WO2020009206A1 - コイン形電池及びその製造方法 - Google Patents

コイン形電池及びその製造方法 Download PDF

Info

Publication number
WO2020009206A1
WO2020009206A1 PCT/JP2019/026726 JP2019026726W WO2020009206A1 WO 2020009206 A1 WO2020009206 A1 WO 2020009206A1 JP 2019026726 W JP2019026726 W JP 2019026726W WO 2020009206 A1 WO2020009206 A1 WO 2020009206A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing
side wall
resin film
coin
negative electrode
Prior art date
Application number
PCT/JP2019/026726
Other languages
English (en)
French (fr)
Inventor
博文 田川
邦彦 小山
津田 健司
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to EP19830894.2A priority Critical patent/EP3800685A4/en
Priority to CN201980041284.XA priority patent/CN112335101B/zh
Priority to JP2020529054A priority patent/JP7213250B2/ja
Publication of WO2020009206A1 publication Critical patent/WO2020009206A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a coin-type battery and a method for manufacturing the same.
  • a flat battery called a coin battery or a button battery is known.
  • an electrode body formed by sandwiching a separator between a positive electrode and a negative electrode is housed in a battery case together with an electrolytic solution.
  • This battery case has a bottom surface and a peripheral wall, and has an outer can having an opening in the peripheral wall, a flat surface and a side wall, and an opening and a shoulder formed in the side wall. And a gasket arranged between the outer can and the sealing can. The peripheral wall of the outer can and the side wall of the sealing can are fitted together.
  • Patent Document 1 As one of such sealing structures, it has been proposed to provide a gasket with an L-shaped cross section without providing a folded portion on a side wall of a sealing can (Patent Document 1).
  • Patent Document 1 By using such a sealing structure, the volume inside the side wall portion can be increased as compared with a structure in which the side wall portion of the sealing can is folded back. Thereby, the capacity of the battery can be increased.
  • the radius of curvature of the inner peripheral side portion of the tip of the side wall portion of the sealing can is made smaller than the radius of curvature of the outer peripheral side portion. Also, it has been proposed to improve the adhesion between the tip of the side wall of the sealing can and the gasket by bending the opening of the side wall of the sealing can toward the center of the battery (Patent Document 2). And 3). Thereby, it is possible to improve the sealing property and suppress the occurrence of liquid leakage.
  • the cross-sectional shape of the gasket is L-shaped as described above, there is a limit in reducing the thickness of the gasket. Therefore, the internal volume of the battery cannot be increased beyond a certain level. Therefore, even if the cross-sectional shape of the gasket is devised, the increase in the capacity of the battery can be realized only in a limited range.
  • Patent Literature 4 discloses a button battery using a sealing member of a thermoplastic resin (eg, polyamide, polyether ether ketone) having a thickness of about 0.1 mm.
  • a thermoplastic resin eg, polyamide, polyether ether ketone
  • An object of the present invention is to provide a coin-type battery which has a high capacity by enlarging an accommodation space for accommodating an electrode body and has excellent reliability without impairing sealing property, and a method of manufacturing the same. It is in.
  • a coin-type battery includes a bottom surface portion and a peripheral wall portion, and includes, in a thickness direction, an outer can having an opening on a side opposite to the bottom surface portion, and a flat surface portion and a side wall portion, In the thickness direction, an opening is provided on the opposite side to the plane portion, and the side wall portion is provided with a stepped shoulder portion that is located between the plane portion and the opening and expands in the radial direction.
  • the resin film is formed in a tubular shape, a film peripheral wall portion disposed between the peripheral wall portion of the outer can and the side wall portion of the sealing can, and a bottom portion of the outer can and a side wall portion of the sealing can. And a film bottom disposed between the opening end.
  • the outer diameter of the bottom of the outer can is d1 (mm)
  • the inner diameter of the open end of the peripheral wall of the outer can is d2 (mm)
  • the outer diameter of the flat part of the sealed can is d3.
  • the space for accommodating the electrode body in the coin-shaped battery can be made larger than in the conventional configuration, and the capacity of the battery can be increased. That is, by forming the sealing member disposed between the peripheral wall portion of the outer can and the side wall portion of the sealing can with a thin resin film, the outer packaging can be made as compared with the conventional configuration using a gasket as the sealing member. The distance between the peripheral wall of the can and the side wall of the sealing can can be reduced. Thereby, the accommodation space of the electrode body inside the sealing can can be enlarged as compared with the conventional configuration.
  • the accommodating space for the electrode body inside the sealing can can be made larger.
  • the outer dimensions of the battery can be reduced.
  • the space inside the sealing can can be increased.
  • the relationship between the inner diameter d2 of the open end of the peripheral wall of the outer can and the outer diameter d4 of the open end of the side wall of the sealed can varies depending on the fitting structure of the peripheral wall of the outer can with the side wall of the sealed can. That is, the peripheral wall of the outer can is swaged to the shoulder of the side wall of the sealed can, and the sealing member is pressed between the open end of the side wall of the sealed can and the bottom of the outer can.
  • the value of d2 / d4 is a small value of about 0.9.
  • the relationship between the inner diameter d2 of the open end in the peripheral wall of the outer can and the outer diameter d4 of the open end in the side wall of the sealing can is 0.94 ⁇ d2 / d4 ⁇ 1. .02, it is possible to achieve the same sealing performance as the conventional configuration in a structure that fits radially with the side wall of the sealing can. That is, by setting the value of d2 / d4 in the above range, the peripheral wall portion of the outer can can press the thin seal member with an appropriate force in the radial direction. Thereby, the sealing performance of the sealing member arranged between the peripheral wall of the outer can and the side wall of the sealing can can be improved.
  • the sealing structure can be made compact. This makes it possible to reduce the size of the coin battery while increasing the accommodation space in which the electrode body is accommodated.
  • d3 / d4 ⁇ 0.85 is satisfied (second configuration).
  • d3 / d4 is more preferably 0.9 or more, and particularly preferably 0.93 or more.
  • the projecting dimension of the shoulder is set to a predetermined dimension or more, and the opening end of the side wall of the sealing can generates a force to press the film bottom to a certain extent against the bottom of the exterior can.
  • the value of d3 / d4 is preferably 0.98 or less in order to secure a certain sealing property with the bottom of the outer can.
  • the resin film is formed of a heat-resistant resin having a melting point or a thermal decomposition temperature of 200 ° C. or higher (third configuration). Thereby, even at a high temperature, good sealing performance can be secured between the side wall of the sealing can and the peripheral wall of the outer can.
  • the heat-resistant resin is polyphenylene sulfide (fourth configuration). Thereby, permeation of moisture in the resin film can be suppressed. Therefore, the durability of the battery can be improved.
  • the resin film preferably has a thickness of 0.05 mm to 0.15 mm (fifth configuration).
  • any one of the first to fifth configurations at least one of between the peripheral wall of the outer can and the resin film, and between the side wall of the sealing can and the resin film.
  • a sealant is provided (sixth configuration).
  • the adhesiveness between the peripheral wall portion of the outer can and the resin film is reduced, or the adhesiveness between the side wall portion of the sealing can and the resin film is reduced. Moisture easily penetrates. Therefore, the durability of the battery may decrease.
  • by providing a sealant between the peripheral wall portion of the outer can and the resin film, and at least one between the side wall portion of the sealing can and the resin film Infiltration of moisture into the battery due to thickness unevenness and surface irregularities can be suppressed. Therefore, the durability of the battery can be improved.
  • a method of manufacturing a coin-type battery includes an outer can having a bottom portion and a peripheral wall portion, and having an opening on a side opposite to the bottom portion in a thickness direction, a flat portion and a side wall portion.
  • In the thickness direction in the thickness direction has an opening on the opposite side to the flat portion, and, on the side wall portion, a stepped shoulder portion that is located between the flat portion and the opening and expands in the radial direction is provided.
  • a power generating element disposed in the coin-shaped battery.
  • the resin film is a tubular member having heat shrinkability.
  • the manufacturing method includes a step of covering an outer peripheral surface of a side wall of the sealing can with the resin film so that an end of the resin film protrudes from a side wall of the sealing can, and a step of heat-treating and shrinking the resin film.
  • the step of integrating the resin film with the side wall of the sealing can while covering the opening end of the side wall of the sealing can with the resin film, and the sealing can integrated with the resin film
  • the sealing can integrated with the resin film
  • the resin film which is a tubular member having heat shrinkability, is shrunk by heat treatment while being protruded from the side wall of the sealing can and covering the outer peripheral surface of the side wall to shrink the resin film.
  • the shape of the resin film changes along the side wall of the sealing can, and a portion of the resin film protruding from the side wall of the sealing can is bent radially inward.
  • the resin film can be integrated with the side wall of the sealing can while covering the opening end of the side wall of the sealing can with the resin film.
  • the peripheral wall of the outer can is diametrical with respect to the side wall of the sealing can.
  • the temperature at which the resin film is heat-treated is preferably higher than the glass transition temperature of the resin film (second method). Thereby, the heat shrinkage of the resin film is promoted, so that the resin film and the side wall of the sealing can can be more firmly integrated.
  • the step of covering an outer peripheral surface of a side wall portion of the sealing can with the resin film may include removing the resin film covering an outer peripheral surface of a side wall portion of the sealing can with a side wall of the sealing can. It is preferable to protrude in the range of 0.3 mm to 2 mm from the opening end of the portion (third method).
  • the width of the resin film protruding from the opening end of the side wall of the sealing can 0.3 mm or more when heat-treating the resin film, the opening end of the side wall of the sealing can is It can be easily covered with a resin film.
  • the width of the resin film protruding from the opening end of the side wall of the sealing can to 2 mm or less, the width of the film bottom formed when heat-treating the resin film is within a suitable range. Can be adjusted.
  • the sealing can of the resin film may be used in the step of heat-treating and shrinking the resin film to be integrated with a side wall of the sealing can.
  • a portion of the side wall protruding from the open end is deformed inward of the side wall with respect to the open end, so that the resin film extends from the open end to the inside of the side wall. It is preferable to protrude in the range of 1 mm to 1.5 mm (fourth method).
  • the opening end portion of the side wall portion of the sealing can can be more reliably secured by the resin film.
  • the height of the sealing can is h1 (mm) in a state before the peripheral wall of the outer can and the side wall of the sealing can are fitted.
  • the outer diameter of the open end is d5 (mm)
  • the outer diameter and can thickness at a position 7/10 of h1 from the tip of the open end to the flat surface side are d6 ( mm) and t1 (mm)
  • t2 (mm) when the thickness of the can at a position 1 / of t1 from the tip of the opening end to the plane portion side is t2 (mm), ⁇ 0.1 ⁇ d5 ⁇ d6 ⁇ 0. 1, and t2 / t1 ⁇ 0.9 is preferably satisfied (fifth method).
  • the capacity is increased by enlarging the accommodation space for accommodating the electrode body without impairing the sealing property, and the reliability is improved. It is possible to obtain a coin-type battery having excellent properties.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of one embodiment of a coin battery manufactured by the method of manufacturing a coin battery according to the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view showing an enlarged cross section of the electrode body in the coin-shaped battery shown in FIG.
  • FIG. 3 is an end view showing a schematic configuration of a sealing can used for the coin-shaped battery of the present invention.
  • FIG. 4 is a partially enlarged cross-sectional view showing an enlarged cross section of a main part of a side wall portion of a sealing can used for the coin-shaped battery of the present invention.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of one embodiment of a coin battery manufactured by the method of manufacturing a coin battery according to the present invention.
  • FIG. 2 is a partially enlarged cross-sectional view showing an enlarged cross section of the electrode body in the coin-shaped battery shown in FIG.
  • FIG. 3 is an end view showing a schematic configuration of a sealing can
  • FIG. 5 is a partially enlarged cross-sectional view showing an enlarged cross section of a main part of a side wall of a sealing can used for a comparative example of a coin-type battery.
  • FIG. 6 is a perspective view showing a schematic configuration of a resin film used for the coin battery of the present invention.
  • FIG. 7 is an end view showing a state where the side wall of the sealing can is covered with a resin film.
  • FIG. 8 is an end view showing a state where the resin film is integrated with the side wall of the sealing can.
  • FIG. 9 is a plan view showing a schematic configuration of the positive electrode.
  • FIG. 10 is a plan view showing a schematic configuration of the negative electrode.
  • FIG. 11 is a plan view showing a schematic configuration of the electrode body.
  • FIG. 12 is an end view showing a schematic configuration of a gasket used for the coin-shaped battery of Comparative Example 1.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of a coin-shaped battery 1 manufactured by the method of manufacturing a coin-shaped battery according to the present invention.
  • This coin-shaped battery 1 is sandwiched between a positive electrode can 10 as a bottomed cylindrical outer can, a negative electrode can 20 as a sealing can covering the opening of the positive electrode can 10, and the positive electrode can 10 and the negative electrode can 20.
  • It includes a resin film 30 and an electrode body 40 (power generation element) housed in a housing space S formed by the positive electrode can 10 and the negative electrode can 20.
  • the coin-shaped battery 1 has a flat coin shape whose radial dimension is larger than its height dimension.
  • a non-aqueous electrolyte (not shown) is sealed in the accommodation space S formed by the positive electrode can 10 and the negative electrode can 20 of the coin-shaped battery 1.
  • the symbol P in FIG. 1 is the axis of the coin-shaped battery 1.
  • the axial direction is referred to as a height direction
  • the direction orthogonal to the axial direction is referred to as a radial direction.
  • the positive electrode can 10 is made of a metal material such as stainless steel (for example, SUS316).
  • the positive electrode can 10 can be formed with Ni plating or the like on the outer surface, and is formed into a bottomed cylindrical shape by press molding.
  • the positive electrode can 10 includes a circular bottom surface portion 11 and a cylindrical peripheral wall portion 12 formed on the outer periphery thereof so as to be continuous with the bottom surface portion 11.
  • the peripheral wall portion 12 is provided so as to extend in the height direction of the coin-shaped battery 1 from the outer peripheral end of the bottom portion 11 in a vertical cross-sectional view (the state shown in FIG. 1). That is, the peripheral wall portion 12 extends from the bottom surface portion 11 in the axial direction.
  • the positive electrode can 10 has an opening on the side opposite to the bottom surface 11 in the axial direction.
  • the positive electrode can 10 has the resin film 30 sandwiched between the negative electrode can 20 and the open end 13 of the peripheral wall portion 12 (the end on the opening side of the peripheral wall portion 12).
  • the negative electrode can 20 is caulked against the negative electrode can 20 by being deformed so as to fall inward in the radial direction.
  • the negative electrode can 20 is also made of a metal material such as stainless steel (for example, NAS64).
  • the negative electrode can 20 can be formed with Ni plating or the like on the outer surface, and is formed into a bottomed cylindrical shape by press molding.
  • the negative electrode can 20 has a substantially cylindrical side wall portion 22 whose outer shape is smaller than the outer peripheral wall portion 12 of the positive electrode can 10, and a circular flat portion 21 closing one opening thereof.
  • the side wall portion 22 is also provided so as to extend in the height direction of the coin-shaped battery 1 from the outer peripheral end of the flat portion 21 in a longitudinal sectional view. That is, the side wall portion 22 extends from the plane portion 21 in the axial direction.
  • the negative electrode can 20 has an opening on the side opposite to the plane portion 21 in the axial direction.
  • the side wall 22 extends in the axial direction without being folded back at the tip. That is, the negative electrode can 20 is a so-called straight can, in which the end of the side wall 22 has no turn.
  • the side wall portion 22 is formed with an enlarged diameter portion 22b having a larger diameter than the base end portion 22a on the flat surface portion 21 side. That is, the side wall portion 22 is formed with a step-like shoulder portion 22c that expands in the radial direction between the base end portion 22a and the enlarged diameter portion 22b.
  • the peripheral wall portion 12 of the positive electrode can 10 is radially pressed against the side wall portion 22 with a resin film 30 described later interposed therebetween.
  • the opening end portion 13 is largely displaced in the radial direction as compared with other portions of the peripheral wall portion 12, so that the shoulder portion 22 c of the negative electrode can 20 also has the positive end of the positive electrode can 10.
  • a part of the pressing force by the peripheral wall portion 12 can be provided. Therefore, the opening end 23 of the side wall 22 of the negative electrode can 20 (the end on the opening side of the side wall 22) sandwiches a film bottom 32 of the resin film 30, which will be described later, with the bottom 11 of the positive electrode can 10. .
  • the outer diameter d1 of the bottom surface portion 11 of the positive electrode can 10 and the outer diameter d3 of the flat surface portion 21 of the negative electrode can 20 preferably satisfy 0.87 ⁇ d3 / d1 ⁇ 0.935.
  • the outer diameter d1 of the bottom part 11 of the positive electrode can 10 is substantially equal to the outer diameter of the coin-shaped battery 1. Therefore, by setting the outer diameter d3 of the flat portion 21 of the negative electrode can 20 to 87% or more of the outer diameter d1 of the bottom portion 11 of the positive electrode can 10, the actual volume of the coin-shaped battery 1 (the The ratio of the space inside the negative electrode can 20 to the volume (volume determined from the outer dimensions) can be increased. That is, by satisfying d3 / d1 ⁇ 0.87, the ratio of the accommodation space S of the electrode body 40 to the actual volume of the coin battery 1 can be increased. Thereby, the battery capacity of the coin-type battery 1 can be increased.
  • the outer diameter d3 of the flat portion 21 of the negative electrode can 20 is preferably 93.5% or less, more preferably 93% or less, with respect to the outer diameter d1 of the bottom portion 11 of the positive electrode can 10.
  • the opening end 13 of the peripheral wall portion 12 of the positive electrode can 10 can be displaced by a certain amount or more in the radial direction and caulked to the side wall portion 22 of the negative electrode can 20. Therefore, in the coin-type battery 1, it is possible to ensure good sealing performance.
  • the outer diameter d4 of the open end 23 of the side wall 22 of the negative electrode can 20 and the open end 13 of the peripheral wall 12 of the positive electrode can 10 in a state where the resin film 30 is sandwiched between the negative electrode can 20 Preferably satisfies 0.94 ⁇ d2 / d4 ⁇ 1.02.
  • the relationship between the outer diameter d4 of the open end 23 in the side wall 22 of the negative electrode can 20 and the inner diameter d2 of the open end 13 in the peripheral wall 12 of the positive electrode can 10 is defined by the peripheral wall of the positive electrode can 10 with respect to the side wall 22 of the negative electrode can 20. It changes depending on the fitting structure of the part 12. For example, the peripheral wall of the positive electrode can is caulked to the shoulder of the side wall of the negative electrode can, and the gasket is pressed between the open end of the side wall of the sealing can and the bottom of the outer can to be sealed. In the configuration of the conventional coin-type battery, the value of d2 / d4 is a small value of about 0.9.
  • the peripheral wall 12 of the positive electrode can 10 is pressed against the side wall 22 of the negative electrode can 20 by displacing the peripheral wall 12 of the positive electrode can 10 in the radial direction. That is, the peripheral wall portion 12 of the positive electrode can 10 is radially fitted to the side wall portion 22 of the negative electrode can 20.
  • the relationship between the inner diameter d2 of the open end 13 in the peripheral wall 12 of the positive electrode can 10 and the outer diameter d4 of the open end 23 in the side wall 22 of the negative electrode can 20 is 0.94 ⁇ d2 / d4.
  • the peripheral wall portion 12 of the positive electrode can 10 presses the resin film 30 in the radial direction with an appropriate force.
  • the sealing performance of the resin film 30 disposed between the peripheral wall portion 12 of the positive electrode can 10 and the side wall portion 22 of the negative electrode can 20 can be improved.
  • the pressing force concentrates on a part of the side wall 22 of the negative electrode can 20, such as the open end 23. Therefore, the force with which the peripheral wall portion 12 of the positive electrode can 10 presses the resin film 30 in the radial direction decreases, and the sealing performance of the entire battery decreases, or the open end 23 of the negative electrode can 20
  • the force for pressing in the axial direction is large, there is a possibility that the open end 23 of the negative electrode can 20 breaks the resin film 30 and contacts the bottom surface 11 of the positive electrode can 10 to cause a short circuit.
  • the outer diameter d3 of the flat portion 21 of the negative electrode can 20 and the outer diameter d4 of the open end 23 in the side wall portion 22 of the negative electrode can 20 satisfy d3 / d4 ⁇ 0.85.
  • the relationship between the outer diameter d3 of the flat portion 21 of the negative electrode can 20 and the outer diameter d4 of the open end 23 of the side wall 22 of the negative electrode can 20 also depends on the fitting of the peripheral wall 12 of the positive electrode can 10 to the side wall 22 of the negative electrode can 20. It depends on the combined structure. For example, in the configuration of a conventional coin-type battery in which the peripheral wall portion of the positive electrode can is swaged on the shoulder portion of the side wall portion of the negative electrode can, the shoulder portion is designed to have a certain width or more. In the conventional coin-type battery, the value of d3 / d4 is about 0.8.
  • the peripheral wall 12 of the positive electrode can 10 is radially fitted to the side wall 22 of the negative electrode can 20. Therefore, in the radial direction of the coin-type battery 1, the projecting dimension of the shoulder portion 22 c on the side wall portion 22 of the negative electrode can 20 can be made smaller than in the conventional configuration, and dead space other than the space necessary for housing the electrode body 40 can be reduced. The space can be reduced and the capacity of the battery can be increased.
  • the value of d3 / d4 is more preferably equal to or greater than 0.9, and particularly preferably equal to or greater than 0.93.
  • the opening end 23 of the side wall 22 of the negative electrode can 20 generates a force that presses a film bottom 32 described below against the bottom 11 of the positive electrode can 10.
  • the value of d3 / d4 is 0.98 or less.
  • the fitting structure of the coin-type battery 1 can be downsized by reducing the protrusion of the shoulder 22c on the side wall 22 of the negative electrode can 20 in the radial direction of the coin-type battery 1. Therefore, it is possible to reduce the size of the coin battery 1 while increasing the accommodation space S for accommodating the electrode body 40.
  • the outer diameter means the diameter at the outermost peripheral position of the target portion in the radial direction.
  • the inner diameter means the diameter at the innermost position of the target portion in the radial direction.
  • FIG. 1 specifically shows dimensions d1 to d4.
  • the value of d3 / d1 is more preferably 0.89 or more, and more preferably 0.9 or more. Is particularly preferred.
  • the value of d3 / d1 is more preferably 0.93 or less, in order to improve the sealing performance by better caulking the opening end portion 13 in the peripheral wall portion 12 of the positive electrode can 10, 0.925 or less, particularly preferably 0.92 or less.
  • the value of d2 / d4 is more preferably 0.95 or more, and particularly preferably 0.96 or more.
  • the value of d2 / d4 is more preferably 1.01 or less, and particularly preferably 1 or less.
  • the resin film 30 can be made of a resin such as polyphenylene sulfide (PPS), polyetheretherketone (PEEK), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), or polypropylene (PP).
  • the resin film 30 is preferably made of a heat-resistant resin having a melting point or thermal decomposition temperature of 200 ° C. or more, such as PPS, in order to prevent a decrease in sealing property at a high temperature.
  • the resin film 30 is a cylindrical resin member having heat shrinkability.
  • the resin film 30 has a thickness of, for example, about 0.1 mm.
  • the thickness of the resin film 30 is preferably, for example, 0.05 mm or more in order to secure good sealing properties.
  • the thickness of the resin film 30 is preferably, for example, 0.15 mm or less in order to increase the volume of the accommodation space S of the electrode body 40.
  • the resin film 30 may be, for example, a commercially available heat-shrinkable film made of the resin described above. That is, the resin film 30 is preferably, for example, a cylindrical heat-shrinkable tube.
  • the resin film 30 is integrated with the outer surface of the side wall 22 of the negative electrode can 20 by heat treatment as described later.
  • the resin film 30 after the heat treatment includes a film peripheral wall 31 located on the outer surface of the side wall 22 of the negative electrode can 20 and a film bottom 32 located on the open end 23 of the side wall 22 of the negative electrode can 20.
  • the shape of the resin film 30 before the heat treatment may be a cylindrical shape other than the cylindrical shape as long as the shape can be integrated with the outer surface of the side wall 22 of the negative electrode can 20.
  • the resin film 30 is located outside the side wall 22 of the negative electrode can 20 while being sandwiched between the positive electrode can 10 and the negative electrode can 20.
  • the film peripheral wall portion 31 is formed in a cylindrical shape extending in the axial direction along the outer surface of the side wall portion 22 of the negative electrode can 20.
  • the film peripheral wall 31 is disposed between the peripheral wall 12 of the positive electrode can 10 and the side wall 22 of the negative electrode can 20.
  • the film bottom portion 32 is formed in an annular shape extending from one end of the film peripheral wall portion 31 in the axial direction toward the radial inside of the film peripheral wall portion 31. That is, the resin film 30 has the hole 30 a surrounded by the film bottom 32.
  • the resin film 30 is formed as an annular body having a hook-shaped cross section.
  • the film bottom 32 is sandwiched between the open end 23 of the side wall 22 of the negative electrode can 20 and the bottom 11 of the positive electrode can 10.
  • a sealant is disposed between the resin film 30 and the peripheral wall portion 12 of the positive electrode can 10 and between the resin film 30 and the side wall portion 22 of the negative electrode can 20, respectively.
  • the material of the sealant is not particularly limited as long as it is a material having resistance to the electrolyte and low moisture permeability.
  • sealant commercially available products include, for example, "Elepcoat” (registered trademark) manufactured by Nitto Shinko, “Humiseal” (registered trademark) manufactured by Air Brown, “Hayacoat” (registered trademark) manufactured by Sun Hayato Co., Ltd., and Fluorotechnology
  • the resin film 30 Since the resin film 30 is apt to form unevenness in thickness and surface irregularities during heat treatment, the resin film 30 has an adhesive property between the peripheral wall portion 12 of the positive electrode can 10 and the resin film 30 or the side wall portion 22 of the negative electrode can 20 and the resin film 30. 30 may not be sufficiently obtained. For this reason, compared with the case where a resin gasket is used as the sealing member, the sealing property is easily reduced, and the durability of the battery is easily reduced due to intrusion of moisture.
  • the sealant is disposed on at least one, and preferably both, between the resin film 30 and the peripheral wall 12 of the positive electrode can 10 and between the resin film 30 and the side wall 22 of the negative electrode can 20.
  • the electrode body 40 includes a substantially disk-shaped positive electrode 41 and a substantially disk-shaped negative electrode 46 housed in a bag-shaped separator 44 in the height direction of the coin-shaped battery 1. And a plurality of layers are alternately stacked. Thereby, the electrode body 40 has a substantially columnar shape extending in the axial direction as a whole. In the electrode body 40, a plurality of positive electrodes 41 and a plurality of negative electrodes 46 are stacked such that both end faces in the axial direction become negative electrodes.
  • the positive electrode 41 is a member in which a positive electrode active material layer 42 containing a positive electrode active material such as lithium cobalt oxide is formed on both surfaces of a positive electrode current collector 43 made of a metal foil such as aluminum. It is.
  • the negative electrode 46 is a member in which a negative electrode active material layer 47 containing a negative electrode active material such as graphite is formed on both surfaces of a negative electrode current collector 48 made of metal foil such as copper.
  • a negative electrode active material layer 47 containing a negative electrode active material such as graphite is formed on both surfaces of a negative electrode current collector 48 made of metal foil such as copper.
  • the negative electrodes positioned at both ends in the axial direction of the substantially cylindrical electrode body 40 are disposed on one surface of the negative electrode current collector 48 such that the negative electrode current collectors 48 are located at the axial ends of the electrode body 40, respectively.
  • the negative electrode active material layer 47 is provided only on the side. That is, the negative electrode current collectors 48 are exposed at both ends of the substantially cylindrical electrode body 40.
  • One negative electrode current collector 48 of the electrode body 40 is positioned on the bottom surface 11 of the positive electrode can 10 via the positive electrode current collector 43 and the insulating sheet 49 (see FIGS. 1 and 2).
  • the other negative electrode current collector 48 of the electrode body 40 contacts the flat portion 21 of the negative electrode can 20 in a state where the electrode body 40 is disposed between the positive electrode can 10 and the negative electrode can 20 (see FIG. 1). .
  • the separator 44 is a bag-like member formed in a substantially circular shape in plan view, and is formed in a size that can accommodate the substantially disk-shaped positive electrode 41.
  • the separator 44 is composed of a polyethylene microporous thin film having excellent electrical insulation. Thus, by forming the separator 44 from a microporous thin film, lithium ions can pass through the separator 44.
  • the separator 44 is formed by bonding peripheral portions of two substantially circular microporous thin films by heat welding or the like.
  • the positive electrode current collector 43 of the positive electrode 41 is integrally formed with a conductive positive electrode lead 51 extending outward from the positive electrode current collector 43 in plan view.
  • the positive electrode current collector 43 side of the positive electrode lead 51 is also covered with the separator 44.
  • a positive electrode current collector 43 in which the positive electrode active material layer 42 is not provided is arranged between the insulating sheet 49 and the bottom part 11 of the positive electrode can 10. That is, the positive electrode current collector 43 is in electrical contact with the bottom surface 11 of the positive electrode can 10.
  • the negative electrode current collector 48 of the negative electrode 46 is integrally formed with a conductive negative electrode lead 52 extending outward from the negative electrode current collector 48 in plan view.
  • the positive electrode lead 51 of each positive electrode 41 is located on one side, and the negative electrode lead 52 of each negative electrode 46 is on the opposite side to the positive electrode lead 51. It is laminated so that it is located.
  • the plurality of positive electrode leads 51 are formed by ultrasonic welding or the like in a state where the tip sides are overlapped in the height direction. Connected.
  • the plurality of positive electrodes 41 are electrically connected to each other via the plurality of positive electrode leads 51, and each of the positive electrodes 41 is electrically connected to the positive electrode can 10, respectively.
  • the plurality of negative electrode leads 52 are also connected by ultrasonic welding or the like in a state where the distal ends are overlapped in the height direction.
  • the plurality of negative electrodes 46 are electrically connected to each other via the plurality of negative electrode leads 52, and each of the negative electrodes 46 is electrically connected to the negative electrode can 20, respectively.
  • FIG. 3 is a sectional view showing a schematic configuration of a sealing can (anode can) used for assembling the battery.
  • FIGS. 4 and 5 are partially enlarged cross-sectional views showing a cross section of an enlarged diameter portion of a side wall portion of the sealing can.
  • FIG. 4 is a partially enlarged cross-sectional view showing one embodiment of a side wall of a sealed can used in the method of manufacturing a coin-shaped battery of the present invention
  • FIG. 5 is a part showing an example of a side wall of a conventional sealed can. It is an expanded sectional view.
  • the sealing can has the substantially cylindrical side wall portion 22 and the circular flat portion 21 closing one opening thereof.
  • the side wall portion 22 is provided so as to extend from the outer peripheral end of the flat portion 21 in a direction (height direction) orthogonal to the flat portion 21 in a vertical cross-sectional view. That is, the side wall part 22 extends in the height direction from the plane part 21.
  • the sealing can has an opening on the side opposite to the plane portion 21 in the height direction.
  • symbol P in FIG. 3 is an axial line extended in the height direction of a sealing can.
  • the side wall portion 22 has the base end portion 22a on the flat surface portion 21, the enlarged diameter portion 22b on the opening end portion 23 side, and the shoulder portion 22c formed therebetween.
  • the position where the shoulder portion 22c is formed is preferably a position as close as possible to the flat portion 21 in order to increase the internal volume of the battery. That is, it is preferable to make the enlarged diameter portion 22b as large as possible in the height direction.
  • the enlarged diameter portion 22b may be formed at a position higher than 7/10 of h1.
  • the outer diameter of the opening end portion 23 is d5 (mm), and the outer diameter at a position 7/10 of h1 from the tip 23a of the opening end portion 23 to the plane portion 21 is d6 (mm).
  • the position of the shoulder 22c in the height direction is preferably a position where d5 and d6 are equal.
  • the diameter-expanded portion 22b may be formed so as to satisfy ⁇ 0.1 ⁇ d5 ⁇ d6 ⁇ 0.1 in consideration of a tolerance at the time of manufacturing.
  • the part located 9/10 of h1 from the front end 23a of the opening end part 23 to the plane part 21 side is preferably the base end part 22a.
  • the tip of the side wall of the sealing can preferably has a cross-sectional shape whose outer shape is a curve in a vertical cross section. 4 and FIG. 5 is a center line indicating the center position of the radial thickness of the enlarged diameter portions 22b and 122b.
  • the thickness of the sealing can at the position 7/10 of h1 from the tip 23a of the opening end 23 to the flat surface 21 side is t1 ( mm)
  • the sealing can is formed so that the can thickness is maintained to a position as close as possible to the tip 23a of the opening end 23.
  • the tip is so set as to satisfy t2 / t1 ⁇ 0.9.
  • 23a may be formed.
  • the upper limit of the value of t2 / t1 is 1, but the value of t2 / t1 may be a value slightly larger than 1 in consideration of a tolerance at the time of manufacturing.
  • the tip 23a of the opening end 23 is located radially inward of the center line Q as shown in FIG.
  • the above problem is less likely to occur in the case of being located. Therefore, it is preferable that the distal end 23a of the open end 23 be formed radially inward of the center line Q in the radial direction.
  • the occurrence of the above problem can be further suppressed by providing R on the outer peripheral side portion 23b of the opening end 23.
  • the radius of curvature of the R of the opening end 23 is not particularly limited, but may be about 0.01 to 0.5 mm in consideration of workability.
  • the sealing can having the above-mentioned shape can be obtained by press molding by adjusting well-known conditions at the time of press molding.
  • the resin film 30 used for assembling the battery is a heat-shrinkable cylindrical resin member.
  • FIG. 7 shows a state in which the side wall 22 of the sealing can is covered with the cylindrical resin film 30 before the heat treatment at the time of assembling the battery.
  • FIG. 8 shows a state in which the cylindrical resin film 30 is heat-treated to be integrated with the side wall portion 22 of the sealing can at the time of assembling the battery.
  • the sealing resin is disposed on the side wall 22 of the sealing can so as to cover the cylindrical resin film 30 before the heat treatment.
  • This step corresponds to a step of covering the outer peripheral surface of the side wall 22 of the sealing can with a resin film.
  • the inner diameter of the resin film 30 is adjusted so that d7> d5 when the inner diameter of the cylindrical resin film 30 before the heat treatment is d7 (mm). That is, the inner diameter of the resin film 30 is larger than the outer diameter of the open end 23 of the side wall 22 of the sealing can.
  • the difference between d7 and d5 is preferably 0.5 mm or less.
  • the resin film 30 when the cylindrical resin film 30 before the heat treatment is put on the side wall 22 of the sealing can, the resin film 30 has one end in the cylinder axis direction. Are arranged on the side wall 22 of the sealing can so as to protrude from the opening end 23 of the sealing can (in FIG. 7, the protruding length is indicated by L). At this time, the resin film 30 may be cut at a predetermined position in the cylinder axis direction such that one end in the cylinder axis direction protrudes from the opening end 23 of the side wall 22 of the sealing can. When the resin film 30 is heat-treated, the projecting portion of the resin film 30 is thermally contracted and bent radially inward, so that the opening end 23 of the side wall 22 of the sealing can can be covered.
  • the protruding length L is preferably 0.3 mm or more, more preferably 0.5 mm or more.
  • the protrusion length L is preferably 2 mm or less, more preferably 1 mm or less, particularly preferably 0.8 mm or less so that the width of the film bottom formed by the heat treatment does not become unnecessarily long.
  • the resin film 30 is disposed on the side wall 22 of the sealing can so that the other end in the cylinder axis direction is, for example, at the same position as the flat portion 21 of the sealing can in the cylinder axis direction. .
  • the resin film 30 may be cut at a predetermined position in the cylinder axis direction such that the other end in the cylinder axis direction is at the same position as the flat portion 21 of the sealing can in the cylinder axis direction.
  • a sealing agent 50 to the inner peripheral surface of the resin film 30 before covering the side wall 22 of the sealing can with the resin film 30.
  • the sealant 50 may be applied to at least one of the inner peripheral surface and the outer peripheral surface of the resin film 30 in advance.
  • the sealant 50 may be applied to the outer peripheral surface of the side wall 22 of the sealing can.
  • the sealant 50 may be applied to the inner peripheral surface of the peripheral wall of the outer can.
  • the width (indicated by X in FIG. 7) for applying the sealing agent 50 is not particularly limited as long as the effect of improving the sealing property (suppressing the penetration of moisture) is not particularly limited, but generally 1 mm or more is preferable. 2 mm or more is more preferable.
  • the sealant 50 may be applied to the entire surface of the portion where the resin film 30 contacts the side wall 22 of the sealing can or the peripheral wall of the outer can.
  • the resin film 30 After covering the side wall portion 22 of the sealing can with the cylindrical resin film 30 before the heat treatment as shown in FIG. 7, the resin film 30 is heat-treated, so that the resin film 30 is covered with the side wall of the sealing can as shown in FIG. It is integrated with the outer peripheral surface of the part 22.
  • This step is a step of integrating the resin film 30 with the side wall 22 of the sealing can while covering the opening end 23 of the side wall 22 of the sealing can with the resin film 30 by heat-treating and shrinking the resin film 30.
  • the heat treatment temperature of the resin film 30 is not particularly limited, but by setting the temperature higher than the glass transition temperature of the resin film 30, the heat shrinkage of the resin film 30 is promoted, and the resin film 30 and the sealing can are sealed.
  • the side wall portion 22 can be better integrated.
  • the time of the heat treatment may be appropriately adjusted according to the progress of the heat shrinkage of the resin film 30.
  • a part of the resin film 30 forms a film peripheral wall 31 along the outer peripheral surface of the side wall 22 of the sealing can, and another part of the resin film 30 forms an open end of the side wall 22 of the sealing can.
  • a film bottom portion 32 located on the portion 23 is formed. That is, by the heat treatment of the resin film 30 as described above, the film peripheral wall portion 31 that covers the base end portion 22a, the shoulder portion 22c, and the enlarged diameter portion 22b of the side wall portion 22 of the sealing can is formed. Further, by the heat treatment of the resin film 30 as described above, a film bottom portion 32 extending from one end in the axial direction of the film peripheral wall portion 31 toward the inside of the film peripheral wall portion 31 is formed.
  • a film bottom portion 32 (a portion whose protrusion length is indicated by M in FIG. 8) protrudes inward of the side wall portion 22 from 23. This film bottom 32 covers the open end 23 of the side wall 22 of the sealing can.
  • the protruding length M at the film bottom 32 is 0.1 mm or more. And more preferably 0.3 mm or more.
  • the protrusion length M is preferably 1.5 mm or less, more preferably 1 mm or less, and more preferably 0.7 mm or less. Is particularly preferred.
  • the portion of the film bottom 32 projecting inward from the side wall 22 may have a structure bent toward the flat surface of the sealing can.
  • the outer can (positive electrode can) has a circular bottom surface, and a cylindrical peripheral wall portion extending in the axial direction formed continuously with the bottom surface portion on the outer periphery thereof.
  • a general-purpose exterior can having an opening may be used.
  • a plurality of plate-shaped positive electrodes 41 covered with a separator 44 and a plurality of plate-shaped negative electrodes 46 are stacked in the height direction to form a substantially columnar electrode body 40 as shown in FIG. . Since the electrode body 40 is manufactured by the same method as the conventional method, the detailed manufacturing method will not be described.
  • the electrode body 40 is arranged together with the insulating sheet 49 and the like in the outer can (hereinafter, the positive electrode can 10), and the positive electrode current collector 43 is welded to the inner surface of the positive electrode can 10 or is brought into electrical contact therewith.
  • a nonaqueous electrolytic solution is injected into a sealing can (hereinafter, referred to as a negative electrode can 20) in which the resin film 30 is attached on the outer peripheral surface of the side wall portion 22, and the electrode body 40 is further housed.
  • the positive electrode can 10 is disposed so as to cover the opening of the negative electrode can 20. In this state, the peripheral wall portion 12 of the positive electrode can 10 is pressed radially inward against the side wall portion 22 of the negative electrode can 20 and caulked.
  • the film peripheral wall portion 31 is sandwiched between the side wall portion 22 of the negative electrode can 20 and the peripheral wall portion 12 of the positive electrode can 10, and the open end 23 of the side wall portion 22 of the negative electrode can 20 and the bottom surface portion 11 of the positive electrode can 10
  • the resin film 30 disposed between the negative electrode can 20 and the positive electrode can 10 so that the film bottom 32 is sandwiched between the peripheral wall 12 of the positive electrode can 10 and the side wall 22 of the negative electrode can 20.
  • the peripheral wall 12 of the positive electrode can 10 and the side wall 22 of the negative electrode can 20 are fitted.
  • the coin-type battery 1 having the above-described configuration is obtained.
  • the sealant 50 may be applied in advance to at least one of the inner peripheral surface and the outer peripheral surface of the resin film 30, or at least the side wall 22 of the negative electrode can 20, the peripheral wall 12 and the bottom surface 11 of the positive electrode can 10. It may be applied to a part in advance.
  • the coin-type battery 1 manufactured through the above steps has an outer diameter d1 of the peripheral wall portion 12 of the positive electrode can 10 and an outer diameter d3 of the flat portion 21 of the negative electrode can 20 satisfying 0.87 ⁇ d3 / It is preferable to be designed so as to satisfy d1 ⁇ 0.935.
  • the coin-shaped battery 1 has an inner diameter d2 of the opening end 13 of the peripheral wall portion 12 of the positive electrode can 10 and an opening of the side wall portion 22 of the negative electrode can 20 in a state where the resin film 30 is sandwiched between the negative electrode can 20 and the crimped battery. It is preferable that the outer diameter d4 of the end portion 23 is designed so as to satisfy 0.94 ⁇ d2 / d4 ⁇ 1.02.
  • the accommodation space S in the coin-shaped battery 1 can be enlarged as compared with the conventional configuration, and the capacity of the coin-shaped battery 1 can be increased. That is, by setting the relationship between the outer diameter d3 of the flat portion 21 of the negative electrode can 20 and the outer diameter d1 of the bottom portion 11 of the positive electrode can 10 to be 0.87 ⁇ d3 / d1 ⁇ 0.935, the outer dimensions of the battery can be reduced. On the other hand, the space inside the negative electrode can 20 can be increased.
  • the relationship between the outer diameter d4 of the open end 23 of the side wall 22 of the negative electrode can 20 and the inner diameter d2 of the open end 13 of the peripheral wall 12 of the positive electrode can 10 is 0.94 ⁇ d2 / d4 ⁇ 1.02.
  • the shape of the negative electrode can 20 is almost the same as that of the original sealed can. . Therefore, the outer diameter d5 at the open end 23 of the side wall 22 in the original sealing can and the outer diameter d4 at the open end 23 of the side wall 22 in the negative electrode can 20 of the assembled coin-type battery 1 are: Almost the same. Further, in order to make the ratio (d3 / d4) of the outer diameter d3 and d4 of the flat portion 21 of the negative electrode can be in the range of 0.85 or more and 0.98 or less, the flat portion 21 in the original sealing can is used. May be set in a range of approximately 0.85 or more and 0.98 or less.
  • Example 1 ⁇ Preparation of positive electrode> Using LiCoO 2 as the positive electrode active material, carbon black as the conductive additive, and PVDF as the binder, a positive electrode was produced as follows.
  • a binder solution in which the obtained mixture and 4 parts by mass of PVDF are dissolved in NMP (N-methyl-2-pyrrolidone) in advance. was mixed to prepare a positive electrode mixture paste.
  • the obtained positive electrode mixture paste was applied to both surfaces of a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m using an applicator.
  • the positive electrode mixture paste was applied on the positive electrode current collector such that the applied portion and the uncoated portion were alternated, and the portion having the coated portion on the front surface was also the coated portion on the back surface.
  • the applied positive electrode mixture paste was dried to form a positive electrode active material layer, roll-pressed, and cut into a predetermined size to obtain a belt-shaped positive electrode sheet.
  • the positive electrode sheet was formed such that the entire thickness of the portion where the positive electrode active material layer was formed was 140 ⁇ m.
  • FIG. 9 is a plan view schematically showing the punched positive electrode.
  • the positive electrode 41 has a main body 41a in which a positive electrode active material layer 42 is formed on both surfaces of a positive electrode current collector 43, and a positive electrode tab 41b projecting from the main body 41a and having a smaller width than the main body 41a.
  • a negative electrode mixture paste was prepared by mixing 94 parts by mass of graphite and a binder solution in which 6 parts by mass of PVDF was previously dissolved in NMP.
  • the obtained negative electrode mixture paste was applied to one or both surfaces of a negative electrode current collector made of a copper foil having a thickness of 10 ⁇ m using an applicator.
  • the application part and the non-application part are alternately arranged, and when the negative electrode mixture paste is applied to both surfaces of the current collector, the front side of the application part is also the rear side so that the application part is also the application part. Then, the negative electrode mixture paste was applied on the negative electrode current collector.
  • the applied negative electrode mixture paste was dried to form a negative electrode active material layer, roll-pressed, and then cut into a predetermined size to obtain a strip-shaped negative electrode sheet.
  • the total thickness of the portion where the negative electrode active material layer was formed was 190 ⁇ m when the negative electrode active material layer was formed on both surfaces of the current collector, and when the negative electrode active material layer was formed on one surface of the current collector.
  • the negative electrode sheet was formed so as to have a thickness of 100 ⁇ m.
  • the strip-shaped negative electrode sheet is formed such that a portion where the negative electrode active material layer is formed becomes a main body portion (diameter of an arc portion: 6.5 mm) and a portion where the negative electrode active material layer is not formed becomes a negative electrode tab portion.
  • a negative electrode having a negative electrode active material layer on one surface of a current collector and a negative electrode having a negative electrode active material layer on both surfaces of the current collector were obtained.
  • a 100 ⁇ m thick PET film It was punched after attaching an insulating sheet).
  • FIG. 10 is a plan view schematically showing the negative electrode after punching.
  • the negative electrode 46 has a main body 46a having a negative electrode active material layer 47 formed on both surfaces or one surface of a negative electrode current collector 48, and a negative electrode tab 46b projecting from the main body 46a and having a smaller width than the main body 46a.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 at a concentration of 1.2 mol / l in a mixed solvent of ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 2.
  • FIG. 11 schematically illustrates the separator used in this example.
  • a polyethylene microporous film (16 ⁇ m thick) having the shape shown in FIG. 11 is disposed on both surfaces of the positive electrode 41 produced as described above, and a part of the peripheral portion of the main portion 44 a of both separators 44 and the overhang portion 44 b Are welded by a hot press (temperature: 170 ° C., press time: 2 seconds), and a joining portion is formed at a part of the peripheral part of the main part 44a and a part of the peripheral part of the overhang part 44b of the two separators 44.
  • a hot press temperature: 170 ° C., press time: 2 seconds
  • FIG. 11 shows an electrode body in which the positive electrode 41, the negative electrode 46, and the separator 44 are stacked.
  • the positive electrode 41 disposed below the separator 44 is indicated by a dotted line
  • the negative electrode tab portion 46b of the negative electrode 46 disposed further below the positive electrode 41 is indicated by a dashed line. Is shown by a two-dot chain line.
  • the positive electrode 41 shown in FIG. 11 is laminated on the negative electrode 46 via one of a pair of separators 44 integrated with the positive electrode 41 sandwiched in the thickness direction in the electrode body.
  • the negative electrode is disposed below the separator 44 (on the back side of the paper in FIG. 11).
  • the separator 44 shown in FIG. 11 is welded at the peripheral edge to another separator 44 which is disposed below (the depth side in FIG. 10) the positive electrode 41 (indicated by a dotted line in the figure) in the thickness direction. It has a joint 44c (indicated by a lattice pattern in the figure).
  • the pair of separators 44 arranged so as to sandwich the positive electrode 41 in the thickness direction are welded to each other at the peripheral edge to form a bag. And are integrated.
  • the separator 44 shown in FIG. 11 includes a main body 44a that covers the entire surface of the main body 41a of the positive electrode 41 (that is, a main body 44a having a larger area in plan view than the main body 41a of the positive electrode 41) and a main body 44a. And a projecting portion 44b that protrudes and covers a boundary portion of the positive electrode tab portion 41b of the positive electrode 41 with the main body portion 41a.
  • a joining portion 44c for welding a pair of separators 44 disposed on both surfaces of the positive electrode 41 to each other is provided on at least a part of the peripheral portion of the main portion 44a and the overhanging portion 44b of the separator 44.
  • a non-welded portion 44d where the separators 44 are not welded to each other is provided at a part of the peripheral portion of the main portion 44a.
  • the width of the joining portion 44c provided in the main portion 44a and the overhanging portion 44b of the separator 44 is 0.3 mm, and the width of the peripheral portion of the overhanging portion 44b in the protruding direction from the main portion 44a.
  • the length was 0.5 mm. Further, a 90% length portion of the outer edge of the main body portion 44a of the separator 44 was used as a joining portion.
  • the positive electrode and the negative electrode were alternately stacked, and the whole was fixed with a binding tape to obtain an electrode body.
  • the outer can was formed by press-forming a 0.1 mm-thick plate made of SUS316 in a circular bottom surface and in a direction (height direction) orthogonal to the bottom surface from the outer peripheral edge thereof.
  • a metal can having a cylindrical peripheral wall portion and having an opening on the side opposite to the bottom portion was produced.
  • the outer surface of the outer can is plated with Ni.
  • the outer diameter of the bottom of the outer can was 7.85 mm.
  • a sealing can a circular flat portion and a direction perpendicular to the flat portion (height direction) are formed from the outer peripheral edge by press-molding a plate material having a thickness of 0.1 mm made of NAS64 by press molding.
  • the outer surface of the sealing can is plated with Ni.
  • the height h1 of the sealing can was 3.55 mm, and the outer diameter of the plane portion was 7.14 (mm).
  • a shoulder was formed on the side wall at a position 2.9 mm (82/100 of h1) from the tip of the opening end toward the plane.
  • the outer diameter d5 of the side wall portion at the opening end is 7.44 mm
  • the outer diameter d6 of the side wall portion and the can thickness t1 at a position 7/10 of h1 from the tip of the opening end to the plane portion are respectively 7 .44 mm and 0.10 mm
  • the tip of the open end was located radially inward from the center line of the radial thickness at the enlarged diameter portion.
  • a cylindrical resin film made of polyphenylene sulfide having a glass transition point of about 90 ° C. was used as a sealing member between the outer can and the sealing can, as shown in FIG.
  • the cylindrical resin film is placed on the sealing can so that one end in the cylinder axis direction is at the same position as the flat portion of the sealing can.
  • the sealing can covered with the resin film was subjected to a heat treatment by holding it in an electric furnace at 110 ° C. for 10 minutes to integrate the resin film with the outer peripheral surface of the side wall of the sealing can.
  • the projecting length M of the resin film projecting inward from the opening end of the sealing can was 0.5 mm.
  • the PET film of the negative electrode of the electrode body was arranged in the outer can so as to face the inner surface of the outer can, and the integrated positive electrode tab portion of each of the positive electrodes was welded to the inner surface of the outer can. .
  • the outer can containing the electrode body is placed over the sealing can, and the peripheral wall of the outer can is covered. Sealing was performed by caulking the part against the side wall part of the sealing can.
  • a coin-shaped non-aqueous secondary battery having the same structure as the battery shown in FIG. 1 and having an outer diameter of 7.85 mm and a height of 4 mm was obtained.
  • the inner surface of the resin film and the inner surface of the outer wall of the outer can were previously coated with Nippon Shinko's “ELEPCOAT (registered trademark) @ LSS-520MH (product name)” with a width of 3.5 mm. Then, after assembling the battery, sealing was performed so that the sealing agent was interposed on almost the entire surface of the resin film facing the sealing can and the facing surface of the resin film facing the outer can.
  • the outer diameter d1 of the bottom portion of the outer can was 7.85 (mm).
  • the inner diameter d2 of the opening end in the peripheral wall of the outer can was 7.26 (mm).
  • the outer diameter d3 of the flat part of the sealing can was 7.14 (mm).
  • FIG. 12 is an end view when the annular gasket 130 is cut along a plane including the axis P.
  • the thickness t4 in the axial direction of the portion disposed at 0.25 mm and about 0.5 mm before the battery was assembled, respectively.
  • a positive electrode having a diameter of 5.6 mm in the arc portion of the main body portion on which the positive electrode active material layer was formed was formed, and the main body portion formed with the negative electrode active material layer was formed from the strip-shaped negative electrode sheet.
  • a negative electrode having an arc portion of 6.2 mm in diameter was formed.
  • a battery was manufactured by forming an electrode body using these positive and negative electrodes.
  • the outer diameter d1 of the bottom surface of the outer can of the battery was 7.85 (mm).
  • the inner diameter d2 of the opening end in the peripheral wall of the outer can was 7.2 (mm).
  • the outer diameter d3 of the flat part of the sealing can was 6.8 (mm).
  • the outer diameter d4 of the open end of the side wall of the sealing can was 7.1 (mm).
  • an annular gasket having a U-shaped vertical cross section corresponding to the side wall of the sealing can and the same outer can as in Example 1 are used.
  • the outer diameter of the electrode body was reduced in accordance with the reduced accommodation space for accommodating the electrode body as compared with the battery of Comparative Example 1.
  • the coin-shaped battery of Example 1 was able to increase the discharge capacity by 26% compared to the battery of Comparative Example 2 having the conventional configuration.
  • the coin-type battery of Example 1 was able to increase the discharge capacity by 10% compared to the battery of Comparative Example 1 in which the internal volume of the battery was increased by making the gasket thinner.
  • the above-mentioned capacity difference becomes more remarkable as the outer diameter of the battery becomes smaller. Therefore, the effects of the present invention are more remarkable in a battery having an outer diameter of 10 mm or less.
  • a disc-shaped compact having a diameter of 6.34 mm and a height of 3.65 mm was prepared by compressing 0.4 g of electrolytic manganese dioxide powder with a press pressure of 130 kg, and the compact was heated at 270 ° C. It was dried by holding it for at least 18 hours in a dry air atmosphere.
  • Example 1 Next, in the same manner as in Example 1 except that the dried molded body was used instead of the electrode body of the battery of Example 1 and the non-aqueous electrolyte was not injected, the evaluation molded article was sealed. Battery A (same sealing structure as in Example 1) was produced.
  • a battery B for evaluation (the same sealing structure as that of Comparative Example 1) was produced in the same manner as the battery A for evaluation.
  • the moisture content of the molded body in each evaluation battery before high-temperature storage as described above is measured in advance, and the difference between the measurement result and the moisture content measurement result after high-temperature storage (the increase in the moisture content) ).
  • the sealing performance (moisture permeability during high-temperature storage) of the batteries of Example 1 and Comparative Example 1 was evaluated.
  • Table 2 shows the difference in the water content described above.
  • Comparative Examples 3 to 6 were produced as follows.
  • the battery was charged under the same conditions as in the above-described measurement of the battery capacity, and the charged battery was stored for 50 days in an environment of 60 ° C. and a relative humidity of 90%.
  • Table 3 shows the results.
  • batteries without a short circuit and liquid leakage are indicated by circles, and batteries with a short circuit and liquid leakage are indicated by x, respectively.
  • Example 1 in which the values of d3 / d1 and d2 / d4 are within the ranges of 0.87 ⁇ d3 / d1 ⁇ 0.935 and 0.94 ⁇ d2 / d4 ⁇ 1.02, respectively. No battery produced a short circuit and liquid leakage.
  • the battery of Comparative Example 3 caused a short circuit because the ratio of the space for accommodating the electrode body was smaller than that of the battery of Example 1.
  • the configuration of the present invention can increase the capacity of a small coin battery while maintaining the sealing performance.
  • the electrode body 40 has a configuration in which the plurality of positive electrodes 41 and the negative electrodes 46 are alternately stacked, but the configuration of the electrode body may be another configuration.
  • the positive electrode 41 includes a positive electrode active material layer containing a positive electrode active material such as lithium cobalt oxide
  • the negative electrode 46 includes a negative electrode active material layer 47 containing a negative electrode active material such as graphite.
  • the configurations of the positive electrode and the negative electrode may be configurations other than those described above.
  • the positive electrode can 10 is an outer can
  • the negative electrode can 20 is a sealed can
  • the positive electrode can may be a sealed can and the negative electrode can may be an outer can.
  • the coin battery according to the present invention can be used in a configuration in which a sealing member is sandwiched between a sealing can and an outer can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

封止性を損なうことなく、電極体を収容するための収容空間を大きくすることにより高容量化され、且つ、信頼性に優れたコイン形電池及びその製造方法を提供する。コイン形電池1は、正極缶10と、負極缶20と、正極缶10の周壁部12と負極缶20の側壁部22との間に少なくとも一部が配置された樹脂フィルム30と、発電要素40と、を備える。樹脂フィルム30は、筒状に形成され、正極缶10の周壁部12と負極缶20の側壁部22との間に配置されたフィルム周壁部31と、正極缶10の底面部11と負極缶20の側壁部22の開口端部23との間に配置されたフィルム底部32と、を備えた環状体である。

Description

コイン形電池及びその製造方法
 本発明は、コイン形電池及びその製造方法に関する。
 コイン形電池またはボタン電池と呼ばれる扁平形状の電池が知られている。この電池では、正極と負極との間にセパレータが挟み込まれて構成された電極体が、電解液とともに、電池ケース内に収容されている。この電池ケースは、底面部及び周壁部を有し且つ該周壁部に開口部が設けられた外装缶と、平面部及び側壁部を有し、且つ、該側壁部に開口部及び肩部が形成された封口缶と、前記外装缶と前記封口缶との間に配置されるガスケットとを備えている。前記外装缶の周壁部と前記封口缶の側壁部とは、嵌合されている。
 上述のような構成を有する電池では、外装缶と封口缶との嵌合において、ガスケットに効率良く圧力を加えて封止する一方、内容積を大きくして高容量化を図るために、外装缶及び封口缶の封止構造について、さまざまな検討が行われている。
 そのような封止構造の1つとして、封口缶の側壁部に折り返し部分を設けず、ガスケットの断面形状をL字状にすることが提案されている(特許文献1)。このような封止構造を用いることにより、封口缶の側壁部を折り返す構造に比べて、側壁部の内側の容積を増大させることができる。これにより、電池の高容量化を図ることができる。
 また、封口缶の側壁部に折り返し部分を設けない場合の耐漏液性を高めるために、封口缶の側壁部の先端の内周側部分の曲率半径を、外周側部分の曲率半径よりも小さくすること、及び、封口缶の側壁部の開口部を電池の中心側に屈曲させることにより、封口缶の側壁部の先端部とガスケットとの密着性を向上させることも提案されている(特許文献2及び3)。これにより、封止性を改善して漏液の発生を抑制することができる。
 しかしながら、上述のようにガスケットの断面形状をL字状にした場合でも、前記ガスケットの厚みの低減には限界がある。よって、電池の内容積を一定以上増加させることができない。そのため、ガスケットの断面形状を工夫した場合でも、電池の高容量化は、限られた範囲でしか実現することができない。
 一方、上述のガスケット以外の材料をシール部材として用いることも検討されている。例えば特許文献4には、約0.1mmの厚さの熱可塑性樹脂(ポリアミド、ポリエーテルエーテルケトンなど)のシール部材を用いるボタン電池が開示されている。
特開平8-190900号公報 特開平8-222192号公報 特開2007-200682号公報 特表2012-517658号公報
 しかし、特許文献4に開示されるように薄い樹脂製のシール部材を用いて封止を行う場合には、ガスケットを用いて封止を行う場合よりも良好な封止性を実現することが難しい。そのため、封止性を損なうことなく、電極体を収容するための収容空間を大きくすることにより高容量化され、且つ、信頼性に優れた電池が求められている。
 本発明の目的は、封止性を損なうことなく、電極体を収容するための収容空間を大きくすることにより高容量化され、且つ、信頼性に優れたコイン形電池及びその製造方法を提供することにある。
 本発明の一実施形態に係るコイン形電池は、底面部と周壁部とを備え、厚み方向において、前記底面部とは反対側に開口を有する外装缶と、平面部と側壁部とを備え、厚み方向において、前記平面部とは反対側に開口を有し、且つ、前記側壁部に、前記平面部と前記開口との間に位置して径方向に拡がる段状の肩部が設けられた封口缶と、前記外装缶の周壁部と前記封口缶の側壁部との間に少なくとも一部が配置された樹脂フィルムと、前記外装缶と前記封口缶とによって形成された収容空間内に配置された発電要素と、を備えたコイン形電池である。前記樹脂フィルムは、筒状に形成され、前記外装缶の周壁部と前記封口缶の側壁部との間に配置されたフィルム周壁部と、前記外装缶の底面部と前記封口缶の側壁部の開口端部との間に配置されたフィルム底部と、を備えた環状体である。前記コイン形電池は、前記外装缶の底面部の外径をd1(mm)、前記外装缶の周壁部における開口端部の内径をd2(mm)、前記封口缶の平面部の外径をd3(mm)、前記封口缶の側壁部における開口端部の外径をd4(mm)とすると、0.87≦d3/d1≦0.935、且つ、0.94≦d2/d4≦1.02を満たす(第1の構成)。
 これにより、コイン形電池内の電極体の収容空間を、従来の構成に比べて大きくすることができ、電池の高容量化を図れる。すなわち、外装缶の周壁部と封口缶の側壁部との間に配置されるシール部材を厚みの薄い樹脂フィルムによって構成することで、前記シール部材としてガスケットを用いる従来の構成に比べて、前記外装缶の周壁部と前記封口缶の側壁部との間隔を小さくすることができる。これにより、前記従来の構成に比べて、前記封口缶内部の電極体の収容空間を大きくすることができる。
 しかも、前記封口缶の側壁部の内方には前記シール部材が配置されない空きスペースが形成されるため、前記封口缶内部の電極体の収容空間をより大きくすることができる。
 また、前記封口缶の平面部の外径d3と前記外装缶の底面部の外径d1との関係を0.87≦d3/d1≦0.935にすることで、電池の外形寸法に対して、前記封口缶の内部の空間を大きくすることができる。
 外装缶の周壁部における開口端部の内径d2と封口缶の側壁部における開口端部の外径d4との関係は、封口缶の側壁部に対する外装缶の周壁部の嵌合構造によって変化する。すなわち、封口缶の側壁部の肩部に、外装缶の周壁部がかしめられ、封口缶の側壁部の開口端部と外装缶の底面部との間でシール部材が押圧されることによって封止される従来の構成では、d2/d4の値は、0.9程度の小さな値である。
 これに対し、上述の構成のように、外装缶の周壁部における開口端部の内径d2と封口缶の側壁部における開口端部の外径d4との関係を0.94≦d2/d4≦1.02にすることで、前記封口缶の側壁部に対して径方向に嵌合する構造において、従来の構成と同様の封止性能を実現することが可能になる。すなわち、d2/d4の値を前記範囲に設定することにより、前記外装缶の周壁部が、厚みの薄いシール部材を径方向に適切な力で押圧することができる。これにより、前記外装缶の周壁部と前記封口缶の側壁部との間に配置されたシール部材の封止性能を向上させることができる。
 よって、d2/d4を上述の範囲にすることで、封止構造をコンパクトな構成にすることができる。これにより、電極体が収容される収容空間を大きくしつつコイン形電池の小型化を実現することができる。
 したがって、上述の構成により、封止性を損なうことなく、電極体を収容するための収容空間を大きくすることができるコンパクトなコイン形電池が得られる。すなわち、上述の構成により、高容量で且つ信頼性に優れたコイン形電池が得られる。
 前記第1の構成において、d3/d4≧0.85を満たすことが好ましい(第2の構成)。d3/d4の値を0.85以上にすることにより、電池の径方向において、封口缶の側壁部における肩部の突出寸法を小さくすることができる。よって、電極体の収容に必要な空間以外のデッドスペースを減らすことができるため、小型でより高容量のコイン形電池を実現することができる。d3/d4は、0.9以上がより好ましく、0.93以上が特に好ましい。
 なお、肩部の突出寸法を所定の寸法以上にして、封口缶の側壁部の開口端部がフィルム底部を外装缶の底面部に対してある程度押圧する力を生じさせることにより、前記フィルム底部と前記外装缶の底面部との間で一定の封止性を確保するためには、d3/d4の値は、0.98以下が好ましい。
 前記第1または第2の構成において、前記樹脂フィルムは、融点または熱分解温度が200℃以上の耐熱樹脂によって構成されていることが好ましい(第3の構成)。これにより、高温においても、封口缶の側壁部と外装缶の周壁部との間で良好な封止性を確保することができる。
 前記第3の構成において、前記耐熱樹脂は、ポリフェニレンスルフィドであることが好ましい(第4の構成)。これにより、樹脂フィルムにおける水分の透過を抑制することができる。よって、電池の耐久性を向上させることができる。
 前記第1から第4の構成のうちいずれか一つの構成において、前記樹脂フィルムの厚みは、0.05mm~0.15mmであることが好ましい(第5の構成)。これにより、電極体を収容するための収容空間を大きくすることができるコンパクトなコイン形電池が得られる。
 前記第1から第5の構成のうちいずれか一つの構成において、前記外装缶の周壁部と前記樹脂フィルムとの間、及び、前記封口缶の側壁部と前記樹脂フィルムとの間の少なくとも一方に、封止剤が設けられていることが好ましい(第6の構成)。
 樹脂フィルムの厚みムラ及び表面の凹凸により、外装缶の周壁部と前記樹脂フィルムとの密着性が低下、あるいは、封口缶の側壁部と前記樹脂フィルムとの密着性が低下するため、電池内に水分が浸入しやすくなる。よって、前記電池の耐久性が低下する場合がある。これに対し、前記外装缶の周壁部と前記樹脂フィルムとの間、及び、前記封口缶の側壁部と前記樹脂フィルムとの間の少なくとも一方に、封止剤を設けることによって、前記樹脂フィルムの厚みムラ及び表面の凹凸に起因する電池内への水分の浸入を抑制することができる。よって、前記電池の耐久性を向上させることができる。
 本発明の一実施形態に係るコイン形電池の製造方法は、底面部と周壁部とを備え、厚み方向において、前記底面部とは反対側に開口を有する外装缶と、平面部と側壁部とを備え、厚み方向において、前記平面部とは反対側に開口を有し、且つ、前記側壁部に、前記平面部と前記開口との間に位置して径方向に拡がる段状の肩部が設けられた封口缶と、前記外装缶の周壁部と前記封口缶の側壁部との間に少なくとも一部が配置された樹脂フィルムと、前記外装缶と前記封口缶とによって形成された収容空間内に配置された発電要素と、を備えたコイン形電池の製造方法である。前記樹脂フィルムは、熱収縮性を有する筒状の部材である。前記製造方法は、前記樹脂フィルムの端部が前記封口缶の側壁部から突出するように、前記樹脂フィルムによって前記封口缶の側壁部の外周面を覆う工程と、前記樹脂フィルムを熱処理して収縮させることにより、前記樹脂フィルムによって前記封口缶の側壁部の開口端部を覆いつつ前記樹脂フィルムを前記封口缶の側壁部と一体化させる工程と、前記樹脂フィルムと一体化された前記封口缶を、前記外装缶の周壁部の内方に配置することにより、前記外装缶の周壁部と前記封口缶の側壁部との間、及び、前記外装缶の底面部と前記封口缶の側壁部の開口端部との間に、前記樹脂フィルムを配置する工程と、前記外装缶の周壁部を、前記封口缶の側壁部に対して径方向に変位させることによって、前記外装缶の周壁部と前記封口缶の側壁部とを嵌合させる工程と、を有する(第1の方法)。
 これにより、外装缶の周壁部と封口缶の側壁部との間に樹脂フィルムの少なくとも一部が配置されたコイン形電池を容易に得ることができる。
 すなわち、熱収縮性を有する筒状の部材である樹脂フィルムを、封口缶の側壁部から突出させ且つ前記側壁部の外周面を覆った状態で熱処理して収縮させることにより、前記樹脂フィルムが径方向に縮小して前記封口缶の側壁部に沿う形状に変化すると共に、前記樹脂フィルムのうち前記封口缶の側壁部から突出した部分が径方向の内方に折れ曲がる。これにより、前記樹脂フィルムによって、前記封口缶の側壁部の開口端部を覆いつつ前記樹脂フィルムを前記封口缶の側壁部と一体化することができる。さらに、前記樹脂フィルムが一体化された前記封口缶の側壁部を、前記外装缶の周壁部の内方に配置した状態で、前記外装缶の周壁部を前記封口缶の側壁部に対して径方向に変位させることによって、前記外装缶の周壁部と前記封口缶の側壁部とを嵌合させることができる。これにより、前記外装缶の周壁部と前記封口缶の側壁部との間に樹脂フィルムの少なくとも一部が配置されたコイン形電池が得られる。
 前記第1の方法において、前記樹脂フィルムを熱処理する温度は、前記樹脂フィルムのガラス転移点の温度よりも高いことが好ましい(第2の方法)。これにより、樹脂フィルムの熱収縮が促進されるため、前記樹脂フィルムと封口缶の側壁部とをより強固に一体化することができる。
 前記第1または第2の方法において、前記樹脂フィルムによって前記封口缶の側壁部の外周面を覆う工程は、前記封口缶の側壁部の外周面を覆った前記樹脂フィルムを、前記封口缶の側壁部の開口端部から0.3mm~2mmの範囲で突出させることが好ましい(第3の方法)。
 すなわち、封口缶の側壁部の開口端部から突出する樹脂フィルムの幅を、0.3mm以上とすることにより、前記樹脂フィルムを熱処理する際に、前記封口缶の側壁部の開口端部を前記樹脂フィルムによって容易に覆うことができる。一方、前記封口缶の側壁部の開口端部から突出する前記樹脂フィルムの幅を、2mm以下とすることにより、前記樹脂フィルムを熱処理する際に形成されるフィルム底部の幅を、好適な範囲に調整することができる。
 前記第1から第3の方法のうちいずれか一つの方法において、前記樹脂フィルムを熱処理して収縮させることにより、前記封口缶の側壁部と一体化させる工程では、前記樹脂フィルムのうち前記封口缶の側壁部の開口端部から突出する部分を、前記開口端部に対して前記側壁部の内方に変形させることにより、前記樹脂フィルムを前記開口端部から前記側壁部の内方に0.1mm~1.5mmの範囲で突出させることが好ましい(第4の方法)。
 封口缶の側壁部の開口端部から前記側壁部の内方に突出させる樹脂フィルムの幅を0.1mm以上とすることにより、前記封口缶の側壁部の開口端部を前記樹脂フィルムによってより確実に覆うことができる。よって、コイン形電池において、外装缶の底面部と前記封口缶の側壁部の開口端部との間に、前記樹脂フィルムをより確実に配置することができる。したがって、前記外装缶の底面部と前記封口缶の側壁部の開口端部とをより確実に電気的に絶縁することができる。
 一方、前記封口缶の側壁部の開口端部から前記側壁部の内方に突出させる前記樹脂フィルムの幅を1.5mm以下とすることにより、電池内に配置される前記樹脂フィルムの余分な体積を減らすことができる。よって、電池内の電極体の収容空間の実効体積が減少するのを防ぐことができる。
 前記1から第4の方法のうちいずれか一つの方法において、前記外装缶の周壁部と前記封口缶の側壁部とを嵌合させる前の状態で、前記封口缶の高さをh1(mm)とし、前記封口缶の側壁部において、開口端部の外径をd5(mm)、開口端部の先端から平面部側にh1の7/10の位置における外径及び缶厚みを、それぞれd6(mm)及びt1(mm)とし、開口端部の先端から平面部側にt1の1/2の位置における缶厚みをt2(mm)としたときに、-0.1≦d5-d6≦0.1、及び、t2/t1≧0.9を満たすことが好ましい(第5の方法)。
 本発明の一実施形態に係るコイン形電池及びその製造方法を用いることにより、封止性を損なうことなく、電極体を収容するための収容空間を大きくすることにより高容量化され、且つ、信頼性に優れたコイン形電池を得ることができる。
図1は、本発明のコイン形電池の製造方法により作製されるコイン形電池について、その一実施形態の概略構成を示す断面図である。 図2は、図1に示すコイン形電池内の電極体の断面を拡大して示す部分拡大断面図である。 図3は、本発明のコイン形電池に用いられる封口缶の概略構成を示す端面図である。 図4は、本発明のコイン形電池に用いられる封口缶の側壁部の要部の断面を拡大して示す部分拡大断面図である。 図5は、コイン形電池の比較例に用いられる封口缶の側壁部の要部の断面を拡大して示す部分拡大断面図である。 図6は、本発明のコイン形電池に用いられる樹脂フィルムの概略構成を示す斜視図である。 図7は、封口缶の側壁部を樹脂フィルムによって覆った状態を示す端面図である。 図8は、封口缶の側壁部に樹脂フィルムを一体化させた状態を示す端面図である。 図9は、正極の概略構成を示す平面図である。 図10は、負極の概略構成を示す平面図である。 図11は、電極体の概略構成を示す平面図である。 図12は、比較例1のコイン形電池に用いられたガスケットの概略構成を示す端面図である。
 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中の同一または相当部分については同一の符号を付してその説明は繰り返さない。
(全体構成)
 図1は、本発明のコイン形電池の製造方法により作製されるコイン形電池1の一実施形態の概略構成を示す断面図である。このコイン形電池1は、有底円筒状の外装缶としての正極缶10と、正極缶10の開口を覆う封口缶としての負極缶20と、正極缶10と負極缶20との間に挟み込まれる樹脂フィルム30と、正極缶10及び負極缶20によって形成される収容空間S内に収容される電極体40(発電要素)とを備える。したがって、コイン形電池1は、正極缶10と負極缶20とを合わせることによって、高さ方向の寸法よりも径方向の寸法が大きい扁平なコイン状となる。コイン形電池1の正極缶10及び負極缶20によって形成される収容空間S内には、電極体40以外に、非水電解液(図示省略)も封入されている。なお、図1における符号Pは、コイン形電池1の軸線である。以下の説明では、コイン形電池1において、軸線方向を高さ方向といい、軸線方向と直交する方向を径方向という。
 正極缶10は、ステンレス(例えばSUS316等)などの金属材料からなる。正極缶10は、外面にNiメッキなどが形成可能であり、プレス成形によって有底円筒状に形成されている。正極缶10は、円形状の底面部11と、その外周に該底面部11と連続して形成された円筒状の周壁部12とを備える。この周壁部12は、縦断面視(図1に図示した状態)で、底面部11の外周端からコイン形電池1の高さ方向に延びるように設けられている。すなわち、周壁部12は、底面部11から軸線方向に延びている。また、正極缶10は、前記軸線方向において、底面部11とは反対側に開口を有する。
 正極缶10は、後述するように、負極缶20との間に樹脂フィルム30を挟んだ状態で、周壁部12の開口端部13(周壁部12の開口側の端部)が正極缶10の径方向内方に倒れるような変形を生じることにより、該負極缶20に対してかしめられている。
 負極缶20も、ステンレス(例えばNAS64等)などの金属材料からなる。負極缶20は、外面にNiメッキなどが形成可能であり、プレス成形によって有底円筒状に形成されている。負極缶20は、正極缶10の周壁部12よりも外形が小さい概略円筒状の側壁部22と、その一方の開口を塞ぐ円形状の平面部21と、を有する。この側壁部22も、正極缶10と同様、縦断面視で、平面部21の外周端からコイン形電池1の高さ方向に延びるように設けられている。すなわち、側壁部22は、平面部21から前記軸線方向に延びている。また、負極缶20は、前記軸線方向において、平面部21とは反対側に開口を有する。
 なお、側壁部22は、先端部分で折り返されることなく、前記軸線方向に延びている。すなわち、負極缶20は、側壁部22の先端部分に折り返しがない、いわゆるストレート缶である。
 また、側壁部22には、平面部21側の基端部22aに比べて径が大きくなる拡径部22bが形成されている。すなわち、側壁部22には、基端部22aと拡径部22bとの間に径方向に拡がる段状の肩部22cが形成されている。本実施形態の構成では、側壁部22に対して、後述する樹脂フィルム30を挟んだ状態で正極缶10の周壁部12が径方向に押し付けられている。
 なお、正極缶10の周壁部12において、開口端部13は、周壁部12の他の部分に比べて径方向に大きく変位することにより、負極缶20の肩部22cにも、正極缶10の周壁部12による押し付け力の一部を付与することができる。そのため、負極缶20の側壁部22の開口端部23(側壁部22の開口側の端部)が、後述する樹脂フィルム30のフィルム底部32を、正極缶10の底面部11との間で挟み込む。
 次に、本発明のコイン形電池の製造方法により作製されるコイン形電池1において、高容量化及び優れた封止性を実現するために好適と思われる実施形態を、以下に具体的に説明する。
 正極缶10の底面部11の外径d1及び負極缶20の平面部21の外径d3は、0.87≦d3/d1≦0.935を満たすことが好ましい。
 本実施形態では、正極缶10の底面部11の外径d1は、コイン形電池1の外径にほぼ等しい。そのため、負極缶20の平面部21の外径d3を、正極缶10の底面部11の外径d1に対して87%以上にすることで、コイン形電池1の実体積(コイン形電池1の外形寸法から求められる体積)に対する負極缶20の内部の空間の割合を大きくすることができる。すなわち、d3/d1≧0.87を満たすことで、コイン形電池1の実体積に対して電極体40の収容空間Sの割合を大きくすることができる。これにより、コイン形電池1の電池容量を大きくすることが可能になる。
 一方、負極缶20の平面部21の外径d3は、正極缶10の底面部11の外径d1に対して93.5%以下とすることが好ましく、93%以下とすることがより好ましい。これにより、正極缶10の周壁部12の開口端部13を、径方向に一定以上変位させて負極缶20の側壁部22にかしめることが可能になる。したがって、コイン形電池1において、良好な封止性を確保することが可能になる。
 また、負極缶20の側壁部22の開口端部23の外径d4、及び、負極缶20に対して樹脂フィルム30を挟んでかしめられた状態における正極缶10の周壁部12の開口端部13の内径d2は、0.94≦d2/d4≦1.02を満たすことが好ましい。
 負極缶20の側壁部22における開口端部23の外径d4と正極缶10の周壁部12における開口端部13の内径d2との関係は、負極缶20の側壁部22に対する正極缶10の周壁部12の嵌合構造によって変化する。例えば、負極缶の側壁部の肩部に正極缶の周壁部がかしめられ、封口缶の側壁部の開口端部と外装缶の底面部との間でガスケットが押圧されることにより封止される、従来のコイン形電池の構成では、d2/d4の値は、0.9程度の小さな値である。
 これに対し、本実施形態では、正極缶10の周壁部12を径方向に変位させることにより、正極缶10の周壁部12を負極缶20の側壁部22に押圧している。すなわち、正極缶10の周壁部12は、負極缶20の側壁部22に対して径方向に嵌合している。
 上述の嵌合構造において、正極缶10の周壁部12における開口端部13の内径d2と負極缶20の側壁部22における開口端部23の外径d4との関係を0.94≦d2/d4≦1.02とすることにより、正極缶10の周壁部12が樹脂フィルム30を径方向に適切な力で押圧する。これにより、正極缶10の周壁部12と負極缶20の側壁部22との間に配置された樹脂フィルム30の封止性能を向上させることができる。
 d2/d4の値が0.94よりも小さくなると、負極缶20の側壁部22の開口端部23などの一部の部位に押圧力が集中する。そのため、正極缶10の周壁部12が樹脂フィルム30を径方向に押圧する力が減少して、電池全体の封止性能が低下するか、あるいは、負極缶20の開口端部23が樹脂フィルム30を軸方向に押圧する力が大きい場合には、負極缶20の開口端部23が樹脂フィルム30を破って正極缶10の底面部11と接触し、短絡を生じる可能性がある。
 一方、d2/d4の値が1.02よりも大きくなると、正極缶10の周壁部12と負極缶20の側壁部22とのかしめが不充分になる。そのため、この場合にも電池全体の封止性能が低下する可能性がある。
 さらに、負極缶20の平面部21の外径d3、及び負極缶20の側壁部22における開口端部23の外径d4は、d3/d4≧0.85を満たすことが好ましい。
 負極缶20の平面部21の外径d3と負極缶20の側壁部22における開口端部23の外径d4との関係も、負極缶20の側壁部22に対する正極缶10の周壁部12の嵌合構造によって変化する。例えば、負極缶の側壁部の肩部に正極缶の周壁部がかしめられる従来のコイン形電池の構成では、前記肩部が一定以上の幅寸法を有するように設計されている。前記従来のコイン形電池において、d3/d4の値は0.8程度である。
 これに対し、本実施形態では、上述のように、正極缶10の周壁部12は、負極缶20の側壁部22に対して径方向に嵌合している。そのため、コイン形電池1の径方向において、負極缶20の側壁部22における肩部22cの突出寸法を従来の構成に比べて小さくすることができ、電極体40の収容に必要な空間以外のデッドスペースを減らして電池の高容量化を図ることができる。前記観点から、d3/d4の値は、0.9以上であることがより好ましく、0.93以上であることが特に好ましい。
 ただし、肩部22cの突出寸法を所定の寸法以上にして、負極缶20の側壁部22の開口端部23が後述のフィルム底部32を正極缶10の底面部11に対して押圧する力を生じさせることにより、フィルム底部32と正極缶10の底面部11との間で一定の封止性を確保するためには、d3/d4の値は0.98以下とすることが好ましい。
 このように、コイン形電池1の径方向において、負極缶20の側壁部22における肩部22cの突出寸法を小さくすることにより、コイン形電池1における嵌合構造を小型化することができる。したがって、電極体40を収容する収容空間Sを大きくしつつコイン形電池1の小型化を実現することが可能である。
 なお、本実施形態において、外径は、径方向において、対象とする部分の最外周位置における直径を意味する。内径は、径方向において、対象とする部分の最も内側の位置における直径を意味する。図1に、d1~d4の寸法を具体的に図示する。
 コイン形電池1の実体積に対して電極体40の収容空間Sの割合を大きくするためには、d3/d1の値は、0.89以上とすることがより好ましく、0.9以上とすることが特に好ましい。一方、正極缶10の周壁部12における開口端部13のかしめをより良好にして封止性を向上するためには、d3/d1の値は、0.93以下とすることがより好ましく、0.925以下とすることが特に好ましく、0.92以下とすることが最も好ましい。
 また、正極缶10の周壁部12による径方向の押圧をより良好にするために、d2/d4の値は、0.95以上がより好ましく、0.96以上が特に好ましい。一方、必要なかしめの量を確保するためには、d2/d4の値は、1.01以下とすることがより好ましく、1以下とすることが特に好ましい。
 樹脂フィルム30は、例えばポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)、ポリプロピレン(PP)などの樹脂によって構成することができる。樹脂フィルム30は、高温での封止性の低下を防ぐため、PPSなどの融点または熱分解温度が200℃以上の耐熱樹脂により構成されることが好ましい。
 樹脂フィルム30は、熱収縮性を有する円筒状の樹脂製部材である。樹脂フィルム30は、例えば、約0.1mmの厚みを有する。樹脂フィルム30の厚みは、良好な封止性を確保するために、例えば0.05mm以上が好ましい。また、樹脂フィルム30の厚みは、電極体40の収容空間Sの体積を大きくするために、例えば0.15mm以下が好ましい。
 なお、樹脂フィルム30は、例えば、上述の樹脂により構成された市販の熱収縮性を有するフィルムを用いてもよい。すなわち、樹脂フィルム30は、例えば、円筒状の熱収縮チューブが好ましい。
 樹脂フィルム30は、後述するように熱処理されることにより、負極缶20の側壁部22の外表面と一体化されている。熱処理後の樹脂フィルム30は、負極缶20の側壁部22の外表面上に位置するフィルム周壁部31と、負極缶20の側壁部22の開口端部23上に位置するフィルム底部32とを備える。なお、熱処理前の樹脂フィルム30の形状は、負極缶20の側壁部22の外表面と一体化可能な形状であれば、円筒状以外の筒状であってもよい。
 樹脂フィルム30は、図1に示すように、正極缶10と負極缶20との間に挟みこまれた状態で、負極缶20の側壁部22の外方に位置する。フィルム周壁部31は、負極缶20の側壁部22の外表面に沿って前記軸線方向に延びる円筒状に形成されている。フィルム周壁部31は、正極缶10の周壁部12と負極缶20の側壁部22との間に配置される。フィルム底部32は、フィルム周壁部31の前記軸線方向における一方の端部からフィルム周壁部31の径方向内方に向かって延びる円環状に形成されている。すなわち、樹脂フィルム30は、フィルム底部32によって囲まれた穴部30aを有する。これにより、樹脂フィルム30は、鉤状の断面を有する環状体として形成されている。フィルム底部32は、負極缶20の側壁部22における開口端部23と正極缶10の底面部11との間に挟みこまれている。
 特に図示しないが、樹脂フィルム30と正極缶10の周壁部12との間、及び、樹脂フィルム30と負極缶20の側壁部22との間には、それぞれ、封止剤が配置されている。封止剤の材質は、電解液に対する耐性を有し水分透過性の低い材料であれば、特に限定されない。封止剤は、市販品としては、例えば、日東シンコー社製「エレップコート」(登録商標)、エア・ブラウン社製「ヒュミシール」(登録商標)、サンハヤト社製「ハヤコート」(登録商標)、フロロテクノロジー社製「フロロサーフ」(登録商標)など、防湿コート剤として用いられる種々の製品を用いることができる。
 樹脂フィルム30は、熱処理する際に、厚みムラ及び表面の凹凸が形成されやすいため、正極缶10の周壁部12と樹脂フィルム30との密着性、あるいは、負極缶20の側壁部22と樹脂フィルム30との密着性が充分に得られない場合がある。このため、シール部材として樹脂製のガスケットを用いる場合に比べ、封止性の低下を生じやすく、水分の浸入による電池の耐久性の低下を生じやすい。
 一方、前記封止剤を、樹脂フィルム30と正極缶10の周壁部12との間、及び、樹脂フィルム30と負極缶20の側壁部22との間の少なくとも一方、好ましくは両方に配置することにより、樹脂フィルム30に起因する上述の問題を解消することができる。よって、電池内への水分の浸入を抑制して電池の耐久性を向上させることができる。
 電極体40は、図2にも示すように、袋状のセパレータ44内に収容された略円板状の正極41と、略円板状の負極46と、をコイン形電池1の高さ方向に交互に複数、積層してなる。これにより、電極体40は、全体として前記軸線方向に延びる略円柱状の形状を有する。また、電極体40は、前記軸線方向の両端面が負極になるように、複数の正極41及び複数の負極46が積層されている。
 正極41は、図2に示すように、例えば、コバルト酸リチウム等の正極活物質を含有する正極活物質層42が、アルミニウム等の金属箔製の正極集電体43の両面に形成された部材である。
 負極46は、図2に示すように、黒鉛等の負極活物質を含有する負極活物質層47が、銅等の金属箔製の負極集電体48の両面に形成された部材である。ただし、略円柱状の電極体40の軸方向両端に位置する負極は、それぞれ、負極集電体48,48が電極体40の軸方向端部に位置するように、負極集電体48の一面側のみに負極活物質層47を有する。すなわち、略円柱状の電極体40は、その両端に負極集電体48,48が露出している。この電極体40の一方の負極集電体48は、正極集電体43及び絶縁シート49を介して正極缶10の底面部11上に位置づけられる(図1及び図2参照)。電極体40の他方の負極集電体48は、電極体40が正極缶10と負極缶20との間に配置された状態で、該負極缶20の平面部21に当接する(図1参照)。
 セパレータ44は、平面視で略円形状に形成された袋状の部材であり、略円板状の正極41を収納可能な大きさに形成されている。セパレータ44は、電気絶縁性に優れたポリエチレン製の微多孔性薄膜によって構成されている。このように、セパレータ44を微多孔性薄膜によって構成することで、リチウムイオンが該セパレータ44を透過することができる。セパレータ44は、略円形状の2枚の微多孔性薄膜の周縁部を熱溶着等によって接着することにより形成される。
 図1及び図2に示すように、正極41の正極集電体43には、平面視で該正極集電体43の外方に向かって延びる導電性の正極リード51が一体形成されている。この正極リード51の正極集電体43側も、セパレータ44によって覆われている。なお、絶縁シート49と正極缶10の底面部11との間には、正極活物質層42が設けられていない正極集電体43が配置されている。すなわち、この正極集電体43は、正極缶10の底面部11に電気的に接触している。
 負極46の負極集電体48には、平面視で負極集電体48の外方に向かって延びる導電性の負極リード52が一体形成されている。
 図1及び図2に示すように、正極41及び負極46は、各正極41の正極リード51が一側に位置し、且つ、各負極46の負極リード52が該正極リード51とは反対側に位置するように、積層される。
 上述のように複数の正極41及び負極46をコイン形電池1の高さ方向に積層した状態で、複数の正極リード51は、先端側が前記高さ方向に重ね合わされた状態で超音波溶接等によって接続される。これにより、複数の正極リード51を介して、複数の正極41同士が電気的に接続されるとともに、各正極41と正極缶10とがそれぞれ電気的に接続される。一方、複数の負極リード52も、先端側が前記高さ方向に重ね合わされた状態で超音波溶接等によって接続される。これにより、複数の負極リード52を介して、複数の負極46同士が電気的に接続されるとともに、各負極46と負極缶20とがそれぞれ電気的に接続される。
(コイン形電池の製造方法)
 次に、上述のような構成を有するコイン形電池1を製造するための、本発明のコイン形電池1の製造方法について説明する。
 図3は、電池の組み立てに用いる封口缶(負極缶)の概略構成を示す断面図である。また、図4及び図5は、封口缶の側壁部の拡径部の断面を拡大して示す部分拡大断面図である。図4は、本発明のコイン形電池の製造方法に用いられる封口缶の側壁部の一実施態様を示す部分拡大断面図であり、図5は、従来の封口缶の側壁部の一例を示す部分拡大断面図である。
 封口缶は、前述したように、概略円筒状の側壁部22と、その一方の開口を塞ぐ円形状の平面部21と、を有する。この側壁部22は、縦断面視で、平面部21の外周端から平面部21と直交する方向(高さ方向)に延びるように設けられている。すなわち、側壁部22は、平面部21から高さ方向に延びている。また、封口缶は、前記高さ方向において、平面部21とは反対側に開口を有する。なお、図3における符号Pは、封口缶の高さ方向に延びる軸線である。
 また、側壁部22は、上述したように、平面部21側の基端部22aと、開口端部23側の拡径部22bと、それらの間に形成された肩部22cとを有する。肩部22cが形成される位置は、電池の内容積を大きくするために、できるだけ平面部21に近い位置とすることが好ましい。すなわち、前記高さ方向において、拡径部22bをできるだけ大きくすることが好ましい。具体的には、封口缶の高さをh1(mm)としたときに、拡径部22bがh1の7/10よりも高い位置に形成されるようにすればよい。すなわち、封口缶の側壁部22において、開口端部23の外径をd5(mm)、開口端部23の先端23aから平面部21側にh1の7/10の位置における外径をd6(mm)としたときに、肩部22cの前記高さ方向の位置は、d5とd6が等しくなる位置が好ましい。なお、実際には、製造時の公差を考慮して、-0.1≦d5-d6≦0.1となるように拡径部22bを形成すればよい。
 一方、肩部22cの位置が平面部21に近すぎると、外装缶による封止が困難になる。そのため、側壁部22において、開口端部23の先端23aから平面部21側にh1の9/10に位置する部分は、基端部22aであることが好ましい。
 また、図5に示すように、開口端部123の先端123aの形状が鋭角である場合には、樹脂フィルム30を一体化させた封口缶の側壁部122を正極缶10の周壁部12に嵌め込む際に、開口端部123の先端123aが樹脂フィルム30を破って正極缶10の周壁部12の内側に傷をつけたり、開口端部123の先端123aがフィルム底部32を押圧する際に、樹脂フィルム30に切れ目ができたりするなどの問題が生じやすい。よって、組み立て後の電池において漏液が発生しやすくなる。このため、封口缶の側壁部の先端は、図4に示すように、縦断面において外形が曲線である断面形状を有することが好ましい。なお、図4及び図5における符号Qは、拡径部22b,122bにおける径方向の厚みの中心位置を示す中心線である。
 開口端部23の先端23aの形状ができるだけ鋭角にならないようにするためには、開口端部23の先端23aから平面部21側にh1の7/10の位置における封口缶の缶厚みをt1(mm)としたときに、開口端部23の先端23aにできるだけ近い位置まで前記缶厚みが維持されるように封口缶を形成すればよい。
 具体的には、開口端部23の先端23aから平面部21側にt1の1/2の位置における缶厚みをt2(mm)としたときに、t2/t1≧0.9を満たすように先端23aを形成すればよい。一般的に、t2/t1の値の上限は1であるが、製造時の公差などを考慮し、t2/t1の値は、1よりも若干大きな値であってもよい。
 また、開口端部23の先端23aが、図5に示すように中心線Qよりも径方向外周側に位置する場合よりも、図4に示すように中心線Qよりも径方向内周側に位置する場合の方が、前記問題はより生じ難くなる。よって、開口端部23の先端23aを、径方向において中心線Qよりも径方向内周側に形成することが好ましい。
 さらに、図4に示すように、開口端部23の外周側部分23bにRを設けることにより、前記問題の発生をより一層抑制することが可能となる。開口端部23のRの曲率半径は、特に限定されないが、加工性も考慮して、0.01~0.5mm程度にすればよいと考えられる。
 上述の形状を有する封口缶は、プレス成形の際の周知の条件を調整することでプレス成形によって得ることができる。
 また、図6に示すように、電池の組み立てに用いる樹脂フィルム30は、熱収縮性を有する円筒状の樹脂製部材である。
 図7に、電池の組み立て時において、封口缶の側壁部22を、熱処理前の円筒状の樹脂フィルム30によって覆った状態を示す。図8に、電池の組み立て時において、円筒状の樹脂フィルム30を熱処理して封口缶の側壁部22と一体化させた状態を示す。
 図7に示すように、封口缶の側壁部22に対して熱処理前の円筒状の樹脂フィルム30を覆うように配置する。この工程が、樹脂フィルムによって封口缶の側壁部22の外周面を覆う工程に対応する。樹脂フィルム30の内径は、熱処理前の円筒状の樹脂フィルム30の内径をd7(mm)としたときに、d7>d5となるように調整される。すなわち、樹脂フィルム30の内径は、封口缶の側壁部22の開口端部23の外径よりも大きい。なお、熱処理の際に封口缶の側壁部22に対する樹脂フィルム30の密着性を高めるためには、d7とd5との差は0.5mm以下が好ましい。
 図7に示すように封口缶の側壁部22に対して熱処理前の円筒状の樹脂フィルム30を被せる際には、樹脂フィルム30は、筒軸方向の一方の端部が封口缶の側壁部22の開口端部23から突出する(図7には、突出長さをLで示す)ように、封口缶の側壁部22に対して配置される。このとき、樹脂フィルム30を、筒軸方向の一方の端部が封口缶の側壁部22の開口端部23から突出するように、前記筒軸方向の所定位置で切断してもよい。樹脂フィルム30を熱処理する際に、樹脂フィルム30の前記突出した部分が、熱収縮して径方向の内方に折れ曲がることにより、封口缶の側壁部22の開口端部23を覆うことができる。樹脂フィルム30による開口端部23の被覆をより良好にするためには、突出長さLは、0.3mm以上が好ましく、0.5mm以上がより好ましい。一方、熱処理により形成されるフィルム底部の幅が、必要以上に長くならないように、突出長さLは、2mm以下が好ましく、1mm以下がより好ましく、0.8mm以下が特に好ましい。
 また、樹脂フィルム30は、筒軸方向の他方の端部が、例えば、前記筒軸方向において封口缶の平面部21と同じ位置になるように、封口缶の側壁部22に対して配置される。このとき、樹脂フィルム30を、筒軸方向の他方の端部が前記筒軸方向において封口缶の平面部21と同じ位置になるように、前記筒軸方向の所定位置で切断してもよい。なお、封口缶の側壁部22に外装缶(正極缶10)の周壁部がかしめられた封口後に、外装缶の周壁部の開口端部と封口缶との間に樹脂フィルム30が存在して電気的な絶縁が確保されていればよい。そのため、樹脂フィルム30の前記筒軸方向の他方の端部の位置は、必要に応じて適宜調整することができる。
 前記封口後の封止性をより良好にするために、封口缶の側壁部22を樹脂フィルム30によって覆う前に、樹脂フィルム30の内周面には、封止剤50を塗布することが好ましい。なお、樹脂フィルム30の内周面及び外周面の少なくとも一方に、封止剤50が予め塗布されていてもよい。封口缶の側壁部22の外周面に、封止剤50を塗布してもよい。外装缶の周壁部の内周面に、封止剤50を塗布してもよい。
 封止剤50を塗布する幅(図7にXで示す)は、封止性向上(水分の浸入抑制)の効果が得られるのであれば、特に限定はされないが、一般に、1mm以上が好ましく、2mm以上がより好ましい。樹脂フィルム30が封口缶の側壁部22あるいは外装缶の周壁部と接する部分の全面に封止剤50を塗布してもよい。
 図7に示すように封口缶の側壁部22を熱処理前の円筒状の樹脂フィルム30によって覆った後、樹脂フィルム30を熱処理することにより、図8に示すように樹脂フィルム30を封口缶の側壁部22の外周面と一体化させる。この工程が、樹脂フィルム30を熱処理して収縮させることにより、樹脂フィルム30によって封口缶の側壁部22の開口端部23を覆いつつ樹脂フィルム30を封口缶の側壁部22と一体化させる工程に対応する。なお、樹脂フィルム30の熱処理温度は、特に限定はされないが、樹脂フィルム30のガラス転移点の温度よりも高くすることにより、樹脂フィルム30の熱収縮が促進され、樹脂フィルム30と前記封口缶の側壁部22とをより良好に一体化することができる。また、熱処理の時間は、樹脂フィルム30の熱収縮の進行に応じて適宜調整すればよい。
 これにより、樹脂フィルム30の一部は、封口缶の側壁部22の外周面に沿ったフィルム周壁部31を構成し、樹脂フィルム30の他の一部は、封口缶の側壁部22の開口端部23上に位置するフィルム底部32を構成する。すなわち、上述のような樹脂フィルム30の熱処理によって、封口缶の側壁部22の基端部22a、肩部22c及び拡径部22bを覆うフィルム周壁部31が形成される。また、上述のような樹脂フィルム30の熱処理によって、フィルム周壁部31の軸線方向における一方の端部からフィルム周壁部31の内方に向かって延びるフィルム底部32が形成される。すなわち、樹脂フィルム30のうち封口缶の側壁部22の開口端部23から突出する部分を、開口端部23に対して側壁部22の内方に変形させることにより、樹脂フィルム30を開口端部23から側壁部22の内方に突出するフィルム底部32(図8に、突出長さをMで示す部分)が形成される。このフィルム底部32は、封口缶の側壁部22の開口端部23を覆う。
 樹脂フィルム30による封口缶の側壁部22の開口端部23と外装缶の底面部との電気的な絶縁をより確実にするために、フィルム底部32における突出長さMは、0.1mm以上とすることが好ましく、0.3mm以上とすることがより好ましい。一方、電池内に配置されるフィルム底部32の余分な体積を減らすため、突出長さMは、1.5mm以下とすることが好ましく、1mm以下とすることがより好ましく、0.7mm以下とすることが特に好ましい。
 なお、フィルム底部32の側壁部22よりも内方に突出した部分は、封口缶の平面部側に折り曲げられた構造を有していてもよい。
 以下、樹脂フィルム30を一体化させた封口缶(負極缶)を用いてコイン形電池を製造する工程を説明する。なお、外装缶(正極缶)は、円形状の底面部と、その外周に前記底面部と連続して形成された軸線方向に延びる円筒状の周壁部とを備え、前記底面部の反対側に開口を有する、汎用の外装缶を用いればよい。
 まず、セパレータ44によって覆われた複数の板状の正極41と、複数の板状の負極46とを高さ方向に積層して、図1に示すような略円柱状の電極体40を構成する。電極体40は、従来の方法と同様の方法によって製造されるため、詳しい製造方法については説明を省略する。
 外装缶(以下、正極缶10)内に、電極体40を絶縁シート49等とともに配置し、正極集電体43を正極缶10の内面に溶接するか、あるいは電気的に接触させる。次に、既述のように側壁部22の外周面上に樹脂フィルム30が取り付けられた封口缶(以下、負極缶20)内に非水電解液を注入し、さらに、電極体40が収容された正極缶10を、負極缶20の開口を覆うように配置する。その状態で、正極缶10の周壁部12を、負極缶20の側壁部22に対して径方向内方に押し付けてかしめる。
 この際、負極缶20の側壁部22と正極缶10の周壁部12との間にフィルム周壁部31を挟み込むとともに、負極缶20の側壁部22における開口端部23と正極缶10の底面部11との間にフィルム底部32を挟み込むように、負極缶20と正極缶10との間に樹脂フィルム30を配置した状態で、正極缶10の周壁部12を、負極缶20の側壁部22に対して径方向に変位させることによって、正極缶10の周壁部12と負極缶20の側壁部22とを嵌合させる。
 以上により、前述の構成のコイン形電池1が得られる。なお、電池の封止性をより一層向上させるために、電池の組み立て前に、負極缶20の側壁部22と樹脂フィルム30との間だけでなく、正極缶10の周壁部12及び底面部11と、樹脂フィルム30との間にも、封止剤50を設けることが好ましい。封止剤50は、樹脂フィルム30の内周面及び外周面の少なくとも一方に予め塗布されていてもよいし、負極缶20の側壁部22、正極缶10の周壁部12及び底面部11の少なくとも一部に予め塗布されていてもよい。
 以上の工程を経て作製されるコイン形電池1は、前述したように、正極缶10の周壁部12の外径d1及び負極缶20の平面部21の外径d3が、0.87≦d3/d1≦0.935を満たすように設計されることが好ましい。また、コイン形電池1は、負極缶20に対して樹脂フィルム30を挟んでかしめられた状態において正極缶10の周壁部12の開口端部13の内径d2及び負極缶20の側壁部22の開口端部23の外径d4が、0.94≦d2/d4≦1.02を満たすように設計されることが好ましい。
 これにより、コイン形電池1内の収容空間Sを、従来の構成に比べて大きくすることができ、コイン形電池1の高容量化を図れる。すなわち、負極缶20の平面部21の外径d3と正極缶10の底面部11の外径d1との関係を0.87≦d3/d1≦0.935にすることで、電池の外形寸法に対して、負極缶20の内部の空間を大きくすることができる。
 また、負極缶20の側壁部22における開口端部23の外径d4と正極缶10の周壁部12における開口端部13の内径d2との関係を0.94≦d2/d4≦1.02にすることで、電池の実体積に対して負極缶20の内部空間の割合を大きくした電池構造において、封止性能を高めることができる。よって、コンパクトな封止構造を実現できる。したがって、コイン形電池1が大型化することなく電池容量を高めることができる。
 なお、コイン形電池1において、正極缶10の周壁部12は、かしめられることにより変位する量が比較的小さいため、負極缶20の形状は、元の封口缶の形状がほぼそのまま保たれている。したがって、前記元の封口缶における側壁部22の開口端部23での外径d5と、組み立てられたコイン形電池1の負極缶20における側壁部22の開口端部23での外径d4は、ほぼ同じである。また、負極缶の平面部21の外径d3とd4との比(d3/d4)を、0.85以上且つ0.98以下の範囲とするためには、前記元の封口缶における平面部21の外径とd5との比を、ほぼ0.85以上且つ0.98以下の範囲に設定すればよい。
 次に、本発明のコイン形電池1の製造方法について、以下の実施例及び比較例により具体的に説明する。
[実施例1]
<正極の作製>
 正極活物質としてLiCoO2を、導電助剤としてカーボンブラックを、バインダとしてPVDFを、それぞれ用いて、以下のように正極を作製した。
 まず、LiCoO2:93質量部とカーボンブラック:3質量部とを混合し、得られた混合物とPVDF:4質量部を予めNMP(N-メチル-2-ピロリドン)に溶解させておいたバインダ溶液とを混合することにより、正極合剤ペーストを調製した。得られた正極合剤ペーストを、厚さ15μmのアルミニウム箔からなる正極集電体の両面にアプリケータにより塗布した。なお、塗布部と未塗布部とが交互になるように、且つ、表面が塗布部の部分は、裏面でも塗布部となるように、正極合剤ペーストを正極集電体上に塗布した。続いて、塗布した正極合剤ペーストを乾燥させて正極活物質層を形成し、ロールプレスした後、所定の大きさに切断することにより、帯状の正極シートを得た。なお、正極活物質層が形成された部分の全体厚みが140μmとなるように、前記正極シートを形成した。
 前記帯状の正極シートを、正極活物質層が形成された部分が本体部(円弧の部分の直径:5.9mm)となり且つ正極活物質層が形成されていない部分が正極タブ部(幅:2.0mm)となるように打ち抜くことにより、正極を得た。図9に、打ち抜き後の正極を模式的に表した平面図を示す。正極41は、正極集電体43の両面に正極活物質層42がそれぞれ形成された本体部41aと、本体部41aから突出し且つ本体部41aよりも幅が狭い正極タブ部41bとを有する。
<負極の作製>
 負極活物質として黒鉛を、バインダとしてPVDFを、それぞれ用いて、以下のように負極を作製した。
 まず、黒鉛:94質量部と、PVDF:6質量部を予めNMPに溶解させておいたバインダ溶液とを混合することにより、負極合剤ペーストを調製した。得られた負極合剤ペーストを、厚さ10μmの銅箔からなる負極集電体の片面または両面にアプリケータにより塗布した。なお、塗布部と未塗布部とが交互になるように、且つ、集電体の両面に負極合剤ペーストを塗布した場合には、表面が塗布部の部分は裏面でも塗布部となるように、負極合剤ペーストを負極集電体上に塗布した。続いて、塗布した負極合剤ペーストを乾燥させて負極活物質層を形成し、ロールプレスした後、所定の大きさに切断することにより、帯状の負極シートを得た。なお、負極活物質層が形成された部分の全体厚みが、集電体の両面に負極活物質層が形成された場合は190μmとなり且つ集電体の片面に負極活物質層が形成された場合は100μmとなるように、前記負極シートを形成した。
 前記帯状の負極シートを、負極活物質層が形成された部分が本体部(円弧の部分の直径:6.5mm)となり且つ負極活物質層が形成されていない部分が負極タブ部となるように打ち抜いて、集電体の片面に負極活物質層を有する負極と、集電体の両面に負極活物質層を有する負極とをそれぞれ得た。なお、集電体の片面に負極活物質層を有する負極のうち、外装缶側に配置される負極については、前記帯状の負極シートの集電体の露出面に、厚みが100μmのPETフィルム(絶縁シート)を貼り付けた後に打ち抜いた。図10に、打ち抜き後の負極を模式的に表した平面図を示す。負極46は、負極集電体48の両面または片面に負極活物質層47が形成された本体部46aと、本体部46aから突出し且つ本体部46aよりも幅が狭い負極タブ部46bとを有する。
<非水電解液の調製>
 エチレンカーボネートとメチルエチルカーボネートとの体積比が1:2の混合溶媒に、LiPF6を1.2mol/lの濃度で溶解させることにより、非水電解液を作製した。
<正極とセパレータとの一体化>
 図11に、本実施例で使用したセパレータを模式的に表す。上述のように作製した正極41の両面に、図11に示す形状のポリエチレン製微多孔フィルム(厚み16μm)をそれぞれ配置して、両セパレータ44の主体部44aの周縁部の一部と張り出し部44bの一部とを加熱プレス(温度170℃、プレス時間2秒)によって溶着し、2枚のセパレータ44における主体部44aの周縁部の一部及び張り出し部44bの周縁部の一部に接合部を形成することにより、正極41とセパレータ44とを一体化した。
 図11では、正極41、負極46及びセパレータ44が積層された電極体を示している。図11では、セパレータ44の下に配置される正極41を点線で示し、それらの更に下側に配置される負極46の負極タブ部46bを一点鎖線で示し、電極体の各構成要素の位置ずれを抑えるための結束テープ9を二点鎖線で示している。また、図11に示す正極41は、電極体において、正極41を厚み方向に挟んで一体化された一対のセパレータ44のうち一方を介して負極46と積層されている。なお、図11では特に図示していないが、セパレータ44の下側(図11における紙面奥側)に負極を配置した。
 図11に示すセパレータ44は、正極41(図中点線で表示)をその厚み方向に挟んで下側(図10における紙面奥側)に配置された他のセパレータ44に、周縁部で溶着された接合部44c(図中、格子模様で表示)を有する。すなわち、正極41を厚み方向に挟んで配置された一対のセパレータ44は、周縁部で互いに溶着されて袋状になっていて、その内部に正極41が収容されることで、正極41とセパレータ44とが一体化されている。
 なお、図11に示すセパレータ44は、正極41の本体部41aの全面を覆う主体部44a(すなわち、正極41の本体部41aよりも平面視の面積が大きい主体部44a)と、主体部44aから突出し、正極41の正極タブ部41bにおける本体部41aとの境界部を覆う張り出し部44bとを有する。そして、セパレータ44の主体部44a及び張り出し部44bの周縁部の少なくとも一部に、正極41の両面に配置された一対のセパレータ44同士を互いに溶着する接合部44cが設けられている。また、主体部44aの周縁部の一部には、セパレータ44同士が溶着されない非溶着部44dが設けられている。
 なお、本実施例において、セパレータ44の主体部44a及び張り出し部44bにそれぞれ設けられている接合部44cの幅は0.3mmであり、張り出し部44bの周縁部における主体部44aからの突出方向の長さは0.5mmであった。また、セパレータ44の主体部44aの外縁のうち、90%の長さ部分を接合部とした。
<電池の組み立て>
 前記セパレータと一体化された正極11枚と、負極集電体の両面に負極活物質層が形成された負極10枚と、負極集電体の片面に負極活物質層が形成された負極2枚(このうち1枚は、集電体の露出面にPETフィルムが貼り付けられた負極)とを用いて、負極集電体の片面に負極活物質層が形成された負極が最外部の電極になるように、正極と負極とを交互に重ねて、全体を結束テープで固定することにより電極体を得た。
 次に電極体の一方に突出している各正極の正極タブ部、及び、該正極タブ部とは反対方向に突出している各負極の負極タブ部を、それぞれ纏めた状態で溶接することにより一体化した。
 外装缶として、SUS316によって構成された厚みが0.1mmの板材をプレス成形することにより、円形状の底面部と、その外周端から前記底面部と直交する方向(高さ方向)に形成された円筒状の周壁部とを有し、前記底面部とは反対側に開口を有する金属缶を作製した。なお、外装缶の外面にはNiメッキが施されている。外装缶の底面部の外径は7.85mmとした。
 また、封口缶として、NAS64によって構成された厚みが0.1mmの板材をプレス成形することにより、円形状の平面部と、その外周端から前記平面部と直交する方向(高さ方向)に形成された側壁部とを有し、前記平面部とは反対側に開口を有する、図3に示す金属缶をプレス成形により作製した。なお、封口缶の外面にはNiメッキが施されている。封口缶の高さh1を3.55mmとし、平面部の外径を7.14(mm)とした。側壁部には、開口端部の先端から平面部側に2.9mm(h1の82/100)の位置に肩部を形成した。また、開口端部での側壁部の外径d5を7.44mm、開口端部の先端から平面部側にh1の7/10の位置における側壁部の外径d6及び缶厚みt1を、それぞれ7.44mm及び0.10mmとし、開口端部の先端から平面部側にt1の1/2の位置における側壁部の缶厚みt2を0.10mmとした。すなわち、d5-d6=0及びt2/t1=1となるように、側壁部の拡径部22bを形成した。
 なお、開口端部の先端は、拡径部における径方向の厚みの中心線よりも径方向内周側に位置していた。
 また、前記外装缶と前記封口缶との間のシール部材として、ガラス転移点が約90℃のポリフェニレンサルファイド製で、図6に示す円筒状の樹脂フィルム(熱収縮性フィルム)を用いた。
 前記封口缶の側壁部を覆うとともに、筒軸方向の一方の端部が前記封口缶の平面部と同じ位置になるように、前記円筒状の樹脂フィルムを前記封口缶に被せて、筒軸方向の他方の端部を前記封口缶から突出する突出長さLが0.7mmとなる位置で切断した。その後、前記樹脂フィルムが被せられた前記封口缶を、110℃の電気炉内で10分間保持することにより熱処理を行い、前記樹脂フィルムを前記封口缶の側壁部の外周面と一体化させた。この時、前記封口缶の開口端部から内方に突出する樹脂フィルムの突出長さMは、0.5mmであった。
 次に、前記外装缶内に、前記電極体の負極のPETフィルムを前記外装缶の内面と対向するように配置し、前記一体化した各正極の正極タブ部を前記外装缶の内面に溶接した。
 さらに、前記樹脂フィルムと一体化された前記封口缶内に、前記非水電解液を注入した後、前記電極体が収容された前記外装缶を、前記封口缶に被せて、該外装缶の周壁部を前記封口缶の側壁部に対してかしめることにより、封止を行った。これにより、図1に示す電池と同様の構造を有し、外径が7.85mmで且つ高さが4mmのコイン形非水二次電池を得た。
 なお、前記樹脂フィルムの内周面、及び、前記外装缶の周壁部の内面には、あらかじめ日東シンコー社製「エレップコート(登録商標) LSS-520MH(製品名)」を3.5mmの幅で塗布し、電池の組み立て後に前記樹脂フィルムと前記封口缶との対向面及び前記樹脂フィルムと前記外装缶との対向面のほぼ全面に前記封止剤が介在するように、封止を行った。
 このようにして得られた電池において、外装缶の底面部の外径d1は7.85(mm)であった。前記外装缶の周壁部における開口端部の内径d2は7.26(mm)であった。封口缶の平面部の外径d3は7.14(mm)であった。封口缶の側壁部における開口端部の外径d4は7.44(mm)であった。よって、前記電池では、d3/d1=0.910、d2/d4=0.976、d3/d4=0.960であった。
[比較例1]
 シール部材として、樹脂フィルムに代えて、図12に示す断面形状を有するポリフェニレンサルファイド製の環状のガスケット130を用いて、コイン形非水二次電池を作製した。なお、図12は、環状のガスケット130を、軸線Pを含む平面で切断した場合の端面図である。
 ガスケット130において、外装缶の周壁部と封口缶の側壁部との間に配置される部分の径方向の厚みt3、及び、封口缶の側壁部の開口端部と外装缶の底面部との間に配置される部分の軸線方向の厚みt4は、電池の組み立て前で、それぞれ0.25mm及び約0.5mmであった。
 比較例1の電池では、樹脂フィルムの代わりにガスケット130をシール部材として用いたため、前記シール部材の厚みの増加に応じて、封口缶及び電極体の径などを変更した。
 すなわち、帯状の正極シートから、正極活物質層が形成された本体部の円弧の部分の直径が5.6mmの正極を形成し、帯状の負極シートから、負極活物質層が形成された本体部の円弧の部分の直径が6.2mmの負極を形成した。これらの正極及び負極を用いて電極体を構成することにより、電池を作製した。
 前記電池における外装缶の底面部の外径d1は7.85(mm)であった。外装缶の周壁部における開口端部の内径d2は7.2(mm)であった。封口缶の平面部の外径d3は6.8(mm)であった。封口缶の側壁部における開口端部の外径d4は7.1(mm)であった。
 よって、この比較例1の電池では、d3/d1=0.866、d2/d4=1.014、d3/d4=0.958であった。
[比較例2]
 開口端部で側壁部が折り返された従来構造の封口缶と、前記封口缶の側壁部に対応してU字状の縦断面を有する環状のガスケットと、実施例1と同じ外装缶とを用いてコイン形電池を作製した。
 なお、比較例2の電池では、比較例1の電池に比べて電極体を収容する収容空間が減少したため、それに合わせて電極体の外径を小さくした。
<電池容量の測定>
 実施例1、比較例1及び比較例2の各電池に対し、正極の理論容量を1C(mAh)とした場合に、4.2Vまで0.5C(mA)の電流値で定電流充電を行った後、4.2Vで定電圧充電を行い、電流値が0.05Cまで減少した時点で充電を終了した。充電後の各電池を、0.2C(mA)の定電流で放電させ、電池の電圧が3Vに達するまでの放電容量を測定した。測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1のコイン形電池は、従来構成の比較例2の電池に比べて放電容量を26%高容量化することができた。また、実施例1のコイン形電池は、ガスケットを薄くすることによって電池の内容積を増加させた比較例1の電池と比較しても、放電容量を10%高容量化することができた。
 なお、上記の容量差は、電池の外径が小さくなるほど顕著となる。そのため、外径が10mm以下の電池では本発明の効果がより顕著となる。
<高温貯蔵時の水分透過性の評価>
 実施例1及び比較例1の電池について、高温貯蔵時に封止部分から電池内部に浸入する水分量を測定するために、以下の手順で評価用電池を作製した。
 電解二酸化マンガンの粉末0.4gを130kgのプレス圧で圧縮することにより、直径:6.34mm、高さ:3.65mmの円板状の成形体を作製した後、該成形体を270℃のドライエア雰囲気中で18時間以上保持して乾燥させた。
 次に、実施例1の電池の電極体に代えて前記乾燥後の成形体を用いるとともに非水電解液を注入しない点以外は実施例1と同様にして、前記成形体が封入された評価用電池A(実施例1と同じ封止構造)を作製した。
 また、比較例1の電池についても、評価用電池Aと同様にして、評価用電池B(比較例1と同じ封止構造)を作製した。
 上述のように作製した各評価用電池を、85℃で相対湿度90%の雰囲気下で20日間保持した後、各評価用電池内の成形体を取り出し、カールフィッシャー水分計(京都電子工業株式会社製「MKC-510N」(装置名))を用いて、前記成形体の水分含有量を測定した。
 また、上述のような高温貯蔵前の各評価用電池における成形体の水分含有量を予め測定し、その測定結果と高温貯蔵後の水分含有量の測定結果との差(水分含有量の増加分)を求めた。これにより、実施例1及び比較例1の電池の封止性能(高温貯蔵時の水分透過性)を評価した。
 上述の水分含有量の差を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1の電池では、ポリフェニレンサルファイド製の樹脂フィルムをシール部材として用いたため、同じ材質のガスケットをシール部材とした比較例1の電池に比べ、高温貯蔵時の電池内への水分の浸入を大幅に抑制することができた。よって、封止性に優れた電池が得られた。
 次に、「鉤状ガスケット」を用いた電池の電気絶縁性能及び封止性能を確認するために、以下のようにして比較例3~6を作製した。
[比較例3]
 封口缶の平面部の外径d3を6.25mm(d3/d1=0.796)とした点以外は、実施例1と同様にして、コイン形非水二次電池を作製した。
[比較例4]
 封口缶の平面部の外径d3を7.4mm(d3/d1=0.943)とするとともに、外径d3の拡大に応じて、外装缶の周壁部における開口端部の内径d2を7.5mm(d2/d4=1.008)とした点以外は、実施例1と同様にして、コイン形非水二次電池を作製した。
[比較例5]
 封口缶の平面部の外径d3を6.85mm(d3/d1=0.873)とするとともに、外装缶の周壁部における開口端部の内径d2を6.95mm(d2/d4=0.934)とした点以外は、実施例1と同様にして、コイン形非水二次電池を作製した。
[比較例6]
 外装缶の周壁部における開口端部の内径d2を7.65mm(d2/d4=1.028)とした点以外は、実施例1と同様にして、コイン形非水二次電池を作製した。
<電気的な絶縁の有無及び封止性能の確認>
 実施例1及び比較例3~6の各電池において、上述の電池容量の測定と同じ条件で充放電を行って、放電後の電池の内部抵抗を測定することにより、電池内部での短絡の有無を調べた。
 また、上述の電池容量の測定と同じ条件で充電を行って、充電後の電池を60℃で且つ相対湿度90%の環境下において50日間貯蔵した後、電池の漏液の有無を調べた。
 それらの結果を表3に示す。なお、表3では、短絡、漏液がそれぞれない電池を丸印で表し、短絡、漏液が生じた電池をそれぞれ×で表している。
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、d3/d1及びd2/d4の値が、それぞれ0.87≦d3/d1≦0.935及び0.94≦d2/d4≦1.02の範囲内である実施例1の電池は、短絡及び漏液を生じなかった。
 一方、比較例3の電池は、実施例1の電池に比べて、電極体の収容空間の割合が小さいため、短絡を生じた。
 また、比較例4~6の電池では、封止性能の低下により漏液を生じた。特に、d2/d4の値が小さい比較例5の電池では、封口缶の側壁部の開口端部が樹脂フィルムを軸方向に押圧する力が大きいため、封口缶の側壁部の開口端部と外装缶の底面部との接触による短絡も生じた。
 以上より明らかなように、本発明の構成により、封止性能を維持しつつ、小型のコイン形電池の高容量化を図ることができる。
 (その他の実施形態)
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記実施形態では、電極体40を、複数の正極41及び負極46を交互に積層した構成としているが、電極体の構成はこれ以外の構成であってもよい。
 前記実施形態では、正極41は、コバルト酸リチウム等の正極活物質を含有する正極活物質層を含んでおり、負極46は、黒鉛等の負極活物質を含有する負極活物質層47を含んでいる。しかしながら、正極及び負極の構成は、上述以外の構成であってもよい。
 前記実施形態では、正極缶10を外装缶としていて、負極缶20を封口缶としているが、逆に正極缶が封口缶で、負極缶が外装缶であってもよい。
 本発明によるコイン形電池は、シール部材が封口缶と外装缶との間に挟み込まれる構成に利用可能である。
1 コイン形電池
10 正極缶(外装缶)
11 底面部
12 周壁部
13 開口端部
20 負極缶(封口缶)
21 平面部
22、122 側壁部
22a 基端部
22b、122b 拡径部
22c 肩部
23、123 開口端部
23a、123a (開口端部の)先端
23b (開口端部の)外周側部分
30 樹脂フィルム
30a 穴部
31 フィルム周壁部
32 フィルム底部
40 電極体(発電要素)
50 封止剤
P 軸線
Q 中心線
S 収容空間

Claims (11)

  1.  底面部と周壁部とを備え、厚み方向において、前記底面部とは反対側に開口を有する外装缶と、
     平面部と側壁部とを備え、厚み方向において、前記平面部とは反対側に開口を有し、且つ、前記側壁部に、前記平面部と前記開口との間に位置して径方向に拡がる段状の肩部が設けられた封口缶と、
     前記外装缶の周壁部と前記封口缶の側壁部との間に少なくとも一部が配置された樹脂フィルムと、
     前記外装缶と前記封口缶とによって形成された収容空間内に配置された発電要素と、
    を備えたコイン形電池であって、
     前記樹脂フィルムは、
     筒状に形成され、前記外装缶の周壁部と前記封口缶の側壁部との間に配置されたフィルム周壁部と、
     前記外装缶の底面部と前記封口缶の側壁部の開口端部との間に配置されたフィルム底部と、
     を備えた環状体であり、
     前記外装缶の底面部の外径をd1(mm)、前記外装缶の周壁部における開口端部の内径をd2(mm)、前記封口缶の平面部の外径をd3(mm)、前記封口缶の側壁部における開口端部の外径をd4(mm)とすると、
     0.87≦d3/d1≦0.935
    且つ、0.94≦d2/d4≦1.02
    を満たす、コイン形電池。
  2.  請求項1に記載のコイン形電池において、
     d3/d4≧0.85
    を満たす、コイン形電池。
  3.  請求項1または2に記載のコイン形電池において、
     前記樹脂フィルムは、融点または熱分解温度が200℃以上の耐熱樹脂によって構成されている、コイン形電池。
  4.  請求項3に記載のコイン形電池において、
     前記耐熱樹脂は、ポリフェニレンスルフィドである、コイン形電池。
  5.  請求項1から4のいずれか一つに記載のコイン形電池において、
     前記樹脂フィルムの厚みは、0.05mm~0.15mmである、コイン形電池。
  6.  請求項1から5のいずれか一つに記載のコイン形電池において、
     前記外装缶の周壁部と前記樹脂フィルムとの間、及び、前記封口缶の側壁部と前記樹脂フィルムとの間の少なくとも一方に、封止剤が設けられている、コイン形電池。
  7.  底面部と周壁部とを備え、厚み方向において、前記底面部とは反対側に開口を有する外装缶と、
     平面部と側壁部とを備え、厚み方向において、前記平面部とは反対側に開口を有し、且つ、前記側壁部に、前記平面部と前記開口との間に位置して径方向に拡がる段状の肩部が設けられた封口缶と、
     前記外装缶の周壁部と前記封口缶の側壁部との間に少なくとも一部が配置された樹脂フィルムと、
     前記外装缶と前記封口缶とによって形成された収容空間内に配置された発電要素と、
    を備えたコイン形電池の製造方法であって、
     前記樹脂フィルムは、熱収縮性を有する筒状の部材であり、
     前記樹脂フィルムの端部が前記封口缶の側壁部から突出するように、前記樹脂フィルムによって前記封口缶の側壁部の外周面を覆う工程と、
     前記樹脂フィルムを熱処理して収縮させることにより、前記樹脂フィルムによって前記封口缶の側壁部の開口端部を覆いつつ前記樹脂フィルムを前記封口缶の側壁部と一体化させる工程と、
     前記樹脂フィルムと一体化された前記封口缶の側壁部を、前記外装缶の周壁部の内方に配置することにより、前記外装缶の周壁部と前記封口缶の側壁部との間、及び、前記外装缶の底面部と前記封口缶の側壁部の開口端部との間に、前記樹脂フィルムを配置する工程と、
     前記外装缶の周壁部を、前記封口缶の側壁部に対して径方向に変位させることによって、前記外装缶の周壁部と前記封口缶の側壁部とを嵌合させる工程と、
    を有する、コイン形電池の製造方法。
  8.  請求項7に記載のコイン形電池の製造方法において、
     前記樹脂フィルムを熱処理する温度は、前記樹脂フィルムのガラス転移点の温度よりも高い、コイン形電池の製造方法。
  9.  請求項7または8に記載のコイン形電池の製造方法において、
     前記樹脂フィルムによって前記封口缶の側壁部の外周面を覆う工程は、前記封口缶の側壁部の外周面を覆った前記樹脂フィルムを、前記封口缶の側壁部の開口端部から0.3mm~2mmの範囲で突出させる、コイン形電池の製造方法。
  10.  請求項7から9のいずれか一つに記載のコイン形電池の製造方法において、
     前記樹脂フィルムを熱処理して収縮させることにより、前記封口缶の側壁部と一体化させる工程では、前記樹脂フィルムのうち前記封口缶の側壁部の開口端部から突出する部分を、前記開口端部に対して前記側壁部の内方に変形させることにより、前記樹脂フィルムを前記開口端部から前記側壁部の内方に0.1mm~1.5mmの範囲で突出させる、コイン形電池の製造方法。
  11.  請求項7から10のいずれか一つに記載のコイン形電池の製造方法において、
     前記外装缶の周壁部と前記封口缶の側壁部とを嵌合させる前の状態で、
     前記封口缶の高さをh1(mm)とし、
     前記封口缶の側壁部において、開口端部の外径をd5(mm)、開口端部の先端から平面部側にh1の7/10の位置における外径及び缶厚みを、それぞれd6(mm)及びt1(mm)とし、開口端部の先端から平面部側にt1の1/2の位置における缶厚みをt2(mm)としたときに、
     -0.1≦d5-d6≦0.1、及び、t2/t1≧0.9を満たす、コイン形電池の製造方法。
PCT/JP2019/026726 2018-07-04 2019-07-04 コイン形電池及びその製造方法 WO2020009206A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19830894.2A EP3800685A4 (en) 2018-07-04 2019-07-04 BUTTON BATTERY AND MANUFACTURING METHOD FOR IT
CN201980041284.XA CN112335101B (zh) 2018-07-04 2019-07-04 硬币形电池及其制造方法
JP2020529054A JP7213250B2 (ja) 2018-07-04 2019-07-04 コイン形電池及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018127479 2018-07-04
JP2018-127479 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020009206A1 true WO2020009206A1 (ja) 2020-01-09

Family

ID=69059700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026726 WO2020009206A1 (ja) 2018-07-04 2019-07-04 コイン形電池及びその製造方法

Country Status (4)

Country Link
EP (1) EP3800685A4 (ja)
JP (1) JP7213250B2 (ja)
CN (1) CN112335101B (ja)
WO (1) WO2020009206A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010249A1 (ko) * 2020-07-10 2022-01-13 삼성에스디아이 주식회사 이차 전지
CN114221067A (zh) * 2021-11-13 2022-03-22 四川英能基科技有限公司 一种电池负极结构、电池及制备方法
WO2022209063A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487819A (en) * 1981-12-26 1984-12-11 Kawaguchiko Seimitsu Company Limited Flat battery
JPH08190900A (ja) 1995-01-10 1996-07-23 Hitachi Maxell Ltd 電 池
JPH08222192A (ja) 1995-02-17 1996-08-30 Hitachi Maxell Ltd 電 池
JP2007200682A (ja) 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd コイン型電池
JP2012079689A (ja) * 2010-09-07 2012-04-19 Swissbatt Ag 電池ケーシング
JP2012517658A (ja) 2009-02-09 2012-08-02 ファルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング ボタン電池とそれを製造する方法
JP2014053112A (ja) * 2012-09-06 2014-03-20 Hitachi Maxell Ltd 扁平形電池
JP2016038992A (ja) * 2014-08-06 2016-03-22 Fdk鳥取株式会社 非水電解質二次電池
JP2016054029A (ja) * 2014-09-03 2016-04-14 日立マクセル株式会社 扁平形非水二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19647593B4 (de) * 1996-11-18 2012-06-21 Varta Microbattery Gmbh Verfahren zur Herstellung einer Knopfzelle
AU2001243582A1 (en) * 2000-03-10 2001-09-24 Eveready Battery Company Inc. Increased volume electrochemical cell
JP2007172859A (ja) * 2005-12-19 2007-07-05 Matsushita Electric Ind Co Ltd ボタン形アルカリ電池およびその製造方法
US20070224495A1 (en) * 2006-03-22 2007-09-27 Gibbons Daniel W Zinc/air cell
DE102009017514A1 (de) * 2009-04-04 2010-10-07 Varta Microbattery Gmbh Knopfzelle ohne Bördelung
WO2018124152A1 (ja) * 2016-12-27 2018-07-05 マクセルホールディングス株式会社 コイン形電池及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4487819A (en) * 1981-12-26 1984-12-11 Kawaguchiko Seimitsu Company Limited Flat battery
JPH08190900A (ja) 1995-01-10 1996-07-23 Hitachi Maxell Ltd 電 池
JPH08222192A (ja) 1995-02-17 1996-08-30 Hitachi Maxell Ltd 電 池
JP2007200682A (ja) 2006-01-26 2007-08-09 Matsushita Electric Ind Co Ltd コイン型電池
JP2012517658A (ja) 2009-02-09 2012-08-02 ファルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング ボタン電池とそれを製造する方法
JP2012079689A (ja) * 2010-09-07 2012-04-19 Swissbatt Ag 電池ケーシング
JP2014053112A (ja) * 2012-09-06 2014-03-20 Hitachi Maxell Ltd 扁平形電池
JP2016038992A (ja) * 2014-08-06 2016-03-22 Fdk鳥取株式会社 非水電解質二次電池
JP2016054029A (ja) * 2014-09-03 2016-04-14 日立マクセル株式会社 扁平形非水二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800685A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022010249A1 (ko) * 2020-07-10 2022-01-13 삼성에스디아이 주식회사 이차 전지
WO2022209063A1 (ja) * 2021-03-31 2022-10-06 株式会社村田製作所 二次電池
CN114221067A (zh) * 2021-11-13 2022-03-22 四川英能基科技有限公司 一种电池负极结构、电池及制备方法
CN114221067B (zh) * 2021-11-13 2023-05-09 四川英能基科技有限公司 一种电池负极结构、电池及制备方法

Also Published As

Publication number Publication date
CN112335101B (zh) 2023-03-28
EP3800685A1 (en) 2021-04-07
JP7213250B2 (ja) 2023-01-26
CN112335101A (zh) 2021-02-05
EP3800685A4 (en) 2021-08-04
JPWO2020009206A1 (ja) 2021-07-15

Similar Documents

Publication Publication Date Title
EP3121865B1 (en) Rechargeable lithium ion button cell battery
EP2139057B1 (en) Electrode assembly and lithium secondary battery using the same
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
JP4565810B2 (ja) ラミネート電池
US10263237B2 (en) Cylindrical battery, and collector member used therefor, and manufacturing method thereof
JP4124756B2 (ja) 密閉型電池
KR101867374B1 (ko) 전극 단자를 구비한 배터리 덮개, 전극 단자를 구비한 배터리 덮개 제조 방법 및 실링된 배터리
JP6963773B2 (ja) コイン形電池及びその製造方法
KR20110124269A (ko) 단추형 전지 및 이를 제작하는 방법
JP2010003692A (ja) 電極組立体とこれを利用した二次電池及びその製造方法
WO2020009206A1 (ja) コイン形電池及びその製造方法
US20050100784A1 (en) Laminated battery
WO2019194253A1 (ja) 電池
US20040121229A1 (en) Lithium secondary battery and fabrication method thereof
US20180131009A1 (en) Wound type battery
EP3660940B1 (en) Battery and device
CN109891640B (zh) 非水电解质二次电池用电极以及非水电解质二次电池
CN109923700B (zh) 非水电解质二次电池用电极以及非水电解质二次电池
JP5679271B2 (ja) 電極端子付き電池蓋、電極端子付き電池蓋の製造方法および密閉型電池
WO2019017410A1 (ja) 外部端子付き電池
US20230124030A1 (en) Manufacturing method for secondary battery and secondary battery
KR20170050884A (ko) 파우치 타입 이차전지
JP2003077449A (ja) 二次電池
WO2020137777A1 (ja) 電池
US20220077527A1 (en) Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529054

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019830894

Country of ref document: EP

Effective date: 20201229