WO2020008622A1 - Method for producing hydrogen using biomass as raw material - Google Patents

Method for producing hydrogen using biomass as raw material Download PDF

Info

Publication number
WO2020008622A1
WO2020008622A1 PCT/JP2018/025703 JP2018025703W WO2020008622A1 WO 2020008622 A1 WO2020008622 A1 WO 2020008622A1 JP 2018025703 W JP2018025703 W JP 2018025703W WO 2020008622 A1 WO2020008622 A1 WO 2020008622A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pyrolysis
steam
temperature
heat
Prior art date
Application number
PCT/JP2018/025703
Other languages
French (fr)
Japanese (ja)
Inventor
白水 渡
俊一 内藤
和幸 原田
正廣 矢野
光揮 日巻
後藤 賢一
安藤 秀行
隆幸 西川
堂脇 直城
Original Assignee
株式会社 翼エンジニアリングサービス
株式会社 ジャパンブルーエナジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 翼エンジニアリングサービス, 株式会社 ジャパンブルーエナジー filed Critical 株式会社 翼エンジニアリングサービス
Priority to JP2020528650A priority Critical patent/JP7140341B2/en
Priority to PCT/JP2018/025703 priority patent/WO2020008622A1/en
Publication of WO2020008622A1 publication Critical patent/WO2020008622A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide

Definitions

  • the present invention relates to a method for producing hydrogen using biomass as a raw material.
  • hydrogen When hydrogen is used as a fuel, it does not emit carbon dioxide and is regarded as an environmentally friendly material.
  • hydrogen is supplied to a fuel cell to realize its use as a fuel cell vehicle or fuel cell power plant As the power generation efficiency is expected to improve dramatically, the demand is expected to increase further in the future.
  • Patent Document 1 A method for producing a product gas having a high calorific value from an organic substance and a substance mixture,
  • the circulating heat-carrying medium passes through a heating zone, a reaction zone, a pyrolysis zone and a separation step and subsequently returns to the heating zone, Separating the organic substance or substance mixture into a pyrolysis gas as a solid carbon-containing residue and a volatile phase by contacting the organic substance or substance mixture in a pyrolysis zone with a heated heat carrying medium; After passing through the pyrolysis zone, the solid carbon-containing residue is separated from the heat-carrying medium in a separation step, Mixing the pyrolysis gas with steam as the reaction medium and further heating to exchange a portion of the heat contained in the heated heat carrying medium in the reaction zone to produce a product gas having a high calorific value,
  • the steam is mixed with the pyrolysis gas in the pyr
  • Patent Document 2 The organic waste is heated at 500 to 600 ° C. in a non-oxidizing atmosphere using a heat carrier medium, and the generated pyrolysis gas is mixed with steam at 900 to 1000 ° C. Then, the obtained reformed gas is purified. To recover hydrogen.
  • a method for producing hydrogen using biomass as a raw material includes a pyrolysis step of supplying a heat carrier medium to obtain a pyrolysis gas from a biomass raw material, and increasing the temperature of the pyrolysis gas to be rich in hydrogen.
  • the thermal decomposition reaction temperature is 640 to 740 ° C., and steam and oxygen gas are simultaneously supplied in the reforming step, and the heat carrying medium is not supplied to the reforming step.
  • tar generated by the thermal decomposition reaction is completely decomposed, and hydrogen gas can be stably produced over a long period of time.
  • FIG. 1 is a schematic diagram illustrating an example of an apparatus (equipment) for implementing one embodiment of the present invention.
  • a method for producing hydrogen using biomass as a raw material includes a pyrolysis step of supplying a heat carrier medium to obtain a pyrolysis gas from a biomass raw material, and increasing the temperature of the pyrolysis gas.
  • a reforming step for obtaining a hydrogen-rich reformed gas wherein the heat-carrying medium in the pyrolysis step is heated to 680 to 740 ° C .;
  • the thermal decomposition reaction temperature is set to 640 to 740 ° C. to supply steam and oxygen gas simultaneously in the reforming step, and the heat carrier medium is not supplied to the reforming step.
  • This hydrogen production method completely decomposes the generated tar and can stably obtain hydrogen gas for a long period of time.
  • the biomass raw material may contain diphosphorus pentoxide (P 2 O 5 ).
  • the thermal decomposition reaction temperature can be easily adjusted to 640 to 740 ° C.
  • the thermal decomposition temperature of the thermal decomposition step in each of the hydrogen production methods is 660 to 700 ° C. As a result, the generation of tar is further suppressed, and hydrogen gas can be stably obtained over a long period of time.
  • the present inventor studied the hydrogen production methods described in Patent Documents 1 and 2 above, and found that the reason why tar did not decompose was that a temperature of 640 ° C. or more described later could not be secured as a temperature in the pyrolyzer. I found something. Therefore, in order to raise the temperature in the pyrolyzer, in the hydrogen production methods described in Patent Documents 1 and 2 described above, it was examined to increase the temperature of the heat-carrying medium to be preheated. In the case, the preheated heat carrier medium is supplied to the pyrolyzer through the reformer, and the heat held by the heat carrier medium is first used as a heat source of the reformer.
  • the preheater In order to raise the pyrolysis temperature for tar decomposition, the preheater requires a further increase in the preheating temperature of the heat carrying medium, that is, a preheating exceeding 1050 ° C. It was not realistic from the point of view, and it was found that it was difficult to raise the temperature of the reformer to 1000 ° C. by the heat carrying medium.
  • the “heating zone”, “reaction zone”, and “pyrolysis zone” in Patent Document 1 are respectively referred to as “preheater”, “reformer”, and “pyrolyzer” in the present invention. You are.
  • the present inventor further studied, (1) In order to suppress the generation of tar to a level that does not hinder the production of hydrogen, it is necessary to set the thermal decomposition reaction temperature to 640 ° C. or higher, and it is difficult to raise the temperature to 1000 ° C. in the reformer. The reason was that the heat transfer coefficient between the heat carrying medium and the reformed gas was small, and based on this finding, (2)
  • the heat source of the thermal decomposer is not limited to the heat carrying medium, and the idea is to supplement the lack of heat from the heat carrying medium with the other heat sources.
  • the pre-heated heat carrier medium is not charged into the reformer but is used only as a thermal decomposer and used as heat for elevating the temperature to the thermal decomposition temperature of the thermal decomposer and evaporating moisture, That the preheating temperature of the carrier medium can be lowered, (4)
  • the temperature can be easily raised to a predetermined thermal decomposition reaction temperature, and At the same time, by simultaneously injecting steam, the sensitivity of the reaction temperature due to insufficient oxygen is eased and the temperature control becomes easy, (5)
  • oxygen gas is supplied in place of the supply of the heat carrying medium, the temperature can be easily raised to the reforming reaction temperature of 1000 ° C.
  • Heat carrying medium (1) Shape and material of the heat carrying medium
  • the shape of the heat carrying medium is preferably a sphere, and the material is preferably ceramic such as alumina or steel. That is, alumina balls, ceramic balls, and steel balls can be used, and the diameter is preferably 10 to 30 mm.
  • (2) Preheating temperature The heat carrying medium is preheated by a preheater, and the preheating temperature range is 680 to 740 ° C. This preheating temperature range is much lower than 1050 ° C. shown in Patent Documents 1 and 2, so that the energy required for preheating can be saved, the thermal efficiency is improved, and an expensive refractory material is used for the preheater. This has the advantage of not having to do so.
  • the heat carrying medium 24 is heated in the preheater 3, serves as a heat carrying medium for thermal decomposition in the pyrolyzer 4, and supplies heat to the reaction for thermal decomposition, and the char separating device 6 separates the char and the heat medium. It is circulated and used in the circulating device 27.
  • Pyrolysis reaction process in pyrolyzer The pyrolysis reaction in the pyrolyzer will be described in detail.
  • Biomass raw material The raw material used in one embodiment of the present invention is biomass, sewage sludge, thinned wood, driftwood, wood pellets, straw pellets, paper sludge, garbage compost sludge, food waste, sludge, etc. Any type may be used as long as it contains hydrogen and oxygen, but sewage sludge is preferred from the viewpoint of availability. Further, the raw material may be a mixture of plural types of biomass.
  • the size of the biomass may be any size as long as it has undergone coarse pulverization. For example, a solid shape such as a plate having a length of 15 mm or less and a granular shape are preferable. Although the amount of water contained varies depending on the shape, it is preferably pre-dried before being supplied to the pyrolyzer at 30 to 20% by mass.
  • the pyrolysis temperature for obtaining the pyrolysis gas is 640 to 740 ° C.
  • the reason for setting this temperature range is that if the temperature is lower than 640 ° C., it is difficult to completely decompose tar generated by thermal decomposition, and if it exceeds 740 ° C., an excessive heat source is required to completely decompose the tar. That's why.
  • the thermal decomposition temperature is more preferably 660 to 700 ° C.
  • phosphorus pentoxide (P 2 O 5 ) is contained in the organic raw material.
  • P 2 O 5 evaporation is reduced. inhibition can, for volatilization vapor P 2 O 5 which may cause clogging trouble pyrolysis gas does not exist, has the advantage that it is possible to an organic material sewage sludge containing P 2 O 5.
  • the heat source of the thermal decomposition is provided by the heat-carrying medium, but is not sufficient, and the temperature range is set by blowing and supplying oxygen gas.
  • the heat transfer by the supply of steam and oxygen gas is much more efficient than the heat transfer of the heat carrier medium which is a solid phase.
  • the supply of water vapor suppresses the generation of heat spots, alleviates rapid changes in temperature, and controls the thermal decomposition reaction in response to short-term disturbances such as changes in the amount of organic raw material supplied. It has the advantage of being easy.
  • the respective supply ratios of steam and oxygen gas are preferably 1 to 4 in terms of a steam / oxygen gas molar ratio (mol of steam / mol of oxygen gas).
  • the reason for this range is that if it is less than 1, the temperature fluctuation may increase, and if it exceeds 4, the steam becomes oxidizing at 600 ° C. or higher, and the CO 2 concentration increases, which is not preferable for hydrogen recovery.
  • the temperature of steam is not limited, a temperature of 140 ° C. can be mentioned as an example.
  • the oxygen gas is not particularly limited, and is, for example, 40% manufactured by an industrial oxygen gas generator. C. can be used. And, when the molar ratio represented by water vapor / oxygen gas becomes higher, it becomes easier to control the thermal decomposition reaction with respect to disturbance caused by slight fluctuation of the oxygen flow rate.
  • the pyrolysis gas is a gas mainly composed of CH 4 , CO, CO 2 , and H 2 .
  • blowing steam as described above, it is possible to obtain a H 2, because the content of H 2 is small and 10% by volume, in order to increase the content of H 2, modification in the next step I do.
  • Reforming process in reformer The reformer is installed downstream of the pyrolyzer, and without using a heat carrier medium as a heat source, simultaneously supplies steam and oxygen gas, raises the temperature to 1000 ° C or higher, and performs the pyrolysis on the pyrolysis gas to obtain a hydrogen-rich crude gas. Obtain reformed gas. Then, the temperature can be easily raised to 1000 ° C. by simultaneously supplying steam and oxygen gas instead of supplying the heat carrying medium.
  • the steam may be, for example, 100 to 150 ° C.
  • the oxygen gas may be, for example, 40 ° C. produced by an industrial oxygen gas generator.
  • a steam reforming reaction proceeds, and a hydrocarbon gas such as CH 4 gas is converted into a hydrogen gas, and the content ratio of the hydrogen gas increases.
  • CH 4 + H 2 O ⁇ CO + 3H 2 can be mentioned.
  • the next shift reaction proceeds, and the content ratio of hydrogen gas increases.
  • the crude reformed gas thus obtained has a H 2 gas content of 50 to 54% by volume (dry basis).
  • the supply of steam is not only performed to advance the steam reforming reaction, but also to ease temperature sensitivity (rapid change).
  • the steam and the oxygen gas supplied to the reformer are preferably simultaneously supplied so that the molar ratio of steam / oxygen gas (mol of steam / mol of oxygen gas) becomes 1 to 4.
  • H 2 gas purification process The gas that has undergone the reforming step (coarse reformed gas) is cooled and dust-removed to remove trace amounts of harmful components such as HCl, CN, and NH 3 .
  • the removal can be performed by appropriately combining conventionally known means.
  • the purification of H 2 gas Thereafter, the purification of H 2 gas.
  • a known means may be appropriately used, and for example, a PSA means and a membrane separation means can be used.
  • the heat carrying medium 24 is heated (preheated) to 680 to 740 ° C. by the preheater 3, and after heating, is fed into the thermal decomposer 4 via the valve 25.
  • the heat source for preheating the heat carrier medium in the preheater 3 is a flue gas 19 of about 800 ° C. obtained by burning part of the char 18 and part of the pyrolysis gas 11 in the combustion furnace 23 as described later.
  • the combustion exhaust gas 20 is discharged from the preheater 3.
  • the pyrolysis step is performed by the pyrolyzer 4, and the biomass raw material 1 is supplied to the pyrolyzer 4 by the biomass raw material transporting device 2 such as a screw conveyor.
  • the temperature of the biomass raw material 1 is increased by the heat from the heat carrier medium 24 and the steam 8 and the oxygen gas 7 which are blown and supplied from the lower part of the pyrolyzer 4 at a temperature of 640 to 720 ° C. It is decomposed to generate pyrolysis gas 11.
  • the reforming step is performed in the reformer 5. Most of the pyrolysis gas 11 obtained by the pyrolysis reaction is sent to the reformer 5. In the reformer 5, steam 10 and oxygen gas 9 are simultaneously blown and supplied from the lower part thereof, and the temperature of the pyrolysis gas 11 is raised to 1000 ° C., and the steam reforming reaction proceeds, and the crude reforming gas 13 Get.
  • the purification process of the H 2 gas is performed in the crude reformed gas cooling / purifying device 21, and the crude reformed gas 13 that has passed through the reformer 5 is introduced into the crude reformed gas cooling / refining device 21, Although not shown, cooling, dust removal, and removal of trace amounts of harmful components are performed, and the purified reformed gas 14 is introduced into the hydrogen separator 22 to obtain pure hydrogen gas 15.
  • the off-gas 16 is discharged from the hydrogen separator 22.
  • the char of the heat carrier medium 24 and the biomass raw material 1 at about 640 ° C. are discharged from the bottom of the pyrolyzer 4, and are introduced into the char separation device 6 via the valve 26.
  • the char separation device 6 the char 17 and the heat carrying medium 24 are separated, and the heat carrying medium 24 is sent to the heat carrying medium circulating device 27, and is returned to the preheater 3 by the device for circulating use.
  • the char 17, except for a part 18 of the char, is used as an alternative fuel in a cement manufacturing facility or a coal-fired power plant.
  • As the char separation device 6, a known device such as a device capable of separating the heat carrying medium 24 and the char 17 by a sieve can be used.
  • the part 12 of the pyrolysis gas and the part 18 of the char are introduced into the combustion furnace 23 and burned, and serve as a heat source for the flue gas 19 at about 800 ° C. It serves as a heat source for preheating the heat carrying medium 24 by the preheater.
  • an external fuel such as LNG or LPG is used to supplement the heat source. It is not necessary to use a special furnace for the combustion furnace 23.
  • steam is produced using waste heat of the combustion exhaust gas 20 of the preheater, and the steam is supplied to the pyrolyzer and supplied to the reformer. It is also possible to use steam 10 that is generated.
  • the organic raw material commonly used in each example and each comparative example is sewage sludge, which is as follows.
  • Example 1> The preheating temperature of the heat carrying medium was set at 700 ° C.
  • the temperature of the pyrolyzer pyrolysis reaction temperature
  • steam at 140 ° C. and oxygen gas at 40 ° C. were blown.
  • the oxygen gas flow rate and the steam flow rate to the pyrolyzer were 1.71 Nm 3 / h and 2.75 kg / h, respectively
  • the flow rates of oxygen gas and steam to the reformer were 2.3 Nm 3 / h and 3.7 kg / h, respectively.
  • composition of the pyrolysis gas The composition of the pyrolysis gas, the amount of tar, and the composition of the gas leaving the reformer were measured. Table 4 shows the results. In the display of the composition of the pyrolysis gas, all hydrocarbon gases were represented by CH 4 . Hereinafter, the same notation is used.
  • Example 1 the temperature of the pyrolyzer was 690 ° C. and the temperature range was 650 to 740 ° C., and the steam / oxygen gas molar ratio was 2.0 and the molar ratio range was 1.0 to 4.0. Therefore, the content ratio of CH 4 gas contained in the pyrolysis gas was low, and the generation of tar could be completely suppressed. Further, the temperature of the reformer could be set to 1000 ° C. On the other hand, in Comparative Example 1, the pyrolysis temperature was 600 ° C. and was not in the above temperature range, so that the content ratio of the CH 4 gas contained in the pyrolysis gas was high, tar was generated, and The temperature was 937 ° C.
  • Example 2 in order to confirm that the evaporation of P 2 O 5 contained in the sewage sludge is suppressed, in Example 2 and Comparative Example 2, P 2 deposited on the crude reformed gas cooling / purifying device 22 in FIG. the amount of O 5 was measured.
  • Example 2 With the preheating temperature of the heat carrying medium set at 700 ° C. and the temperature of the pyrolyzer at 690 ° C., steam at 140 ° C. and oxygen gas at 40 ° C. were blown. At this time, the oxygen gas flow rate and the steam flow rate to the pyrolyzer were 1.71 Nm 3 / h and 2.75 kg / h, respectively, and the steam / oxygen gas molar ratio was 2.0. The amount of P 2 O 5 deposited on the crude reforming gas cooling / refining device 22 of FIG. 1 was measured. Table 5 shows the results.
  • the estimated P 2 O 5 vapor concentration was estimated based on the amount of clogs that blocked the crude reformed gas cooling / refining device 22 and the analysis results.
  • Example 2 the temperature of the pyrolyzer was 690 ° C. and the temperature range was 650 to 740 ° C., and the steam / oxygen gas molar ratio was 2.0 and the molar ratio range was 1.0 to 4.0. Therefore, the amount of P 2 O 5 deposited in the crude reforming gas cooling / refining apparatus is as small as 0.02 kg, and it can be said that the evaporation of P 2 O 5 contained in the sewage sludge is almost completely suppressed. .
  • the thermal decomposition temperature was 780 ° C., which was higher than the above temperature range, and the evaporation of P 2 O 5 was not suppressed.
  • Example 3 In order to confirm the influence of the steam / oxygen gas molar ratio on the yield of H 2 and the stability of temperature fluctuation, a comparison is made between Example 3 and Example 2.
  • Example 2 was performed as described above, but the amount of the pyrolysis gas was 16.64 Nm 3 / h, and the amount of the oxygen gas blown was ⁇ 0.30 Nm 3 / h. The variation in the temperature of the decomposer was ⁇ 60 ° C. Table 6 shows the composition of the resulting crude reformed gas.
  • Example 3 With the preheating temperature of the heat carrying medium set to 700 ° C. and the temperature of the pyrolyzer set to 690 ° C., 140 ° C. steam and 40 ° C. oxygen gas were blown. At this time, the flow rates of oxygen gas and steam to the pyrolyzer were 1.71 Nm 3 / h and 5.49 kg / h, respectively, and the molar ratio of steam / oxygen gas was 4.0. Table 6 shows the composition of the obtained pyrolysis gas.
  • Example 2 Comparing Example 2 with Example 3, the higher the molar ratio of water vapor / oxygen gas, the more the fluctuation of the pyrolysis reaction temperature can be suppressed with respect to the fluctuation of the oxygen gas flow rate. It can be said that the sensitivity of the resulting temperature change is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

A method for producing hydrogen using a biomass as a raw material, the method having having a pyrolysis step for supplying a heat carrier medium to obtain a pyrolysis gas from a biomass raw material, and a reforming step for raising the temperature of the pyrolysis gas to obtain a reformed gas rich in hydrogen, the method being such that: the heat carrier medium in the pyrolysis step is heated to 680-740°C; in the pyrolysis step, water vapor and oxygen gas are also supplied simultaneously to set the pyrolysis reaction temperature to 640-740°C; and in the reforming step, water vapor and oxygen gas are supplied simultaneously and the heat carrier medium is not supplied in the reforming step.

Description

バイオマスを原料とする水素製造方法Hydrogen production method using biomass as raw material
 本発明は、バイオマスを原料とする水素製造方法に関する。 The present invention relates to a method for producing hydrogen using biomass as a raw material.
 水素は、燃料として使用された場合、二酸化炭素を排出せず、環境に優しい材料として重要視されており、例えば、燃料電池に供給されて、燃料電池車としての利用や燃料電池発電所を実現して発電効率の飛躍的な向上が見込めるため、今後、ますますその需要が増加すると予想される。 When hydrogen is used as a fuel, it does not emit carbon dioxide and is regarded as an environmentally friendly material.For example, hydrogen is supplied to a fuel cell to realize its use as a fuel cell vehicle or fuel cell power plant As the power generation efficiency is expected to improve dramatically, the demand is expected to increase further in the future.
 一方、水素の原料として石油、天然ガス等の化石燃料でなく、バイオマスからの製造について提案がなされている。 On the other hand, proposals have been made for the production of hydrogen from biomass instead of fossil fuels such as oil and natural gas.
 例えば、特許文献1には、
 有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する方法であり、
循環する熱担持媒体が、加熱帯域、反応帯域、熱分解帯域および分離工程を通過し、引き続き加熱帯域に戻り、その際、
 有機物質または物質混合物を熱分解帯域中で加熱した熱担持媒体と接触することにより固体の炭素含有残留物および揮発性相として熱分解ガスに分離し、
 熱分解帯域を通過後、固体の炭素含有残留物を分離工程で熱担持媒体から分離し、
 熱分解ガスを反応媒体としての水蒸気と混合し、反応帯域中で加熱した熱担持媒体に含まれる熱の一部を交換することにより高い発熱量を有する生成物ガスが生じるように更に加熱する、有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する方法において、
 水蒸気を熱分解帯域で熱分解ガスと混合し、
 全部の固体の炭素含有残留物を別の燃焼装置に供給し、ここで燃焼し、
 この燃焼装置の熱い排ガスを、加熱帯域に存在する熱担持媒体の堆積を通過させ、その際大部分の顕熱を熱担持媒体に与えることを特徴とする、有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する方法が、記載されている。
For example, in Patent Document 1,
A method for producing a product gas having a high calorific value from an organic substance and a substance mixture,
The circulating heat-carrying medium passes through a heating zone, a reaction zone, a pyrolysis zone and a separation step and subsequently returns to the heating zone,
Separating the organic substance or substance mixture into a pyrolysis gas as a solid carbon-containing residue and a volatile phase by contacting the organic substance or substance mixture in a pyrolysis zone with a heated heat carrying medium;
After passing through the pyrolysis zone, the solid carbon-containing residue is separated from the heat-carrying medium in a separation step,
Mixing the pyrolysis gas with steam as the reaction medium and further heating to exchange a portion of the heat contained in the heated heat carrying medium in the reaction zone to produce a product gas having a high calorific value, In a method for producing a product gas having a high calorific value from an organic substance and a substance mixture,
The steam is mixed with the pyrolysis gas in the pyrolysis zone,
All solid carbon-containing residues are fed to a separate combustion device, where they are burned,
A high calorific value from organic substances and substance mixtures, characterized in that the hot exhaust gas of this combustion device is passed through a deposition of a heat-carrying medium present in a heating zone, whereby most of the sensible heat is given to the heat-carrying medium. A method for producing a product gas having the formula:
 また、例えば、特許文献2には、
 有機廃棄物を熱担持媒体を用いて、非酸化性雰囲気下において500~600℃で加熱し、発生した熱分解ガスを900~1000℃でスチームと混合せしめ、次いで、得た改質ガスを精製して水素を回収する方法が記載されている。
Also, for example, in Patent Document 2,
The organic waste is heated at 500 to 600 ° C. in a non-oxidizing atmosphere using a heat carrier medium, and the generated pyrolysis gas is mixed with steam at 900 to 1000 ° C. Then, the obtained reformed gas is purified. To recover hydrogen.
特許第4264525号公報Japanese Patent No. 4264525 特許第4246456号公報Japanese Patent No. 4246456
 上記各特許文献に記載された方法では、水素ガスを得ることを目的としているものの、熱分解反応によりタールが発生しタールによる管路の閉塞が生じるため、長期にわたって安定的に水素ガスを得ることが難しいという課題を有している。 Although the method described in each of the above patent documents aims at obtaining hydrogen gas, tar is generated by the thermal decomposition reaction and blockage of the pipeline is caused by the tar, so that hydrogen gas can be stably obtained over a long period of time. Is difficult.
 本発明は、この課題を解決するものであって、次のとおりのものである。
 本発明の一態様に係るバイオマスを原料とする水素製造方法は、熱担持媒体を供給してバイオマス原料から熱分解ガスを得る熱分解工程、及び、該熱分解ガスを昇温させて水素に富む改質ガスを得る改質工程、を有し、前記熱分解工程における前記熱担持媒体は680~740℃に加熱されており、前記熱分解工程では、さらに、水蒸気と酸素ガスを同時供給して熱分解反応温度を640~740℃とし、前記改質工程では、水蒸気と酸素ガスを同時供給し、前記熱担持媒体は前記改質工程には供給されないこと、を特徴とする。
The present invention solves this problem, and is as follows.
A method for producing hydrogen using biomass as a raw material according to one embodiment of the present invention includes a pyrolysis step of supplying a heat carrier medium to obtain a pyrolysis gas from a biomass raw material, and increasing the temperature of the pyrolysis gas to be rich in hydrogen. A reforming step of obtaining a reformed gas, wherein the heat carrying medium in the pyrolysis step is heated to 680 to 740 ° C., and in the pyrolysis step, steam and oxygen gas are further supplied simultaneously. The thermal decomposition reaction temperature is 640 to 740 ° C., and steam and oxygen gas are simultaneously supplied in the reforming step, and the heat carrying medium is not supplied to the reforming step.
 上記によれば、熱分解反応により発生したタールの完全な分解がなされ、長期にわたって安定的に水素ガスを製造することができる。 According to the above, tar generated by the thermal decomposition reaction is completely decomposed, and hydrogen gas can be stably produced over a long period of time.
本発明の一態様を実施するための装置(設備)の一例の概略図である。1 is a schematic diagram illustrating an example of an apparatus (equipment) for implementing one embodiment of the present invention.
<本発明の実施形態の説明>
 最初に本発明の実施態様を列記して説明する。
 なお、本明細書及び特許請求の範囲において数値範囲を「~」で表現するとき、その範囲は上限及び下限の数値を含んでいる。また、「/」は、除算を表す。
<Description of Embodiment of the Present Invention>
First, embodiments of the present invention will be listed and described.
In the present specification and claims, when a numerical range is expressed by "-", the range includes upper and lower numerical values. “/” Represents division.
(1)本発明の一態様に係るバイオマスを原料とする水素製造方法は、熱担持媒体を供給してバイオマス原料から熱分解ガスを得る熱分解工程、及び、該熱分解ガスを昇温させて水素に富む改質ガスを得る改質工程、を有し、前記熱分解工程における前記熱担持媒体は680~740℃に加熱されており、前記熱分解工程では、さらに、水蒸気と酸素ガスを同時供給して熱分解反応温度を640~740℃とし、前記改質工程では、水蒸気と酸素ガスを同時供給し、前記熱担持媒体は前記改質工程には供給されない。この水素製造方法は、発生したタールを完全に分解し、長期にわたって安定的に水素ガスを得ることができる。また、バイオマス原料に五酸化二リン(P)が含まれることがあるが、熱分解の温度を640~720℃とすることによりP蒸発が抑制できる。 (1) A method for producing hydrogen using biomass as a raw material according to one embodiment of the present invention includes a pyrolysis step of supplying a heat carrier medium to obtain a pyrolysis gas from a biomass raw material, and increasing the temperature of the pyrolysis gas. A reforming step for obtaining a hydrogen-rich reformed gas, wherein the heat-carrying medium in the pyrolysis step is heated to 680 to 740 ° C .; The thermal decomposition reaction temperature is set to 640 to 740 ° C. to supply steam and oxygen gas simultaneously in the reforming step, and the heat carrier medium is not supplied to the reforming step. This hydrogen production method completely decomposes the generated tar and can stably obtain hydrogen gas for a long period of time. In addition, the biomass raw material may contain diphosphorus pentoxide (P 2 O 5 ). By setting the thermal decomposition temperature to 640 to 720 ° C., the evaporation of P 2 O 5 can be suppressed.
(2)前記水素製造法の前記熱分解工程において、同時供給する水蒸気と酸素ガスの水蒸気のモル/酸素ガスのモルが1~4である。これにより、熱分解反応温度を640~740℃とすることが容易にできる。 (2) In the thermal decomposition step of the hydrogen production method, the molar ratio of water vapor / oxygen gas / oxygen gas to steam supplied simultaneously is 1 to 4. Thereby, the thermal decomposition reaction temperature can be easily adjusted to 640 to 740 ° C.
(3)前記各水素製造法の前記熱分解工程の熱分解温度が660~700℃である。これにより、より一層、タールの発生が抑えられ、長期にわたって安定的に水素ガスを得ることができる。 (3) The thermal decomposition temperature of the thermal decomposition step in each of the hydrogen production methods is 660 to 700 ° C. As a result, the generation of tar is further suppressed, and hydrogen gas can be stably obtained over a long period of time.
<本発明の実施形態の詳細>
 本発明を実施するための一態様について、以下に詳述するが、まず、該態様を導出した知見及び着想について述べる。
<Details of Embodiment of the Present Invention>
One embodiment for carrying out the present invention will be described in detail below. First, knowledge and ideas derived from the embodiment will be described.
 本発明者は、前述の特許文献1および2に記載された水素製造方法について検討したところ、タールが分解しない原因について、熱分解器における温度として、後述する640℃以上の温度を確保できないためであることを発見した。
 そこで、熱分解器における温度を上昇させるために、前述の特許文献1および2に記載された水素製造方法において、予熱される熱担持媒体の温度を上昇させることを検討したところ、これら水素製造方法では、予熱された熱担持媒体が改質器を経由して熱分解器に投入されており、熱担持媒体が保有する熱が改質器の熱源としてまず利用されてしまうため、熱分解器におけるタール分解のための熱分解温度を上昇させるためには、予熱器において、さらなる熱担持媒体の予熱温度の上昇、すなわち、1050℃を超える予熱が必要になるものの、この予熱温度のさらなる上昇は工業的にみると現実的でなく、しかも、熱担持媒体による改質器の温度を1000℃に昇温は困難であることがわかった。
 なお、前記特許文献1でいう「加熱帯域」、「反応帯域」、「熱分解帯域」は、それぞれ、本発明でいう「予熱器」、「改質器」、「熱分解器」として前記議論をしている。
The present inventor studied the hydrogen production methods described in Patent Documents 1 and 2 above, and found that the reason why tar did not decompose was that a temperature of 640 ° C. or more described later could not be secured as a temperature in the pyrolyzer. I found something.
Therefore, in order to raise the temperature in the pyrolyzer, in the hydrogen production methods described in Patent Documents 1 and 2 described above, it was examined to increase the temperature of the heat-carrying medium to be preheated. In the case, the preheated heat carrier medium is supplied to the pyrolyzer through the reformer, and the heat held by the heat carrier medium is first used as a heat source of the reformer. In order to raise the pyrolysis temperature for tar decomposition, the preheater requires a further increase in the preheating temperature of the heat carrying medium, that is, a preheating exceeding 1050 ° C. It was not realistic from the point of view, and it was found that it was difficult to raise the temperature of the reformer to 1000 ° C. by the heat carrying medium.
The “heating zone”, “reaction zone”, and “pyrolysis zone” in Patent Document 1 are respectively referred to as “preheater”, “reformer”, and “pyrolyzer” in the present invention. You are.
 そこで、本発明者は、さらに検討を行ったところ、
(1)タールの発生を水素の製造に当たって支障がない程度に抑制するためには、熱分解反応温度を640℃以上にすることが必要であり、改質器において1000℃への昇温が困難な理由は熱担持媒体と改質ガス間の伝熱係数が小さいためであるとの知見を得て、この知見のもとに、
(2)熱分解器の熱源を熱担持媒体のみにはせず、熱担持媒体のみからもたらされる熱量不足する熱量を他の熱源で補うことを着想し、
(3)予熱した熱担持媒体の投入は改質器には行わず熱分解器のみとして、熱分解器の熱分解温度までの昇温と水分の蒸発のための熱として利用させれば、熱担持媒体の予熱温度を低くすることができること、
(4)熱分解器の熱分解反応のための他の熱源として酸素ガスを吹き込むことによって発生する部分酸化反応熱を利用すれば、容易に所定の熱分解反応温度まで昇温でき、かつ、この際、水蒸気を同時に吹き込むことによって、酸素の過少による反応温度の敏感性を緩和して温度制御が容易になること、
(5)改質器では、熱担持媒体の供給に替えて酸素ガスを供給すれば、部分酸化反応熱により、容易に1000℃の改質反応温度まで昇温でき、かつ、この際、水蒸気を同時に吹き込むことによって、酸素の過少による反応温度の敏感性を緩和して温度制御が容易になること、
の新規な知見と着想を得たのである。
 次に、この知見と着想に係る事項を踏まえて、本発明を実施するための形態を説明する。まず、各工程について説明する。
Therefore, the present inventor further studied,
(1) In order to suppress the generation of tar to a level that does not hinder the production of hydrogen, it is necessary to set the thermal decomposition reaction temperature to 640 ° C. or higher, and it is difficult to raise the temperature to 1000 ° C. in the reformer. The reason was that the heat transfer coefficient between the heat carrying medium and the reformed gas was small, and based on this finding,
(2) The heat source of the thermal decomposer is not limited to the heat carrying medium, and the idea is to supplement the lack of heat from the heat carrying medium with the other heat sources.
(3) If the pre-heated heat carrier medium is not charged into the reformer but is used only as a thermal decomposer and used as heat for elevating the temperature to the thermal decomposition temperature of the thermal decomposer and evaporating moisture, That the preheating temperature of the carrier medium can be lowered,
(4) By utilizing the partial oxidation reaction heat generated by blowing oxygen gas as another heat source for the thermal decomposition reaction of the thermal cracker, the temperature can be easily raised to a predetermined thermal decomposition reaction temperature, and At the same time, by simultaneously injecting steam, the sensitivity of the reaction temperature due to insufficient oxygen is eased and the temperature control becomes easy,
(5) In the reformer, if oxygen gas is supplied in place of the supply of the heat carrying medium, the temperature can be easily raised to the reforming reaction temperature of 1000 ° C. due to the heat of the partial oxidation reaction. Simultaneous blowing eases the sensitivity of the reaction temperature due to insufficient oxygen and facilitates temperature control.
He gained new insights and ideas.
Next, an embodiment for carrying out the present invention will be described based on the findings and ideas. First, each step will be described.
熱担持媒体
(1)熱担持媒体の形状・材質
 熱担持媒体の形状は球が好ましく、材質としては、アルミナ等のセラミック、鋼が望ましい。すなわち、アルミナボール、セラミックボール、鋼球が使用でき、その径は、10~30mmが好適である。
(2)予熱温度
 熱担持媒体は予熱器で予熱され、予熱温度範囲は、680~740℃とする。この予熱温度範囲は、特許文献1、2で示された1050℃よりも遙かに低く、予熱に必要とするエネルギーを節約することができ熱効率がよくなる上、予熱器に高価な耐火材を使用しなくてもすむという利点をもたらす。
 熱担持媒体24は、予熱器3で昇温され熱分解器4で熱分解の熱担持媒体として熱分解に反応に熱を供し、チャー分離装置6でチャーと熱媒体を分離後、熱担持媒体循環装置27にて循環使用される。
Heat carrying medium (1) Shape and material of the heat carrying medium The shape of the heat carrying medium is preferably a sphere, and the material is preferably ceramic such as alumina or steel. That is, alumina balls, ceramic balls, and steel balls can be used, and the diameter is preferably 10 to 30 mm.
(2) Preheating temperature The heat carrying medium is preheated by a preheater, and the preheating temperature range is 680 to 740 ° C. This preheating temperature range is much lower than 1050 ° C. shown in Patent Documents 1 and 2, so that the energy required for preheating can be saved, the thermal efficiency is improved, and an expensive refractory material is used for the preheater. This has the advantage of not having to do so.
The heat carrying medium 24 is heated in the preheater 3, serves as a heat carrying medium for thermal decomposition in the pyrolyzer 4, and supplies heat to the reaction for thermal decomposition, and the char separating device 6 separates the char and the heat medium. It is circulated and used in the circulating device 27.
熱分解器における熱分解反応工程:
 熱分解器における熱分解反応について詳述する。
Pyrolysis reaction process in pyrolyzer:
The pyrolysis reaction in the pyrolyzer will be described in detail.
(1)バイオマス原料:
 本発明の一態様において用いられる原料はバイオマスであり、下水汚泥、間伐材、流木材、木質ペレット、ストローペレット、製紙スラッジ、生ごみコンポストスラッジ、食品廃棄物、汚泥等、生物体由来の炭素、水素および酸素を含むものであれば種類を問わないが、入手のしやすさから下水汚泥が好適である。また、原料は、複数種類のバイオマスの混合物であってもよい。
 バイオマスの大きさは、粗粉砕処理を経た程度の大きさであればよい。例えば長さが15mm以下の大きさの板状などの個体形状、粒状が好ましい。含有する水分量は、その形状によって異なるが、30~20質量%に熱分解器に供給する前に予備乾燥されていることが好ましい。
(1) Biomass raw material:
The raw material used in one embodiment of the present invention is biomass, sewage sludge, thinned wood, driftwood, wood pellets, straw pellets, paper sludge, garbage compost sludge, food waste, sludge, etc. Any type may be used as long as it contains hydrogen and oxygen, but sewage sludge is preferred from the viewpoint of availability. Further, the raw material may be a mixture of plural types of biomass.
The size of the biomass may be any size as long as it has undergone coarse pulverization. For example, a solid shape such as a plate having a length of 15 mm or less and a granular shape are preferable. Although the amount of water contained varies depending on the shape, it is preferably pre-dried before being supplied to the pyrolyzer at 30 to 20% by mass.
(2)熱分解ガスを得る熱分解:
 熱分解ガスを得る熱分解の温度は、640~740℃とする。この温度範囲とした理由は、640℃未満であると熱分解によって発生したタールを完全に分解することが難しく、740℃を超えると同タール完全に分解するために必要以上の熱源が必要になるためである。熱分解温度は660~700℃がより好ましい。
(2) Pyrolysis to obtain pyrolysis gas:
The pyrolysis temperature for obtaining the pyrolysis gas is 640 to 740 ° C. The reason for setting this temperature range is that if the temperature is lower than 640 ° C., it is difficult to completely decompose tar generated by thermal decomposition, and if it exceeds 740 ° C., an excessive heat source is required to completely decompose the tar. That's why. The thermal decomposition temperature is more preferably 660 to 700 ° C.
 また、有機原料として下水汚泥等を用いると、有機原料中に五酸化二リン(P)が含まれるが、熱分解の温度を640~740℃とすることによりP蒸発が抑制でき、熱分解ガスに閉塞トラブルを起こす恐れのあるPの揮散蒸気が存在しないため、Pを含む下水汚泥を有機原料とすることが可能となる利点を有する。
 熱分解の熱源は熱担持媒体がもたらすが、それだけでは十分でなく、酸素ガスを吹込み供給することによって、前記温度範囲とする。
Further, when sewage sludge or the like is used as an organic raw material, phosphorus pentoxide (P 2 O 5 ) is contained in the organic raw material. However, by setting the thermal decomposition temperature to 640 to 740 ° C., P 2 O 5 evaporation is reduced. inhibition can, for volatilization vapor P 2 O 5 which may cause clogging trouble pyrolysis gas does not exist, has the advantage that it is possible to an organic material sewage sludge containing P 2 O 5.
The heat source of the thermal decomposition is provided by the heat-carrying medium, but is not sufficient, and the temperature range is set by blowing and supplying oxygen gas.
 水蒸気と酸素ガスを同時吹込み供給することによる熱源の確保により、水蒸気と酸素ガスの供給による熱伝達が、固相である熱担持媒体の熱伝達に比して遙かに効率がよい上に、供給される水蒸気によって、ヒートスポットの生成を抑制し、温度の急激な変化が緩和でき、しかも、有機原料供給量などの変化等の短時間で変化する外乱に応じて熱分解反応の制御が容易である利点を有している。 By securing a heat source by simultaneously injecting and supplying steam and oxygen gas, the heat transfer by the supply of steam and oxygen gas is much more efficient than the heat transfer of the heat carrier medium which is a solid phase. The supply of water vapor suppresses the generation of heat spots, alleviates rapid changes in temperature, and controls the thermal decomposition reaction in response to short-term disturbances such as changes in the amount of organic raw material supplied. It has the advantage of being easy.
 ここで、水蒸気と酸素ガスのそれぞれの供給比は、水蒸気/酸素ガスのモル比(水蒸気のモル/酸素ガスのモル)で1~4が好ましい。この範囲とする理由は、1未満であると温度変動が大きくなることがあり、4を超えると、水蒸気が600℃以上で酸化性となり、CO濃度が大きくなって水素回収には好ましくなくなってしまうためである。
 そして、水蒸気は、温度に制約はないものの、一例として、140℃の温度のものを挙げることができ、酸素ガスは、特に制約はなく、例えば、工業用の酸素ガス発生器で製造した、40℃程度のものを用いることができる。そして、水蒸気/酸素ガスで表されるモル比が高くなると、酸素流量のわずかな変動によりもたらされる外乱に対して熱分解反応の制御がより容易となる。
Here, the respective supply ratios of steam and oxygen gas are preferably 1 to 4 in terms of a steam / oxygen gas molar ratio (mol of steam / mol of oxygen gas). The reason for this range is that if it is less than 1, the temperature fluctuation may increase, and if it exceeds 4, the steam becomes oxidizing at 600 ° C. or higher, and the CO 2 concentration increases, which is not preferable for hydrogen recovery. This is because
Although the temperature of steam is not limited, a temperature of 140 ° C. can be mentioned as an example. The oxygen gas is not particularly limited, and is, for example, 40% manufactured by an industrial oxygen gas generator. C. can be used. And, when the molar ratio represented by water vapor / oxygen gas becomes higher, it becomes easier to control the thermal decomposition reaction with respect to disturbance caused by slight fluctuation of the oxygen flow rate.
 ここで、熱分解ガスは、CH、CO、CO、Hが主成分のガスである。そして、前記のように水蒸気を吹込むことにより、Hを得ることができるが、Hの含有割合は10体積%と少ないため、Hの含有割合を上昇させるべく、次工程で改質を行う。 Here, the pyrolysis gas is a gas mainly composed of CH 4 , CO, CO 2 , and H 2 . By blowing steam, as described above, it is possible to obtain a H 2, because the content of H 2 is small and 10% by volume, in order to increase the content of H 2, modification in the next step I do.
改質器における改質工程:
 改質器は熱分解器の下流に設け、熱源として熱担持媒体を用いず水蒸気と酸素ガスを同時供給して1000℃以上に昇温して熱分解ガスに対して行い、水素に富んだ粗改質ガスを得る。そして、熱担持媒体の供給に替え、水蒸気と酸素ガスを同時供給することにより1000℃へ容易に昇温することができる。
 ここで、水蒸気は、一例として、100~150℃のものを挙げることができ、酸素ガスは、例えば、工業用の酸素ガス発生器で製造した40℃のものを用いることができる。
Reforming process in reformer:
The reformer is installed downstream of the pyrolyzer, and without using a heat carrier medium as a heat source, simultaneously supplies steam and oxygen gas, raises the temperature to 1000 ° C or higher, and performs the pyrolysis on the pyrolysis gas to obtain a hydrogen-rich crude gas. Obtain reformed gas. Then, the temperature can be easily raised to 1000 ° C. by simultaneously supplying steam and oxygen gas instead of supplying the heat carrying medium.
Here, the steam may be, for example, 100 to 150 ° C., and the oxygen gas may be, for example, 40 ° C. produced by an industrial oxygen gas generator.
 改質により、水蒸気改質反応が進行して、CHガス等の炭化水素ガスが水素ガスに転化し、水素ガスの含有割合が増大する。ここで、代表的な水蒸気改質反応として、
CH + HO → CO + 3H
を挙げることができる。
 また、次のシフト反応も進行して、水素ガスの含有割合が増大する。
CO + HO → CO + H
 このようにして得た粗改質ガスは、Hガスの含有割合が50~54体積%(ドライベース)となっている。
 なお、水蒸気の供給は、前記水蒸気改質反応を進行させるためだけになされるのではなく、温度の過敏性(急激な変化)の緩和のためにもなされる。
 改質器に供給される水蒸気と酸素ガスは、一例として、水蒸気/酸素ガスのモル比(水蒸気のモル/酸素ガスのモル)で1~4となるように同時供給されることが好ましい。
By the reforming, a steam reforming reaction proceeds, and a hydrocarbon gas such as CH 4 gas is converted into a hydrogen gas, and the content ratio of the hydrogen gas increases. Here, as a typical steam reforming reaction,
CH 4 + H 2 O → CO + 3H 2
Can be mentioned.
Further, the next shift reaction proceeds, and the content ratio of hydrogen gas increases.
CO + H 2 O → CO 2 + H 2
The crude reformed gas thus obtained has a H 2 gas content of 50 to 54% by volume (dry basis).
Note that the supply of steam is not only performed to advance the steam reforming reaction, but also to ease temperature sensitivity (rapid change).
As an example, the steam and the oxygen gas supplied to the reformer are preferably simultaneously supplied so that the molar ratio of steam / oxygen gas (mol of steam / mol of oxygen gas) becomes 1 to 4.
ガスの精製工程:
 改質工程を経たガス(粗改質ガス)は、冷却され除塵されて、HCl、CN、NH等の微量の有害成分を除去する。ここで除去は、従来公知の手段を適宜組み合わせて行うことができる。その後、Hガスの精製を行う。Hガスの精製は、公知の手段を適宜使用すればよく、例えば、PSA手段、膜分離手段が使用できる。
H 2 gas purification process:
The gas that has undergone the reforming step (coarse reformed gas) is cooled and dust-removed to remove trace amounts of harmful components such as HCl, CN, and NH 3 . Here, the removal can be performed by appropriately combining conventionally known means. Thereafter, the purification of H 2 gas. For the purification of the H 2 gas, a known means may be appropriately used, and for example, a PSA means and a membrane separation means can be used.
 次に、実施例について説明するが、本発明は、これら実施例に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能であることは言うまでもない。 Next, examples will be described. However, it is needless to say that the present invention is not limited to these examples and can be appropriately changed without departing from the gist of the present invention.
 図1に示す装置(設備)を用いて、以下に記載する各実施例および各比較例を実施した。以下、図1に示されている本発明を実施するための装置の一例である概略図を参照して前記各工程を説明する。 各 Using the apparatus (equipment) shown in FIG. 1, each Example and each Comparative Example described below were implemented. Hereinafter, each of the above steps will be described with reference to a schematic diagram showing an example of an apparatus for carrying out the present invention shown in FIG.
 熱担持媒体24は、680~740℃に予熱器3で加熱(予熱)されて、加熱後、弁25を経由して熱分解器4に投入される。ここで、予熱器3で熱担持媒体を予熱する熱源は、後述するように、チャーの一部18や熱分解ガス11の一部を燃焼炉23で燃焼させた約800℃の燃焼排ガス19であり、予熱器3からは燃焼排ガス20が排出される。 (4) The heat carrying medium 24 is heated (preheated) to 680 to 740 ° C. by the preheater 3, and after heating, is fed into the thermal decomposer 4 via the valve 25. Here, the heat source for preheating the heat carrier medium in the preheater 3 is a flue gas 19 of about 800 ° C. obtained by burning part of the char 18 and part of the pyrolysis gas 11 in the combustion furnace 23 as described later. Thus, the combustion exhaust gas 20 is discharged from the preheater 3.
 熱分解工程は、熱分解器4によってなされ、バイオマス原料1は、スクリューコンベア等のバイオマス原料搬送装置2により熱分解器4へ供給される。このバイオマス原料1は、投入された熱担持媒体24からの熱および熱分解器4の下部から同時に吹込み供給される水蒸気8と酸素ガス7とにより昇温され、640~720℃の温度で熱分解され熱分解ガス11が発生する。 The pyrolysis step is performed by the pyrolyzer 4, and the biomass raw material 1 is supplied to the pyrolyzer 4 by the biomass raw material transporting device 2 such as a screw conveyor. The temperature of the biomass raw material 1 is increased by the heat from the heat carrier medium 24 and the steam 8 and the oxygen gas 7 which are blown and supplied from the lower part of the pyrolyzer 4 at a temperature of 640 to 720 ° C. It is decomposed to generate pyrolysis gas 11.
 改質工程は、改質器5でなされる。熱分解反応によって得られた熱分解ガス11は、その大部分が改質器5へ送られる。改質器5では、その下部から水蒸気10と酸素ガス9が同時に吹込み供給され、熱分解ガス11を1000℃まで昇温し、前述の水蒸気改質反応を進行させて、粗改質ガス13を得る。 The reforming step is performed in the reformer 5. Most of the pyrolysis gas 11 obtained by the pyrolysis reaction is sent to the reformer 5. In the reformer 5, steam 10 and oxygen gas 9 are simultaneously blown and supplied from the lower part thereof, and the temperature of the pyrolysis gas 11 is raised to 1000 ° C., and the steam reforming reaction proceeds, and the crude reforming gas 13 Get.
 Hガスの精製工程は、粗改質ガス冷却・精製装置21でなされ、改質器5を経た粗改質ガス13は、粗改質ガス冷却・精製装置21へ導入されて、各手段の図示はされていないが、冷却、除塵、微量の有害成分の除去がそれぞれなされ、精製改質ガス14となり、水素分離装置22へ導入され、純水素ガス15を得る。なお、水素分離装置22からはオフガス16が排出される。 The purification process of the H 2 gas is performed in the crude reformed gas cooling / purifying device 21, and the crude reformed gas 13 that has passed through the reformer 5 is introduced into the crude reformed gas cooling / refining device 21, Although not shown, cooling, dust removal, and removal of trace amounts of harmful components are performed, and the purified reformed gas 14 is introduced into the hydrogen separator 22 to obtain pure hydrogen gas 15. The off-gas 16 is discharged from the hydrogen separator 22.
 また、熱分解器4の底からは、640℃程度となった熱担持媒体24とバイオマス原料1のチャーが排出され、これらはチャー分離装置6へ弁26を経由して導入される。チャー分離装置6では、チャー17と熱担持媒体24とが分離され、熱担持媒体24は熱担持媒体循環装置27へ送られて、該装置によって予熱器3へ戻され循環使用される。また、チャー17は、そのチャーの一部18を除き、セメント製造施設や石炭火力発電所での代替燃料などに使用される。なお、チャー分離装置6は、例えば、篩によって熱担持媒体24とチャー17を分離できるものなど、公知のものが使用できる。 {Circle around (4)} The char of the heat carrier medium 24 and the biomass raw material 1 at about 640 ° C. are discharged from the bottom of the pyrolyzer 4, and are introduced into the char separation device 6 via the valve 26. In the char separation device 6, the char 17 and the heat carrying medium 24 are separated, and the heat carrying medium 24 is sent to the heat carrying medium circulating device 27, and is returned to the preheater 3 by the device for circulating use. The char 17, except for a part 18 of the char, is used as an alternative fuel in a cement manufacturing facility or a coal-fired power plant. As the char separation device 6, a known device such as a device capable of separating the heat carrying medium 24 and the char 17 by a sieve can be used.
 ここで、前述のとおり、熱分解ガスの一部12とチャーの一部18は、燃焼炉23に導入されて燃焼し、約800℃の燃焼排ガス19のための熱源となり、該燃焼排ガス19は予熱器で熱担持媒体24を予熱する熱源となる。熱分解ガスの一部12とチャーの一部18のみでは、この予熱のための熱源として不足するときは、LNG、LPG等の外部燃料を使用して熱源を補う。なお、燃焼炉23は、特別なものを使用する必要はない。 Here, as described above, the part 12 of the pyrolysis gas and the part 18 of the char are introduced into the combustion furnace 23 and burned, and serve as a heat source for the flue gas 19 at about 800 ° C. It serves as a heat source for preheating the heat carrying medium 24 by the preheater. When only a part 12 of the pyrolysis gas and a part 18 of the char are insufficient as a heat source for the preheating, an external fuel such as LNG or LPG is used to supplement the heat source. It is not necessary to use a special furnace for the combustion furnace 23.
 なお、図示はしていないが、本装置(設備)において、予熱器の燃焼排ガス20の廃熱を利用して水蒸気を作製し、これを熱分解器に供給する水蒸気8、改質器に供給する水蒸気10とすることも可能である。 Although not shown, in the present apparatus (equipment), steam is produced using waste heat of the combustion exhaust gas 20 of the preheater, and the steam is supplied to the pyrolyzer and supplied to the reformer. It is also possible to use steam 10 that is generated.
 各実施例および各比較例に共通して使用した有機原料は下水汚泥であって、以下のとおりのものである。 有機 The organic raw material commonly used in each example and each comparative example is sewage sludge, which is as follows.
 供給量 27.2kg/h
 水分含有量 20質量%
 灰分、揮発分および固定炭素の割合、ならびに、元素分析の結果を、それぞれ、表1、表2に示す。
 
Supply amount 27.2kg / h
Water content 20% by mass
Tables 1 and 2 show the proportions of ash, volatiles and fixed carbon, and the results of elemental analysis, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 各実施例および各比較例に共通して、熱担持媒体として、表3に示すアルミナボールを使用した。 ア ル ミ ナ Alumina balls shown in Table 3 were used as a heat-carrying medium in each of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<実施例1>
 熱担持媒体の予熱温度を700℃とし、熱分解器の温度(熱分解反応温度)を690℃として、140℃の水蒸気と40℃の酸素ガスを吹込んだ。このとき、熱分解器への酸素ガス流量、水蒸気流量は、それぞれ、1.71Nm3/h、 2.75kg/hで、水蒸気/酸素ガスのモル比は2.0(=(2.75×10/18)/(1.71×10/22.4))、改質器へ酸素ガス流量、水蒸気流量は、それぞれ、2.3Nm3/h、3.7kg/hであった。
 また、熱分解ガス組成、タール量、および、改質器を出たガス組成を測定した。その結果を表4に示す。
 なお、熱分解ガス組成の表示において、CHにより全ての炭化水素ガスを表現した。以下、同様の表記をしている。
<Example 1>
The preheating temperature of the heat carrying medium was set at 700 ° C., the temperature of the pyrolyzer (pyrolysis reaction temperature) was set at 690 ° C., and steam at 140 ° C. and oxygen gas at 40 ° C. were blown. At this time, the oxygen gas flow rate and the steam flow rate to the pyrolyzer were 1.71 Nm 3 / h and 2.75 kg / h, respectively, and the steam / oxygen gas molar ratio was 2.0 (= (2.75 × 10 3 /18)/(1.71×10 3 /22.4)), the flow rates of oxygen gas and steam to the reformer were 2.3 Nm 3 / h and 3.7 kg / h, respectively.
The composition of the pyrolysis gas, the amount of tar, and the composition of the gas leaving the reformer were measured. Table 4 shows the results.
In the display of the composition of the pyrolysis gas, all hydrocarbon gases were represented by CH 4 . Hereinafter, the same notation is used.
<比較例1>
 熱担持媒体の予熱温度を700℃とし、熱分解器の温度を600℃としてして、140℃の水蒸気と40℃酸素ガスを吹込んだ。このとき、熱分解器への酸素ガス流量、蒸気流量は、それぞれ、0.76Nm3/h、1.21kg/hで、水蒸気/酸素ガスのモル比は2.0、改質器へ酸素ガス流量、水蒸気流量は、それぞれ、2.3Nm3/h、3.7kg/hであった。熱分解ガス組成とタール量を測定した。その結果を表4に示す。
<Comparative Example 1>
With the preheating temperature of the heat carrying medium set to 700 ° C. and the temperature of the pyrolyzer set to 600 ° C., 140 ° C. steam and 40 ° C. oxygen gas were blown. At this time, the oxygen gas flow rate and the steam flow rate to the pyrolyzer were 0.76 Nm 3 / h and 1.21 kg / h, respectively, the steam / oxygen gas molar ratio was 2.0, and the oxygen gas flow to the reformer was The flow rate and the steam flow rate were 2.3 Nm 3 / h and 3.7 kg / h, respectively. The composition of the pyrolysis gas and the amount of tar were measured. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例1は、熱分解器の温度が690℃で、650~740℃の温度範囲にあり、また、水蒸気/酸素ガスのモル比が2.0で1.0~4.0のモル比範囲にあるため、熱分解ガスに含まれるCHガスの含有割合が低く、タールの発生を完全に抑えることができた。また、改質器の温度を1000℃にすることができた。
 これに対して、比較例1は、熱分解温度が600℃で、前記温度範囲にないため、熱分解ガスに含まれるCHガスの含有割合が高く、タールの発生が生じ、改質器の温度は937℃であった。
In Example 1, the temperature of the pyrolyzer was 690 ° C. and the temperature range was 650 to 740 ° C., and the steam / oxygen gas molar ratio was 2.0 and the molar ratio range was 1.0 to 4.0. Therefore, the content ratio of CH 4 gas contained in the pyrolysis gas was low, and the generation of tar could be completely suppressed. Further, the temperature of the reformer could be set to 1000 ° C.
On the other hand, in Comparative Example 1, the pyrolysis temperature was 600 ° C. and was not in the above temperature range, so that the content ratio of the CH 4 gas contained in the pyrolysis gas was high, tar was generated, and The temperature was 937 ° C.
 次に、下水汚泥に含まれるPの蒸発が抑制されること確認するために、実施例2と比較例2において、図1の粗改質ガス冷却・精製装置22に堆積したPの量を計測した。 Next, in order to confirm that the evaporation of P 2 O 5 contained in the sewage sludge is suppressed, in Example 2 and Comparative Example 2, P 2 deposited on the crude reformed gas cooling / purifying device 22 in FIG. the amount of O 5 was measured.
<実施例2>
 熱担持媒体の予熱温度を700℃とし、熱分解器の温度を690℃として、140℃の水蒸気と40℃の酸素ガスを吹込んだ。このとき、熱分解器への酸素ガス流量、水蒸気流量は、それぞれ、1.71Nm3/h、2.75kg/hで水蒸気/酸素ガスのモル比は2.0であり、5時間の運転し、図1の粗改質ガス冷却・精製装置22に堆積したPの量を計測した。結果を表5に示す。
<Example 2>
With the preheating temperature of the heat carrying medium set at 700 ° C. and the temperature of the pyrolyzer at 690 ° C., steam at 140 ° C. and oxygen gas at 40 ° C. were blown. At this time, the oxygen gas flow rate and the steam flow rate to the pyrolyzer were 1.71 Nm 3 / h and 2.75 kg / h, respectively, and the steam / oxygen gas molar ratio was 2.0. The amount of P 2 O 5 deposited on the crude reforming gas cooling / refining device 22 of FIG. 1 was measured. Table 5 shows the results.
<比較例2>
 熱担持媒体の予熱温度を800℃とし、熱分解器の温度を780℃として、140℃の水蒸気と40℃酸素ガスを吹込んだ。このとき、熱分解器への酸素ガス流量、蒸気流量は、それぞれ、3.14Nm3/h、5.0kg/hで水蒸気/酸素ガスのモル比は2.0であり、5時間の運転し、図1の粗改質ガス冷却・精製装置22に堆積したPの量を計測した。結果を表5に示す。
<Comparative Example 2>
With the preheating temperature of the heat carrying medium set to 800 ° C. and the temperature of the pyrolyzer set to 780 ° C., steam at 140 ° C. and oxygen gas at 40 ° C. were blown. At this time, the oxygen gas flow rate and the steam flow rate to the pyrolyzer were 3.14 Nm 3 / h and 5.0 kg / h, respectively, and the steam / oxygen gas molar ratio was 2.0. The amount of P 2 O 5 deposited on the crude reforming gas cooling / refining device 22 of FIG. 1 was measured. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 推定P蒸気濃度は、粗改質ガス冷却・精製装置22を閉塞した閉塞物の量とその分析結果によって推定した。 The estimated P 2 O 5 vapor concentration was estimated based on the amount of clogs that blocked the crude reformed gas cooling / refining device 22 and the analysis results.
 実施例2は、熱分解器の温度が690℃で、650~740℃の温度範囲にあり、また、水蒸気/酸素ガスのモル比が2.0で1.0~4.0のモル比範囲にあるため、粗改質ガス冷却・精製装置に堆積したPの量が0.02kgと少なく、下水汚泥に含まれているPの蒸発をほぼ完全に抑えているといえる。
 これに対して、比較例2は、熱分解温度が780℃で、前記温度範囲よりも高く、Pの蒸発は抑えられていない。
In Example 2, the temperature of the pyrolyzer was 690 ° C. and the temperature range was 650 to 740 ° C., and the steam / oxygen gas molar ratio was 2.0 and the molar ratio range was 1.0 to 4.0. Therefore, the amount of P 2 O 5 deposited in the crude reforming gas cooling / refining apparatus is as small as 0.02 kg, and it can be said that the evaporation of P 2 O 5 contained in the sewage sludge is almost completely suppressed. .
On the other hand, in Comparative Example 2, the thermal decomposition temperature was 780 ° C., which was higher than the above temperature range, and the evaporation of P 2 O 5 was not suppressed.
 次に、水蒸気/酸素ガスのモル比が、Hの収量や温度変動の安定性に与える影響を確認するために、実施例3と実施例2と比較する。 Next, in order to confirm the influence of the steam / oxygen gas molar ratio on the yield of H 2 and the stability of temperature fluctuation, a comparison is made between Example 3 and Example 2.
<実施例2>
 実施例2は、前記のとおり行ったものであるが、熱分解ガス量は、16.64Nm3/hであり、酸素ガス吹込み量が±0.30Nm3/hの変動に対して、熱分解器の温度の変動は±60℃であった。得られた粗改質ガスの組成を表6に示す。
<Example 2>
Example 2 was performed as described above, but the amount of the pyrolysis gas was 16.64 Nm 3 / h, and the amount of the oxygen gas blown was ± 0.30 Nm 3 / h. The variation in the temperature of the decomposer was ± 60 ° C. Table 6 shows the composition of the resulting crude reformed gas.
<実施例3>
 熱担持媒体の予熱温度を700℃とし、熱分解器の温度を690℃として、140℃の水蒸気と40℃酸素ガスを吹込んだ。このとき、熱分解器への酸素ガス、蒸気流量は、それぞれ、1.71Nm3/h、5.49kg/hであり、水蒸気/酸素ガスのモル比は、4.0であった。得られた熱分解ガスの組成を表6に示す。
<Example 3>
With the preheating temperature of the heat carrying medium set to 700 ° C. and the temperature of the pyrolyzer set to 690 ° C., 140 ° C. steam and 40 ° C. oxygen gas were blown. At this time, the flow rates of oxygen gas and steam to the pyrolyzer were 1.71 Nm 3 / h and 5.49 kg / h, respectively, and the molar ratio of steam / oxygen gas was 4.0. Table 6 shows the composition of the obtained pyrolysis gas.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例2と実施例3とを比較すると、水蒸気/酸素ガスのモル比が高い方が、酸素ガス流量の変動に対して熱分解反応温度の変動を抑えることができ、酸素ガス流量の変動に起因する温度変化の過敏性が改善されるといえる。 Comparing Example 2 with Example 3, the higher the molar ratio of water vapor / oxygen gas, the more the fluctuation of the pyrolysis reaction temperature can be suppressed with respect to the fluctuation of the oxygen gas flow rate. It can be said that the sensitivity of the resulting temperature change is improved.
 今回開示された実施の形態はあらゆる点で例示であって、制限的なものではないと考えるべきである。本発明の範囲は前記した実施の形態ではなく、特許請求の範囲によって示され、特許請求の範囲に記載された事項の均等の範囲の全ての変更が含まれる。 実 施 The embodiments disclosed this time are illustrative in all aspects and should not be considered as restrictive. The scope of the present invention is defined by the terms of the claims, rather than the embodiments described above, and includes all modifications within the scope of equivalents of the subject matter recited in the claims.
1 バイオマス原料
2 バイオマス原料搬送装置
3 予熱器
4 熱分解器
5 改質器
6 チャー分離装置
7 酸素ガス
8 水蒸気
9 酸素ガス
10 水蒸気
11 熱分解ガス
12 熱分解ガスの一部
13 粗改質ガス
14 精製改質ガス
15 製品純水素ガス
16 オフガス
17 チャー
18 チャーの一部
19 燃焼排ガス
20 燃焼排ガス
21 粗改質ガス冷却・精製装置
22 水素分離装置
23 燃焼炉
24 熱担持媒体
25 弁
26 弁
27 熱担持媒体循環装置
DESCRIPTION OF SYMBOLS 1 Biomass raw material 2 Biomass raw material transport apparatus 3 Preheater 4 Thermal decomposer 5 Reformer 6 Char separation device 7 Oxygen gas 8 Steam 9 Oxygen gas 10 Steam 11 Pyrolysis gas 12 Part of pyrolysis gas 13 Crude reformed gas 14 Refined reformed gas 15 Product pure hydrogen gas 16 Offgas 17 Char 18 Part of char 19 Combustion exhaust gas 20 Combustion exhaust gas 21 Crude reformed gas cooling / refining device 22 Hydrogen separator 23 Combustion furnace 24 Heat carrier medium 25 Valve 26 Valve 27 Heat Carrying medium circulation device

Claims (3)

  1.  熱担持媒体を供給してバイオマス原料から熱分解ガスを得る熱分解工程、及び、
     該熱分解ガスを昇温させて水素に富む改質ガスを得る改質工程、
    を有し、
     前記熱分解工程における前記熱担持媒体は680~740℃に加熱されており、
     前記熱分解工程では、さらに、水蒸気と酸素ガスを同時供給して熱分解反応温度を640~740℃とし、
     前記改質工程では、水蒸気と酸素ガスを同時供給し、
     前記熱担持媒体は前記改質工程には供給されないこと、
    を特徴とするバイオマスを原料とする水素製造方法。
    A pyrolysis step of supplying a heat-carrying medium to obtain a pyrolysis gas from the biomass raw material, and
    A reforming step of raising the temperature of the pyrolysis gas to obtain a hydrogen-rich reformed gas,
    Has,
    The heat carrying medium in the pyrolysis step is heated to 680 to 740 ° C.,
    In the pyrolysis step, steam and oxygen gas are supplied simultaneously to set the pyrolysis reaction temperature to 640 to 740 ° C.
    In the reforming step, steam and oxygen gas are simultaneously supplied,
    The heat carrying medium is not supplied to the reforming step,
    A method for producing hydrogen using biomass as a raw material.
  2.  前記熱分解工程において、同時供給する水蒸気と酸素ガスの水蒸気のモル/酸素ガスのモルが1~4であることを特徴とする請求項1に記載のバイオマスを原料とする水素製造方法。 (4) The method for producing hydrogen using biomass as a raw material according to (1), wherein in the thermal decomposition step, moles of steam and oxygen gas of steam and oxygen gas supplied simultaneously are 1 to 4.
  3.  前記熱分解工程の熱分解反応温度が660~700℃であることを特徴とする請求項1または請求項2に記載のバイオマスを原料とする水素製造方法。
     
    The method for producing hydrogen using biomass as a raw material according to claim 1, wherein the pyrolysis reaction temperature in the pyrolysis step is 660 to 700 ° C.
PCT/JP2018/025703 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material WO2020008622A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020528650A JP7140341B2 (en) 2018-07-06 2018-07-06 Hydrogen production method using biomass as raw material
PCT/JP2018/025703 WO2020008622A1 (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025703 WO2020008622A1 (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material

Publications (1)

Publication Number Publication Date
WO2020008622A1 true WO2020008622A1 (en) 2020-01-09

Family

ID=69059505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025703 WO2020008622A1 (en) 2018-07-06 2018-07-06 Method for producing hydrogen using biomass as raw material

Country Status (2)

Country Link
JP (1) JP7140341B2 (en)
WO (1) WO2020008622A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221165A1 (en) * 2020-04-30 2021-11-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2021221163A1 (en) * 2020-04-30 2021-11-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2021221164A1 (en) * 2020-04-30 2021-11-04 株式会社ジャパンブルーエナジー Biomass gasification device
US20220002152A1 (en) * 2020-07-01 2022-01-06 James E. Klepper System and method for making syngas

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080865A (en) * 2000-09-08 2002-03-22 Toshiba Corp Waste treatment system
JP2003510403A (en) * 1999-09-24 2003-03-18 ドクトーア ミューレン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシヤフト Method for gasifying organic substances and substance mixtures
JP2011144330A (en) * 2010-01-18 2011-07-28 Raito Kogyo Co Ltd Gasification system of ligneous biomass and method therefor
JP2012201769A (en) * 2011-03-24 2012-10-22 Raito Kogyo Co Ltd Rapid heatup method for organic matter gasification system
WO2017203587A1 (en) * 2016-05-23 2017-11-30 株式会社ジャパンブルーエナジー Biomass gasification apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137028A2 (en) 2009-05-28 2010-12-02 Concord Blue Technology Pvt. Ltd. A process for generating energy from organic materials and/or biomass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510403A (en) * 1999-09-24 2003-03-18 ドクトーア ミューレン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシヤフト Method for gasifying organic substances and substance mixtures
JP2002080865A (en) * 2000-09-08 2002-03-22 Toshiba Corp Waste treatment system
JP2011144330A (en) * 2010-01-18 2011-07-28 Raito Kogyo Co Ltd Gasification system of ligneous biomass and method therefor
JP2012201769A (en) * 2011-03-24 2012-10-22 Raito Kogyo Co Ltd Rapid heatup method for organic matter gasification system
WO2017203587A1 (en) * 2016-05-23 2017-11-30 株式会社ジャパンブルーエナジー Biomass gasification apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021221165A1 (en) * 2020-04-30 2021-11-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2021221163A1 (en) * 2020-04-30 2021-11-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2021221164A1 (en) * 2020-04-30 2021-11-04 株式会社ジャパンブルーエナジー Biomass gasification device
US20220002152A1 (en) * 2020-07-01 2022-01-06 James E. Klepper System and method for making syngas

Also Published As

Publication number Publication date
JP7140341B2 (en) 2022-09-21
JPWO2020008622A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
WO2020008622A1 (en) Method for producing hydrogen using biomass as raw material
US8632614B2 (en) Autothermal method for the continuous gasification of carbon-rich substances
US4497637A (en) Thermochemical conversion of biomass to syngas via an entrained pyrolysis/gasification process
KR101643792B1 (en) Two stage dry feed gasification system and process
EP3519537B1 (en) Process for converting carbonaceous material into low tar synthesis gas
JP5630626B2 (en) Organic raw material gasification apparatus and method
JP2005112956A (en) Gasification method for biomass
JP2006225483A (en) Method for carbonizing biomass
WO2017050231A1 (en) Industrial furnace integrated with biomass gasification system
KR20070110497A (en) Method for steam reforming carbonaceous material
JPWO2010119972A1 (en) BTL manufacturing system and BTL manufacturing method
CN115427588A (en) Steel-making equipment and method for manufacturing reduced iron
KR20180061323A (en) Gasification method of carbonaceous fuel, operating method of steel mill and method of producing gasified gas
JP2008069017A (en) Method for producing hydrogen
EP2940105B1 (en) Gasification combined facility for carbon fuel including pneumatic conveying dryer
JP2005112927A (en) Method for manufacturing hydrogen or hydrogen-containing gas from organic waste
JP4731988B2 (en) Gasification method and apparatus for carbonaceous resources
US20150024448A1 (en) Integrated Processes for the Conversion of Coal to Chemicals
JP2004204106A (en) Gasifier of organic material
KR101032178B1 (en) Gasification system for converting carbonaceous feedstock into synthesis gas and method thereof
CN102827641B (en) Coal gasified pyrolyzing furnace
JP2007277479A (en) Method and apparatus for producing hydrogen gas and carbon monoxide gas from inflammable waste
JP2011219708A (en) System and method for producing jet biofuel
JP2000319672A (en) Method for generating electricity by means of reaction product from coal thermal cracking
JP5639955B2 (en) Coal gasification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925615

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925615

Country of ref document: EP

Kind code of ref document: A1