WO2020009238A1 - 絶縁性粒子付き導電性粒子、導電材料及び接続構造体 - Google Patents

絶縁性粒子付き導電性粒子、導電材料及び接続構造体 Download PDF

Info

Publication number
WO2020009238A1
WO2020009238A1 PCT/JP2019/026895 JP2019026895W WO2020009238A1 WO 2020009238 A1 WO2020009238 A1 WO 2020009238A1 JP 2019026895 W JP2019026895 W JP 2019026895W WO 2020009238 A1 WO2020009238 A1 WO 2020009238A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
conductive
insulating particles
insulating
conductive particles
Prior art date
Application number
PCT/JP2019/026895
Other languages
English (en)
French (fr)
Inventor
豪 湯川
茂雄 真原
仁志 山際
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020207031841A priority Critical patent/KR20210029143A/ko
Priority to CN201980040446.8A priority patent/CN112352294B/zh
Priority to JP2020529072A priority patent/JP7271543B2/ja
Publication of WO2020009238A1 publication Critical patent/WO2020009238A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to conductive particles with insulating particles in which insulating particles are arranged on the surface of the conductive particles.
  • the present invention also relates to a conductive material and a connection structure using the conductive particles with insulating particles.
  • anisotropic conductive materials such as anisotropic conductive paste and anisotropic conductive film are widely known.
  • anisotropic conductive material conductive particles are dispersed in a binder resin.
  • conductive particles obtained by subjecting a surface of a conductive layer to insulation treatment are used as the conductive particles.
  • the anisotropic conductive material is used to obtain various connection structures.
  • Examples of the connection using the anisotropic conductive material include connection between a flexible printed board and a glass substrate (FOG (Film @ on @ Glass)), connection between a semiconductor chip and a flexible printed board (COF (Chip @ on @ Film)), The connection between a semiconductor chip and a glass substrate (COG (Chip @ on Glass)), the connection between a flexible printed board and a glass epoxy substrate (FOB (Film @ on @ Board)), and the like can be given.
  • conductive particles conductive particles with insulating particles in which insulating particles are arranged on the surface of the conductive particles may be used.
  • coated conductive particles having an insulating layer disposed on the surface of the conductive layer may be used.
  • Patent Document 1 discloses an insulating material including conductive particles having a conductive layer on the surface, and insulating particles attached to the surface of the conductive particles. Disclosed are conductive particles with particles. In the conductive particles with insulating particles, the insulating particles have a hydroxyl group directly bonded to a phosphorus atom or a hydroxyl group directly bonded to a silicon atom on the surface.
  • Patent Document 2 discloses a conductive particle having conductive particles at least on the surface, a conductive particle main body with insulating particles having a plurality of insulating particles arranged on the surface of the conductive particles, And a coating covering the surface of the conductive particle-containing conductive particle main body.
  • the coating has a first coating portion covering the conductive particles and a second coating portion covering the surface of the insulating particles.
  • the thickness of the first coating portion is 1 / or less of the average particle diameter of the insulating particles.
  • conductive connection is performed using a conductive material containing conductive particles
  • a plurality of upper electrodes and a plurality of lower electrodes are electrically connected to each other to perform conductive connection.
  • the conductive particles are desirably disposed between the upper and lower electrodes, and desirably not disposed between adjacent lateral electrodes. It is desirable that adjacent horizontal electrodes are not electrically connected.
  • the conductive surface is coated with insulating particles, but after the conductive connection between the upper and lower electrodes to be connected, the laterally adjacent electrodes that must not be connected It may be difficult to suppress the electrical connection between them.
  • conductive particles having a relatively large particle size it may be difficult to sufficiently increase the insulation reliability between adjacent lateral electrodes in a conductively connected connection structure.
  • the insulating particles may be arranged on the surface of the conductive particles by using a coating such as an organic compound or an inorganic oxide.
  • a coating such as an organic compound or an inorganic oxide.
  • the insulating particles may not easily come off from the surface of the conductive particles at the time of conductive connection. In some cases, it is difficult to sufficiently improve the conduction reliability. With conventional conductive particles with insulating particles, it is difficult to effectively enhance the conduction reliability between upper and lower electrodes to be connected and the insulation reliability between laterally adjacent electrodes that must not be connected. There is.
  • a conductive particle having a conductive portion on at least the surface comprising a plurality of insulating particles disposed on the surface of the conductive particles, the particle size of the insulating particles,
  • the present invention provides conductive particles with insulating particles, which have a storage elastic modulus at 60 ° C. of not less than 500 nm and not more than 1500 nm, and a storage elastic modulus at 60 ° C. of not less than 100 MPa.
  • the conductive particles have protrusions on an outer surface of the conductive portion.
  • the ratio of the particle size of the conductive particles to the particle size of the insulating particles is 3 or more and 100 or less.
  • the swelling ratio of the insulating particles is 1 to 2.5.
  • the conductive particles with insulating particles according to the present invention 10% or more of the total number of the insulating particles, so that the conductive particles do not contact the other insulating particles, It is located on the surface.
  • the particle size of the conductive particles is 1 ⁇ m or more and 50 ⁇ m or less.
  • a conductive material including the above-described conductive particles with insulating particles and a binder resin.
  • a first connection target member having a first electrode on a surface
  • a second connection target member having a second electrode on a surface
  • the first connection target member A connection portion connecting the second connection target member, wherein the material of the connection portion is the above-described conductive particles with insulating particles, or the conductive particles with insulating particles and a binder resin
  • a connection structure wherein the first electrode and the second electrode are electrically connected to each other by the conductive portion of the conductive particles with insulating particles.
  • the conductive particles with insulating particles according to the present invention include conductive particles having a conductive portion on at least the surface thereof, and a plurality of insulating particles disposed on the surface of the conductive particles.
  • the particle diameter of the insulating particles is 500 nm or more and 1500 nm or less.
  • the storage elastic modulus at 60 ° C. of the insulating particles is 100 MPa or more and 1000 MPa or less. Since the conductive particles with insulating particles according to the present invention have the above-described configuration, when the electrodes are electrically connected, the conduction reliability can be effectively improved, and the insulation reliability can be further improved. Sex can be effectively improved.
  • FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the conductive particles with insulating particles according to the second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing the conductive particles with insulating particles according to the third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically illustrating a connection structure using the conductive particles with insulating particles according to the first embodiment of the present invention.
  • the conductive particles with insulating particles according to the present invention include conductive particles having a conductive portion on at least a surface thereof, and a plurality of insulating particles disposed on the surface of the conductive particles.
  • the particle diameter of the insulating particles is 500 nm or more and 1500 nm or less.
  • the storage elastic modulus at 60 ° C. of the insulating particles is 100 MPa or more and 1000 MPa or less.
  • the conductive particles with insulating particles according to the present invention have the above-described configuration, when the electrodes are electrically connected, the conduction reliability can be effectively improved, and the insulation reliability can be further improved. Sex can be effectively improved.
  • the conductive surface is coated with insulating particles, but after the conductive connection between the upper and lower electrodes to be connected, the laterally adjacent electrodes that must not be connected It may be difficult to suppress the electrical connection between them.
  • conductive particles having a relatively large particle diameter are used, there is a problem that the insulation reliability between adjacent lateral electrodes in the conductively connected connection structure cannot be sufficiently increased.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned problems can be solved by using specific insulating particles.
  • the specific insulating particles are used, the insulation reliability between the adjacent lateral electrodes in the conductively connected connection structure can be effectively increased.
  • the insulating particles can be effectively arranged on the surface of the conductive particles. Therefore, it is necessary to use a coating such as an organic compound or an inorganic oxide. Absent. As a result, at the time of conductive connection, the insulating particles are easily detached from the surface of the conductive particles, and the conduction reliability between the upper and lower electrodes to be connected can be effectively improved. According to the present invention, conduction reliability between upper and lower electrodes to be connected and insulation reliability between laterally adjacent electrodes that should not be connected can be effectively improved.
  • the coefficient of variation (CV value) of the particle diameter of the conductive particles with insulating particles is preferably 10% or less, more preferably 5% or less.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of conductive particles with insulating particles Dn: Average value of particle size of conductive particles with insulating particles
  • the shape of the conductive particles with insulating particles is not particularly limited.
  • the shape of the conductive particles with insulating particles may be spherical, may be other than spherical, or may be flat or the like.
  • the conductive particles with insulating particles are dispersed in a binder resin and are suitably used for obtaining a conductive material.
  • FIG. 1 is a cross-sectional view showing conductive particles with insulating particles according to the first embodiment of the present invention.
  • the conductive particles with insulating particles 1 shown in FIG. 1 include conductive particles 2 and a plurality of insulating particles 3 arranged on the surface of the conductive particles 2.
  • the insulating particles 3 are formed of a material having an insulating property.
  • the conductive particles 2 have the base particles 11 and the conductive parts 12 arranged on the surface of the base particles 11.
  • the conductive portion 12 is a conductive layer.
  • the conductive portion 12 covers the surface of the base particle 11.
  • the conductive particles 2 are coated particles in which the surfaces of the base particles 11 are coated with the conductive portions 12.
  • the conductive particles 2 have a conductive portion 12 on the surface.
  • the conductive portion may cover the entire surface of the base particle, or the conductive portion may cover a part of the surface of the base particle.
  • the insulating particles are preferably arranged on the surface of the conductive part.
  • FIG. 2 is a cross-sectional view showing the conductive particles with insulating particles according to the second embodiment of the present invention.
  • the conductive particles with insulating particles 21 shown in FIG. 2 include conductive particles 22 and a plurality of insulating particles 3 arranged on the surface of the conductive particles 22.
  • the conductive particles 22 have the base particles 11 and the conductive portions 31 arranged on the surface of the base particles 11.
  • the conductive portion 31 is a conductive layer.
  • the conductive particles 22 have a plurality of core substances 32 on the surface of the base particles 11.
  • the conductive part 31 covers the base particles 11 and the core substance 32. Since the conductive portion 31 covers the core substance 32, the conductive particles 22 have a plurality of protrusions 33 on the surface.
  • the surface of the conductive portion 31 is raised by the core substance 32, and a plurality of protrusions 33 are formed.
  • the conductive portion may cover the entire surface of the base particle, or the conductive portion may cover a part of the surface of the base particle.
  • the insulating particles are preferably arranged on the surface of the conductive part.
  • FIG. 3 is a cross-sectional view showing conductive particles with insulating particles according to the third embodiment of the present invention.
  • the conductive particles 41 with insulating particles shown in FIG. 3 include conductive particles 42 and a plurality of insulating particles 3 arranged on the surface of the conductive particles 42.
  • the conductive particles 42 have the base particles 11 and the conductive portions 51 arranged on the surface of the base particles 11.
  • the conductive portion 51 is a conductive layer.
  • the conductive particles 42 do not have a core material unlike the conductive particles 22.
  • the conductive part 51 has a first part and a second part thicker than the first part.
  • the conductive particles 42 have a plurality of protrusions 52 on the surface.
  • the portion excluding the plurality of protrusions 52 is the first portion of the conductive portion 51.
  • the plurality of protrusions 52 are the above-described second portions where the thickness of the conductive portion 51 is large.
  • the conductive portion may cover the entire surface of the base particle, or the conductive portion may cover a part of the surface of the base particle.
  • the insulating particles are preferably arranged on the surface of the conductive part.
  • Conductive particles It is preferable that the conductive particles have base particles and a conductive part disposed on the surface of the base particles.
  • the conductive portion may have a single-layer structure or a multilayer structure of two or more layers.
  • the particle size of the conductive particles is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less.
  • the particle size of the conductive particles is equal to or greater than the lower limit and equal to or less than the upper limit, when connecting the electrodes using the conductive particles, the contact area between the conductive particles and the electrodes is sufficiently large, In addition, aggregated conductive particles are less likely to be formed when forming the conductive portion. Further, the distance between the electrodes connected via the conductive particles does not become too large, and the conductive portion does not easily peel off from the surface of the base particles.
  • the particle diameter of the conductive particles is preferably an average particle diameter, and more preferably a number average particle diameter.
  • the particle size of the conductive particles can be determined, for example, by observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, calculating the average value of the particle size of each conductive particle, or measuring the particle size distribution by laser diffraction. Required.
  • the particle diameter of the conductive particles is measured by a method of observing 50 arbitrary conductive particles with an electron microscope or an optical microscope, for example, the measurement can be performed as follows.
  • the equivalent circle diameter of each conductive particle is measured as a particle diameter, and arithmetically averaged to obtain the particle diameter of the conductive particle.
  • an embedded resin for conductive particle inspection with insulating particles may be produced.
  • the coefficient of variation (CV value) of the particle size of the conductive particles is preferably 10% or less, more preferably 5% or less.
  • the variation coefficient of the particle diameter of the conductive particles is equal to or less than the upper limit, the reliability of conduction between the electrodes and the reliability of insulation can be more effectively improved.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle size of conductive particles Dn: Average value of particle size of conductive particles
  • the shape of the conductive particles is not particularly limited.
  • the shape of the conductive particles may be spherical, may be other than spherical, or may be flat or the like.
  • Base particles examples include resin particles, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particles are preferably base particles excluding metal particles, more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particles may be base particles excluding inorganic particles.
  • the base particles may be core-shell particles including a core and a shell disposed on the surface of the core.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • the material of the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, Phenol formaldehyde resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, Polyimide, polyamide imide, polyetheretherketone, Polyether sulfone, divinyl benzene polymer, and divinylbenzene copolymer, and
  • the divinylbenzene-based copolymer examples include a divinylbenzene-styrene copolymer and a divinylbenzene- (meth) acrylate copolymer. Since the hardness of the resin particles can be easily controlled to a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having an ethylenically unsaturated group. Is preferred.
  • the polymerizable monomer having an ethylenically unsaturated group includes a non-crosslinkable monomer. And a crosslinkable monomer.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth) acrylic acid, maleic acid, and maleic anhydride; Methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth) acrylate, Alkyl (meth) acrylate compounds such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate; 2-hydroxyethyl (meth) acrylate, glycerol (meth) acrylate, polyoxyethylene (meth) acrylate, and glycidyl (meth) acryl
  • crosslinkable monomer examples include tetramethylolmethanetetra (meth) acrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanedi (meth) acrylate, trimethylolpropanetri (meth) acrylate, and dipentane.
  • (meth) acrylate refers to acrylate and methacrylate.
  • (meth) acryl refers to acryl and methacryl.
  • (meth) acryloyl refers to acryloyl and methacryloyl.
  • the resin particles can be obtained by polymerizing the polymerizable monomer having an ethylenically unsaturated group by a known method.
  • the method include a method of performing suspension polymerization in the presence of a radical polymerization initiator and a method of performing polymerization by swelling a monomer together with a radical polymerization initiator using non-crosslinked seed particles.
  • the base particles are inorganic particles other than metal particles or organic-inorganic hybrid particles
  • examples of the inorganic substance for forming the base particles include silica, alumina, barium titanate, zirconia, and carbon black. . It is preferable that the inorganic substance is not a metal.
  • the particles formed of the silica are not particularly limited. For example, after hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, baking is optionally performed. Particles obtained by performing the method are mentioned.
  • examples of the organic-inorganic hybrid particles include, for example, organic-inorganic hybrid particles formed of a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is an organic core.
  • the shell is an inorganic shell.
  • the base particles are preferably organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core.
  • Examples of the material of the organic core include the above-described materials of the resin particles.
  • the inorganic substances mentioned as the material of the base particles described above can be used.
  • the material of the inorganic shell is preferably silica.
  • the above-mentioned inorganic shell is preferably formed on the surface of the above-mentioned core by turning a metal alkoxide into a shell-like material by a sol-gel method and then firing the shell-like material.
  • the metal alkoxide is preferably a silane alkoxide.
  • the inorganic shell is formed of a silane alkoxide.
  • the base particles are metal particles
  • examples of the metal as a material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the particle diameter of the base particles is preferably 0.6 ⁇ m or more, more preferably 0.8 ⁇ m or more, preferably 49.8 ⁇ m or less, more preferably 49.6 ⁇ m or less.
  • the particle diameter of the base particles is equal to or greater than the lower limit and equal to or less than the upper limit, a small conductive particle can be obtained even if the distance between the electrodes is small and the thickness of the conductive portion (conductive layer or the like) is large.
  • the conductive portion is formed on the surface of the base particles, it is difficult to aggregate, and the aggregated conductive particles are hardly formed.
  • the particle diameter of the base particles is particularly preferably 0.9 ⁇ m or more and 49.9 ⁇ m or less.
  • the particle diameter of the base particles is in the range of 0.9 ⁇ m or more and 49.9 ⁇ m or less, it becomes difficult to aggregate when forming a conductive part on the surface of the base particles, and aggregated conductive particles are formed. It becomes difficult.
  • the particle diameter of the above-mentioned base particles indicates a number average particle diameter.
  • the particle size of the base particles is determined using a particle size distribution measuring device or the like.
  • the particle diameter of the base particles is obtained by observing 50 arbitrary base particles with an electron microscope or an optical microscope, calculating the average value of the particle diameters of the respective base particles, or performing a laser diffraction particle size distribution measurement. It is preferable to obtain the following.
  • the particle diameter of the base particles is measured by a method of observing 50 arbitrary base particles of the conductive particles with an electron microscope or an optical microscope, the measurement can be performed, for example, as follows.
  • the circle-equivalent diameter of the base particles in each conductive particle is measured as the particle diameter, and the arithmetic average thereof is used as the particle diameter of the base particles.
  • an embedded resin for conductive particle inspection with insulating particles may be produced.
  • the conductive particles have a conductive portion on at least the surface.
  • the conductive portion includes a metal.
  • the metal constituting the conductive portion is not particularly limited. Examples of the metal include gold, silver, copper, platinum, palladium, zinc, lead, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, cadmium, and alloys thereof. Further, tin-doped indium oxide (ITO) may be used as the metal.
  • ITO tin-doped indium oxide
  • One of the above metals may be used alone, or two or more thereof may be used in combination. From the viewpoint of further lowering the connection resistance between the electrodes, an alloy containing tin, nickel, palladium, copper or gold is preferable, and nickel or palladium is more preferable.
  • the conductive portion and the outer surface portion of the conductive portion contain nickel.
  • the content of nickel in 100% by weight of the conductive portion containing nickel is preferably at least 10% by weight, more preferably at least 50% by weight, still more preferably at least 60% by weight, further preferably at least 70% by weight, and particularly preferably. Is 90% by weight or more.
  • the content of nickel in the conductive portion 100% by weight containing nickel may be 97% by weight or more, 97.5% by weight or more, or 98% by weight or more.
  • a hydroxyl group often exists on the surface of the conductive portion due to oxidation.
  • a hydroxyl group is present on the surface of a conductive portion formed of nickel due to oxidation.
  • Insulating particles can be arranged on the surface of the conductive portion having such a hydroxyl group (the surface of the conductive particles) via a chemical bond.
  • the conductive portion may be formed of one layer.
  • the conductive portion may be formed of a plurality of layers. That is, the conductive portion may have a laminated structure of two or more layers.
  • the metal constituting the outermost layer is preferably gold, nickel, palladium, copper or an alloy containing tin and silver, and is preferably gold. More preferred.
  • the connection resistance between the electrodes is further reduced.
  • the metal constituting the outermost layer is gold, the corrosion resistance is further improved.
  • the method of forming the conductive portion on the surface of the base particles is not particularly limited.
  • a method of forming the conductive portion for example, a method by electroless plating, a method by electroplating, a method by physical collision, a method by mechanochemical reaction, a method by physical vapor deposition or physical adsorption, and a metal powder or A method of coating the surface of the base particles with a paste containing a metal powder and a binder may be used.
  • the method of forming the conductive portion is preferably an electroless plating, an electroplating, or a physical collision method. Examples of the method by physical vapor deposition include methods such as vacuum vapor deposition, ion plating, and ion sputtering. In the method based on the physical collision, for example, a sheeter composer (manufactured by Tokuju Kosakusho) or the like is used.
  • the thickness of the conductive portion is preferably 0.005 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and still more preferably 0.3 ⁇ m or less.
  • the thickness of the conductive portion is equal to or greater than the lower limit and equal to or less than the upper limit, sufficient conductivity is obtained, and the conductive particles are not excessively hard, and the conductive particles are sufficiently formed at the time of connection between the electrodes. Can be deformed.
  • the thickness of the outermost conductive portion is preferably 0.001 ⁇ m or more, more preferably 0.01 ⁇ m or more, preferably 0.5 ⁇ m or less, more preferably Is 0.1 ⁇ m or less.
  • the thickness of the conductive portion of the outermost layer is equal to or more than the lower limit and equal to or less than the upper limit, the conductive portion of the outermost layer becomes uniform, the corrosion resistance becomes sufficiently high, and the connection resistance between the electrodes is sufficiently low. can do.
  • the thickness of the conductive portion can be measured by observing a cross section of the conductive particles using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the conductive particles preferably have a plurality of protrusions on the outer surface of the conductive portion.
  • An oxide film is often formed on the surface of the electrode connected by the conductive particles with insulating particles.
  • the conductive particles with insulating particles are arranged between the electrodes and pressed together, so that the oxide film is effectively formed by the protrusions. Can be eliminated. For this reason, the electrode and the conductive portion are more securely in contact with each other, and the connection resistance between the electrodes is further reduced.
  • the protrusions of the conductive particles can effectively eliminate the insulating particles between the conductive particles and the electrodes. For this reason, the conduction reliability between the electrodes is further improved.
  • a core substance is disposed on the first conductive portion, and then the second conductive portion is formed.
  • a method of adding a core substance in the middle of forming a conductive part (such as the first conductive part or the second conductive part) on the surface of the base particles is also used. Also, in order to form projections, without using the above-mentioned core substance, after forming a conductive portion on the base particles by electroless plating, plating is deposited in the form of protrusions on the surface of the conductive portion, and further electroless plating is performed. May be used to form a conductive portion.
  • the method of attaching the core substance to the surface of the base particles for example, in a dispersion of the base particles, the core substance is added, the core substance is accumulated on the surface of the base particles by van der Waals force
  • the method include a method of attaching the core substance to a container containing the base particles, and a method of attaching the core substance to the surface of the base particles by mechanical action such as rotation of the container.
  • the method of attaching the core material to the surface of the base particles is a method of accumulating and attaching the core material to the surface of the base particles in the dispersion. preferable.
  • Examples of the substance constituting the core substance include a conductive substance and a non-conductive substance.
  • Examples of the conductive material include metals, metal oxides, conductive nonmetals such as graphite, and conductive polymers.
  • Examples of the conductive polymer include polyacetylene.
  • Examples of the non-conductive substance include silica, alumina, and zirconia. From the viewpoint of further improving the conduction reliability between the electrodes, the core material is preferably a metal.
  • the metal is not particularly limited.
  • the metal include metals such as gold, silver, copper, platinum, zinc, iron, lead, tin, aluminum, cobalt, indium, nickel, chromium, titanium, antimony, bismuth, germanium, and cadmium, and tin-lead. Alloys, such as alloys, tin-copper alloys, tin-silver alloys, tin-lead-silver alloys, and alloys composed of two or more metals such as tungsten carbide. From the viewpoint of further improving the conduction reliability between the electrodes, the metal is preferably nickel, copper, silver or gold. The metal may be the same as or different from the metal forming the conductive portion (conductive layer).
  • the shape of the core material is not particularly limited.
  • the shape of the core material is preferably a lump.
  • Examples of the core substance include a particulate mass, an aggregate obtained by aggregating a plurality of fine particles, and an irregular mass.
  • the particle diameter (average particle diameter) of the core material is preferably 0.001 ⁇ m or more, more preferably 0.05 ⁇ m or more, preferably 0.9 ⁇ m or less, more preferably 0.2 ⁇ m or less.
  • the particle diameter of the core material is equal to or greater than the lower limit and equal to or less than the upper limit, the connection resistance between the electrodes can be effectively reduced.
  • the core material preferably has an average particle size, more preferably a number average particle size.
  • the particle size of the core material is, for example, observing 50 arbitrary core materials with an electron microscope or an optical microscope, calculating the average value of the particle size of each core material, or performing laser diffraction type particle size distribution measurement.
  • the measurement can be performed, for example, as follows.
  • the conductive particles are added to “Technobit 4000” manufactured by Kulzer so as to have a content of 30% by weight and dispersed to prepare an embedded resin for conductive particle inspection.
  • the cross section of the conductive particles is cut out using an ion milling apparatus (“IM4000” manufactured by Hitachi High-Technologies Corporation) so as to pass near the center of the conductive particles dispersed in the resin for inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • FE-SEM field emission scanning electron microscope
  • the circle-equivalent diameter of the core substance in each conductive particle is measured as the particle diameter, and these are arithmetically averaged to obtain the particle diameter of the core substance.
  • an embedded resin for conductive particle inspection with insulating particles may be produced.
  • the conductive particles with insulating particles according to the present invention include a plurality of insulating particles disposed on the surface of the conductive particles.
  • a short circuit between adjacent electrodes can be prevented.
  • insulating particles exist between the plurality of electrodes, thereby preventing a short circuit between horizontally adjacent electrodes instead of between upper and lower electrodes. it can.
  • the insulating particles between the conductive portion of the conductive particles and the electrode can be easily removed.
  • insulating particles between the conductive portion and the electrode of the conductive particles can be more easily removed.
  • the particle size of the insulating particles is 500 nm or more and 1500 nm or less.
  • the insulating particles are relatively large. For this reason, even when the conductive particles having a relatively large particle diameter are used, the insulation reliability between the adjacent lateral electrodes in the conductively connected connection structure can be more effectively increased. .
  • the particle size of the insulating particles can be appropriately selected depending on the particle size of the conductive particles with the insulating particles, the use of the conductive particles with the insulating particles, and the like.
  • the particle diameter of the insulating particles preferably exceeds 540 nm, more preferably 550 nm or more, further preferably 700 nm or more, particularly preferably 800 nm or more, preferably 1500 nm or less, more preferably 1200 nm or less, and still more preferably. It is less than 1000 nm, more preferably 900 nm or less, even more preferably 850 nm or less.
  • the particle diameter of the insulating particles satisfies the lower limit
  • the conductive portions of the plurality of conductive particles with the insulating particles contact each other. It becomes difficult to do.
  • the particle size of the insulating particles satisfies the upper limit
  • in connecting the electrodes in order to eliminate the insulating particles between the electrode and the conductive particles, it is not necessary to increase the pressure too high, There is no need to heat to high temperatures.
  • the particle size of the insulating particles satisfies the lower limit and the upper limit, the insulation reliability can be more effectively improved when the electrodes are electrically connected.
  • the particle size of the insulating particles is preferably an average particle size, and more preferably a number average particle size.
  • the particle size of the insulating particles is determined using a particle size distribution analyzer or the like.
  • the particle diameter of the insulating particles is preferably determined by observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, calculating an average value, or performing a laser diffraction particle size distribution measurement. In the conductive particles with the insulating particles, by measuring the particle size of the insulating particles by a method of observing 50 arbitrary insulating particles with an electron microscope or an optical microscope, for example, as follows Can be measured.
  • the conductive particles with insulating particles are added to “Technobit 4000” manufactured by Kulzer Co., Ltd. so as to have a content of 30% by weight, and dispersed to prepare an embedded resin for conductive particle inspection.
  • IM4000 manufactured by Hitachi High-Technologies Corporation
  • the cross section of the conductive particles with insulating particles is passed through the vicinity of the center of the conductive particles with insulating particles dispersed in the resin for inspection. cut.
  • FE-SEM field emission scanning electron microscope
  • the equivalent circle diameter of the insulating particles in each of the conductive particles with the insulating particles is measured as the particle diameter, and arithmetically averaged to obtain the particle diameter of the insulating particles.
  • the ratio of the particle size of the conductive particles to the particle size of the insulating particles is preferably 3 or more, more preferably 6 or more, and still more preferably 16 or more. It is preferably at most 100, more preferably at most 55, even more preferably at most 30.
  • the storage elastic modulus at 60 ° C. of the insulating particles is 100 MPa or more and 1000 MPa or less.
  • the storage elastic modulus at 60 ° C. of the insulating particles is preferably 300 MPa or more, more preferably 500 MPa or more, preferably 950 MPa or less, more preferably 900 MPa or less.
  • the storage elastic modulus at 60 ° C. of the insulating particles is equal to or higher than the lower limit and equal to or lower than the upper limit, when the electrodes are electrically connected, the insulation reliability and the conduction reliability are more effectively increased. Can be.
  • the storage elastic modulus at 60 ° C. of the insulating particles can be measured by a dynamic viscoelasticity measurement device (“RSA3” manufactured by TA Instruments).
  • the measurement by the above dynamic viscoelasticity measuring device is performed by using a measurement sample having a length of 10 mm, a width of 1 mm to 10 mm, and a thickness of 15 mm to 50 mm, a frequency of 10 Hz, a strain of 1%, a temperature of -10 ° C. to 210 ° C., and a heating rate. It is performed under the condition of 5 ° C./min. From the measurement results, the storage modulus at 60 ° C. is calculated.
  • the measurement sample is manufactured using the same raw material as the insulating particles (material constituting the insulating particles).
  • the insulating particles exhibit flexibility at 60 ° C.
  • the storage elastic modulus at 60 ° C. of the insulating particles is in the above-mentioned preferable range, the insulating particles exhibit very flexible properties at 60 ° C.
  • the temperature at which the insulating particles are arranged on the surface of the conductive particles is about 60 ° C., when the insulating particles are arranged on the surface of the conductive particles, The particles become very flexible and can be easily placed on the surface of the conductive particles.
  • the insulating particles can be easily arranged on the surface of the conductive particles, there is no need to use a coating of an organic compound, an inorganic oxide, or the like. For this reason, at the time of conductive connection, the insulating particles are likely to come off from the surface of the conductive particles, and the conduction reliability between the upper and lower electrodes to be connected can be effectively increased.
  • the following method can be used as a method for adjusting the storage elastic modulus at 60 ° C of the insulating particles to 100 MPa or more and 1000 MPa or less.
  • a method for producing insulating particles by adjusting the glass transition temperature of a monomer A method for producing insulating particles by mixing a main monomer and a monomer having a glass transition temperature different from the glass transition temperature of the main monomer.
  • a method using insulating particles having a hollow structure A method using insulating particles formed of an organic compound different from both ceramics and silica. Other methods may be used.
  • the insulating particles are preferably obtained by polymerizing a polymerizable compound.
  • the polymerizable compound include the above-described materials of the resin particles.
  • the side chain of the polymerizable compound is preferably long. Since the polymerizable compound has a long side chain, insulating particles that exhibit more flexible properties can be obtained. Further, as described above, the insulating particles are relatively large. In order to obtain insulating particles having a large particle diameter, it is preferable that the side chain of the polymerizable compound is short.
  • insulating particles with a large particle diameter can be easily obtained, but the insulating particles obtained with the polymerizable compound with a short side chain exhibit flexible properties. It is difficult to do so. Therefore, as a method for imparting flexibility to the insulating particles obtained from the polymerizable compound having a short side chain, a polymerizable compound having a short side chain is not involved in the polymerization of the polymerizable compound, and an epoxy group or the like is not involved. And a method of introducing a reactive functional group having a reactivity with.
  • the polymerizable compound having a short side chain is polymerized to obtain insulating particles, and then the reactive functional group and a compound having a long chain length are obtained. Is reacted, so that the insulating particles can be given a soft property. As a result, insulating particles can be easily arranged on the surface of the conductive particles.
  • the swelling ratio of the insulating particles is preferably 1 or more, more preferably 1.2 or more, preferably 2.5 or less, more preferably 2 or less.
  • the swelling ratio is not less than the lower limit, the insulating particles can be more easily arranged on the surface of the conductive particles.
  • the swelling ratio is equal to or less than the upper limit, insulation reliability and conduction reliability can be more effectively improved when the electrodes are electrically connected.
  • the swelling ratio is an index of the flexibility of the insulating particles. The higher the swelling ratio, the softer the insulating particles.
  • the swelling ratio can be measured as follows.
  • a measurement sample having a length of 10 mm, a width of 5 mm, and a thickness of 0.5 mm is prepared using the same raw material as the insulating particles (the material constituting the insulating particles).
  • the weight of the obtained measurement sample is measured, and the sample is immersed in 100 g of toluene at 25 ° C. for 20 hours. Thereafter, the measurement sample is taken out, dried at 160 ° C. for 30 minutes, and the weight of the dried measurement sample is measured. From the weight change of the measurement sample before and after immersion in toluene, the swelling ratio can be calculated by the following equation (1).
  • ⁇ Swelling ratio [weight of measurement sample after immersion in toluene (g) / weight of measurement sample before immersion in toluene (g)] ⁇ Formula (1)
  • the conductive particles are arranged on the surface of the conductive particles so as not to come into contact with the conductive particles. From the viewpoint of more effectively improving the insulation reliability and conduction reliability when the electrodes are electrically connected, 30% or more of the total number of the insulating particles is equal to or greater than that of the other insulating particles. It is more preferable that the conductive particles are disposed on the surface of the conductive particles so as not to come into contact with the conductive particles.
  • the ratio of the number of insulating particles that are not in contact with other insulating particles is preferably calculated by observing 20 conductive particles with insulating particles with a scanning electron microscope (SEM). Specifically, the conductive particles with insulating particles are observed from one direction with a scanning electron microscope (SEM), and the number of insulating particles in each conductive particle with insulating particles, and contact with other insulating particles It is preferable to calculate the number of insulating particles that have not been used and calculate the average value.
  • SEM scanning electron microscope
  • an insulating resin or the like can be given as a material constituting the insulating particles.
  • the insulating resin include materials of resin particles that can be used as base particles.
  • the insulating resin as the material of the insulating particles include polyolefin compounds, (meth) acrylate polymers, (meth) acrylate copolymers, block polymers, thermoplastic resins, crosslinked thermoplastic resins, Curable resins and water-soluble resins are exemplified.
  • Examples of the polyolefin compound include polyethylene, an ethylene-vinyl acetate copolymer, and an ethylene-acrylate copolymer.
  • Examples of the (meth) acrylate polymer include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate.
  • Examples of the block polymer include polystyrene, styrene-acrylate copolymer, SB-type styrene-butadiene block copolymer, SBS-type styrene-butadiene block copolymer, and hydrogenated products thereof.
  • Examples of the thermoplastic resin include a vinyl polymer and a vinyl copolymer.
  • thermosetting resin examples include an epoxy resin, a phenol resin, and a melamine resin.
  • water-soluble resin examples include polyvinyl alcohol, polyacrylic acid, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, and methyl cellulose.
  • the material constituting the insulating particles preferably contains a crosslinking agent.
  • the crosslinking agent is a bifunctional to hexafunctional crosslinking agent.
  • the bifunctional to hexafunctional crosslinking agent is preferably a difunctional to hexafunctional (meth) acrylate monomer, more preferably a difunctional to tetrafunctional (meth) acrylate monomer. More preferably, it is a functional (meth) acrylate monomer.
  • the bifunctional to hexafunctional (meth) acrylate monomer is preferably trimethylolpropane triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate or ethylene glycol dimethacrylate, and more preferably ethylene glycol dimethacrylate.
  • the content of the cross-linking agent is determined based on 100 parts by weight of the material having the highest content among the materials constituting the insulating particles.
  • the amount is preferably at least 0.001 part by weight, more preferably at least 0.01 part by weight, even more preferably at least 0.1 part by weight.
  • the content of the cross-linking agent is determined based on 100 parts by weight of the material having the highest content among the materials constituting the insulating particles.
  • the amount is preferably at most 20 parts by weight, more preferably at most 10 parts by weight, even more preferably at most 6 parts by weight.
  • Examples of a method for disposing the insulating particles on the surface of the conductive portion include a chemical method and a physical or mechanical method.
  • Examples of the chemical method include an interfacial polymerization method, a suspension polymerization method in the presence of particles, and an emulsion polymerization method.
  • Examples of the physical or mechanical method include spray drying, hybridization, electrostatic adhesion, spraying, dipping, and vacuum deposition.
  • the method of arranging the insulating particles on the surface of the conductive portion is a physical method. Preferably, there is.
  • the outer surface of the conductive portion and the outer surface of the insulating particles may be respectively coated with a compound having a reactive functional group.
  • the outer surface of the conductive part and the outer surface of the insulating particles may not be directly chemically bonded, but may be indirectly chemically bonded by a compound having a reactive functional group.
  • the carboxyl group may be chemically bonded to a functional group on the outer surface of the insulating particles via a polymer electrolyte such as polyethyleneimine.
  • two or more kinds of insulating particles having different particle diameters may be used in combination.
  • the insulating particles having a small particle size enter the gaps covered with the insulating particles having a large particle size, and the covering ratio is more effectively improved. Can be enhanced.
  • the coefficient of variation (CV value) of the particle size of the insulating particles is preferably 20% or less.
  • the variation coefficient of the particle size of the insulating particles is equal to or less than the upper limit, the thickness of the portion covered by the insulating particles of the obtained conductive particles with the insulating particles becomes more uniform, and in the case of conductive connection, The pressure can be evenly more easily applied uniformly, and the connection resistance between the electrodes can be further reduced.
  • the coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ / Dn) ⁇ 100 ⁇ : Standard deviation of particle diameter of insulating particles Dn: Average value of particle diameter of insulating particles
  • the shape of the insulating particles is not particularly limited.
  • the shape of the insulating particles may be spherical, may be other than spherical, or may be flat or the like.
  • the conductive material according to the present invention includes the above-described conductive particles with insulating particles and a binder resin.
  • the conductive particles with insulating particles are preferably used by being dispersed in a binder resin, and are preferably used by being dispersed in a binder resin as a conductive material.
  • the conductive material is preferably an anisotropic conductive material.
  • the conductive material is preferably used for electrical connection between electrodes.
  • the conductive material is preferably a circuit-connecting conductive material. In the above-mentioned conductive material, since the above-mentioned conductive particles with insulating particles are used, the reliability of insulation and conduction between electrodes can be further improved.
  • the binder resin is not particularly limited.
  • the binder resin a known insulating resin is used.
  • the binder resin preferably contains a thermoplastic component (thermoplastic compound) or a curable component, and more preferably contains a curable component.
  • the curable component include a photocurable component and a thermosetting component.
  • the photocurable component preferably contains a photocurable compound and a photopolymerization initiator.
  • the thermosetting component preferably contains a thermosetting compound and a thermosetting agent.
  • binder resin examples include a vinyl resin, a thermoplastic resin, a curable resin, a thermoplastic block copolymer, and an elastomer.
  • the binder resin may be used alone or in combination of two or more.
  • Examples of the vinyl resin include vinyl acetate resin, acrylic resin, and styrene resin.
  • examples of the thermoplastic resin include a polyolefin resin, an ethylene-vinyl acetate copolymer, and a polyamide resin.
  • examples of the curable resin include an epoxy resin, a urethane resin, a polyimide resin, and an unsaturated polyester resin.
  • the curable resin may be a room temperature curable resin, a thermosetting resin, a light curable resin, or a moisture curable resin.
  • the curable resin may be used in combination with a curing agent.
  • thermoplastic block copolymer examples include styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated styrene-butadiene-styrene block copolymer, and styrene-isoprene.
  • the elastomer examples include styrene-butadiene copolymer rubber and acrylonitrile-styrene block copolymer rubber.
  • the conductive material may be, for example, a filler, a bulking agent, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a coloring agent, an antioxidant, and a heat stable material, in addition to the conductive particles with the insulating particles and the binder resin. It may contain various additives such as an agent, a light stabilizer, an ultraviolet absorber, a lubricant, an antistatic agent, and a flame retardant.
  • the method of dispersing the conductive particles with insulating particles in the binder resin may be a conventionally known dispersion method, and is not particularly limited.
  • Examples of a method for dispersing the conductive particles with insulating particles in the binder resin include the following methods. A method in which the conductive particles with insulating particles are added to the binder resin, and then kneaded and dispersed with a planetary mixer or the like. A method in which the conductive particles with insulating particles are uniformly dispersed in water or an organic solvent using a homogenizer or the like, then added to the binder resin, and kneaded and dispersed with a planetary mixer or the like. After diluting the binder resin with water or an organic solvent, the conductive particles with insulating particles are added, and the mixture is kneaded and dispersed by a planetary mixer or the like.
  • the viscosity ( ⁇ 25) at 25 ° C of the conductive material is preferably 30 Pa ⁇ s or more, more preferably 50 Pa ⁇ s or more, preferably 400 Pa ⁇ s or less, more preferably 300 Pa ⁇ s or less.
  • the viscosity of the conductive material at 25 ° C. is equal to or higher than the lower limit and equal to or lower than the upper limit, the insulation reliability between the electrodes can be more effectively increased, and the conduction reliability between the electrodes can be more effectively improved. Can be increased.
  • the viscosity ( ⁇ 25) can be appropriately adjusted depending on the types and amounts of the components.
  • the viscosity ( ⁇ 25) can be measured, for example, using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.
  • E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.
  • the conductive material according to the present invention can be used as a conductive paste and a conductive film.
  • the conductive material according to the present invention is a conductive film
  • a film containing no conductive particles may be laminated on a conductive film containing conductive particles.
  • the conductive paste is preferably an anisotropic conductive paste.
  • the conductive film is preferably an anisotropic conductive film.
  • the content of the binder resin in 100% by weight of the conductive material is preferably 10% by weight or more, more preferably 30% by weight or more, further preferably 50% by weight or more, particularly preferably 70% by weight or more, and preferably Is 99.99% by weight or less, more preferably 99.9% by weight or less.
  • the content of the binder resin is equal to or more than the lower limit and equal to or less than the upper limit, conductive particles are efficiently arranged between the electrodes, and the connection reliability of the connection target member connected by the conductive material is further increased. Can be.
  • the content of the conductive particles with insulating particles in 100% by weight of the conductive material is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, and preferably 80% by weight or less. It is preferably at most 60% by weight, more preferably at most 40% by weight, particularly preferably at most 20% by weight, most preferably at most 10% by weight.
  • the content of the conductive particles with insulating particles is equal to or more than the lower limit and equal to or less than the upper limit, the reliability of conduction between the electrodes and the reliability of insulation can be further improved.
  • connection structure includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, And a connecting portion connecting the second connection target member.
  • the material of the connection portion is the above-described conductive particles with insulating particles, or a conductive material containing the above-described conductive particles with insulating particles and a binder resin.
  • the first electrode and the second electrode are electrically connected by the conductive portion of the conductive particles with insulating particles.
  • connection structure a step of arranging the conductive particles with the insulating particles or the conductive material between the first connection target member and the second connection target member, by thermocompression bonding, And a step of conducting connection. It is preferable that the insulating particles are detached from the conductive particles with the insulating particles during the thermocompression bonding.
  • FIG. 4 is a cross-sectional view schematically showing a connection structure using the conductive particles with insulating particles according to the first embodiment of the present invention.
  • the connection structure 81 shown in FIG. 4 includes a first connection target member 82, a second connection target member 83, and a connection portion connecting the first connection target member 82 and the second connection target member 83. 84.
  • the connection portion 84 is formed of a conductive material including the conductive particles 1 with insulating particles.
  • the connection portion 84 is preferably formed by curing a conductive material including a plurality of conductive particles 1 with insulating particles.
  • the conductive particles 1 with insulating particles are schematically illustrated for convenience of illustration.
  • the conductive particles with insulating particles 21 or 41 may be used instead of the conductive particles with insulating particles 1.
  • the first connection target member 82 has a plurality of first electrodes 82a on the surface (upper surface).
  • the second connection target member 83 has a plurality of second electrodes 83a on the surface (lower surface).
  • the first electrode 82a and the second electrode 83a are electrically connected by the conductive particles 2 in one or more conductive particles 1 with insulating particles. Therefore, the first connection target member 82 and the second connection target member 83 are electrically connected by the conductive portion of the conductive particles 1 with insulating particles.
  • the method of manufacturing the connection structure is not particularly limited.
  • the conductive material is arranged between the first connection target member and the second connection target member, and after obtaining a laminate, the laminate is heated and pressed. Method and the like.
  • the pressure of the thermocompression bonding is preferably at least 40 MPa, more preferably at least 60 MPa, preferably at most 90 MPa, more preferably at most 70 MPa.
  • the heating temperature of the thermocompression bonding is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, preferably 140 ° C. or lower, more preferably 120 ° C. or lower.
  • the insulating particles can be easily detached from the surface of the conductive particles with the insulating particles during the conductive connection, and the conduction reliability between the electrodes is improved. It can be even higher.
  • the insulating particles existing between the conductive particles and the first and second electrodes can be eliminated.
  • the conductive particles and the insulating particles existing between the first electrode and the second electrode are electrically conductive with the insulating particles. Easily desorbs from particle surface.
  • some of the insulating particles may be detached from the surface of the conductive particles with insulating particles, and the surface of the conductive portion may be partially exposed. A portion where the surface of the conductive portion is exposed contacts the first electrode and the second electrode, thereby electrically connecting the first electrode and the second electrode via the conductive particles. can do.
  • the first connection target member and the second connection target member are not particularly limited.
  • the first connection target member and the second connection target member include electronic components such as a semiconductor chip, a semiconductor package, an LED chip, an LED package, a capacitor and a diode, a resin film, a printed board, and a flexible board.
  • Examples include electronic components such as a printed circuit board, a flexible flat cable, a rigid flexible substrate, a circuit board such as a glass epoxy substrate and a glass substrate. It is preferable that the first connection target member and the second connection target member are electronic components.
  • Examples of the electrodes provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode.
  • the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode.
  • the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode.
  • the electrode When the electrode is an aluminum electrode, the electrode may be an electrode formed only of aluminum, or may be an electrode in which an aluminum layer is laminated on a surface of a metal oxide layer.
  • the material of the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element.
  • the trivalent metal element include Sn, Al, and Ga.
  • Example 1 Preparation of Conductive Particles Resin particles (particle diameter: 20 ⁇ m) formed of a copolymer resin of tetramethylolmethanetetraacrylate and divinylbenzene were prepared. After 10 parts by weight of the base particles were dispersed in 100 parts by weight of an alkaline solution containing 5% by weight of a palladium catalyst solution using an ultrasonic disperser, the solution was filtered to take out the base particles. Next, the base particles were added to 100 parts by weight of a 1% by weight solution of dimethylamine borane to activate the surfaces of the base particles.
  • the dispersion was added to 500 parts by weight of distilled water and dispersed to obtain a dispersion.
  • 1 g of a nickel particle slurry (average particle diameter: 100 nm) was added to the dispersion over 3 minutes to obtain a suspension containing the base particles to which the core substance was attached.
  • a nickel plating solution (pH 8.5) containing 0.35 mol / L of nickel sulfate, 1.38 mol / L of dimethylamine borane, and 0.5 mol / L of sodium citrate was prepared.
  • the nickel plating solution was gradually dropped into the suspension to perform electroless nickel plating. Thereafter, the suspension is filtered to remove the particles, washed with water, and dried to obtain particles having the first conductive portion (nickel-boron layer, thickness 200 nm) formed on the surface of the base particles.
  • the first conductive portion nickel-boron layer, thickness 200 nm
  • a suspension was obtained by adding and dispersing 10 parts by weight of the particles on which the first conductive portion was formed to 100 parts by weight of distilled water.
  • a reduced gold plating solution containing 0.03 mol / L of gold cyanide and 0.1 mol / L of hydroquinone as a reducing agent was prepared. While stirring the obtained suspension at 70 ° C., the reduced gold plating solution was gradually dropped into the suspension, and reduced gold plating was performed. Then, the particles were taken out by filtering the suspension, washed with water, and dried to obtain conductive particles.
  • a second conductive part gold layer, thickness 35 nm
  • the composition comprises 1080 mmol of methyl methacrylate, 10 mmol of ethylene glycol dimethacrylate (crosslinking agent), 0.5 mmol of 4- (methacryloyloxy) phenyldimethylsulfonium methyl sulfate, and 2,2′-azobis ⁇ 2- [N- (2-carboxyethyl) amidino] propane@0.5 mmol.
  • the resultant was freeze-dried to obtain insulating particles (particle diameter: 540 nm) having a sulfone group derived from 4- (methacryloyloxy) phenyldimethylsulfonium methyl sulfate on the surface.
  • conductive material anisotropic conductive paste 7 parts by weight of the obtained conductive particles, 25 parts by weight of bisphenol A type phenoxy resin, 4 parts by weight of fluorene type epoxy resin, and 30 parts by weight of phenol novolak type epoxy resin 30
  • a conductive material anisotropic conductive paste was obtained by blending parts by weight with SI-60L (manufactured by Sanshin Chemical Industry Co., Ltd.) and defoaming and stirring for 3 minutes.
  • connection Structure A transparent glass substrate having an IZO electrode pattern (first electrode, Vickers hardness of metal on the electrode surface of 100 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m formed on the upper surface was prepared.
  • a semiconductor chip was prepared in which an Au electrode pattern (second electrode, metal Vickers hardness of the electrode surface was 50 Hv) having an L / S of 10 ⁇ m / 10 ⁇ m was formed on the lower surface.
  • anisotropic conductive paste was applied on the transparent glass substrate so as to have a thickness of 30 ⁇ m to form an anisotropic conductive paste layer.
  • the semiconductor chip was laminated on the anisotropic conductive paste layer such that the electrodes faced each other.
  • the pressure heating head is placed on the upper surface of the semiconductor chip, and the pressure of 60 MPa is applied to remove the anisotropic conductive paste layer.
  • the composition was cured at 100 ° C. to obtain a connection structure.
  • Example 2 During the preparation of the insulating particles, the amount of methyl methacrylate in the composition was changed from 1080 mmol to 540 mmol, and 540 mmol of glycidyl methacrylate was added to the composition. Further, at the time of producing the insulating particles, the particle diameter of the insulating particles was changed to 750 nm. Except for the above changes, in the same manner as in Example 1, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 3 During the preparation of the insulating particles, the amount of methyl methacrylate in the composition was changed from 1080 mmol to 540 mmol, and 540 mmol of glycidyl methacrylate was added to the composition. Further, at the time of producing the insulating particles, the particle diameter of the insulating particles was changed to 800 nm. Except for the above changes, in the same manner as in Example 1, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 4 During the preparation of the insulating particles, the amount of methyl methacrylate in the composition was changed from 1080 mmol to 540 mmol, and 540 mmol of glycidyl methacrylate was added to the composition. Further, at the time of producing the insulating particles, the particle diameter of the insulating particles was changed to 1400 nm. Except for the above changes, in the same manner as in Example 1, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 5 Except that the thickness of the first conductive part (nickel-boron layer) was changed to 250 nm and the second conductive part (gold layer, thickness 35 nm) was not formed during the preparation of the conductive particles.
  • the second conductive part gold layer, thickness 35 nm
  • Example 6 Conductive particles, conductive particles with insulating particles, conductive material, and connection structure in the same manner as in Example 3 except that a nickel particle slurry (average particle diameter of 100 nm) was not used in producing the conductive particles. I got a body.
  • Example 7 Except for using a nickel particle slurry (average particle diameter of 250 nm) instead of a nickel particle slurry (average particle diameter of 100 nm) during the preparation of the conductive particles, the same procedure as in Example 3 was repeated for the preparation of the conductive particles and the insulating material. A conductive particle with particles, a conductive material and a connection structure were obtained.
  • Example 8 Except for using a nickel particle slurry (average particle diameter of 450 nm) instead of a nickel particle slurry (average particle diameter of 100 nm) during the preparation of the conductive particles, the same procedure as in Example 3 was repeated for the preparation of the conductive particles and the insulating material. A conductive particle with particles, a conductive material and a connection structure were obtained.
  • Example 9 When producing conductive particles, instead of resin particles (particle diameter 20 ⁇ m) formed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene, a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene is used. Was used (particle diameter 3 ⁇ m). Except for the above changes, in the same manner as in Example 3, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 10 During the preparation of the conductive particles, the thickness of the first conductive portion (nickel-boron layer) was changed to 250 nm, and the second conductive portion (gold layer, thickness of 35 nm) was not formed.
  • resin particles particle diameter 20 ⁇ m
  • a copolymer of tetramethylolmethanetetraacrylate and divinylbenzene was used.
  • Resin particles particle diameter 3 ⁇ m formed of a polymer resin were used. Except for the above changes, in the same manner as in Example 3, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 11 When producing conductive particles, instead of resin particles (particle diameter 20 ⁇ m) formed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene, a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene is used. Was used (particle diameter 10 ⁇ m). Except for the above changes, in the same manner as in Example 3, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 12 When producing conductive particles, instead of resin particles (particle diameter 20 ⁇ m) formed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene, a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene is used. Was used (particle diameter 35 ⁇ m). Except for the above changes, in the same manner as in Example 3, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 13 When producing conductive particles, instead of resin particles (particle diameter 20 ⁇ m) formed of a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene, a copolymer resin of tetramethylolmethane tetraacrylate and divinylbenzene is used. Was used (particle diameter 50 ⁇ m). Except for the above changes, in the same manner as in Example 3, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 14 Except that the amount of methyl methacrylate in the composition was changed from 1080 mmol to 80 mmol during the production of the insulating particles, and that 1000 mmol of glycidyl methacrylate was added to the composition, Similarly, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 15 Except that the amount of methyl methacrylate in the composition was changed from 1080 mmol to 680 mmol during the preparation of the insulating particles, and that 400 mmol of glycidyl methacrylate was added to the composition, Similarly, conductive particles, conductive particles with insulating particles, a conductive material, and a connection structure were obtained.
  • Example 16 In the same manner as in Example 3, except that the amount of ethylene glycol dimethacrylate in the composition was changed from 10 mmol to 15 mmol during the preparation of the insulating particles, the conductive particles and the conductive particles with insulating particles were used. Particles, conductive material and connection structure were obtained.
  • Example 17 In the same manner as in Example 3, except that the amount of ethylene glycol dimethacrylate in the composition was changed from 10 mmol to 20 mmol during the preparation of the insulating particles, the conductive particles and the conductive particles with insulating particles were used. Particles, conductive material and connection structure were obtained.
  • the measurement sample was produced as follows.
  • a 30 mm ⁇ 40 mm silicone rubber was prepared by hollowing out the center of the shape of the measurement sample (length 10 mm, width 1 mm to 10 mm, thickness 15 mm to 50 mm).
  • the silicone rubber was placed on a 30 mm ⁇ 40 mm glass section.
  • the same raw material as the insulating particles (the material constituting the insulating particles) was poured into the hollowed portion of the silicone rubber on the glass section.
  • the silicone rubber into which the same raw material as the insulating particles had been poured was covered with a glass piece of 30 mm ⁇ 40 mm and fixed using a clip to obtain a laminate.
  • the obtained laminate was placed in an oven and reacted at 50 ° C. for 5 hours under a nitrogen atmosphere. After the reaction, the clip was removed and the measurement sample was taken out.
  • ⁇ Swelling ratio [weight of measurement sample after immersion in toluene (g) / weight of measurement sample before immersion in toluene (g)] ⁇ Formula (1)
  • the ratio X of the number of insulating particles arranged on the surface of the conductive particles so as not to contact other insulating particles was calculated respectively. From the obtained results, of the total number of the insulating particles, the ratio X of the number of the insulating particles arranged on the surface of the conductive particles so as not to contact the other insulating particles is 20 It was calculated as the average value of the conductive particles with insulating particles. The ratio X of the number was determined based on the following criteria.
  • Particle Size of Conductive Particles The particle size of the obtained conductive particles was measured using a “Laser diffraction particle size distribution analyzer” manufactured by Horiba, Ltd. The particle diameter of the conductive particles was calculated by averaging the results of 20 measurements.
  • the ratio of the particle size of the conductive particles to the particle size of the insulating particles was calculated from the measurement results of the particle size of the insulating particles and the particle size of the conductive particles.
  • connection resistance between upper and lower electrodes of the obtained 20 connection structures was measured by the four-terminal method.
  • the conduction reliability was determined according to the following criteria.
  • Connection resistance is 2.0 ⁇ or less
  • Connection resistance is more than 2.0 ⁇ and 5.0 ⁇ or less
  • Connection resistance is more than 5.0 ⁇ and 10 ⁇ or less
  • Connection resistance is more than 10 ⁇
  • Insulation reliability between horizontally adjacent electrodes
  • the presence or absence of leakage between adjacent electrodes was evaluated by measuring the resistance value with a tester.
  • the insulation reliability was evaluated based on the following criteria.
  • connection structures having a resistance value of 10 8 ⁇ or more is 18 or more
  • the number of connection structures having a resistance value of 10 8 ⁇ or more is 15 or more and less than 18 :: Resistance value There number of 10 8 Omega more connections structures, 10 or more 15 than ⁇ : number of resistance 10 8 Omega more connection structure is less than 10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる絶縁性粒子付き導電性粒子を提供する。 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、前記絶縁性粒子の粒子径が、500nm以上1500nm以下であり、前記絶縁性粒子の60℃における貯蔵弾性率が、100MPa以上1000MPa以下である。

Description

絶縁性粒子付き導電性粒子、導電材料及び接続構造体
 本発明は、導電性粒子の表面に絶縁性粒子が配置された絶縁性粒子付き導電性粒子に関する。また、本発明は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体に関する。
 異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。該異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。また、導電性粒子として、導電層の表面に絶縁処理が施された導電性粒子が用いられることがある。
 上記異方性導電材料は、各種の接続構造体を得るために用いられている。上記異方性導電材料を用いる接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。
 また、上記導電性粒子として、導電性粒子の表面上に絶縁性粒子が配置された絶縁性粒子付き導電性粒子が用いられることがある。さらに、導電層の表面上に絶縁層が配置された被覆導電性粒子が用いられることもある。
 上記絶縁性粒子付き導電性粒子の一例として、下記の特許文献1には、導電層を表面に有する導電性粒子と、上記導電性粒子の表面に付着している絶縁性粒子とを備える絶縁性粒子付き導電性粒子が開示されている。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子が、リン原子に直接結合された水酸基又はケイ素原子に直接結合された水酸基を表面に有する。
 下記の特許文献2には、導電部を少なくとも表面に有する導電性粒子、及び上記導電性粒子の表面上に配置された複数の絶縁性粒子を有する絶縁性粒子付き導電性粒子本体と、上記絶縁性粒子付き導電性粒子本体の表面を被覆している被膜とを備える絶縁性粒子付き導電性粒子が開示されている。上記絶縁性粒子付き導電性粒子では、上記被膜が、上記導電性粒子を覆っている第1の被膜部分と、上記絶縁性粒子の表面を覆っている第2の被膜部分とを有する。上記絶縁性粒子付き導電性粒子では、上記第1の被膜部分における厚みが、上記絶縁性粒子の平均粒子径の1/2以下である。
WO2011/030715A1 特開2013-175453号公報
 導電性粒子を含む導電材料を用いて導電接続を行う際には、上方の複数の電極と下方の複数の電極とが電気的に接続されて、導電接続が行われる。導電性粒子は、上下の電極間に配置されることが望ましく、隣接する横方向の電極間には配置されないことが望ましい。隣接する横方向の電極間は、電気的に接続されないことが望ましい。
 従来の絶縁性粒子付き導電性粒子では、導電性の表面が絶縁性粒子により被覆されているものの、接続されるべき上下の電極間の導電接続後に、接続されてはならない横方向に隣接する電極間の電気的な接続を抑制することが困難なことがある。特に、粒子径が比較的大きい導電性粒子を用いた場合に、導電接続された接続構造体における隣接する横方向の電極間の絶縁信頼性を十分に高めることが困難なことがある。
 また、従来の絶縁性粒子付き導電性粒子では、有機化合物や無機酸化物等の被膜を用いて、絶縁性粒子を導電性粒子の表面上に配置させることがある。上記被膜を用いて、絶縁性粒子を導電性粒子の表面上に配置させると、導電接続時に、導電性粒子の表面から絶縁性粒子がはずれにくくなることがあり、接続されるべき上下の電極間の導通信頼性を十分に高めることが困難なことがある。従来の絶縁性粒子付き導電性粒子では、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性を効果的に高めることが困難なことがある。
 本発明の目的は、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる絶縁性粒子付き導電性粒子を提供することである。また、本発明の目的は、上記絶縁性粒子付き導電性粒子を用いた導電材料及び接続構造体を提供することである。
 本発明の広い局面によれば、導電部を少なくとも表面に有する導電性粒子と、前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、前記絶縁性粒子の粒子径が、500nm以上1500nm以下であり、前記絶縁性粒子の60℃における貯蔵弾性率が、100MPa以上1000MPa以下である、絶縁性粒子付き導電性粒子が提供される。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子が、前記導電部の外表面に突起を有する。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子の粒子径の、前記絶縁性粒子の粒子径に対する比が、3以上100以下である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記絶縁性粒子の膨潤倍率が、1以上2.5以下である。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記絶縁性粒子の全個数の内の10%以上が、他の前記絶縁性粒子に接触しないように、前記導電性粒子の表面上に配置されている。
 本発明に係る絶縁性粒子付き導電性粒子のある特定の局面では、前記導電性粒子の粒子径が、1μm以上50μm以下である。
 本発明の広い局面によれば、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料が提供される。
 本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、前記接続部の材料が、上述した絶縁性粒子付き導電性粒子であるか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料であり、前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電部により電気的に接続されている、接続構造体が提供される。
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子の粒子径が、500nm以上1500nm以下である。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子の60℃における貯蔵弾性率が、100MPa以上1000MPa以下である。本発明に係る絶縁性粒子付き導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。 図4は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す断面図である。
 以下、本発明の詳細を説明する。
 (絶縁性粒子付き導電性粒子)
 本発明に係る絶縁性粒子付き導電性粒子は、導電部を少なくとも表面に有する導電性粒子と、上記導電性粒子の表面上に配置された複数の絶縁性粒子とを備える。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子の粒子径が、500nm以上1500nm以下である。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子の60℃における貯蔵弾性率が、100MPa以上1000MPa以下である。
 本発明に係る絶縁性粒子付き導電性粒子では、上記の構成が備えられているので、電極間を電気的に接続した場合に、導通信頼性を効果的に高めることができ、さらに、絶縁信頼性を効果的に高めることができる。
 従来の絶縁性粒子付き導電性粒子では、導電性の表面が絶縁性粒子により被覆されているものの、接続されるべき上下の電極間の導電接続後に、接続されてはならない横方向に隣接する電極間の電気的な接続を抑制することが困難なことがある。特に、粒子径が比較的大きい導電性粒子を用いた場合に、導電接続された接続構造体における隣接する横方向の電極間の絶縁信頼性を十分に高めることできないという課題がある。
 本発明者らは、上記の課題を解決するために鋭意検討した結果、特定の絶縁性粒子を用いることで、上記の課題を解決できることを見出した。本発明では、特定の絶縁性粒子を用いているので、導電接続された接続構造体における隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。
 また、本発明では、特定の絶縁性粒子を用いることによって、絶縁性粒子を導電性粒子の表面上に効果的に配置させることができるので、有機化合物や無機酸化物等の被覆を用いる必要がない。結果として、導電接続時に、導電性粒子の表面から絶縁性粒子がはずれやすく、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。本発明では、接続されるべき上下の電極間の導通信頼性及び接続されてはならない横方向に隣接する電極間の絶縁信頼性を効果的に高めることができる。
 本発明では、上記のような効果を得るために、特定の絶縁性粒子を用いることは大きく寄与する。
 電極間の導通信頼性及び絶縁信頼性をより一層効果的に高める観点からは、上記絶縁性粒子付き導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:絶縁性粒子付き導電性粒子の粒子径の標準偏差
 Dn:絶縁性粒子付き導電性粒子の粒子径の平均値
 上記絶縁性粒子付き導電性粒子の形状は特に限定されない。上記絶縁性粒子付き導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。
 上記絶縁性粒子付き導電性粒子は、バインダー樹脂中に分散され、導電材料を得るために好適に用いられる。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。
 図1は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。
 図1に示す絶縁性粒子付き導電性粒子1は、導電性粒子2と、導電性粒子2の表面上に配置された複数の絶縁性粒子3とを備える。絶縁性粒子3は、絶縁性を有する材料により形成されている。
 導電性粒子2は、基材粒子11と、基材粒子11の表面上に配置された導電部12とを有する。絶縁性粒子付き導電性粒子1においては、導電部12は導電層である。導電部12は、基材粒子11の表面を覆っている。導電性粒子2は、基材粒子11の表面が導電部12により被覆された被覆粒子である。導電性粒子2は表面に導電部12を有する。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、上記導電部の表面上に配置されていることが好ましい。
 図2は、本発明の第2の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。
 図2に示す絶縁性粒子付き導電性粒子21は、導電性粒子22と、導電性粒子22の表面上に配置された複数の絶縁性粒子3とを備える。
 導電性粒子22は、基材粒子11と、基材粒子11の表面上に配置された導電部31とを有する。絶縁性粒子付き導電性粒子21においては、導電部31は導電層である。導電性粒子22は、基材粒子11の表面上に複数の芯物質32を有する。導電部31は、基材粒子11と芯物質32とを被覆している。芯物質32を導電部31が被覆していることにより、導電性粒子22は、表面に複数の突起33を有する。導電性粒子22では、芯物質32により導電部31の表面が隆起されており、複数の突起33が形成されている。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、上記導電部の表面上に配置されていることが好ましい。
 図3は、本発明の第3の実施形態に係る絶縁性粒子付き導電性粒子を示す断面図である。
 図3に示す絶縁性粒子付き導電性粒子41は、導電性粒子42と、導電性粒子42の表面上に配置された複数の絶縁性粒子3とを備える。
 導電性粒子42は、基材粒子11と、基材粒子11の表面上に配置された導電部51とを有する。絶縁性粒子付き導電性粒子41においては、導電部51は導電層である。導電性粒子42は、導電性粒子22のように芯物質を有しない。導電部51は、第1の部分と、該第1の部分よりも厚みが厚い第2の部分とを有する。導電性粒子42は、表面に複数の突起52を有する。複数の突起52を除く部分が、導電部51の上記第1の部分である。複数の突起52は、導電部51の厚みが厚い上記第2の部分である。上記導電性粒子では、上記導電部が上記基材粒子の表面の全体を覆っていてもよく、上記導電部が上記基材粒子の表面の一部を覆っていてもよい。上記絶縁性粒子付き導電性粒子では、上記絶縁性粒子は、上記導電部の表面上に配置されていることが好ましい。
 以下、絶縁性粒子付き導電性粒子の他の詳細を説明する。
 導電性粒子:
 上記導電性粒子は、基材粒子と、上記基材粒子の表面上に配置された導電部とを有していることが好ましい。上記導電部は、単層構造であってもよく、2層以上の複層構造であってもよい。
 上記導電性粒子の粒子径は、好ましくは1μm以上、より好ましくは10μm以上であり、好ましくは50μm以下、より好ましくは40μm以下である。上記導電性粒子の粒子径が、上記下限以上及び上記上限以下であると、上記導電性粒子を用いて電極間を接続した場合に、導電性粒子と電極との接触面積が十分に大きくなり、かつ導電部を形成する際に凝集した導電性粒子が形成され難くなる。また、導電性粒子を介して接続された電極間の間隔が大きくなりすぎず、かつ導電部が基材粒子の表面から剥離し難くなる。
 上記導電性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。導電性粒子の粒子径は、例えば、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各導電性粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。導電性粒子において、任意の導電性粒子50個を電子顕微鏡又は光学顕微鏡にて観察する方法により、上記導電性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子を観察する。各導電性粒子の円相当径を粒子径として計測し、それらを算術平均して導電性粒子の粒子径とする。導電性粒子検査用埋め込み樹脂の代わりに、絶縁性粒子付き導電性粒子検査用埋め込み樹脂を作製してもよい。
 上記導電性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記導電性粒子の粒子径の変動係数が、上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層効果的に高めることができる。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:導電性粒子の粒子径の標準偏差
 Dn:導電性粒子の粒子径の平均値
 上記導電性粒子の形状は特に限定されない。上記導電性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。
 基材粒子:
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、無機粒子を除く基材粒子であってもよい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
 上記樹脂粒子の材料として、種々の有機物が好適に用いられる。上記樹脂粒子の材料としては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、ジビニルベンゼン重合体、並びにジビニルベンゼン系共重合体等が挙げられる。上記ジビニルベンゼン系共重合体等としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。
 上記非架橋性の単量体としては、例えば、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。
 上記架橋性の単量体としては、例えば、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。
 「(メタ)アクリレート」の用語は、アクリレートとメタクリレートとを示す。「(メタ)アクリル」の用語は、アクリルとメタクリルとを示す。「(メタ)アクリロイル」の用語は、アクリロイルとメタクリロイルとを示す。
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。
 上記基材粒子が金属粒子を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては特に限定されないが、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。電極間の接続抵抗を効果的に低くする観点からは、上記基材粒子は、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であることが好ましい。
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。
 上記基材粒子の粒子径は、好ましくは0.6μm以上、より好ましくは0.8μm以上であり、好ましくは49.8μm以下、より好ましくは49.6μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、電極間の間隔が小さくなり、かつ導電部(導電層等)の厚みを厚くしても、小さい導電性粒子が得られる。さらに基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。
 上記基材粒子の粒子径は、0.9μm以上49.9μm以下であることが特に好ましい。上記基材粒子の粒子径が、0.9μm以上49.9μm以下の範囲内であると、基材粒子の表面に導電部を形成する際に凝集し難くなり、凝集した導電性粒子が形成され難くなる。
 上記基材粒子の粒子径は、数平均粒子径を示す。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各基材粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求めることが好ましい。導電性粒子において、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察する方法により、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。
 導電性粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の導電性粒子を無作為に選択し、各導電性粒子の基材粒子を観察する。各導電性粒子における基材粒子の円相当径を粒子径として計測し、それらを算術平均して基材粒子の粒子径とする。導電性粒子検査用埋め込み樹脂の代わりに、絶縁性粒子付き導電性粒子検査用埋め込み樹脂を作製してもよい。
 導電部:
 本発明では、上記導電性粒子は、導電部を少なくとも表面に有する。上記導電部は、金属を含むことが好ましい。上記導電部を構成する金属は、特に限定されない。上記金属としては、例えば、金、銀、銅、白金、パラジウム、亜鉛、鉛、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム、並びにこれらの合金等が挙げられる。また、上記金属として、錫ドープ酸化インジウム(ITO)を用いてもよい。上記金属は1種のみが用いられてもよく、2種以上が併用されてもよい。電極間の接続抵抗をより一層低くする観点からは、錫を含む合金、ニッケル、パラジウム、銅又は金が好ましく、ニッケル又はパラジウムがより好ましい。
 また、導通信頼性を効果的に高める観点からは、上記導電部及び上記導電部の外表面部分はニッケルを含むことが好ましい。ニッケルを含む導電部100重量%中のニッケルの含有量は、好ましくは10重量%以上、より好ましくは50重量%以上、より一層好ましくは60重量%以上、さらに好ましくは70重量%以上、特に好ましくは90重量%以上である。上記ニッケルを含む導電部100重量%中のニッケルの含有量は、97重量%以上であってもよく、97.5重量%以上であってもよく、98重量%以上であってもよい。
 なお、導電部の表面には、酸化により水酸基が存在することが多い。一般的に、ニッケルにより形成された導電部の表面には、酸化により水酸基が存在する。このような水酸基を有する導電部の表面(導電性粒子の表面)に、化学結合を介して、絶縁性粒子を配置できる。
 上記導電部は、1つの層により形成されていてもよい。上記導電部は、複数の層により形成されていてもよい。すなわち、上記導電部は、2層以上の積層構造を有していてもよい。上記導電部が複数の層により形成されている場合には、最外層を構成する金属は、金、ニッケル、パラジウム、銅又は錫と銀とを含む合金であることが好ましく、金であることがより好ましい。最外層を構成する金属がこれらの好ましい金属である場合には、電極間の接続抵抗がより一層低くなる。また、最外層を構成する金属が金である場合には、耐腐食性がより一層高くなる。
 上記基材粒子の表面上に導電部を形成する方法は特に限定されない。上記導電部を形成する方法としては、例えば、無電解めっきによる方法、電気めっきによる方法、物理的な衝突による方法、メカノケミカル反応による方法、物理的蒸着又は物理的吸着による方法、並びに金属粉末もしくは金属粉末とバインダーとを含むペーストを基材粒子の表面にコーティングする方法等が挙げられる。上記導電部を形成する方法は、無電解めっき、電気めっき又は物理的な衝突による方法であることが好ましい。上記物理的蒸着による方法としては、真空蒸着、イオンプレーティング及びイオンスパッタリング等の方法が挙げられる。また、上記物理的な衝突による方法では、例えば、シーターコンポーザ(徳寿工作所社製)等が用いられる。
 上記導電部の厚みは、好ましくは0.005μm以上、より好ましくは0.01μm以上であり、好ましくは10μm以下、より好ましくは1μm以下、さらに好ましくは0.3μm以下である。上記導電部の厚みが、上記下限以上及び上記上限以下であると、十分な導電性が得られ、かつ導電性粒子が硬くなりすぎずに、電極間の接続の際に導電性粒子を十分に変形させることができる。
 上記導電部が複数の層により形成されている場合に、最外層の導電部の厚みは、好ましくは0.001μm以上、より好ましくは0.01μm以上であり、好ましくは0.5μm以下、より好ましくは0.1μm以下である。上記最外層の導電部の厚みが、上記下限以上及び上記上限以下であると、最外層の導電部が均一になり、耐腐食性が十分に高くなり、かつ電極間の接続抵抗を十分に低くすることができる。
 上記導電部の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、導電性粒子の断面を観察することにより測定できる。
 芯物質:
 上記導電性粒子は、上記導電部の外表面に複数の突起を有することが好ましい。絶縁性粒子付き導電性粒子により接続される電極の表面には、酸化被膜が形成されていることが多い。導電部の表面に突起を有する絶縁性粒子付き導電性粒子を用いた場合には、電極間に絶縁性粒子付き導電性粒子を配置して圧着させることにより、突起により上記酸化被膜を効果的に排除できる。このため、電極と導電部とがより一層確実に接触し、電極間の接続抵抗がより一層低くなる。さらに、電極間の接続時に、導電性粒子の突起によって、導電性粒子と電極との間の絶縁性粒子を効果的に排除できる。このため、電極間の導通信頼性がより一層高くなる。
 上記突起を形成する方法としては、基材粒子の表面に芯物質を付着させた後、無電解めっきにより導電部を形成する方法、並びに基材粒子の表面に無電解めっきにより導電部を形成した後、芯物質を付着させ、さらに無電解めっきにより導電部を形成する方法等が挙げられる。上記突起を形成する他の方法としては、基材粒子の表面上に、第1の導電部を形成した後、該第1の導電部上に芯物質を配置し、次に第2の導電部を形成する方法、並びに基材粒子の表面上に導電部(第1の導電部又は第2の導電部等)を形成する途中段階で、芯物質を添加する方法等が挙げられる。また、突起を形成するために、上記芯物質を用いずに、基材粒子に無電解めっきにより導電部を形成した後、導電部の表面上に突起状にめっきを析出させ、さらに無電解めっきにより導電部を形成する方法等を用いてもよい。
 基材粒子の表面に芯物質を付着させる方法としては、例えば、基材粒子の分散液中に、芯物質を添加し、基材粒子の表面に芯物質を、ファンデルワールス力により集積させ、付着させる方法、並びに基材粒子を入れた容器に、芯物質を添加し、容器の回転等による機械的な作用により基材粒子の表面に芯物質を付着させる方法等が挙げられる。付着させる芯物質の量を制御する観点からは、基材粒子の表面に芯物質を付着させる方法は、分散液中の基材粒子の表面に芯物質を集積させ、付着させる方法であることが好ましい。
 上記芯物質を構成する物質としては、導電性物質及び非導電性物質が挙げられる。上記導電性物質としては、例えば、金属、金属の酸化物、黒鉛等の導電性非金属及び導電性ポリマー等が挙げられる。上記導電性ポリマーとしては、ポリアセチレン等が挙げられる。上記非導電性物質としては、シリカ、アルミナ及びジルコニア等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記芯物質が金属であることが好ましい。
 上記金属は特に限定されない。上記金属としては、例えば、金、銀、銅、白金、亜鉛、鉄、鉛、錫、アルミニウム、コバルト、インジウム、ニッケル、クロム、チタン、アンチモン、ビスマス、ゲルマニウム及びカドミウム等の金属、並びに錫-鉛合金、錫-銅合金、錫-銀合金、錫-鉛-銀合金及び炭化タングステン等の2種類以上の金属で構成される合金等が挙げられる。電極間の導通信頼性をより一層高める観点からは、上記金属は、ニッケル、銅、銀又は金が好ましい。上記金属は、上記導電部(導電層)を構成する金属と同じであってもよく、異なっていてもよい。
 上記芯物質の形状は特に限定されない。芯物質の形状は塊状であることが好ましい。芯物質としては、例えば、粒子状の塊、複数の微小粒子が凝集した凝集塊、及び不定形の塊等が挙げられる。
 上記芯物質の粒子径(平均粒子径)は、好ましくは0.001μm以上、より好ましくは0.05μm以上、好ましくは0.9μm以下、より好ましくは0.2μm以下である。上記芯物質の粒子径が、上記下限以上及び上限以下であると、電極間の接続抵抗を効果的に低くすることができる。
 上記芯物質の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。芯物質の粒子径は、例えば、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察し、各芯物質の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。導電性粒子において、任意の芯物質50個を電子顕微鏡又は光学顕微鏡にて観察する方法により、上記芯物質の粒子径を測定する場合には、例えば、以下のようにして測定できる。
 導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中に分散した導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率20万倍に設定し、50個の導電性粒子を無作為に選択し、導電性粒子の芯物質を観察する。各導電性粒子における芯物質の円相当径を粒子径として計測し、それらを算術平均して芯物質の粒子径とする。導電性粒子検査用埋め込み樹脂の代わりに、絶縁性粒子付き導電性粒子検査用埋め込み樹脂を作製してもよい。
 絶縁性粒子:
 本発明に係る絶縁性粒子付き導電性粒子は、上記導電性粒子の表面上に配置された複数の絶縁性粒子を備える。この場合には、上記絶縁性粒子付き導電性粒子を電極間の接続に用いると、隣接する電極間の短絡を防止できる。具体的には、複数の絶縁性粒子付き導電性粒子が接触したときに、複数の電極間に絶縁性粒子が存在するので、上下の電極間ではなく横方向に隣り合う電極間の短絡を防止できる。なお、電極間の接続の際に、2つの電極で絶縁性粒子付き導電性粒子を加圧することにより、導電性粒子の導電部と電極との間の絶縁性粒子を容易に排除できる。さらに、導電部の外表面に複数の突起を有する導電性粒子である場合には、導電性粒子の導電部と電極との間の絶縁性粒子をより一層容易に排除できる。
 本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子の粒子径は、500nm以上1500nm以下である。本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子は比較的大きい。このため、比較的粒子径の大きな導電性粒子を用いた場合であっても、導電接続された接続構造体における隣接する横方向の電極間の絶縁信頼性をより一層効果的に高めることができる。
 上記絶縁性粒子の粒子径は、上記絶縁性粒子付き導電性粒子の粒子径及び上記絶縁性粒子付き導電性粒子の用途等によって適宜選択できる。上記絶縁性粒子の粒子径は、好ましくは540nmを超え、より好ましくは550nm以上、更に好ましくは700nm以上、特に好ましくは800nm以上であり、好ましくは1500nm以下、より好ましくは1200nm以下、より一層好ましくは1000nm未満、更に好ましくは900nm以下、更に一層好ましくは850nm以下である。上記絶縁性粒子の粒子径が、上記下限を満足すると、上記絶縁性粒子付き導電性粒子がバインダー樹脂中に分散されたときに、複数の上記絶縁性粒子付き導電性粒子における導電部同士が接触し難くなる。上記絶縁性粒子の粒子径が、上記上限を満足すると、電極間の接続の際に、電極と導電性粒子との間の絶縁性粒子を排除するために、圧力を高くしすぎる必要がなくなり、高温に加熱する必要もなくなる。上記絶縁性粒子の粒子径が、上記下限及び上記上限を満足すると、電極間を電気的に接続した場合に、絶縁信頼性をより一層効果的に高めることができる。
 上記絶縁性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。上記絶縁性粒子の粒子径は粒度分布測定装置等を用いて求められる。上記絶縁性粒子の粒子径は、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求めることが好ましい。上記絶縁性粒子付き導電性粒子において、任意の絶縁性粒子50個を電子顕微鏡又は光学顕微鏡にて観察する方法により、上記絶縁性粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。
 絶縁性粒子付き導電性粒子を含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、導電性粒子検査用埋め込み樹脂を作製する。その検査用埋め込み樹脂中の分散した絶縁性粒子付き導電性粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、絶縁性粒子付き導電性粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率5万倍に設定し、50個の絶縁性粒子付き導電性粒子を無作為に選択し、各絶縁性粒子付き導電性粒子の絶縁性粒子を観察する。各絶縁性粒子付き導電性粒子における絶縁性粒子の円相当径を粒子径として計測し、それらを算術平均して絶縁性粒子の粒子径とする。
 上記導電性粒子の粒子径の、上記絶縁性粒子の粒子径に対する比(導電性粒子の粒子径/絶縁性粒子の粒子径)は、好ましくは3以上、より好ましくは6以上、さらに好ましくは16以上であり、好ましくは100以下、より好ましくは55以下、さらに好ましくは30以下である。上記比(導電性粒子の粒子径/絶縁性粒子の粒子径)が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高めることができる。
 本発明に係る絶縁性粒子付き導電性粒子では、上記絶縁性粒子の60℃における貯蔵弾性率が、100MPa以上1000MPa以下である。上記絶縁性粒子の60℃における貯蔵弾性率は、好ましくは300MPa以上、より好ましくは500MPa以上であり、好ましくは950MPa以下、より好ましくは900MPa以下である。上記絶縁性粒子の60℃における貯蔵弾性率が、上記下限以上及び上記上限以下であると、電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高めることができる。
 上記絶縁性粒子の60℃における貯蔵弾性率は、動的粘弾性測定装置(TA Instruments社製「RSA3」)により測定できる。上記動的粘弾性測定装置による測定は、長さ10mm、幅1mm~10mm、厚み15mm~50mmの測定サンプルを用いて、周波数10Hz、ひずみ1%、温度-10℃~210℃、及び昇温速度5℃/minの条件で行う。測定結果から、60℃における貯蔵弾性率を算出する。なお、上記測定サンプルは、上記絶縁性粒子と同じ原料(絶縁性粒子を構成する材料)を用いて作製する。
 上記絶縁性粒子の60℃における貯蔵弾性率が上100MPa以上1000MPa以下であると、上記絶縁性粒子は、60℃で柔軟な性質を発現する。上記絶縁性粒子の60℃における貯蔵弾性率が上記の好ましい範囲であると、上記絶縁性粒子は、60℃で非常に柔軟な性質を発現する。また、上記導電性粒子の表面上に上記絶縁性粒子を配置する際の温度は約60℃であるため、上記導電性粒子の表面上に上記絶縁性粒子を配置する際には、上記絶縁性粒子は非常に柔軟となり、上記導電性粒子の表面上に容易に配置することができる。また、上記導電性粒子の表面上に上記絶縁性粒子を容易に配置することができるため、有機化合物や無機酸化物等の被覆を用いる必要がない。このため、導電接続時に、導電性粒子の表面から絶縁性粒子がはずれやすく、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。
 上記絶縁性粒子の60℃における貯蔵弾性率を100MPa以上1000MPa以下に調整する方法としては、以下の方法が挙げられる。モノマーのガラス転移温度を調整して絶縁性粒子を作製する方法。主モノマーと、該主モノマーのガラス転移温度と異なるガラス転移温度を有するモノマーとを混合して、絶縁性粒子を作製する方法。主モノマーに対する架橋剤の添加率を低くする方法。絶縁性粒子の作製の際に、官能数が小さい架橋剤を用いる方法。ポーラス構造を有する絶縁性粒子を用いる方法。中空構造を有する絶縁性粒子を用いる方法。セラミックス及びシリカの双方と異なる有機化合物により形成された絶縁性粒子を用いる方法。これら以外の方法を用いてもよい。
 また、上記絶縁性粒子の60℃における貯蔵弾性率を上記の好ましい範囲にする観点からは、上記絶縁性粒子は重合性化合物を重合することにより得ることが好ましい。上記重合性化合物としては、上述した樹脂粒子の材料等が挙げられる。上記重合性化合物の側鎖は長いことが好ましい。上記重合性化合物の側鎖が長いことで、より一層柔軟な性質を発現する絶縁性粒子を得ることができる。また、上述したように、上記絶縁性粒子は比較的大きい。粒子径の大きい絶縁性粒子を得るためには、上記重合性化合物の側鎖が短いことが好ましい。側鎖の短い重合性化合物を重合させることで、粒子径の大きい絶縁性粒子を容易に得ることはできるものの、側鎖の短い重合性化合物により得られた絶縁性粒子では、柔軟な性質を発現させることは困難である。そこで、側鎖の短い重合性化合物により得られた絶縁性粒子に柔軟な性質を付与する方法として、側鎖の短い重合性化合物に、該重合性化合物の重合には関与せず、エポキシ基等との反応性を有する反応性官能基を導入する方法等が挙げられる。上記反応性官能基を側鎖の短い重合性化合物に導入することで、側鎖の短い重合性化合物を重合させて絶縁性粒子を得た後に、上記反応性官能基と鎖長の長い化合物とを反応させることで、絶縁性粒子に柔軟な性質を付与することができる。結果として、上記導電性粒子の表面上に絶縁性粒子を容易に配置することができる。
 上記絶縁性粒子の膨潤倍率は、好ましくは1以上、より好ましくは1.2以上であり、好ましくは2.5以下、より好ましくは2以下である。上記膨潤倍率が、上記下限以上であると、上記導電性粒子の表面上に上記絶縁性粒子をより一層容易に配置することができる。上記膨潤倍率が、上記上限以下であると、電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高めることができる。
 上記膨潤倍率は、絶縁性粒子の柔軟性の指標である。上記膨潤倍率が高いほど、絶縁性粒子が柔軟であることを示している。
 上記膨潤倍率は、以下のようにして測定することができる。
 上記絶縁性粒子と同じ原料(絶縁性粒子を構成する材料)を用いて、縦10mm×横5mm、厚み0.5mmの測定サンプルを作製する。得られた測定サンプルの重量を測定し、トルエン100g中に25℃で20時間浸漬する。その後、測定サンプルを取り出し、160℃で30分間乾燥し、乾燥後の測定サンプルの重量を測定する。トルエン浸漬前後の測定サンプルの重量変化から下記式(1)により、膨潤倍率を算出することができる。
 膨潤倍率=[トルエン浸漬後の測定サンプルの重量(g)/トルエン浸漬前の測定サンプルの重量(g)] ・・・式(1)
 電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記絶縁性粒子の全個数の内の10%以上が、他の上記絶縁性粒子に接触しないように、上記導電性粒子の表面上に配置されていることが好ましい。電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記絶縁性粒子の全個数の内の30%以上が、他の上記絶縁性粒子に接触しないように、上記導電性粒子の表面上に配置されていることがより好ましい。
 他の絶縁性粒子に接触していない絶縁性粒子の個数の割合は、走査型電子顕微鏡(SEM)により20個の絶縁性粒子付き導電性粒子を観察することで算出することが好ましい。具体的には、絶縁性粒子付き導電性粒子を一方向から走査型電子顕微鏡(SEM)で観察し、各絶縁性粒子付き導電性粒子における絶縁性粒子の個数、及び他の絶縁性粒子に接触していない絶縁性粒子の個数を算出し、平均値を算出することにより求めることが好ましい。
 上記絶縁性粒子を構成する材料としては、絶縁性の樹脂等が挙げられる。上記絶縁性の樹脂としては、基材粒子として用いることが可能な樹脂粒子の材料等が挙げられる。
 上記絶縁性粒子の材料である絶縁性樹脂の具体例としては、ポリオレフィン化合物、(メタ)アクリレート重合体、(メタ)アクリレート共重合体、ブロックポリマー、熱可塑性樹脂、熱可塑性樹脂の架橋物、熱硬化性樹脂及び水溶性樹脂等が挙げられる。
 上記ポリオレフィン化合物としては、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エステル共重合体等が挙げられる。上記(メタ)アクリレート重合体としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレート等が挙げられる。上記ブロックポリマーとしては、ポリスチレン、スチレン-アクリル酸エステル共重合体、SB型スチレン-ブタジエンブロック共重合体、及びSBS型スチレン-ブタジエンブロック共重合体、並びにこれらの水素添加物等が挙げられる。上記熱可塑性樹脂としては、ビニル重合体及びビニル共重合体等が挙げられる。上記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられる。上記水溶性樹脂としては、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド及びメチルセルロース等が挙げられる。
 絶縁性粒子の60℃における貯蔵弾性率を架橋剤によって調整する場合、上記絶縁性粒子を構成する材料が、架橋剤を含むことが好ましい。60℃における貯蔵弾性率を100MPa以上1000MPa以下に調整する観点からは、上記架橋剤は、2官能~6官能の架橋剤であることが好ましい。上記2官能~6官能の架橋剤としては、2官能~6官能の(メタ)アクリレートのモノマーであることが好ましく、2官能~4官能の(メタ)アクリレートのモノマーであることがより好ましく、2官能の(メタ)アクリレートのモノマーであることが更に好ましい。上記2官能~6官能の(メタ)アクリレートのモノマーとしては、トリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート又はジメタクリル酸エチレングリコールが好ましく、ジメタクリル酸エチレングリコールがより好ましい。
 絶縁性粒子の60℃における貯蔵弾性率を100MPa以上1000MPa以下に容易に調整する観点からは、絶縁性粒子を構成する材料のうち最も含有量が多い材料100重量部に対して、架橋剤の含有量は好ましくは0.001重量部以上、より好ましくは0.01重量部以上、更に好ましくは0.1重量部以上である。絶縁性粒子の60℃における貯蔵弾性率を100MPa以上1000MPa以下に容易に調整する観点からは、絶縁性粒子を構成する材料のうち最も含有量が多い材料100重量部に対して、架橋剤の含有量は、好ましくは20重量部以下、より好ましくは10重量部以下、更に好ましくは6重量部以下である。
 上記導電部の表面上に上記絶縁性粒子を配置する方法としては、化学的方法、及び物理的もしくは機械的方法等が挙げられる。上記化学的方法としては、例えば、界面重合法、粒子存在下での懸濁重合法及び乳化重合法等が挙げられる。上記物理的もしくは機械的方法としては、スプレードライ、ハイブリダイゼーション、静電付着法、噴霧法、ディッピング及び真空蒸着による方法等が挙げられる。電極間を電気的に接続した場合に、絶縁信頼性及び導通信頼性をより一層効果的に高める観点からは、上記導電部の表面上に上記絶縁性粒子を配置する方法は、物理的方法であることが好ましい。
 上記導電部の外表面、及び上記絶縁性粒子の外表面はそれぞれ、反応性官能基を有する化合物によって被覆されていてもよい。上記導電部の外表面と上記絶縁性粒子の外表面とは、直接化学結合していなくてもよく、反応性官能基を有する化合物によって間接的に化学結合していてもよい。上記導電部の外表面にカルボキシル基を導入した後、該カルボキシル基がポリエチレンイミン等の高分子電解質を介して絶縁性粒子の外表面の官能基と化学結合していても構わない。
 本発明に係る絶縁性粒子付き導電性粒子では、粒子径の異なる2種以上の絶縁性粒子を併用してもよい。粒子径の異なる2種以上の絶縁性粒子を併用することにより、粒子径の大きい絶縁性粒子により被覆された隙間に、粒子径の小さい絶縁性粒子が入り込み、上記被覆率をより一層効果的に高めることができる。
 上記絶縁性粒子の粒子径の変動係数(CV値)は、20%以下であることが好ましい。上記絶縁性粒子の粒子径の変動係数が、上記上限以下であると、得られる絶縁性粒子付き導電性粒子の絶縁性粒子により覆われた部分の厚みがより一層均一となり、導電接続の際に均一に圧力をより一層容易に付与することができ、電極間の接続抵抗をより一層低くすることができる。
 上記変動係数(CV値)は、以下のようにして測定できる。
 CV値(%)=(ρ/Dn)×100
 ρ:絶縁性粒子の粒子径の標準偏差
 Dn:絶縁性粒子の粒子径の平均値
 上記絶縁性粒子の形状は特に限定されない。上記絶縁性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等の形状であってもよい。
 (導電材料)
 本発明に係る導電材料は、上述した絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む。上記絶縁性粒子付き導電性粒子は、バインダー樹脂中に分散されて用いられることが好ましく、バインダー樹脂中に分散されて導電材料として用いられることが好ましい。上記導電材料は、異方性導電材料であることが好ましい。上記導電材料は、電極間の電気的な接続に用いられることが好ましい。上記導電材料は回路接続用導電材料であることが好ましい。上記導電材料では、上述した絶縁性粒子付き導電性粒子が用いられているので、電極間の絶縁信頼性及び導通信頼性をより一層高めることができる。
 上記バインダー樹脂は特に限定されない。上記バインダー樹脂として、公知の絶縁性の樹脂が用いられる。上記バインダー樹脂は、熱可塑性成分(熱可塑性化合物)又は硬化性成分を含むことが好ましく、硬化性成分を含むことがより好ましい。上記硬化性成分としては、光硬化性成分及び熱硬化性成分が挙げられる。上記光硬化性成分は、光硬化性化合物及び光重合開始剤を含むことが好ましい。上記熱硬化性成分は、熱硬化性化合物及び熱硬化剤を含むことが好ましい。
 上記バインダー樹脂としては、例えば、ビニル樹脂、熱可塑性樹脂、硬化性樹脂、熱可塑性ブロック共重合体及びエラストマー等が挙げられる。上記バインダー樹脂は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記ビニル樹脂としては、例えば、酢酸ビニル樹脂、アクリル樹脂及びスチレン樹脂等が挙げられる。上記熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、エチレン-酢酸ビニル共重合体及びポリアミド樹脂等が挙げられる。上記硬化性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、ポリイミド樹脂及び不飽和ポリエステル樹脂等が挙げられる。なお、上記硬化性樹脂は、常温硬化型樹脂、熱硬化型樹脂、光硬化型樹脂又は湿気硬化型樹脂であってもよい。上記硬化性樹脂は、硬化剤と併用されてもよい。上記熱可塑性ブロック共重合体としては、例えば、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水素添加物、及びスチレン-イソプレン-スチレンブロック共重合体の水素添加物等が挙げられる。上記エラストマーとしては、例えば、スチレン-ブタジエン共重合ゴム、及びアクリロニトリル-スチレンブロック共重合ゴム等が挙げられる。
 上記導電材料は、上記絶縁性粒子付き導電性粒子及び上記バインダー樹脂の他に、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
 上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法は、従来公知の分散方法を用いることができ、特に限定されない。上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を分散させる方法としては、例えば、以下の方法等が挙げられる。上記バインダー樹脂中に上記絶縁性粒子付き導電性粒子を添加した後、プラネタリーミキサー等で混練して分散させる方法。上記絶縁性粒子付き導電性粒子を水又は有機溶剤中にホモジナイザー等を用いて均一に分散させた後、上記バインダー樹脂中に添加し、プラネタリーミキサー等で混練して分散させる方法。上記バインダー樹脂を水又は有機溶剤等で希釈した後、上記絶縁性粒子付き導電性粒子を添加し、プラネタリーミキサー等で混練して分散させる方法。
 上記導電材料の25℃での粘度(η25)は、好ましくは30Pa・s以上、より好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記導電材料の25℃での粘度が、上記下限以上及び上記上限以下であると、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。
 上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。
 本発明に係る導電材料は、導電ペースト及び導電フィルム等として使用され得る。本発明に係る導電材料が、導電フィルムである場合には、導電性粒子を含む導電フィルムに、導電性粒子を含まないフィルムが積層されていてもよい。上記導電ペーストは、異方性導電ペーストであることが好ましい。上記導電フィルムは、異方性導電フィルムであることが好ましい。
 上記導電材料100重量%中、上記バインダー樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、さらに好ましくは50重量%以上、特に好ましくは70重量%以上であり、好ましくは99.99重量%以下、より好ましくは99.9重量%以下である。上記バインダー樹脂の含有量が、上記下限以上及び上記上限以下であると、電極間に導電性粒子が効率的に配置され、導電材料により接続された接続対象部材の接続信頼性をより一層高めることができる。
 上記導電材料100重量%中、上記絶縁性粒子付き導電性粒子の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上であり、好ましくは80重量%以下、より好ましくは60重量%以下、さらに好ましくは40重量%以下、特に好ましくは20重量%以下、最も好ましくは10重量%以下である。上記絶縁性粒子付き導電性粒子の含有量が、上記下限以上及び上記上限以下であると、電極間の導通信頼性及び絶縁信頼性をより一層高めることができる。
 (接続構造体)
 本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材を接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した絶縁性粒子付き導電性粒子であるか、又は上記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記絶縁性粒子付き導電性粒子における上記導電部により電気的に接続されている。
 上記接続構造体は、上記第1の接続対象部材と上記第2の接続対象部材との間に、上記絶縁性粒子付き導電性粒子又は上記導電材料を配置する工程と、熱圧着することにより、導電接続する工程とを経て、得ることができる。上記熱圧着時に、上記絶縁性粒子が上記絶縁性粒子付き導電性粒子から脱離することが好ましい。
 図4は、本発明の第1の実施形態に係る絶縁性粒子付き導電性粒子を用いた接続構造体を模式的に示す断面図である。
 図4に示す接続構造体81は、第1の接続対象部材82と、第2の接続対象部材83と、第1の接続対象部材82及び第2の接続対象部材83を接続している接続部84とを備える。接続部84は、絶縁性粒子付き導電性粒子1を含む導電材料により形成されている。接続部84は、絶縁性粒子付き導電性粒子1を複数含む導電材料を硬化させることにより形成されていることが好ましい。なお、図4では、絶縁性粒子付き導電性粒子1は、図示の便宜上、略図的に示されている。絶縁性粒子付き導電性粒子1にかえて、絶縁性粒子付き導電性粒子21又は41を用いてもよい。
 第1の接続対象部材82は表面(上面)に、複数の第1の電極82aを有する。第2の接続対象部材83は表面(下面)に、複数の第2の電極83aを有する。第1の電極82aと第2の電極83aとが、1つ又は複数の絶縁性粒子付き導電性粒子1における導電性粒子2により電気的に接続されている。従って、第1接続対象部材82及び第2の接続対象部材83が絶縁性粒子付き導電性粒子1における導電部により電気的に接続されている。
 上記接続構造体の製造方法は特に限定されない。接続構造体の製造方法の一例としては、第1の接続対象部材と第2の接続対象部材との間に上記導電材料を配置し、積層体を得た後、該積層体を加熱及び加圧する方法等が挙げられる。上記熱圧着の圧力は好ましくは40MPa以上、より好ましくは60MPa以上であり、好ましくは90MPa以下、より好ましくは70MPa以下である。上記熱圧着の加熱の温度は、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは140℃以下、より好ましくは120℃以下である。上記熱圧着の圧力及び温度が、上記下限以上及び上記上限以下であると、導電接続時に絶縁性粒子付き導電性粒子の表面から絶縁性粒子が容易に脱離でき、電極間の導通信頼性をより一層高めることができる。
 上記積層体を加熱及び加圧する際に、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子を排除することができる。例えば、上記加熱及び加圧の際には、上記導電性粒子と、上記第1の電極及び上記第2の電極との間に存在している上記絶縁性粒子が、上記絶縁性粒子付き導電性粒子の表面から容易に脱離する。なお、上記加熱及び加圧の際には、上記絶縁性粒子付き導電性粒子の表面から一部の上記絶縁性粒子が脱離して、上記導電部の表面が部分的に露出することがある。上記導電部の表面が露出した部分が、上記第1の電極及び上記第2の電極に接触することにより、上記導電性粒子を介して第1の電極と第2の電極とを電気的に接続することができる。
 上記第1の接続対象部材及び第2の接続対象部材は、特に限定されない。上記第1の接続対象部材及び第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1の接続対象部材及び第2の接続対象部材は、電子部品であることが好ましい。
 上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。
 (実施例1)
 (1)導電性粒子の作製
 テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径20μm)を用意した。パラジウム触媒液を5重量%含むアルカリ溶液100重量部に、基材粒子10重量部を、超音波分散器を用いて分散させた後、溶液をろ過することにより、基材粒子を取り出した。次いで、基材粒子をジメチルアミンボラン1重量%溶液100重量部に添加し、基材粒子の表面を活性化させた。表面が活性化された基材粒子を十分に水洗した後、蒸留水500重量部に加え、分散させることにより、分散液を得た。次に、ニッケル粒子スラリー(平均粒子径100nm)1gを3分間かけて上記分散液に添加し、芯物質が付着された基材粒子を含む懸濁液を得た。
 また、硫酸ニッケル0.35mol/L、ジメチルアミンボラン1.38mol/L及びクエン酸ナトリウム0.5mol/Lを含むニッケルめっき液(pH8.5)を用意した。
 得られた懸濁液を70℃にて攪拌しながら、上記ニッケルめっき液を懸濁液に徐々に滴下し、無電解ニッケルめっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、基材粒子の表面に第1の導電部(ニッケル-ボロン層、厚み200nm)が形成された粒子を得た。
 第1の導電部が形成された粒子10重量部を、蒸留水100重量部に添加し、分散させることにより、懸濁液を得た。また、シアン化金0.03mol/Lと、還元剤としてヒドロキノン0.1mol/Lとを含む還元金めっき液を用意した。得られた懸濁液を70℃にて攪拌しながら、上記還元金めっき液を懸濁液に徐々に滴下し、還元金めっきを行った。その後、懸濁液をろ過することにより、粒子を取り出し、水洗し、乾燥することにより、導電性粒子を得た。得られた導電性粒子では、上記第1の導電部の外表面上に第2の導電部(金層、厚み35nm)が形成されていた。
 (2)絶縁性粒子の作製
 4つ口セパラブルカバー、攪拌翼、三方コック、冷却管及び温度プローブを取り付けた2000mLセパラブルフラスコに、下記の組成物を入れた後、上記組成物を固形分が10重量%となるように蒸留水を添加して、120rpmで攪拌し、窒素雰囲気下50℃で5時間重合を行った。上記組成物は、メタクリル酸メチル1080mmol、ジメタクリル酸エチレングリコール(架橋剤)10mmol、4-(メタクリロイルオキシ)フェニルジメチルスルホニウムメチルスルフェート0.5mmol、及び2,2’-アゾビス{2-[N-(2-カルボキシエチル)アミジノ]プロパン}0.5mmolを含む。反応終了後、凍結乾燥して、4-(メタクリロイルオキシ)フェニルジメチルスルホニウムメチルスルフェートに由来するスルホン基を表面に有する絶縁性粒子(粒子径540nm)を得た。
 (3)絶縁性粒子付き導電性粒子の作製
 上記で得られた絶縁性粒子を超音波照射下で蒸留水に分散させ、絶縁性粒子の10重量%水分散液を得た。得られた導電性粒子10gを蒸留水500mLに分散させ、絶縁性粒子の10重量%水分散液1gを添加し、室温で8時間攪拌した。3μmのメッシュフィルターで濾過した後、さらにメタノールで洗浄、乾燥し、絶縁性粒子付き導電性粒子を得た。
 (4)導電材料(異方性導電ペースト)の作製
 得られた導電性粒子7重量部と、ビスフェノールA型フェノキシ樹脂25重量部と、フルオレン型エポキシ樹脂4重量部と、フェノールノボラック型エポキシ樹脂30重量部と、SI-60L(三新化学工業社製)とを配合して、3分間脱泡及び攪拌することで、導電材料(異方性導電ペースト)を得た。
 (5)接続構造体の作製
 L/Sが10μm/10μmであるIZO電極パターン(第1の電極、電極表面の金属のビッカース硬度100Hv)が上面に形成された透明ガラス基板を用意した。また、L/Sが10μm/10μmであるAu電極パターン(第2の電極、電極表面の金属のビッカース硬度50Hv)が下面に形成された半導体チップを用意した。
 上記透明ガラス基板上に、得られた異方性導電ペーストを厚さ30μmとなるように塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層上に上記半導体チップを、電極同士が対向するように積層した。その後、異方性導電ペースト層の温度が100℃となるようにヘッドの温度を調整しながら、半導体チップの上面に加圧加熱ヘッドを載せ、60MPaの圧力をかけて異方性導電ペースト層を100℃で硬化させ、接続構造体を得た。
 (実施例2)
 絶縁性粒子の作製の際に、上記組成物中のメタクリル酸メチルの配合量を1080mmolから540mmolに変更し、上記組成物中にメタクリル酸グリシジル540mmolを添加した。また、絶縁性粒子の作製の際に、絶縁性粒子の粒子径を750nmに変更した。上記の変更以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例3)
 絶縁性粒子の作製の際に、上記組成物中のメタクリル酸メチルの配合量を1080mmolから540mmolに変更し、上記組成物中にメタクリル酸グリシジル540mmolを添加した。また、絶縁性粒子の作製の際に、絶縁性粒子の粒子径を800nmに変更した。上記の変更以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例4)
 絶縁性粒子の作製の際に、上記組成物中のメタクリル酸メチルの配合量を1080mmolから540mmolに変更し、上記組成物中にメタクリル酸グリシジル540mmolを添加した。また、絶縁性粒子の作製の際に、絶縁性粒子の粒子径を1400nmに変更した。上記の変更以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例5)
 導電性粒子の作製の際に、第1の導電部(ニッケル-ボロン層)の厚みを250nmに変更し、第2の導電部(金層、厚み35nm)を形成しなかったこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例6)
 導電性粒子の作製の際に、ニッケル粒子スラリー(平均粒子径100nm)を用いなかったこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例7)
 導電性粒子の作製の際に、ニッケル粒子スラリー(平均粒子径100nm)の代わりにニッケル粒子スラリー(平均粒子径250nm)を用いたこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例8)
 導電性粒子の作製の際に、ニッケル粒子スラリー(平均粒子径100nm)の代わりにニッケル粒子スラリー(平均粒子径450nm)を用いたこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例9)
 導電性粒子の作製の際に、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径20μm)の代わりに、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径3μm)を用いた。上記の変更以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例10)
 導電性粒子の作製の際に、第1の導電部(ニッケル-ボロン層)の厚みを250nmに変更し、第2の導電部(金層、厚み35nm)を形成しなかった。また、導電性粒子の作製の際に、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径20μm)の代わりに、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径3μm)を用いた。上記の変更以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例11)
 導電性粒子の作製の際に、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径20μm)の代わりに、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径10μm)を用いた。上記の変更以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例12)
 導電性粒子の作製の際に、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径20μm)の代わりに、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径35μm)を用いた。上記の変更以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例13)
 導電性粒子の作製の際に、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径20μm)の代わりに、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂により形成された樹脂粒子(粒子径50μm)を用いた。上記の変更以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例14)
 絶縁性粒子の作製の際に、上記組成物中のメタクリル酸メチルの配合量を1080mmolから80mmolに変更したこと、及び上記組成物中にメタクリル酸グリシジル1000mmolを添加したこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例15)
 絶縁性粒子の作製の際に、上記組成物中のメタクリル酸メチルの配合量を1080mmolから680mmolに変更したこと、及び上記組成物中にメタクリル酸グリシジル400mmolを添加したこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例16)
 絶縁性粒子の作製の際に、上記組成物中のジメタクリル酸エチレングリコールの配合量を10mmolから15mmolに変更したこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (実施例17)
 絶縁性粒子の作製の際に、上記組成物中のジメタクリル酸エチレングリコールの配合量を10mmolから20mmolに変更したこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (比較例1)
 絶縁性粒子の作製の際に、絶縁性粒子の粒子径を450nmに変更したこと以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (比較例2)
 絶縁性粒子の作製の際に、絶縁性粒子の粒子径を450nmに変更したこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (比較例3)
 絶縁性粒子の作製の際に、絶縁性粒子の粒子径を360nmに変更したこと以外は、実施例3と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (比較例4)
 絶縁性粒子の作製の際に、上記組成物中のメタクリル酸メチルの配合量を1080mmolから540mmolに変更し、上記組成物中にメタクリル酸グリシジル540mmolを添加した。また、絶縁性粒子の作製の際に、絶縁性粒子の粒子径を2500nmに変更した。上記の変更以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (比較例5)
 絶縁性粒子の作製の際に、上記組成物中にジペンタエリスリトールヘキサアクリレート100mmоlを添加した。また、絶縁性粒子の作製の際に、絶縁性粒子の粒子径を800nmに変更した。上記の変更以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (比較例6)
 絶縁性粒子の作製の際に、上記組成物中にメタクリル酸メチル1080mmolの代わりに、メタクリル酸2-エチルヘキシル1080mmоlを添加した。また、絶縁性粒子の作製の際に、絶縁性粒子の粒子径を800nmに変更した。上記の変更以外は、実施例1と同様に、導電性粒子、絶縁性粒子付き導電性粒子、導電材料及び接続構造体を得た。
 (評価)
 (1)絶縁性粒子の粒子径
 得られた絶縁性粒子の粒子径を、任意の絶縁性粒子50個を電子顕微鏡にて観察し、平均値を算出することにより求めた。
 (2)絶縁性粒子の60℃における貯蔵弾性率
 得られた絶縁性粒子と同じ原料(絶縁性粒子を構成する材料)を用いて、長さ10mm、幅1mm~10mm、厚み15mm~50mmの測定サンプルを作製した。上記測定サンプルの60℃における貯蔵弾性率を、動的粘弾性測定装置(TA Instruments社製「RSA3」)を用いて、周波数10Hz、ひずみ1%、温度-10℃~210℃、及び昇温速度5℃/minの条件で測定した。測定結果から、60℃における貯蔵弾性率を算出した。
 なお、測定サンプルは以下のように作製した。測定サンプルのサイズの形状(長さ10mm、幅1mm~10mm、厚み15mm~50mm)に中央をくりぬいた30mm×40mmのシリコーンゴムを用意した。該シリコーンゴムを、30mm×40mmのガラス切片上に乗せた。ガラス切片上のシリコーンゴムのくりぬいた部分に、絶縁性粒子と同じ原料(絶縁性粒子を構成する材料)を流し込んだ。絶縁性粒子と同じ原料が流し込まれたシリコーンゴム上を、30mm×40mmのガラス切片でふたをし、クリップを用いて固定し、積層体を得た。得られた積層体をオーブンに入れ、窒素雰囲気下で50℃で5時間反応させた。反応後クリップを外し、測定サンプルを取り出した。
 (3)絶縁性粒子の膨潤倍率
 得られた絶縁性粒子と同じ原料を用いて、縦10mm×横5mm、厚み0.5mmの測定サンプルを作製した。得られた測定サンプルの重量を測定し、トルエン100g中に25℃で20時間浸漬した。その後、測定サンプルを取り出し、160℃で30分間乾燥し、乾燥後の測定サンプルの重量を測定した。トルエン浸漬前後の測定サンプルの重量変化から下記式(1)により、膨潤倍率を算出した。
 膨潤倍率=[トルエン浸漬後の測定サンプルの重量(g)/トルエン浸漬前の測定サンプルの重量(g)] ・・・式(1)
 (4)絶縁性粒子の全個数の内、他の絶縁性粒子に接触しないように、導電性粒子の表面上に配置されている絶縁性粒子の個数の割合X
 得られた絶縁性粒子付き導電性粒子について、走査型電子顕微鏡(SEM)により観察し、20個の絶縁性粒子付き導電性粒子における絶縁性粒子の個数、及び他の絶縁性粒子に接触していない絶縁性粒子の個数をそれぞれ算出した。得られた結果から、絶縁性粒子の全個数の内、他の絶縁性粒子に接触しないように、導電性粒子の表面上に配置されている絶縁性粒子の個数の割合Xを、20個の絶縁性粒子付き導電性粒子の平均値として算出した。上記個数の割合Xを下記の基準で判定した。
 [絶縁性粒子の全個数の内、他の絶縁性粒子に接触しないように、導電性粒子の表面上に配置されている絶縁性粒子の個数の割合Xの判定基準]
 AA:個数の割合Xが50%以上
 A:個数の割合Xが30%以上50%未満
 B:個数の割合Xが10%以上30%未満
 C:個数の割合Xが10%未満
 (5)導電性粒子の粒子径
 得られた導電性粒子の粒子径を、堀場製作所社製「レーザー回折式粒度分布測定装置」を用いて測定した。また、導電性粒子の粒子径は、20回の測定結果を平均することにより算出した。
 また、絶縁性粒子の粒子径及び導電性粒子の粒子径の測定結果から、導電性粒子の粒子径の、絶縁性粒子の粒子径に対する比を算出した。
 (6)導通信頼性(上下の電極間)
 得られた20個の接続構造体の上下の電極間の接続抵抗をそれぞれ、4端子法により測定した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
 [導通信頼性の判定基準]
 ○○○:接続抵抗が、2.0Ω以下
 ○○:接続抵抗が、2.0Ωを超え5.0Ω以下
 ○:接続抵抗が、5.0Ωを超え10Ω以下
 ×:接続抵抗が、10Ωを超える
 (7)絶縁信頼性(横方向に隣り合う電極間)
 上記(6)導通信頼性の評価で得られた20個の接続構造体において、隣接する電極間のリークの有無を、テスターで抵抗値を測定することにより評価した。絶縁信頼性を下記の基準で評価した。
 [絶縁信頼性の判定基準]
 ○○○:抵抗値が10Ω以上の接続構造体の個数が、18個以上
 ○○:抵抗値が10Ω以上の接続構造体の個数が、15個以上18個未満
 ○:抵抗値が10Ω以上の接続構造体の個数が、10個以上15個未満
 ×:抵抗値が10Ω以上の接続構造体の個数が、10個未満
 結果を下記の表1~3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 1…絶縁性粒子付き導電性粒子
 2…導電性粒子
 3…絶縁性粒子
 11…基材粒子
 12…導電部
 21…絶縁性粒子付き導電性粒子
 22…導電性粒子
 31…導電部
 32…芯物質
 33…突起
 41…絶縁性粒子付き導電性粒子
 42…導電性粒子
 51…導電部
 52…突起
 81…接続構造体
 82…第1の接続対象部材
 82a…第1の電極
 83…第2の接続対象部材
 83a…第2の電極
 84…接続部

Claims (8)

  1.  導電部を少なくとも表面に有する導電性粒子と、
     前記導電性粒子の表面上に配置された複数の絶縁性粒子とを備え、
     前記絶縁性粒子の粒子径が、500nm以上1500nm以下であり、
     前記絶縁性粒子の60℃における貯蔵弾性率が、100MPa以上1000MPa以下である、絶縁性粒子付き導電性粒子。
  2.  前記導電性粒子が、前記導電部の外表面に突起を有する、請求項1に記載の絶縁性粒子付き導電性粒子。
  3.  前記導電性粒子の粒子径の、前記絶縁性粒子の粒子径に対する比が、3以上100以下である、請求項1又は2に記載の絶縁性粒子付き導電性粒子。
  4.  前記絶縁性粒子の膨潤倍率が、1以上2.5以下である、請求項1~3のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  5.  前記絶縁性粒子の全個数の内の10%以上が、他の前記絶縁性粒子に接触しないように、前記導電性粒子の表面上に配置されている、請求項1~4のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  6.  前記導電性粒子の粒子径が、1μm以上50μm以下である、請求項1~5のいずれか1項に記載の絶縁性粒子付き導電性粒子。
  7.  請求項1~6のいずれか1項に記載の絶縁性粒子付き導電性粒子と、バインダー樹脂とを含む、導電材料。
  8.  第1の電極を表面に有する第1の接続対象部材と、
     第2の電極を表面に有する第2の接続対象部材と、
     前記第1の接続対象部材と、前記第2の接続対象部材を接続している接続部とを備え、
     前記接続部の材料が、請求項1~6のいずれか1項に記載の絶縁性粒子付き導電性粒子であるか、又は前記絶縁性粒子付き導電性粒子とバインダー樹脂とを含む導電材料であり、
     前記第1の電極と前記第2の電極とが、前記絶縁性粒子付き導電性粒子における前記導電部により電気的に接続されている、接続構造体。
PCT/JP2019/026895 2018-07-06 2019-07-05 絶縁性粒子付き導電性粒子、導電材料及び接続構造体 WO2020009238A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207031841A KR20210029143A (ko) 2018-07-06 2019-07-05 절연성 입자 구비 도전성 입자, 도전 재료 및 접속 구조체
CN201980040446.8A CN112352294B (zh) 2018-07-06 2019-07-05 带有绝缘性粒子的导电性粒子、导电材料以及连接结构体
JP2020529072A JP7271543B2 (ja) 2018-07-06 2019-07-05 絶縁性粒子付き導電性粒子、導電材料及び接続構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018129173 2018-07-06
JP2018-129173 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020009238A1 true WO2020009238A1 (ja) 2020-01-09

Family

ID=69060888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026895 WO2020009238A1 (ja) 2018-07-06 2019-07-05 絶縁性粒子付き導電性粒子、導電材料及び接続構造体

Country Status (5)

Country Link
JP (1) JP7271543B2 (ja)
KR (1) KR20210029143A (ja)
CN (1) CN112352294B (ja)
TW (1) TWI807064B (ja)
WO (1) WO2020009238A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030479A (ja) * 2011-06-22 2013-02-07 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP2014067702A (ja) * 2012-09-06 2014-04-17 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、導電材料及び接続構造体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101222375B1 (ko) 2009-09-08 2013-01-15 세키스이가가쿠 고교가부시키가이샤 절연 입자 부착 도전성 입자, 절연 입자 부착 도전성 입자의 제조 방법, 이방성 도전 재료 및 접속 구조체
JP2011105861A (ja) * 2009-11-18 2011-06-02 Hitachi Chem Co Ltd 回路接続材料及び接続構造体
JP5060655B2 (ja) * 2010-07-02 2012-10-31 積水化学工業株式会社 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP6084850B2 (ja) 2012-01-26 2017-02-22 積水化学工業株式会社 絶縁性粒子付き導電性粒子、導電材料及び接続構造体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030479A (ja) * 2011-06-22 2013-02-07 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、異方性導電材料及び接続構造体
JP2014067702A (ja) * 2012-09-06 2014-04-17 Sekisui Chem Co Ltd 絶縁性粒子付き導電性粒子、導電材料及び接続構造体

Also Published As

Publication number Publication date
JPWO2020009238A1 (ja) 2021-08-02
TW202020097A (zh) 2020-06-01
TWI807064B (zh) 2023-07-01
KR20210029143A (ko) 2021-03-15
JP7271543B2 (ja) 2023-05-11
CN112352294B (zh) 2023-03-14
CN112352294A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
JPWO2018181694A1 (ja) 導電性粒子、導電材料及び接続構造体
WO2019194135A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP2013214511A (ja) 導電性粒子、導電材料及び接続構造体
WO2014084173A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6431411B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP7412100B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
TWI841692B (zh) 導電材料及連接構造體
JP6151990B2 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP6637391B2 (ja) 導電性粒子、導電材料及び接続構造体
JP2014026971A (ja) 導電性粒子、導電材料及び接続構造体
JP6734161B2 (ja) 導電性粒子、導電フィルム、接続構造体及び接続構造体の製造方法
WO2020009238A1 (ja) 絶縁性粒子付き導電性粒子、導電材料及び接続構造体
JP7180981B2 (ja) 導電性粒子、導電材料及び接続構造体
JP7235611B2 (ja) 導電材料及び接続構造体
KR102674579B1 (ko) 절연성 입자를 갖는 도전성 입자, 절연성 입자를 갖는 도전성 입자의 제조 방법, 도전 재료 및 접속 구조체
WO2022260159A1 (ja) 被覆粒子、被覆粒子の製造方法、樹脂組成物及び接続構造体
JP7312108B2 (ja) 絶縁性粒子付き導電性粒子、絶縁性粒子付き導電性粒子の製造方法、導電材料及び接続構造体
WO2021182617A1 (ja) 導電性粒子、導電材料及び接続構造体
JP7132274B2 (ja) 導電性粒子、導電材料及び接続構造体
JP6441555B2 (ja) 導電性粒子、導電材料及び接続構造体
JP7288487B2 (ja) 導電性粒子、導電性粒子の製造方法、導電材料及び接続構造体
WO2022260158A1 (ja) 被覆粒子、樹脂組成物及び接続構造体
WO2024034386A1 (ja) 導電性粒子、導電材料及び接続構造体
JP7132112B2 (ja) 導電フィルム及び接続構造体
WO2022239776A1 (ja) 導電性粒子、導電材料及び接続構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831369

Country of ref document: EP

Kind code of ref document: A1