WO2020012575A1 - 位置推定装置 - Google Patents

位置推定装置 Download PDF

Info

Publication number
WO2020012575A1
WO2020012575A1 PCT/JP2018/026171 JP2018026171W WO2020012575A1 WO 2020012575 A1 WO2020012575 A1 WO 2020012575A1 JP 2018026171 W JP2018026171 W JP 2018026171W WO 2020012575 A1 WO2020012575 A1 WO 2020012575A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
angle
axis ratio
reception
axis
Prior art date
Application number
PCT/JP2018/026171
Other languages
English (en)
French (fr)
Inventor
裕樹 永田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/026171 priority Critical patent/WO2020012575A1/ja
Publication of WO2020012575A1 publication Critical patent/WO2020012575A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/04Position of source determined by a plurality of spaced direction-finders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/59Responders; Transponders

Definitions

  • the present invention relates to a position estimating apparatus for estimating the position of a wireless device capable of transmitting circularly polarized waves.
  • RF tags are widely used in various fields such as distribution management, document management, and product process management.
  • Some RF tags can transmit circularly polarized waves (for example, see Patent Document 1).
  • circular polarization it is possible to cope with a relative change in attitude between the RF tag and the antenna, unlike the case where linear polarization is adopted.
  • the receiving sensitivity of the antenna changes depending on the incident angle of the radio wave. Focusing on this, it has been performed to specify the direction in which the maximum radio field intensity is obtained, and to estimate the specified direction as the direction in which the wireless device exists. By specifying this direction, the operator can more easily find the wireless device, the structure to which the wireless device is attached, and the like.
  • In order to specify the direction in which the maximum signal strength is obtained, it is necessary to check the signal strength while changing the angle of the antenna. Therefore, specifying the direction may require changing the angle of the antenna, which requires a long time. It is preferable that this time be shortened so that the operator can perform quick work. Such a problem of shortening the time also applies to a case where an object to be searched is an antenna, a structure to which the antenna is attached, or the like, instead of the wireless device.
  • the present invention has been made in order to solve such a problem, and an object of the present invention is to provide a position estimating apparatus which can more quickly search for a search target transmitting circularly polarized waves.
  • the position estimating apparatus is configured such that the antenna receives the circularly polarized wave from the wireless device, and an input unit that performs a measurement result obtained by using the measurement result input by the input unit.
  • An axial ratio calculating unit that calculates an axial ratio that is a ratio of the major axis to the major axis, and an estimating unit that estimates a positional relationship between the wireless device and the antenna using the axial ratio calculated by the axial ratio calculating unit.
  • a search target for transmitting circularly polarized waves can be more quickly searched.
  • FIG. 1 is a block diagram illustrating an example of a functional configuration of a position estimation device according to Embodiment 1 of the present invention, and an example of a system configuration constructed using the position estimation device. It is a figure showing the example of change with the angle of the receiving axis ratio.
  • FIG. 9 is a block diagram illustrating an example of a functional configuration of a position estimating device according to Embodiment 2 of the present invention, and an example of a system configuration constructed using the position estimating device.
  • FIG. 4 is a diagram illustrating a reception angle selected for each antenna and a method for estimating a position of an RF tag using the selected reception angle. It is a block diagram which shows the example of a function structure of the position estimation apparatus which concerns on Embodiment 3 of this invention, and the example of a system structure constructed
  • FIG. 1 is a block diagram illustrating an example of a functional configuration of a position estimation device according to Embodiment 1 of the present invention, and an example of a configuration of a system constructed using the position estimation device.
  • the position estimating device 1 estimates the position where the RF tag 2 is located, for example, with the RF tag 2 which is a wireless device capable of transmitting the circularly polarized wave 21 as a search target, and information indicating the estimation result. It is a device for presenting. As shown in FIG. 1, a measuring device 4 and a monitor 5 are connected to the position estimation device 1. The antenna 3 capable of receiving the circularly polarized wave 21 transmitted by the RF tag 2 is connected to the measuring device 4. Thus, the system has a configuration constructed using the position estimation device 1, the antenna 3, the measuring device 4, and the monitor 5.
  • the monitor 5 is used for displaying information.
  • the measuring device 4 measures the radio wave intensity of the circularly polarized wave 21 received by the antenna 3 and outputs the measurement result, that is, the radio wave intensity value to the position estimation device 1 as a digital signal.
  • the RF tag 2 may be either an active type or a passive type.
  • the wireless device itself is not limited to the RF tag 2.
  • the position estimation device 1 includes an input unit 11, an axial ratio calculation unit 12, an angle calculation unit 13, and an output unit 14 as functional components.
  • the angle calculator 13 corresponds to the estimator in the first embodiment.
  • the input unit 11 is an interface with the measuring device 4 and inputs a radio signal intensity value as a digital signal from the measuring device 4.
  • the axis ratio calculation unit 12 calculates an axis ratio using the radio field intensity value input from the input unit 11.
  • the axis ratio is an index indicating the degree to which the trajectory of the circularly polarized wave 21 is close to a circle, and is a ratio between the short axis and the long axis of the circularly polarized wave 21. This axis ratio changes depending on the positional relationship between the RF tag 2 and the antenna 3.
  • the axis ratio calculated by the axis ratio calculation unit 12 is an axis ratio that changes depending on the positional relationship.
  • transmission axis ratio when the RF tag 2 transmits the circularly polarized wave 21
  • reception axis ratio the axis ratio calculated by the axis ratio calculation unit 12
  • the transmission axis ratio is 1, that is, the short axis and the long axis are equal.
  • the antenna 3 can receive, for example, independent linearly polarized components in three directions.
  • the measuring device 4 measures a radio field intensity value, that is, an amplitude, for each linear polarization component, and outputs the measurement result to the position estimation device 1. These measurement results, that is, the radio field intensity values for each linear polarization component are output to the axial ratio calculation unit 12 via the input unit 11.
  • the axis ratio calculation unit 12 calculates the reception axis ratio using the radio field intensity value for each linearly polarized component.
  • the method of measuring the reception axis ratio is not particularly limited. Assuming that the axial ratio is AR, the axial ratio AR is usually represented by a dB value of 20 log 10
  • the ⁇ angle calculation unit 13 calculates a direction in which it is estimated that the RF tag 2 that has transmitted the circularly polarized wave 21 exists with reference to the antenna 3 using the reception axis ratio calculated by the axis ratio calculation unit 12.
  • the angle calculation unit 13 calculates, as a direction in which the RF tag 2 is estimated to be present, an angle ⁇ formed by the direction and the front direction 8 of the antenna 3. .
  • the calculated angle ⁇ is displayed on the monitor 5 by the output unit 14.
  • FIG. 2 is a diagram showing an example of a change in the reception axis ratio depending on the angle.
  • the horizontal axis represents the angle
  • the vertical axis represents the axial ratio.
  • the reception axis ratio becomes equal to or substantially equal to the transmission axis ratio.
  • the reception axis ratio changes depending on the angle ⁇ between the reception direction of the circularly polarized wave 21 and the front direction 8, as shown in FIG.
  • the reception axis ratio is minimized when the angle ⁇ is 0 degree, that is, when the reception direction and the front direction 8 coincide with each other, and increases exponentially as the absolute value of the angle increases.
  • this angle ⁇ is referred to as “reception angle ⁇ ”.
  • the reception angle ⁇ is calculated using the calculated reception axis ratio.
  • This calculation can be performed by preparing a calculation formula that approximates a change in the reception axis ratio due to the reception angle ⁇ as shown in FIG. 2 and preparing data indicating the change, for example, a table.
  • the angle calculation unit 13 can calculate ⁇ 10 degrees as the reception angle ⁇ .
  • FIG. 1 is a top view
  • a negative reception angle ⁇ indicates that the RF tag 2 exists on the clockwise side from the front direction 8, that is, on the clockwise side.
  • the positive reception angle ⁇ indicates that the RF tag 2 exists in the counterclockwise direction from the front direction 8.
  • the front direction 8 is moved clockwise and the calculated reception angle ⁇ changes to ⁇ 5 °.
  • the front direction 8 approaches the direction in which the RF tag 2 exists by moving the RF tag 2 in the clockwise direction. Therefore, the direction in which the RF tag 2 exists after moving to the clockwise direction, that is, the correct reception angle ⁇ can be specified to be ⁇ 5 °.
  • the reception angle ⁇ can be specified to be + 15 °.
  • the direction in which the RF tag 2 is estimated to be present can be confirmed by specifying the front direction 8 where the radio field intensity value is maximum.
  • specifying the front direction 8 a large number of measurements must be performed.
  • the operator can more quickly confirm the direction in which the RF tag 2 is presumed to be present, as compared with the conventional method.
  • the worker can more quickly find out the RF tag 2, the structure to which the RF tag 2 is attached, or the search target who is the person carrying the RF tag 2. Accordingly, work efficiency is also improved.
  • the directivity of the antenna 3 differs depending on the antenna 3.
  • the front direction 8 does not coincide with the maximum sensitivity direction.
  • the reception angle ⁇ may be an angle formed with the maximum sensitivity direction instead of the front direction 8.
  • Embodiment 2 FIG.
  • the first embodiment is basically assumed to be a portable type.
  • the position estimating device 1 according to the first embodiment can be mounted on a reader that can communicate with the RF tag 2 so as to support more efficient work of the worker.
  • the second embodiment basically assumes that the position estimation device 1 is used as a stationary type.
  • the position estimation device 1 mounted on the reader has a configuration including the antenna 3 and the measuring device 4.
  • FIG. 3 is a block diagram showing an example of a functional configuration of a position estimation device according to Embodiment 2 of the present invention, and an example of a system configuration constructed using the position estimation device.
  • the measuring device 4 is connected to at least two antennas 3a and 3b.
  • the two antennas 3a and 3b are arranged at positions where a circularly polarized wave 21 transmitted by the same RF tag 2 can be received.
  • the position estimation device 1 receives the measurement results of the antennas 3a and 3b from the measuring device 4.
  • "3" is used as a code.
  • the reception angles of the antennas 3a and 3b are ⁇ 1 and ⁇ 2, respectively, and when there is no need to distinguish them, “ ⁇ ” is used.
  • the position estimation device 1 includes, as functional components, an input unit 11, an axial ratio calculation unit 12, an angle calculation unit 13, a distance calculation unit 31, and an output unit 14. ing. Both the angle calculation unit 13 and the distance calculation unit 31 correspond to the estimation unit in the second embodiment.
  • the input unit 11 inputs the measurement results of the antennas 3a and 3b from the measuring device 4. Accordingly, the axis ratio calculation unit 12 calculates the reception axis ratio for each antenna 3, and the angle calculation unit 13 calculates the reception angle ⁇ for each antenna 3.
  • the angle calculation unit 13 calculates only two reception angles ⁇ for each antenna 3 and then selects only one reception angle ⁇ . As a result, one reception angle ⁇ is output to the distance calculation unit 31 for each antenna 3.
  • FIG. 4 is a diagram illustrating a reception angle selected for each antenna and a method for estimating the position of the RF tag using the selected reception angle.
  • the angle formed by the front direction 8a of the antenna 3a and the reception direction indicated by a straight line connecting the antenna 3a and the RF tag 2 is the reception angle ⁇ 1, and connects the front direction 8b of the antenna 3b and the antenna 3b and the RF tag 2.
  • the angle formed by the reception direction indicated by the straight line is the reception angle ⁇ 2.
  • each of the antennas 3a and 3b receives the circularly polarized wave 21 transmitted by the RF tag 2
  • the sign of each of the reception angles ⁇ 1 and ⁇ 2 can be specified. This is because, under the assumption, the correct reception angle ⁇ 1 is the angle on the antenna 3b side, and the correct reception angle ⁇ 2 is the angle on the antenna 3a side. In the example shown in FIG. 4, the reception angle ⁇ 1 has a positive value, and the reception angle ⁇ 2 has a negative value.
  • the distance D between the antennas 3a and 3b is determined when the antennas 3a and 3b are arranged or when the arrangement is determined.
  • the reception angles ⁇ 1 and ⁇ 2 a triangle having the antennas 3a and 3b and the RF tag 2 as vertices is specified. From this, the distance calculation unit 31 calculates, for example, the distance between the antenna 3a and the RF tag 2, or the distance between the antenna 3b and the RF tag 2. These distances can be calculated using the distance between the antennas 3a and 3b, the reception angles ⁇ 1, ⁇ 2, and a trigonometric function.
  • the output unit 14 receives, for example, the reception angles ⁇ 1 and ⁇ 2 and the calculated distances from the distance calculation unit 31, and displays the information on the monitor 5.
  • the worker can search for the RF tag 2 and the search target such as the structure to which the RF tag 2 is attached. Then, the estimated location can be specified with high accuracy. Therefore, the worker can search for the search target more quickly than in the first embodiment. This allows the operator to more easily achieve higher working efficiency.
  • the second embodiment basically assumes a stationary type.
  • the stationary type can be used for applications such as process management of products, control of robots arranged in each process, entry / exit management, lighting coordination at facilities, and service provision management. Therefore, it is necessary to install at least two antennas 3.
  • the number of antennas 3 is not particularly limited.
  • Embodiment 3 FIG.
  • the radio wave intensity at the time of reception decreases as the distance from the wireless device increases.
  • attention is paid to this fact, and the distance between the antenna and the RF tag is also estimated from the radio wave intensity.
  • the portable device is portable.
  • FIG. 5 is a block diagram showing a functional configuration example of a position estimation device according to Embodiment 3 of the present invention and a system configuration example constructed using the position estimation device.
  • the position estimation device 1 has, as functional components, an input unit 11, an axis ratio calculation unit 12, an angle calculation unit 13, a distance calculation unit 51, a position estimation unit 52, and an output.
  • a section 14 is provided.
  • Each of the angle calculation unit 13, the distance calculation unit 51, and the position estimation unit 52 corresponds to the estimation unit in the third embodiment.
  • the input unit 11 inputs a radio field intensity value from the measuring device 4 as a measurement result of the circularly polarized wave 21 received by the antenna 3.
  • the input radio field intensity value is output to distance calculating section 51 in addition to axis ratio calculating section 12.
  • the axis ratio calculation unit 12 calculates the reception axis ratio using the radio field intensity value
  • the angle calculation unit 13 calculates the reception angle ⁇ using the reception axis ratio.
  • the distance calculation unit 51 calculates an estimated distance between the antenna 3 and the RF tag 2 from the radio field intensity value.
  • the calculation of the distance can be performed using, for example, data indicating the relationship between the radio field intensity value and the distance, for example, a table.
  • the calculated distance is output to the position estimating unit 52.
  • a position where a radio field intensity value equal to the radio field intensity value obtained at the position of the RF tag 2 is obtained is indicated by a curve 60.
  • the position estimation unit 52 estimates a position specified from the reception angle ⁇ calculated by the angle calculation unit 13 and the distance calculated by the distance calculation unit 51 as a position where the search target exists. This estimation result is displayed on the monitor 5 via the output unit 14.
  • the operator can more quickly search for the search target as compared with the first embodiment. Therefore, the work efficiency can be further improved for the worker.
  • the position estimating unit 52 can recognize a change in the position of the position estimating apparatus 1, for example, when the position estimating unit 52 includes a three-axis acceleration sensor, the position estimating unit 52 calculates An appropriate one can be selected from the two reception angles ⁇ . This is because the correct reception angle ⁇ can be specified from the change of the reception angle ⁇ for each position including the attitude of the position estimation unit 1 as described above. In this case, the position estimating unit 52 causes the monitor 5 to display only one reception angle ⁇ instead of two reception angles ⁇ . By displaying only one reception angle ⁇ , the worker can search for the search target more quickly and more easily.
  • the search target is the RF tag 2, the structure to which the RF tag 2 is attached, the person who has the RF tag 2, and the like. good.
  • the searcher may be a person who does the search.
  • the reception angle ⁇ may be an angle formed by the front direction or the maximum radiation direction of the RF tag 2 and the direction in which the antenna 3 receives the circularly polarized wave 21.
  • 1 position estimation device 2 RF tag (wireless device), 3 3a, 3b antenna, 4 measurement device, 5 monitor, 11 input unit, 12 axis ratio calculation unit, 13 angle calculation unit (estimation unit), 14 output unit, 31, 51 ° distance calculating section (estimating section), 52 ° position estimating section (estimating section).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本発明を適用した位置推定装置は、アンテナが無線装置からの円偏波を受信して得られた測定結果をする入力部と、入力部が入力した測定結果を用いて、円偏波の短軸と長軸との比である軸比を算出する軸比算出部と、軸比算出部が算出した軸比を用いて、無線装置とアンテナとの間の位置関係を推定する推定部と、を備える。

Description

位置推定装置
 本発明は、円偏波を送信可能な無線装置の位置を推定する位置推定装置に関する。
 無線装置としては、RF(Radio Frequency)タグがある。RFタグは、現在、物流管理、書類管理、製品の工程管理等の様々な分野で広く用いられている。
 RFタグのなかには、円偏波を送信可能なものがある(例えば、特許文献1参照)。円偏波を採用した場合、直線偏波を採用した場合とは異なり、RFタグとアンテナとの間の相対的な姿勢変化に対応することができる。
特開2012-69034号公報
 アンテナの受信感度は、電波の入射角度によって変化する。このことに着目し、最大の電波強度が得られる方向を特定し、特定した方向を無線装置が存在する方向と推定することが行われている。この方向を特定することにより、作業者は、無線装置、無線装置が取り付けられた構造物等をより容易に捜し出すことができる。
 最大の電波強度が得られる方向を特定するためには、アンテナの角度を変更しつつ、電波強度を確認する必要がある。そのため、方向の特定には、アンテナの角度変更を行うこともあり、長い時間が必要である。迅速な作業を作業者が行えるようにするうえで、この時間を、短縮化することが好ましい。このような時間短縮の問題は、無線装置ではなく、アンテナ、アンテナが取り付けられた構造物等が捜索対象である場合も同様である。
 本発明は、かかる課題を解決するためになされたもので、その目的は、円偏波を送信する捜索対象をより迅速に捜すことを可能にする位置推定装置を提供することにある。
 本発明に係る位置推定装置は、アンテナが無線装置からの円偏波を受信して得られた測定結果をする入力部と、入力部が入力した測定結果を用いて、円偏波の短軸と長軸との比である軸比を算出する軸比算出部と、軸比算出部が算出した軸比を用いて、無線装置とアンテナとの間の位置関係を推定する推定部と、を備える。
 本発明によれば、円偏波を送信する捜索対象をより迅速に捜すことができる。
本発明の実施の形態1に係る位置推定装置の機能構成例、及びその位置推定装置を用いて構築されたシステム構成例を示すブロック図である。 受信軸比の角度による変化例を示す図である。 本発明の実施の形態2に係る位置推定装置の機能構成例、及びその位置推定装置を用いて構築されたシステム構成例を示すブロック図である。 アンテナ毎に選択される受信角度、選択された受信角度を用いたRFタグの位置推定方法を説明する図である。 本発明の実施の形態3に係る位置推定装置の機能構成例、及びその位置推定装置を用いて構築されたシステム構成例を示すブロック図である。
 以下、本発明に係る位置推定装置の各実施の形態を、図を参照して説明する。ここでは、同じ、或いは対応する構成要素には同一の符号を付している。
 実施の形態1.
 図1は、本発明の実施の形態1に係る位置推定装置の機能構成例、及びその位置推定装置を用いて構築されたシステムの構成例を示すブロック図である。
 本実施の形態1に係る位置推定装置1は、例えば円偏波21を送信可能な無線装置であるRFタグ2を捜索対象として、RFタグ2が存在する位置を推定し、推定結果を表す情報を提示する装置である。位置推定装置1には、図1に示すように、測定機4、及びモニター5が接続されている。測定機4には、RFタグ2が送信する円偏波21を受信可能なアンテナ3が接続されている。それにより、システムは、位置推定装置1、アンテナ3、測定機4、及びモニター5を用いて構築された構成となっている。
 モニター5は、情報の表示に用いられる。測定機4は、アンテナ3が受信した円偏波21の電波強度を測定し、その測定結果、つまり電波強度値をデジタル信号で位置推定装置1に出力する。なお、RFタグ2は、能動型、受動型の何れのタイプであっても良い。無線装置自体、RFタグ2に限定されない。
 位置推定装置1は、図1に示すように、機能構成として、入力部11、軸比算出部12、角度算出部13、及び出力部14を備えている。角度算出部13は、本実施の形態1における推定部に相当する。
 入力部11は、測定機4との間のインターフェースであり、測定機4からデジタル信号である電波強度値を入力する。軸比算出部12は、入力部11から入力した電波強度値を用いて、軸比を算出する。
 軸比は、円偏波21の軌跡が円に近い度合いを示す指標であり、円偏波21の短軸と長軸との比である。この軸比は、RFタグ2とアンテナ3との間の位置関係によって変化する。軸比算出部12が算出する軸比は、その位置関係によって変化する軸比である。ここでは、混乱を避けるため、RFタグ2が円偏波21を送信する際の軸比を「送信軸比」、軸比算出部12が算出する軸比を「受信軸比」とそれぞれ表記して区別する。送信軸比は1、つまり短軸と長軸とは等しいと想定する。
 アンテナ3は、例えば独立した3方向の直線偏波成分を受信可能なものである。測定機4は、直線偏波成分毎に、電波強度値、つまり振幅を測定し、その測定結果を位置推定装置1に出力する。これらの測定結果、つまり直線偏波成分毎の電波強度値は、入力部11を介して軸比算出部12に出力される。軸比算出部12は、直線偏波成分毎の電波強度値を用いて、受信軸比を算出する。受信軸比の測定に係わる参考技術文献としては、例えば特開2006-38675号公報を挙げることができる。受信軸比の測定方法は、特に限定されない。軸比をARとすると、通常、軸比ARは、20log10|AR|のdB値で表される。
 角度算出部13は、軸比算出部12が算出した受信軸比を用いて、アンテナ3を基準にして、円偏波21を送信したRFタグ2が存在すると推定される方向を算出する。本実施の形態1では、角度算出部13は、図1に示すように、RFタグ2が存在すると推定される方向として、その方向と、アンテナ3の正面方向8とが成す角度θを算出する。算出された角度θは、出力部14により、モニター5上に表示される。
 図2は、受信軸比の角度による変化例を示す図である。この図2では、横軸に角度、縦軸に軸比をそれぞれ取っている。
 アンテナ3の正面方向8から円偏波21を受信した場合、受信軸比は、送信軸比と等しくなるか、或いは略等しくなる。しかし、円偏波21を受信する方向が正面方向8から離れるほど、受信軸比は、送信軸比から異なる。言い換えれば、受信軸比は、図2に示すように、円偏波21の受信方向と、正面方向8とが成す角度θに依存して変化する。受信軸比は、その角度θが0度、つまり受信方向と、正面方向8とが一致するときに最小となり、その角度の絶対値が大きくなるほど、指数関数的に大きくなる。以降、この角度θは「受信角度θ」と表記する。
 本実施の形態1では、このことに着目し、算出した受信軸比を用いて受信角度θを算出する。この算出は、図2に示すような受信角度θによる受信軸比の変化を近似する計算式を用意する、その変化を示すデータ、例えばテーブルを用意する、といったことにより行えるようになる。それにより、角度算出部13は、例えば受信軸比が3dBであった場合、受信角度θとして、-10度を算出することができる。図1を上面図と想定した場合、負の受信角度θは、正面方向8から右回り方向側、つまり時計回り方向側にRFタグ2が存在することを表している。正の受信角度θは、逆に、正面方向8から左回り方向側にRFタグ2が存在することを表している。
 受信方向と、正面方向8とが一致しない場合、受信軸比により、図2に示すように、実際には正負の2つの受信角度θが算出される。そのため、算出された受信角度θの絶対値が比較的に大きい場合、作業者にとっては、RFタグ2を捜すべき方向を特定するのが困難となる。しかし、アンテナ3の正面方向8を1回、変化させることにより、作業者は、RFタグ2が存在する方向を一意的に特定することができる。
 例えば、受信角度θとして±10°が算出された状況において、正面方向8を右回り方向に動かし、算出された受信角度θが±5°に変化した場合を想定する。この想定では、右回り方向側に動かすことにより、RFタグ2が存在する方向に正面方向8が近づいたことになる。そのため、右回り方向側に動かした後にRFタグ2が存在する方向、つまり正しい受信角度θは、-5°であると特定することができる。逆に正面方向8を左回り方向に動かし、算出された受信角度θが±15°に変化したのであれば、左回り方向側に動かした後にRFタグ2が存在すると推定される方向、つまり正しい受信角度θは、+15°であると特定することができる。
 RFタグ2が存在すると推定される方向は、電波強度値が最大となる正面方向8を特定することにより、確認することができる。しかし、そのような正面方向8を特定する従来の手法では、数多くの測定を行わなければならない。
 そのため、本実施の形態1では、従来の手法と比較して、作業者は、RFタグ2が存在すると推定される方向を、より迅速に確認することができる。この結果、作業者にとっては、RFタグ2、そのRFタグ2が取り付けられた構造物、或いはそのRFタグ2を所持する人である捜索対象をより迅速に捜し出すことができる。従って、作業効率も向上することとなる。
 なお、アンテナ3の指向性は、アンテナ3によって異なる。アンテナ3によっては、正面方向8が最大感度方向と一致しない。しかし、指向性自体は、事前に確認することができる。このことから、受信角度θは、正面方向8ではなく、最大感度方向と成す角度であっても良い。
 実施の形態2.
 上記実施の形態1は、基本的に、携帯型であることを想定している。例えば上記実施の形態1に係る位置推定装置1は、RFタグ2と通信が可能なリーダに搭載させ、作業者のより効率的な作業を支援させるようにすることもできる。これに対し、本実施の形態2は、基本的に、位置推定装置1を据え置き型として用いることを想定したものである。なお、リーダに搭載させた位置推定装置1は、アンテナ3、及び測定機4を備えた構成となる。
 図3は、本発明の実施の形態2に係る位置推定装置の機能構成例、及びその位置推定装置を用いて構築されたシステム構成例を示すブロック図である。
 本実施の形態2では、図3に示すように、測定機4は、少なくとも2つのアンテナ3a、3bと接続されている。この2つのアンテナ3a、3bは、同じRFタグ2が送信する円偏波21を受信可能な位置に配置されている。それにより、位置推定装置1は、測定機4から、アンテナ3a、3bの各測定結果を入力するようになっている。以降、2つのアンテナ3a、3bを区別する必要のないような場合、符号として「3」を用いる。アンテナ3a、3bの各受信角度は、それぞれθ1、θ2とし、区別する必要のないような場合、「θ」を用いる。
 本実施の形態2に係る位置推定装置1は、図3に示すように、機能構成として、入力部11、軸比算出部12、角度算出部13、距離算出部31、及び出力部14を備えている。角度算出部13、及び距離算出部31は共に、本実施の形態2における推定部に相当する。
 入力部11は、アンテナ3a、3bの各測定結果を測定機4から入力する。それにより、軸比算出部12は、アンテナ3毎に受信軸比を算出し、角度算出部13は、アンテナ3毎に受信角度θを算出する。
 本実施の形態2では、RFタグ2が送信する円偏波21をアンテナ3a、3bのそれぞれが受信する状況となった場合に、受信角度θを算出するようにしている。このため、上記実施の形態1とは異なり、角度算出部13は、アンテナ3毎に2つの受信角度θを算出した後、1つの受信角度θのみを選択する。この結果、距離算出部31には、アンテナ3毎に、1つの受信角度θが出力される。
 図4は、アンテナ毎に選択される受信角度、および選択された受信角度を用いたRFタグの位置推定方法を説明する図である。アンテナ3aの正面方向8aと、アンテナ3aとRFタグ2とを結ぶ直線で示す受信方向とが成す角度が受信角度θ1であり、アンテナ3bの正面方向8bと、アンテナ3bとRFタグ2とを結ぶ直線で示す受信方向とが成す角度が受信角度θ2である。
 RFタグ2が送信する円偏波21をアンテナ3a、3bのそれぞれが受信する状況を想定することにより、各受信角度θ1、θ2の正負を特定することができる。これは、その想定では、正しい受信角度θ1はアンテナ3b側の角度であり、正しい受信角度θ2はアンテナ3a側の角度であるためである。図4に示す例では、受信角度θ1は正の値、受信角度θ2は負の値となる。
 アンテナ3a、3b間の距離Dは、アンテナ3a、3bの配置時、或いはその配置の決定時に確定する。受信角度θ1、θ2が算出されることにより、アンテナ3a、3b、及びRFタグ2をそれぞれ頂点とする三角形が特定される。このことから、距離算出部31は、例えばアンテナ3aとRFタグ2との間の距離、或いはアンテナ3bとRFタグ2との間の距離を算出する。これらの距離の算出は、アンテナ3aとアンテナ3bとの間の距離、受信角度θ1、θ2、及び三角関数を用いて行うことができる。
 出力部14は、距離算出部31から、例えば受信角度θ1、θ2、及び算出した各距離を入力し、それらの情報をモニター5上に表示させる。
 受信角度θ1、θ2のうちの一方、及び各距離のうちの一方を情報として提供することにより、作業者は、RFタグ2、そのRFタグ2が取り付けられた構造物等である捜索対象が存在すると推定される場所を高精度に特定することができる。そのため、作業者は、上記実施の形態1と比較し、捜索対象をより迅速に捜し出すことができる。このことから、作業者は、より高い作業効率をより容易に実現できるようになる。
 上記のように、本実施の形態2では、基本的に据え置き型を想定している。言い換えれば、捜索対象は、基本的に移動することを想定している。据え置き型では、製品の工程管理、各工程に配置されたロボットの制御、入退室管理、施設での照明連携、サービスの提供管理、等の用途に用いることができる。そのために、アンテナ3は、少なくとも2つ設置する必要がある。アンテナ3の数は特に限定されない。
 実施の形態3.
 一般的に、受信時の電波強度は、無線装置からの距離が長くなるほど低下する。本実施の形態3は、このことに着目し、電波強度からアンテナとRFタグとの間の距離を併せて推定するようにしたものである。本実施の形態3でも上記実施の形態1と同様に、基本的には、携帯型であることを想定している。
 図5は、本発明の実施の形態3に係る位置推定装置の機能構成例、及びその位置推定装置を用いて構築されたシステム構成例を示すブロック図である。
 本実施の形態3に係る位置推定装置1は、図5に示すように、機能構成として、入力部11、軸比算出部12、角度算出部13、距離算出部51、位置推定部52及び出力部14を備えている。角度算出部13、距離算出部51、及び位置推定部52の何れも、本実施の形態3における推定部に相当する。
 入力部11は、上記のように、測定機4から、アンテナ3が受信した円偏波21の測定結果として、電波強度値を入力する。本実施の形態3では、入力された電波強度値は、軸比算出部12の他に、距離算出部51に出力される。上記実施の形態1と同様に、軸比算出部12は、電波強度値を用いて受信軸比を算出し、角度算出部13は、受信軸比を用いて受信角度θを算出する。
 距離算出部51は、電波強度値から、アンテナ3とRFタグ2との間の推定される距離を算出する。この距離の算出は、例えば電波強度値と距離との間の関係を示すデータ、例えばテーブルを用いて行うことができる。算出した距離は、位置推定部52に出力される。図5では、RFタグ2の位置で得られる電波強度値と等しい電波強度値が得られる位置を曲線60により示している。
 位置推定部52は、角度算出部13が算出した受信角度θ、及び距離算出部51が算出した距離から特定される位置を、捜索対象が存在する位置として推定する。この推定結果は、出力部14を介して、モニター5上に表示される。
 受信角度θの他に、距離を表示させた場合、作業者は、上記実施の形態1と比較し、捜索対象をより迅速に探し出せるようになる。そのため、作業者にとっては、作業効率をより向上させることができる。
 位置推定装置1の位置の変化を位置推定部52が認識できる場合、例えば3軸加速度センサーを位置推定部52が備えているような場合、位置推定部52は、角度算出部13が算出する2つの受信角度θのなかで適切な方を選択することができる。これは、上記のように、位置推定部1の姿勢を含む位置毎の受信角度θの変化から、正しい受信角度θを特定できるからである。その場合、位置推定部52は、2つの受信角度θではなく、1つの受信角度θのみをモニター5に表示させる。1つの受信角度θのみを表示させることにより、作業者は、捜索対象をより迅速、且つより容易に探し出せるようになる。
 なお、上記実施の形態1~3では、RFタグ2、そのRFタグ2が取り付けられた構造物、そのRFタグ2を所持する人等を捜索対象としているが、捜索対象は逆であっても良い。つまりRFタグ2の位置が既知であり、且つアンテナ3の円偏波21の受信による測定結果が得られるような環境では、アンテナ3、そのアンテナ3が取り付けられた構造物、そのアンテナ3を所持する人等を捜索対象としても良い。受信角度θは、RFタグ2の正面方向、或いは最大放射方向と、アンテナ3が円偏波21を受信した方向とが成す角度であっても良い。
 1 位置推定装置、2 RFタグ(無線装置)、3、3a、3b アンテナ、4 測定機、5 モニター、11 入力部、12 軸比算出部、13 角度算出部(推定部)、14 出力部、31、51 距離算出部(推定部)、52 位置推定部(推定部)。

Claims (4)

  1.  アンテナが無線装置からの円偏波を受信して得られた測定結果をする入力部と、
     前記入力部が入力した前記測定結果を用いて、前記円偏波の短軸と長軸との比である軸比を算出する軸比算出部と、
     前記軸比算出部が算出した軸比を用いて、前記無線装置と前記アンテナとの間の位置関係を推定する推定部と、
     を備える位置推定装置。
  2.  前記推定部は、前記位置関係として、前記アンテナの正面方向、及び前記無線装置の最大放射方向のうちの一方と、前記アンテナが前記円偏波を受信した方向とが成す角度を推定する、
     請求項1に記載の位置推定装置。
  3.  前記推定部は、前記位置関係として、前記無線装置と前記アンテナとの間の距離を推定する、
     請求項1または2に記載の位置推定装置。
  4.  前記アンテナとして、異なる位置に配置された第1のアンテナ、及び第2のアンテナが存在する場合に、
     前記入力部は、前記第1のアンテナの測定結果である第1の測定結果、及び前記第2のアンテナの測定結果である第2の測定結果をそれぞれ入力し、
     前記軸比算出部は、前記第1の測定結果を用いて第1の軸比、及び前記第2の測定結果を用いて第2の軸比をそれぞれ算出し、
     前記推定部は、前記角度として、前記第1の軸比を用いて第1の角度、及び前記第2の軸比を用いて第2の角度をそれぞれ推定すると共に、前記第1のアンテナと前記第2のアンテナとの間の距離、前記第1の角度、及び前記第2の角度を用いて、前記第1のアンテナと前記無線装置との間の距離、及び前記第2のアンテナと前記無線装置との間の距離のうちの少なくとも一方を推定する、
     請求項2に記載の位置推定装置。
PCT/JP2018/026171 2018-07-11 2018-07-11 位置推定装置 WO2020012575A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026171 WO2020012575A1 (ja) 2018-07-11 2018-07-11 位置推定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/026171 WO2020012575A1 (ja) 2018-07-11 2018-07-11 位置推定装置

Publications (1)

Publication Number Publication Date
WO2020012575A1 true WO2020012575A1 (ja) 2020-01-16

Family

ID=69141543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026171 WO2020012575A1 (ja) 2018-07-11 2018-07-11 位置推定装置

Country Status (1)

Country Link
WO (1) WO2020012575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023004268A (ja) * 2021-06-25 2023-01-17 株式会社Where 位置検出システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564072A (en) * 1979-06-26 1981-01-16 Nippon Telegr & Teleph Corp <Ntt> Direction finding system
US6107962A (en) * 1998-08-03 2000-08-22 Calvert; W. Method for measuring the ellipse axes, wave direction, and wave propagation mode of an elliptically, circularly, or linearly polarized wave
WO2010022785A1 (en) * 2008-08-28 2010-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Positioning of a user terminal
US20110291892A1 (en) * 2008-11-07 2011-12-01 Thales Method of determining the direction of arrival of an electromagnetic wave
JP2018025556A (ja) * 2016-08-03 2018-02-15 三菱重工業株式会社 位置標定システム、および位置標定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564072A (en) * 1979-06-26 1981-01-16 Nippon Telegr & Teleph Corp <Ntt> Direction finding system
US6107962A (en) * 1998-08-03 2000-08-22 Calvert; W. Method for measuring the ellipse axes, wave direction, and wave propagation mode of an elliptically, circularly, or linearly polarized wave
WO2010022785A1 (en) * 2008-08-28 2010-03-04 Telefonaktiebolaget Lm Ericsson (Publ) Positioning of a user terminal
US20110291892A1 (en) * 2008-11-07 2011-12-01 Thales Method of determining the direction of arrival of an electromagnetic wave
JP2018025556A (ja) * 2016-08-03 2018-02-15 三菱重工業株式会社 位置標定システム、および位置標定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023004268A (ja) * 2021-06-25 2023-01-17 株式会社Where 位置検出システム

Similar Documents

Publication Publication Date Title
Zhu et al. Three-dimensional VLC positioning based on angle difference of arrival with arbitrary tilting angle of receiver
CN109212471B (zh) 一种定位基站、系统和方法
US11770723B2 (en) Sensor-assisted technique for RF power normalization in locationing applications
WO2016147569A1 (ja) 衛星測位システム、電子機器及び測位方法
US20180249438A1 (en) Geo-Localization Assembly and Method
KR101357690B1 (ko) 방향탐지용 인터페로미터 배열 안테나 이격비 산출방법
CN103947285A (zh) 用于引导无线设备的用户建立去到另一无线设备的最优无线直接链路的方法、无线设备和无线通信系统
US20130130712A1 (en) Terminal apparatus and method for identifying position
US20190075539A1 (en) Method and device for high-precision determination of a mobile device and method for locating or positioning stationary devices
CN105093173A (zh) 位置获取方法和装置
CN108811082A (zh) 一种无线定位方法、系统及定位终端
JP7286572B2 (ja) 無線通信システム
WO2020012575A1 (ja) 位置推定装置
CN105205424B (zh) 利用上下文可视化的电磁识别(emid)标签定位部件
WO2022082144A3 (en) Angle of arrival and angle of departure system optimization by using antenna information
Poveda-García et al. Amplitude-monopulse radar lab using WiFi cards
CN109690340A (zh) 一无线电信号接收方向的确定方法
KR101322416B1 (ko) 안테나 정렬 장치
CN111336915A (zh) 在基于激光跟踪仪的工业对象测量期间粗略定位可移动协作目标的系统
CN112584489B (zh) 一种空间位置标定方法及系统
JP2009250865A (ja) 測位システム及び測位方法
US20190235045A1 (en) Antenna, wireless transmission device, and position measurement system
KR20180083174A (ko) 전자전 지원 시스템(Warfare Support System)의 신호도래방위각 측정 장치 및 그 방법
Wei et al. LiCompass: Extracting orientation from polarized light
CN110336625B (zh) 天线对准方法、天线对准装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP