WO2020010773A1 - 光纤制造冷却管氦气回收系统及控制方法 - Google Patents

光纤制造冷却管氦气回收系统及控制方法 Download PDF

Info

Publication number
WO2020010773A1
WO2020010773A1 PCT/CN2018/116090 CN2018116090W WO2020010773A1 WO 2020010773 A1 WO2020010773 A1 WO 2020010773A1 CN 2018116090 W CN2018116090 W CN 2018116090W WO 2020010773 A1 WO2020010773 A1 WO 2020010773A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
helium
purification
gas
cooling pipe
Prior art date
Application number
PCT/CN2018/116090
Other languages
English (en)
French (fr)
Inventor
黄卫
师铜墙
刘朝明
马香莲
吕继祥
章学华
赵俊
张茜
Original Assignee
安徽万瑞冷电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽万瑞冷电科技有限公司 filed Critical 安徽万瑞冷电科技有限公司
Publication of WO2020010773A1 publication Critical patent/WO2020010773A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/07Controlling or regulating

Definitions

  • the invention relates to the field of optical fiber manufacturing, in particular to a helium gas recovery system and a control method for a cooling pipe for optical fiber manufacturing.
  • helium As a scarce strategic resource, helium is widely used in the fields of national defense military industry, scientific research, aerospace, fiber manufacturing, and air-conditioning leak detection.
  • the content of helium in the air is very small. At present, it mainly depends on drilling natural gas and then separating helium from natural gas, which is difficult to extract and costly. Therefore, in the protection of limited helium resources, research on efficient waste helium recovery and purification technology has broad application prospects.
  • the cooling tower of the drawing tower also uses helium as the cooling gas.
  • Chinese patent application CN104555955A discloses a method and equipment for recycling and helium gas used for optical fiber cooling pipes.
  • the helium gas can be recovered to the maximum without increasing the amount of pure helium and without affecting the production process.
  • the recovered helium gas is purified to a qualified purity to meet the needs of optical fiber production for secondary recycling, which achieves the goals of energy saving and reducing production costs.
  • its production equipment usually includes multiple drawing tower cooling tubes. How to realize the intelligent recovery and recycling of multiple drawing tower cooling pipes is currently lacking corresponding solutions.
  • the present invention improves the existing technical problem, that is, the technical problem to be solved by the invention is to provide a single-line helium tube helium gas recovery system, which can recover and utilize the helium-rich tail gas of the drawing tower cooling tube.
  • a helium gas recovery system for optical fiber manufacturing cooling tubes which is characterized by comprising: a collection unit connected in sequence, including an intake manifold, and a plurality of parallel connected Collection pipeline, each collection pipeline is connected with a cooling pipe, and each collection pipeline is provided with a control valve; the compression and purification unit includes a compression pump and a purification device connected along the gas flow direction, and receives the helium rich collected by the combiner tank The exhaust gas is output after being compressed and purified; and the gas supply unit, including the gas supply combiner, receives the high-purity helium gas provided by the compression and purification unit, and connects the high-purity helium gas to the cooling pipe through a plurality of transmission pipelines arranged in parallel.
  • a conveying pipe is connected to a cooling pipe.
  • each compression and purification device includes a compression pump and a membrane separation and purification device connected in series.
  • Each compression and purification device is provided with a control valve upstream and a one-way downstream. valve.
  • the helium gas recovery system for manufacturing cooling tubes for optical fibers further includes a control unit for controlling the compression and purification unit.
  • each collection pipeline is provided with a mass flow controller, and the control unit is communicably connected to the mass flow controller.
  • the control method of the helium gas recovery system for manufacturing cooling tubes of the optical fiber wherein the control unit collects a signal of fresh helium gas usage of each cooling tube, and judges how many cooling tubes are being used according to the collected signals, and according to the cooling
  • the number of tubes used is controlled to open one or more parallel compression and purification devices and the corresponding control valve upstream.
  • the present invention has the following technical advantages:
  • the present invention automatically and reasonably distributes the load of multiple recovery and purification devices, effectively avoids low load or overload operation of the recovery and purification device, and greatly improves the stability of the equipment. And purification efficiency.
  • the control system of the present invention intelligently controls the opening degree of the valve of the mass flow controller by collecting the fresh helium gas consumption signal of the cooling helium pipe, thereby automatically adjusting the recovered waste helium when the fresh helium gas consumption of the cooling helium pipe fluctuates. Gas volume and ensure high helium purity and recovery efficiency.
  • the gas detection and control of the present invention uses a thermal mass flow controller, which has high accuracy, good repeatability, fast response speed, stability and reliability, and a wide working pressure range, which can meet the needs for precise measurement and control of gas mass flow. .
  • the high-concentration helium gas obtained after the purification by the recovery and purification device is supplied to all the cooling helium pipes for waste helium gas recycling through a plurality of one-way valves, so as to avoid the occurrence of a small number of cooling helium pipes and high-purity helium.
  • There is a surplus of gas circulation supply which causes the pressure of the gas supply combiner tank to be too high, and the production gas supply pressure fluctuates, which greatly improves the stability of the gas supply end of the cooling helium tube.
  • FIG. 1 is a block diagram of a helium gas recovery system for an optical fiber manufacturing cooling pipe provided by the present invention, where the direction of the arrow indicates the direction of helium gas flow.
  • FIG. 2 is a flow chart of a specific structure and principle of a helium recovery system for a cooling pipe for optical fiber manufacturing according to a preferred embodiment of the present invention.
  • the helium gas recovery system 100 for cooling tubes of optical fiber manufacturing provided by the present invention is used for recovering helium-rich exhaust gas in N drawing tower cooling tubes 10.
  • N is 4, that is, there are 4 drawing tower cooling pipes in total.
  • the drawing tower cooling pipe helium gas recovery system 100 includes a collection air intake unit 101, a compression and purification unit 102, and a gas supply and storage unit 103 which are sequentially connected in a gas flow direction.
  • the helium-rich tail gas of the drawing tower cooling pipe 10 is sent to the collection unit 101, and the high-purity helium gas of the gas supply unit 103 is supplied to the drawing tower cooling pipe 10.
  • the collection and intake unit 101 includes an intake manifold 22 and four collection pipelines arranged in parallel. Each collection pipeline is connected to a drawing tower cooling pipe, and all the collection pipelines collect the collected helium-rich exhaust gas to the collection tank. twenty two. In order to facilitate the monitoring of the collected intake air, a valve 20 and a mass flow controller 21 are provided on each collection pipeline.
  • the compression purification unit 102 includes a compression pump and a purification device connected along a gas flow direction.
  • the micro-negative pressure effect generated by the operation of the compression pump draws the helium-rich exhaust gas in the cooling tower of the drawing tower into the intake manifold 22 through the collection pipeline.
  • a cooling device is preferably connected after the compression pump.
  • the purification device is preferably a membrane separation purification device.
  • Membrane separation gas separation technology uses some metal or organic membranes to selectively penetrate and diffuse certain gas components to achieve the purpose of gas separation and purification. It uses the partial pressure difference of the gas on both sides of the membrane as the driving force to achieve the separation through the steps of dissolution, diffusion, permeation, desorption, etc., to produce the difference in the transmission rate between the components.
  • the compression and purification unit is composed of a plurality of compression and purification devices connected in parallel (the first compression and purification device 30 and the second compression and purification device 31 shown in FIG. 2), and each unit
  • the compression and purification device includes a compression pump and a membrane separation and purification device connected in series.
  • the first compression and purification device 30 is provided with a first switching valve 23 at the inlet end
  • the second compression and purification device 31 is provided with a second switching valve 24 at the inlet end.
  • the on-off valve is adjusted according to the production load of the drawing line. If the production load is small, the helium-rich exhaust gas collected from the drawing tower cooling pipe is less. You can choose to open only a single compression purification device; if the production load is large, cool from the drawing tower. The helium-rich exhaust gas collected by the tube is large, and only two compression purification devices can be selected for parallel operation.
  • the gas supply storage unit 103 is configured to receive high-purity helium gas provided by the compression and purification unit, and send the helium gas to the drawing tower cooling pipe 10.
  • the gas supply storage unit includes a gas supply combiner tank 50. On the one hand, it absorbs and stabilizes the high-concentration helium gas purified by the compression and purification unit 102, and on the other hand, it can transport the high-purity helium gas through multiple gas supply lines to each Drawing tower cooling pipe 10.
  • a one-way valve 51 is provided on each gas supply pipeline.
  • the gas supply storage unit may further include a helium gas source, which together with the gas supply combiner tank supplies gas to the drawing tower cooling pipe.
  • the helium gas recovery system 100 for a cooling pipe for optical fiber manufacturing further includes a control unit 104.
  • the control unit 104 collects the analog signal of the helium gas mass flow controller (not shown in the figure) of the fresh helium gas supply end of the cooling pipe 10 through the signal line.
  • the general signal is a 4-20mA current signal or a 0-5V voltage signal. Based on the collected signals, determine how many drawing tower cooling tubes are in use. When the control unit detects that there are 1-2 wire drawing tower cooling pipes in use, it outputs a signal that the current production load is small; when the control unit detects that 3-4 wire drawing tower cooling pipes are in use, it outputs the current production load Larger signals.
  • the control unit 104 multiplies the fresh helium gas consumption signal collected by the cooling pipe 10 by a certain coefficient (usually 1.5 times) to obtain the signal for each cooling pipe extraction. Further, the control unit 104 controls the multi-channel mass flow controller 21 to control the valve opening degree according to the cooling pipe extraction amount signal, so as to realize that when the fresh helium gas consumption of the cooling pipe fluctuates between 6-10L / min, the waste helium gas recovery amount is 9- Automatic adjustment between 15L / min.
  • control unit 104 can also determine the degree of production load according to the fresh helium gas consumption signal of the cooling pipe 10.
  • the control system 104 randomly opens 1 # intake solenoid valve 30, 1 # recovery purification device 32 or 2 # intake solenoid valve 31, 2 # recovery purification device 33, and the helium-rich exhaust gas passes through the unit.
  • the set of compression purification equipment is purified and supplied to the gas supply storage unit 103.
  • the control system 104 opens another intake solenoid valve and a recovery and purification device, and the helium-rich exhaust gas is purified and supplied to the gas supply storage unit 103 by two sets of compression purification equipment.
  • a one-way valve is provided between the compression and purification devices 30 and 31 and the gas supply combiner tank 40 to prevent the gas from flowing backward through the gas supply combiner tank 40 when the pressure of the multiple purification purification devices is unbalanced or one of them is not working.
  • the high-concentration helium gas purified by a plurality of recovery and purification devices 34 is stabilized by a gas supply combiner tank 40, and is supplied online to a plurality of cooling helium pipes 10 through a plurality of check valves 41 to ensure that all the purified gas can be completely used.
  • the pressure fluctuation of the gas supply combiner tank 40 will cause the pressure difference between the two ends of the mass flow controller of the fresh helium gas supply side of the drawing tower cooling pipe to fluctuate, the fluctuation of the gas supply flow rate will cause an instant change in the helium supply in the drawing tower cooling pipe. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

提供一种光纤制造冷却管氦气回收系统,其特征在于,包括依次连接的:采集单元(101),包括进气汇流罐(22)以及与该进气汇流罐连接的多条并联设置的采集管路,每条采集管路连接一冷却管(10),每条采集管路上均设有控制阀门(20);压缩纯化单元(102),包括沿气体流向连接的压缩泵和纯化装置,接收所述汇流罐采集的富氦尾气,经压缩纯化后输出;以及供气单元(103),包括供气汇流罐(50),接收压缩纯化单元提供的高纯氦气,并将高纯氦气通过多条并联设置的输送管路连接冷却管,每条输送管路连接一冷却管。还提供该系统的控制方法。该系统和控制方法可用于对拉丝塔冷却管的富氦尾气进行回收和利用。

Description

光纤制造冷却管氦气回收系统及控制方法 技术领域
本发明涉及光纤制造领域,具体涉及一种光纤制造冷却管氦气回收系统及控制方法。
背景技术
氦气作为一种稀缺的战略性资源,广泛应用于国防军工、科学研究、航天航空、光纤制造、空调检漏等领域。氦气在空气中含量极少,目前主要依靠钻天然气,然后把氦气从天然气中分离出来,提取难度大,成本高。因此在保护有限的氦气资源,研究高效的废氦气回收和提纯技术,具有广泛的应用前景。
在光纤拉丝制造领域,除拉丝炉要用到氦气外,拉丝塔冷却管也采用氦气作为冷却气体。中国专利申请CN104555955A公开了一种光纤冷却管用氦气循环再利用方法及其设备,在不增大纯氦用量和不影响生产工艺的前提下,将放空的氦气最大限度的回收起来,并将回收的氦气净化到合格的纯度,以满足光纤生产的需要进行二次循环利用,达到了节能、降低了生产成本的目的。需要说明的是,在光纤制造领域,其生产设备通常包括多个拉丝塔冷却管。如何实现多个拉丝塔冷却管进行智能化地回收和循环利用,目前缺乏相应的解决方案。
发明内容
本发明针对现有的技术问题作出改进,即发明所要解决的技术问题是提供一种单线氦管氦气回收系统,可对拉丝塔冷却管的富氦尾气进行回收和利用。
本发明提供的技术方案为:一种光纤制造冷却管氦气回收系统,其特征在于,包括依次连接的:采集单元,包括进气汇流罐以及与该进气汇流罐连接的多条并联设置的采集管路,每条采集管路连接一冷却管,每条采集管路上均设有控制阀门;压缩纯化单元,包括沿气体流向连接的压缩泵和纯化装置,接收所述汇流罐采集的富氦尾气,经压缩纯化后输出;以及供气单元,包括供气汇流罐,接收压缩纯化单元提供的高纯氦气,并将高纯氦气通过多条并联设置的输送管路连接冷却管,每条输送管路连接一冷却管。
进一步,所述压缩纯化单元由多台并联的压缩纯化装置组成,每台压缩纯化装置包括串联连接的压缩泵和膜分离纯化装置,每台压缩纯化装置上游设有控制阀门、下游设 有单向阀。
进一步,光纤制造冷却管氦气回收系统还包括控制单元,对所述压缩纯化单元进行控制。
进一步,每条采集管路上设有质量流量控制器,所述控制单元可通信地连接该质量流量控制器。
上述光纤制造冷却管氦气回收系统的控制方法,其特征在于,所述控制单元采集每条冷却管的新鲜氦气使用量信号,根据采集到的信号判断有多少条冷却管正在使用,根据冷却管的使用数量控制开启一台或多台并联的压缩纯化装置以及上游对应设有的控制阀门。
与现有技术相比,本发明存在以下技术优点:
1、本发明根据多条冷却氦管的生产负荷程度,自动对多个回收纯化装置进行负载合理分配,有效的避免回收纯化装置出现低负荷或负荷过载运行且很大程度上提高了设备的稳定性和提纯效率。
2、本发明控制系统通过采集冷却氦管的新鲜氦气用量信号,智能控制质量流量控制器阀门的开度,从而在冷却氦管的新鲜氦气用量波动的情况下,自动调节回收的废氦气量并保证较高的氦气纯度和回收效率。
3、本发明气体检测和控制选用热式质量流量控制器,其精度高、重复性好、响应速度快、稳定可靠、工作压力范围宽,可满足对气体的质量流量进行精密测量和控制的需求。
4、本发明将回收纯化装置提纯后得到的高浓度氦气经多个单向阀供到所有进行废氦气回收的冷却氦管重新使用,避免出现供给冷却氦管数量较少,高纯度氦气循环供给有剩余,导致供气汇流罐出现压力偏高,生产供气压力波动,大大提高了冷却氦管供气端的稳定性。
附图说明
图1是本发明提供的光纤制造冷却管氦气回收系统组成框图,其中箭头方向表示氦气流动的方向。
图2是本发明优选实施例提供的光纤制造冷却管氦气回收系统具体结构原理流程图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优 选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
如图1和图2所示,本发明提供的光纤制造冷却管氦气回收系统100,用于对N个拉丝塔冷却管10中的富氦尾气进行回收。本实施例中,N为4,即共有4个拉丝塔冷却管。该拉丝塔冷却管氦气回收系统100其包括在沿气体流动方向依次连接的采集进气单元101、压缩纯化单元102和供气储气单元103。拉丝塔冷却管10的富氦尾气输送至采集单元101,供气单元103的高纯氦气供至拉丝塔冷却管10。
采集进气单元101包括进气汇流罐22以及4条并联设置的采集管路,每条采集管路对应连接一个拉丝塔冷却管,所有采集管路将采集到的富氦尾气汇连至汇流罐22。为了便于对采集进气进行监控,每条采集管路上设有阀门20和质量流量控制器21。
压缩纯化单元102包括沿气体流向连接的压缩泵和纯化装置。压缩泵运行产生的微负压效应将拉丝塔冷却管内的富氦尾气通过采集管路吸入至进气汇流罐22中。压缩泵后优选地连接有冷却装置。纯化装置优选膜分离纯化装置。膜分离法分离气体技术是利用有些金属膜或有机膜对某些气体组分具有选择性渗透和扩散的特性,来达到气体分离和纯化的目的。它是以膜两侧气体的分压差为推动力,通过溶解、扩散、渗透、脱附等步骤,产生组份间传递速率的差异来实现分离的。与低温冷凝吸附法、变压吸附法技术相比,由于在常温下操作,它具有能耗低、使用方便和操作弹性大等特点。需要说明的是,作为上述压缩纯化单元的优选方案,压缩纯化单元由多台并联(如图2所示的第一压缩纯化装置30和第二压缩纯化装置31)的压缩纯化装置组成,每台压缩纯化装置包括串联连接的压缩泵和膜分离纯化装置,第一压缩纯化装置30入口端设有第一开关阀门23,第二压缩纯化装置31入口端设有第二开关阀门24。开关阀门根据拉丝生产线生产负荷进行调节,如生产负荷较小,从拉丝塔冷却管采集到的富氦尾气较少,可选择仅开启单台压缩纯化装置;如生产负荷较大,从拉丝塔冷却管采集到的富氦尾气多,可选择仅开启两压缩纯化装置进行并联工作。
供气储存单元103用于接收压缩纯化单元提供的高纯氦气,并将氦气输送拉丝塔冷却管10。供气储存单元包括供气汇流罐50,其一方面吸收压缩纯化单元102提纯后的高浓度氦气并进行稳压,另一方面可将高纯氦气通过多条供气管路输送至每个拉丝塔冷却管10。每条供气管路上设有单向阀门51。当然,为了补充氦气在线回收纯化过程中的损耗,供气储存单元还可包括氦气气源,其与供气汇流罐共同对拉丝塔冷却管进行供气。
为了实时获知生产线的饱和程度,光纤制造冷却管氦气回收系统100还包括控制单元104。控制单元104通过信号线采集冷却管10新鲜氦气供气端氦气质量流量控制器 (图中未示出)的模拟量信号,一般信号为4-20mA电流信号或0-5V电压信号,再根据采集到的信号判断有多少条拉丝塔冷却管正在使用。当控制单元检测到有1-2台拉丝塔冷却管在使用时,则输出当前生产负荷较小信号;当控制单元检测到有3-4台拉丝塔冷却管在使用时,则输出当前生产负荷较大信号。
为了实现对冷却管氦气回收工作的智能控制,控制单元104分别将采集到冷却管10的新鲜氦气用量信号乘以一定系数(一般为1.5倍)得到每条冷却管抽取量信号。进一步,控制单元104根据冷却管抽取量信号控制多路质量流量控制器21控制阀门开度,以实现当冷却管新鲜氦气用量在6-10L/min波动时,废氦气回收量在9-15L/min之间自动调节。避免冷却氦管新鲜氦气用量下降时,废氦气回收量保持较大,导致抽取到的废氦气纯度过低且会造成生产线拉丝产生波动;或冷却氦管新鲜氦气用量上升时,废氦气回收量保持较小,导致抽取到的废氦气量过少造成回收效率过低。进一步,控制单元104还可根据冷却管10的新鲜氦气用量信号,判断生产负荷程度。当拉丝生产线当前的生产负荷不足时,控制系统104随机开启1#进气电磁阀30、1#回收纯化装置32或2#进气电磁阀31、2#回收纯化装置33,富氦尾气经单套压缩纯化设备纯化后供至供气储存单元103。当拉丝生产线当前的生产负荷较满时,控制系统104开启另外一路进气电磁阀和回收纯化装置,富氦尾气经两套压缩纯化设备纯化后供至供气储存单元103。另外,压缩纯化装置30、31和供气汇流罐40之间设有单向阀,避免多个压缩纯化装置出气压力不平衡或其中一台不工作时,气体通过供气汇流罐40反向流到压力低的压缩纯化装置。
多个回收纯化装置34提纯后的高浓度氦气通过供气汇流罐40进行稳压,并通过多个单向阀41在线供到多条冷却氦管10循环使用,保证提纯后的气体可以全部供到生产线,避免出现供给冷却氦管数量较少,高纯度氦气循环供给有剩余,导致供气汇流罐40出现压力偏高。进一步,若供气汇流罐40压力波动会导致拉丝塔冷却管新鲜氦气供气端的质量流量控制器两端压力差波动,从而瞬间出现供气流量波动,导致拉丝塔冷却管内氦气供应出现变化。大大提高了冷却氦管供气端的稳定性。
本发明未详尽描述的技术内容均为公知技术。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明的保护范围由所附的权利要求书及其等同物界定。

Claims (5)

  1. 一种光纤制造冷却管氦气回收系统,其特征在于,包括依次连接的:
    采集单元,包括进气汇流罐以及与该进气汇流罐连接的多条并联设置的采集管路,每条采集管路连接一冷却管,每条采集管路上均设有控制阀门;
    压缩纯化单元,包括沿气体流向连接的压缩泵和纯化装置,接收所述汇流罐采集的富氦尾气,经压缩纯化后输出;以及
    供气单元,包括供气汇流罐,接收压缩纯化单元提供的高纯氦气,并将高纯氦气通过多条并联设置的输送管路连接冷却管,每条输送管路连接一冷却管。
  2. 根据权利要求1所述的光纤制造冷却管氦气回收系统,其特征在于,所述压缩纯化单元由多台并联的压缩纯化装置组成,每台压缩纯化装置包括串联连接的压缩泵和膜分离纯化装置,每台压缩纯化装置上游设有控制阀门、下游设有单向阀。
  3. 根据权利要求1或2所述的光纤制造冷却管氦气回收系统,其特征在于,还包括控制单元,对所述压缩纯化单元进行控制。
  4. 根据权利要求3所述的光纤制造冷却管氦气回收系统,其特征在于,每条采集管路上设有质量流量控制器,所述控制单元可通信地连接该质量流量控制器。
  5. 权利要求3所述的光纤制造冷却管氦气回收系统的控制方法,其特征在于,所述控制单元采集每条冷却管的新鲜氦气使用量信号,根据采集到的信号判断有多少条冷却管正在使用,根据冷却管的使用数量控制开启一台或多台并联的压缩纯化装置以及上游对应设有的控制阀门。
PCT/CN2018/116090 2018-07-10 2018-11-19 光纤制造冷却管氦气回收系统及控制方法 WO2020010773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810754544.5 2018-07-10
CN201810754544.5A CN108821251A (zh) 2018-07-10 2018-07-10 光纤制造冷却管氦气回收系统及控制方法

Publications (1)

Publication Number Publication Date
WO2020010773A1 true WO2020010773A1 (zh) 2020-01-16

Family

ID=64136919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116090 WO2020010773A1 (zh) 2018-07-10 2018-11-19 光纤制造冷却管氦气回收系统及控制方法

Country Status (2)

Country Link
CN (1) CN108821251A (zh)
WO (1) WO2020010773A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821251A (zh) * 2018-07-10 2018-11-16 安徽万瑞冷电科技有限公司 光纤制造冷却管氦气回收系统及控制方法
CN110272030A (zh) * 2019-07-16 2019-09-24 成都中住光纤有限公司 一种实时氦气回收装置
WO2021227041A1 (zh) * 2020-05-15 2021-11-18 安徽万瑞冷电科技有限公司 光纤制造冷却管氦气回收系统
CN111573643A (zh) * 2020-06-09 2020-08-25 安徽中科皖能科技有限公司 一种氦气回收提纯装置和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124193A (ja) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd ヘリウムガスの精製方法および精製装置
CN103553322A (zh) * 2013-10-22 2014-02-05 安徽万瑞冷电科技有限公司 一种用于光纤生产的富氦尾气回收纯化在线循环系统
CN103771362A (zh) * 2014-01-25 2014-05-07 安徽万瑞冷电科技有限公司 光纤制造废氦气在线式纯化系统
CN203700194U (zh) * 2013-10-22 2014-07-09 安徽万瑞冷电科技有限公司 一种用于光纤生产的富氦尾气回收纯化在线循环系统
CN104555955A (zh) * 2014-12-30 2015-04-29 中天科技光纤有限公司 一种光纤冷却管用氦气循环再利用方法及其设备
CN205575645U (zh) * 2016-04-13 2016-09-14 安徽万瑞冷电科技有限公司 废氦气纯化回收系统
CN105948003A (zh) * 2016-04-13 2016-09-21 安徽万瑞冷电科技有限公司 废氦气纯化回收系统及其控制方法
CN106744749A (zh) * 2016-11-30 2017-05-31 富通集团(嘉善)通信技术有限公司 用于光纤拉丝系统的氦气在线回收利用方法及装置
CN108821251A (zh) * 2018-07-10 2018-11-16 安徽万瑞冷电科技有限公司 光纤制造冷却管氦气回收系统及控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372607B2 (ja) * 2009-05-29 2013-12-18 住友精化株式会社 ヘリウム精製方法およびヘリウム精製装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013124193A (ja) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd ヘリウムガスの精製方法および精製装置
CN103553322A (zh) * 2013-10-22 2014-02-05 安徽万瑞冷电科技有限公司 一种用于光纤生产的富氦尾气回收纯化在线循环系统
CN203700194U (zh) * 2013-10-22 2014-07-09 安徽万瑞冷电科技有限公司 一种用于光纤生产的富氦尾气回收纯化在线循环系统
CN103771362A (zh) * 2014-01-25 2014-05-07 安徽万瑞冷电科技有限公司 光纤制造废氦气在线式纯化系统
CN104555955A (zh) * 2014-12-30 2015-04-29 中天科技光纤有限公司 一种光纤冷却管用氦气循环再利用方法及其设备
CN205575645U (zh) * 2016-04-13 2016-09-14 安徽万瑞冷电科技有限公司 废氦气纯化回收系统
CN105948003A (zh) * 2016-04-13 2016-09-21 安徽万瑞冷电科技有限公司 废氦气纯化回收系统及其控制方法
CN106744749A (zh) * 2016-11-30 2017-05-31 富通集团(嘉善)通信技术有限公司 用于光纤拉丝系统的氦气在线回收利用方法及装置
CN108821251A (zh) * 2018-07-10 2018-11-16 安徽万瑞冷电科技有限公司 光纤制造冷却管氦气回收系统及控制方法

Also Published As

Publication number Publication date
CN108821251A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2020010773A1 (zh) 光纤制造冷却管氦气回收系统及控制方法
CN104587804B (zh) 运用气体分离膜进行提纯的装置系统
CN201680399U (zh) 膜分离制氧助燃装置
CN210495768U (zh) 压缩冷凝膜分离技术实现湿法锂电隔膜二氯甲烷回收装置
CN103553322A (zh) 一种用于光纤生产的富氦尾气回收纯化在线循环系统
CN102032726A (zh) 一种可提高低温制热量的空调器
CN208843735U (zh) 光纤制造冷却管氦气回收系统
CN103771362A (zh) 光纤制造废氦气在线式纯化系统
CN204268756U (zh) 一种改进的压缩式热泵装置
CN202993637U (zh) 双级多联二次节流中间完全冷却的制冷系统
WO2021227041A1 (zh) 光纤制造冷却管氦气回收系统
CN214700775U (zh) 一种烟气二氧化碳捕集提纯系统
CN203428912U (zh) 氦气回收装置
CN203700194U (zh) 一种用于光纤生产的富氦尾气回收纯化在线循环系统
CN204447689U (zh) 运用气体分离膜进行提纯的装置系统
CN102949911B (zh) 一种高效分离氦气和二氧化碳气体混合物的装置及分离方法
CN102954624A (zh) 并联压缩机回油装置及控制方法
CN205482015U (zh) 一种天然气液化系统
CN201964442U (zh) 一种膜法富氧助燃设备及应用该设备的工业炉
CN214780770U (zh) 一种锂电池检漏氦气回收纯化系统
CN211600878U (zh) 一种节能空气源热泵系统
CN210834360U (zh) 一种回路式烟气快速取样装置
CN208440517U (zh) 一种光纤拉丝氦气回收系统中冷却管集气装置
CN206069361U (zh) 氢冷发电机组氢气净化提纯装置
CN210885868U (zh) 基于沼气温度自提升的膜法分离法制备甲烷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926183

Country of ref document: EP

Kind code of ref document: A1