高調波共振の周波数で電流の強い高調波電流集中箇所である。そのため、電磁波加熱用マイクロ波のエネルギーは狭幅部NP1,NP2に集中する。つまり、電磁波加熱用マイクロ波のエネルギーは狭幅部NP1,NP2で集中的に消費され、狭幅部NP1,NP2はジュール熱によって昇温する。狭幅部NP1,NP2の温度が或るしきい値を超えると、アンテナパターン2A,2Bは第1狭幅部NP1又は第2狭幅部NP2で分離される。
 以上、幾つか例示したように、アンテナパターンは2A,2Bは、電磁波加熱用マイクロ波を受けて高調波共振し、そのことで高調波電流が集中する箇所に狭幅部NPを有すればよい。また、狭幅部NPは第1アンテナパターン2A、第2アンテナパターン2Bの一方にのみ設けてもよい。その場合でも、上記高調波共振によってアンテナパターン2A,2Bが狭幅部NPで分離されれば、アンテナパターン2A,2Bの実効長が短くなって、高調波共振が維持されず、高調波電流による発熱が停止される。
 なお、以上に示した幾つかのRFIDタグは、アンテナパターン2A,2Bの狭幅部NPと広幅部WP1,WP2等とが不連続的に隣接する例であったが、狭幅部NPと広幅部WP1,WP2等との間は、線幅が連続的に変化していてもよい。
 また、以上に示した幾つかのRFIDタグでは、アンテナパターン2A,2Bが、狭幅部NPと広幅部WP1,WP2等とで2種の線幅を備える例を示したが、アンテナパターン2A,2B等の線幅は段階的に変化する複数種の線幅を有していてもよい。
 以上のように、各実施形態において具体的な構成を用いて説明したように、これらの実施形態によれば、RFIDタグが付された商品が電磁波加熱装置で加熱される場合において、RFIDタグの発火、さらにはRFIDタグが付された商品における部材の融解や変形を防止できる。したがって、本発明は、食品、日用雑貨品などの多種多様な商品を取り扱うコンビニエンスストアなどの販売店において、購入した商品の会計、及び袋詰めを自動化するシステムを構築することが可能となり、「無人コンビニエンスストア」の実用化に向けて、大きく前進させることができる無線通信デバイスを提供するものである。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 本発明は、商品に付する無線通信デバイスとして汎用性が高く、有用なものであり、特に、「無人コンビニエンスストア」の実現においては必要な製品である。
FE…給電回路接続端
FP…折り返し部
HC…高電流密度領域
NP…狭幅部
NP1…第1狭幅部
NP2…第2狭幅部
OE…開放端
OP…互いに対向する導体パターン
WP1…第1広幅部
WP2…第2広幅部
WP3…第3広幅部
1…基材
2A…第1アンテナパターン
2B…第2アンテナパターン
3…RFICパッケージ
6…ランドパターン
6a…第1ランドパターン
6b…第2ランドパターン
9…RFICチップ
9a,9b…入出力端子
10A…第1インダクタンス素子
10B…第2インダクタンス素子
10C…第3インダクタンス素子
10D…第4インダクタンス素子
10Aa,10Ab,10Ba,10Bb,10Ca,10Da…ランド
11…外部接続端子
11a…第1外部接続端子
11b…第2外部接続端子
12A…第1絶縁シート
12B…第2絶縁シート
12C…第3絶縁シート
13…貫通孔
90…給電回路
101,102,103A,103B,103C…RFIDタグ
201…弁当

Claims (6)

  1.  通信信号を送受信するための無線通信デバイスであって、
     基材と、
     前記基材に形成されたアンテナパターンと、
     前記アンテナパターンに接続された給電回路と、
     を備え、
     前記アンテナパターンは、前記通信信号の周波数での共振周波数より高い高調波共振の周波数で電流の強い高調波電流集中箇所の線幅が他の箇所の線幅より細い、
     無線通信デバイス。
  2.  前記アンテナパターンは、給電端に前記給電回路が接続され、先端が開放端であるダイポール型の電界アンテナを構成するパターンであり、前記高調波電流集中箇所は、前記給電端から前記開放端までの途中にある、
     請求項1に記載の無線通信デバイス。
  3.  前記通信信号の周波数での共振は1/4波長共振であり、前記高調波共振は1/2波長共振である、
     請求項2に記載の無線通信デバイス。
  4.  前記通信信号の周波数での共振は3/4波長共振であり、前記高調波共振は1波長共振である、
     請求項2に記載の無線通信デバイス。
  5.  前記アンテナパターンはミアンダライン状である、
     請求項3又は4に記載の無線通信デバイス。
  6.  前記通信信号の周波数はUHF帯の周波数であり、前記高調波共振の周波数は2.4GHz以上2.5GHz以下の周波数である、
     請求項1から5のいずれかに記載の無線通信デバイス。
PCT/JP2019/012076 2018-07-13 2019-03-22 無線通信デバイス WO2020012724A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019535412A JP6658975B1 (ja) 2018-07-13 2019-03-22 無線通信デバイス
CN201990000809.0U CN215119247U (zh) 2018-07-13 2019-03-22 无线通信设备
DE212019000288.9U DE212019000288U1 (de) 2018-07-13 2019-03-22 Drahtloskommunikationsvorrichtung
US17/108,130 US11380996B2 (en) 2018-07-13 2020-12-01 Wireless communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133176 2018-07-13
JP2018133176 2018-07-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/108,130 Continuation US11380996B2 (en) 2018-07-13 2020-12-01 Wireless communication device

Publications (1)

Publication Number Publication Date
WO2020012724A1 true WO2020012724A1 (ja) 2020-01-16

Family

ID=69142536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012076 WO2020012724A1 (ja) 2018-07-13 2019-03-22 無線通信デバイス

Country Status (5)

Country Link
US (1) US11380996B2 (ja)
JP (1) JP6658975B1 (ja)
CN (1) CN215119247U (ja)
DE (1) DE212019000288U1 (ja)
WO (1) WO2020012724A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018045550A1 (en) * 2016-09-09 2018-03-15 Hong Kong R&D Centre for Logistics and Supply Chain Management Enabling Technologies Limited A radio frequency communication device and a method for using thereof
WO2020012724A1 (ja) * 2018-07-13 2020-01-16 株式会社村田製作所 無線通信デバイス
USD973039S1 (en) * 2019-09-06 2022-12-20 Murata Manufacturing Co., Ltd. RFID tag
USD949834S1 (en) * 2019-09-06 2022-04-26 Murata Manufacturing Co., Ltd. RFID tag
JP1662552S (ja) * 2019-09-06 2020-06-29
DE102022126577A1 (de) 2022-10-12 2024-04-18 Schreiner Group Gmbh & Co. Kg Transponderetikett, System und Verfahren zum Herstellen eines Transponderetiketts für ein Gefäß

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089054A (ja) * 2005-09-26 2007-04-05 Nippon Telegr & Teleph Corp <Ntt> Rfidタグのアンテナ
JP2007164528A (ja) * 2005-12-14 2007-06-28 Fujitsu Ltd Rfidタグ
WO2016098387A1 (ja) * 2014-12-16 2016-06-23 株式会社 村田製作所 無線通信デバイスおよびこれを取り付けた物品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243013B1 (en) * 1999-01-08 2001-06-05 Intermec Ip Corp. Cascaded DC voltages of multiple antenna RF tag front-end circuits
JP2006338563A (ja) 2005-06-06 2006-12-14 Dainippon Printing Co Ltd 難燃性タグ
WO2011024506A1 (ja) * 2009-08-25 2011-03-03 株式会社村田製作所 アンテナ装置
US9583836B2 (en) * 2013-11-12 2017-02-28 Murata Manufacturing Co., Ltd. High-frequency transmission line and antenna device
JP7041871B2 (ja) * 2017-10-30 2022-03-25 学校法人上智学院 Rfidタグ及び電子レンジ加熱用容器
JP7041872B2 (ja) * 2017-10-30 2022-03-25 学校法人上智学院 Rfidタグ及び電子レンジ加熱用容器
JP6658976B1 (ja) * 2018-07-13 2020-03-04 株式会社村田製作所 無線通信デバイス
WO2020012724A1 (ja) * 2018-07-13 2020-01-16 株式会社村田製作所 無線通信デバイス
WO2020017100A1 (ja) * 2018-07-20 2020-01-23 株式会社村田製作所 無線通信デバイス
JP6614401B1 (ja) * 2018-07-24 2019-12-04 株式会社村田製作所 無線通信デバイス
WO2020021768A1 (ja) * 2018-07-25 2020-01-30 株式会社村田製作所 無線通信デバイス
WO2020031419A1 (ja) * 2018-08-09 2020-02-13 株式会社村田製作所 無線通信デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007089054A (ja) * 2005-09-26 2007-04-05 Nippon Telegr & Teleph Corp <Ntt> Rfidタグのアンテナ
JP2007164528A (ja) * 2005-12-14 2007-06-28 Fujitsu Ltd Rfidタグ
WO2016098387A1 (ja) * 2014-12-16 2016-06-23 株式会社 村田製作所 無線通信デバイスおよびこれを取り付けた物品

Also Published As

Publication number Publication date
US20210083391A1 (en) 2021-03-18
DE212019000288U1 (de) 2021-01-22
JPWO2020012724A1 (ja) 2020-07-16
CN215119247U (zh) 2021-12-10
US11380996B2 (en) 2022-07-05
JP6658975B1 (ja) 2020-03-04

Similar Documents

Publication Publication Date Title
JP6658975B1 (ja) 無線通信デバイス
US11646497B2 (en) Wireless communication device
JP6614401B1 (ja) 無線通信デバイス
JP6645628B1 (ja) 無線通信デバイス
US11916316B2 (en) Wireless communication device
WO2020008691A1 (ja) 無線通信デバイス
WO2020021767A1 (ja) 無線通信デバイス
JP6658976B1 (ja) 無線通信デバイス
JP6947254B2 (ja) 無線通信デバイス
WO2020031419A1 (ja) 無線通信デバイス
JP6583596B1 (ja) 無線通信デバイス
CN213904378U (zh) 无线通信器件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019535412

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834244

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19834244

Country of ref document: EP

Kind code of ref document: A1