JPWO2010119972A1 - BTL manufacturing system and BTL manufacturing method - Google Patents

BTL manufacturing system and BTL manufacturing method Download PDF

Info

Publication number
JPWO2010119972A1
JPWO2010119972A1 JP2011509376A JP2011509376A JPWO2010119972A1 JP WO2010119972 A1 JPWO2010119972 A1 JP WO2010119972A1 JP 2011509376 A JP2011509376 A JP 2011509376A JP 2011509376 A JP2011509376 A JP 2011509376A JP WO2010119972 A1 JPWO2010119972 A1 JP WO2010119972A1
Authority
JP
Japan
Prior art keywords
gas
hydrogen
btl
dry distillation
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011509376A
Other languages
Japanese (ja)
Inventor
直彌 吉川
直彌 吉川
次郎 及川
次郎 及川
浩康 中村
浩康 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GGI JAPAN INC.
Original Assignee
GGI JAPAN INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GGI JAPAN INC. filed Critical GGI JAPAN INC.
Publication of JPWO2010119972A1 publication Critical patent/JPWO2010119972A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

バイオマス原料から収率よく目的とするBTL(Biomass to Liquid)を製造する。バイオマス原料を所定のサイズ、所定性状に前処理するための前処理装置と、バイオマス原料を熱分解して乾留ガスとする熱分解装置と、乾留ガスを精製する精製装置と、精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置とから構成されたBTL製造システムは精製装置と炭化水素合成装置との間に、水素ガスを計量添加する水素供給系と、所定の炭素:水素モル比となるように乾留ガスと水素を混合調整する調整装置とを備えている。The desired BTL (Biomass to Liquid) is produced from the biomass raw material with a high yield. A pretreatment device for pretreating biomass raw material to a predetermined size and properties, a pyrolysis device for pyrolyzing the biomass raw material into dry distillation gas, a purification device for purifying the dry distillation gas, and carbonizing the purified gas A BTL production system comprising a hydrocarbon synthesizer that makes hydrocarbon oil in the presence of a hydrogen synthesis catalyst includes a hydrogen supply system for metering and adding hydrogen gas between a refining device and a hydrocarbon synthesizer, An adjustment device is provided for adjusting the mixing of dry distillation gas and hydrogen so that the carbon: hydrogen molar ratio is obtained.

Description

本発明は、バイオマス原料から炭化水素オイルを製造するBTL製造システム及びBTL製造方法に関する。より詳しく述べると、バイオマス原料からジェット燃料に代表される炭化水素オイルを製造するシステムおよび方法に関する。   The present invention relates to a BTL production system and a BTL production method for producing hydrocarbon oil from a biomass raw material. More specifically, the present invention relates to a system and method for producing a hydrocarbon oil typified by jet fuel from a biomass feedstock.

バイオマスを熱分解して、乾留ガスを発生させ、発生した乾留ガスをフィッシャ・トロプシュ合成触媒を用いて液体燃料化(BTL:Biomass to Liquid)する種々の試みが施されている。
特許文献1(特開2006−205135号公報)には、低カロリー廃棄物をメタン発酵処理するメタン発酵槽と、高カロリー廃棄物を燃焼させて炭化処理する炭化炉と、該炭化炉にて製造した炭化物を導入し燃焼させてガス化するガス化炉と、該ガス化炉にて発生したガスを精製するガス精製装置と、該精製したCO、H2を主成分とする精製ガスから液体燃料をFT合成(フィッシャー・トロプシュ合成)する液体燃料合成装置とを備え、メタン発酵槽にて発生したバイオガスをガス化炉に助燃剤として送給する複合廃棄物処理システムが開示されている。
また、特許文献2(特開2007−204558)には、バイオマスを一定量保持して加熱体で加熱しガス化するガス化部と、ガス化部により発生したバイオマスガスから粒子状物質、タール、硫黄化合物および窒素化合物から選択される少なくとも1つ以上の物質を除去し、バイオマスガスを精製するガス精製部と、精製されたバイオマス精製ガスを液体化してバイオマス液体燃料原液を製造する液体燃料製造部と、前記バイオマス液体燃料原液をバイオマス液体燃料、水および軽質炭化水素に分離する気液分離部と、前記気液分離部で分離されたバイオマス液体燃料を減圧して回収する減圧回収部と、前記ガス化部でガス化されない未反応物を燃焼させ、発生した熱を前記ガス化部へ供給する燃焼部と、からなるバイオマスからの液体燃料製造装置が開示されている。
これらの技術は、設計の段階あるいは実験段階であり、工業的規模で連続して運転可能なバイオマス原料からBTLオイルを高い収量で製造する技術は、確立されていない。
すなわち、従来技術では、原料となるバイオマス原料に含まれる炭素量に比較して少量の炭化水素しか得られなかった。
Various attempts have been made to pyrolyze biomass to generate dry distillation gas and to convert the generated dry distillation gas into liquid fuel (BTL: Biomass to Liquid) using a Fischer-Tropsch synthesis catalyst.
Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-205135) discloses a methane fermentation tank for methane fermentation treatment of low-calorie waste, a carbonization furnace for burning carbonization by burning high-calorie waste, and the carbonization furnace. A gasification furnace for introducing and burning the generated carbide to gasify, a gas purification device for purifying the gas generated in the gasification furnace, and liquid fuel from the purified gas mainly containing the purified CO and H2 A composite waste treatment system including a liquid fuel synthesizing apparatus that performs FT synthesis (Fischer-Tropsch synthesis) and that supplies biogas generated in a methane fermentation tank to a gasification furnace as a combustor is disclosed.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-204558) includes a gasification unit that holds a certain amount of biomass and heats it with a heating body to gasify it, and a particulate material, tar, A gas refining unit that removes at least one substance selected from sulfur compounds and nitrogen compounds and purifies biomass gas, and a liquid fuel manufacturing unit that liquefies the purified biomass refining gas to produce a biomass liquid fuel stock solution A gas-liquid separator that separates the biomass liquid fuel stock solution into biomass liquid fuel, water, and light hydrocarbons, a vacuum recovery unit that recovers the biomass liquid fuel separated by the gas-liquid separator by reducing the pressure, and Combusting the unreacted material that is not gasified in the gasification unit, and supplying the generated heat to the gasification unit, liquid combustion from biomass comprising Manufacturing apparatus is disclosed.
These techniques are in the design stage or the experimental stage, and a technique for producing BTL oil in a high yield from a biomass raw material that can be continuously operated on an industrial scale has not been established.
That is, in the prior art, only a small amount of hydrocarbons can be obtained as compared with the amount of carbon contained in the biomass material as a raw material.

特開2006−205135号公報JP 2006-205135 A 特開2007−204558号公報JP 2007-204558 A

本発明の別の課題は、目的とする工業的に価値のあるBTLを高い収量で得ることが可能なBTL製造システムおよびBTL製造方法を提供することである。   Another object of the present invention is to provide a BTL manufacturing system and a BTL manufacturing method capable of obtaining a target industrially valuable BTL in a high yield.

上記課題を解決する本発明は、バイオマス原料を所定のサイズ、所定の水分含有率および単位質量当たり所定範囲の炭素含有量と水素含有率に前処理するための前処理装置と、バイオマス原料を熱分解して乾留ガスとする熱分解装置と、乾留ガスを精製する精製装置と、精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置と、から構成されたBTL製造システムであって、前記精製装置と前記炭化水素合成装置との間に、水素ガスを計量添加する水素供給系と、前記精製装置で精製された乾留ガスと前記水素供給系から計量添加される水素とを前記バイオマス原料に含有する炭素成分と水素成分の含有量に基づいて前記乾留ガスに炭素:水素のモル比が1:2から1:6となるような混合ガスを調整する調整装置とを備えていることを特徴とするBTL製造システムに関する。
本発明は、更にバイオマス原料を所定のサイズ、所定の水分含有率および単位質量当たり所定範囲の炭素含有量と水素含有率になるように前処理する前処理工程と、前処理したバイオマス原料を熱分解装置に投入して乾留ガスを発生させる乾留ガス発生工程と、発生した乾留ガスを精製する精製工程と、精製した乾留ガスに所定の炭素:水素モル比となるように水素を添加して合成用の混合ガスを調製する混合ガス調製工程と、調製した混合ガスを炭化水素に転化する炭化水素オイル製造工程と炭化水素製造工程で得られた混合ガスを炭化水素オイルと、未反応分とに分離する分離工程とを含むことを特徴とするBTLの製造方法に関する。
The present invention that solves the above-described problems includes a pretreatment device for pretreating a biomass raw material to a predetermined size, a predetermined moisture content, and a predetermined range of carbon content and hydrogen content per unit mass, BTL production comprising a pyrolysis device that decomposes into dry distillation gas, a purification device that purifies the dry distillation gas, and a hydrocarbon synthesis device that uses the purified gas as hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst A hydrogen supply system for metering and adding hydrogen gas between the purification device and the hydrocarbon synthesis device, a dry distillation gas purified by the purification device, and hydrogen metered from the hydrogen supply system And adjusting the mixed gas so that the carbon: hydrogen molar ratio is 1: 2 to 1: 6 in the dry distillation gas based on the content of the carbon component and the hydrogen component contained in the biomass raw material About BTL manufacturing system characterized by comprising a location.
The present invention further includes a pretreatment step of pretreating the biomass raw material so as to have a predetermined size, a predetermined moisture content, a predetermined range of carbon content and hydrogen content per unit mass, and a heat treatment of the pretreated biomass raw material. A carbonization gas generation step for generating a carbonization gas by introducing it into a cracking device, a purification step for purifying the generated carbonization gas, and synthesis by adding hydrogen to the purified carbonization gas at a predetermined carbon: hydrogen molar ratio. A mixed gas preparation step for preparing a mixed gas, a hydrocarbon oil production step for converting the prepared mixed gas into a hydrocarbon, and a mixed gas obtained in the hydrocarbon production step into a hydrocarbon oil and an unreacted component The manufacturing method of BTL characterized by including the separation process of separating.

図1は、本発明の一実施形態に係るBTL製造システムの基本構成を示す図面である。
図2は、本発明のBTL製造システムにおける熱分解装置の一例を示す図面である。
図3は、熱分解装置に供給するキャリアガス供給系の一例を示す図面。
図4は、本発明のBTL製造システムにおける精製装置の一例を示す図面である。
図5は、本発明のBTL製造システムにおける水素供給系の一例を示す図面である。
図6は、本発明のBTL製造システムにおける調整装置の一例を示す図面である。
図7は、本発明のBTL製造システムにおける水素添加量の算定の一例を示すフローチャートである。
図8は、本発明のBTLの製造方法を示すフローチャートである。
FIG. 1 is a diagram showing a basic configuration of a BTL manufacturing system according to an embodiment of the present invention.
FIG. 2 is a drawing showing an example of a thermal decomposition apparatus in the BTL manufacturing system of the present invention.
FIG. 3 is a drawing showing an example of a carrier gas supply system that supplies the thermal decomposition apparatus.
FIG. 4 is a drawing showing an example of a purification apparatus in the BTL manufacturing system of the present invention.
FIG. 5 is a drawing showing an example of a hydrogen supply system in the BTL production system of the present invention.
FIG. 6 is a drawing showing an example of an adjusting device in the BTL manufacturing system of the present invention.
FIG. 7 is a flowchart showing an example of calculation of the hydrogen addition amount in the BTL production system of the present invention.
FIG. 8 is a flowchart showing the method for manufacturing the BTL of the present invention.

(基本構成)
以下、本発明の実施の形態を添付図面に基づいて説明する。まず、図1に基づいて、本発明のBTL製造システムの基本構成を説明する。
図1に示す通り、本発明の炭化水素製造システムは、バイオマス原料を所定のサイズ、水分含有量に前処理するための前処理装置10と、前処理処理装置10で前処理したバイオマス原料を熱分解して乾留ガスとする熱分解装置20と、乾留ガスを精製する精製装置40と、精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置であるFT合成塔70と、乾留ガスに炭化水素合成に不足分の水素を供給する水素供給装置60とから主として構成されており、本発明のBTL製造システムは、精製した乾留ガスと水素とを混合する調整装置50とを有している。更に好ましくは、本発明のBTL製造システムにおいて、調整装置50は、FT合成塔において未反応のガスを調整装置50に戻す構成を有している。
なお、後述する通り、熱分解装置20は、原料であるバイオマスを投入するための投入口21と、熱分解装置20内の雰囲気を置換し、発生した乾留ガスを後段の精製装置40へ送るキャリアガス供給系30を備えている。
本発明のBTL製造装置は、所定の前処理されたバイオマスを熱分解装置20で熱分解して発生した乾留ガスを精製装置40で精製し、精製した乾留ガスに水素を添加して混合ガスとし、この混合ガスをFT合成塔により炭化水素オイルとする。この際に、バイオマス原料の炭素含有量と水素含有量に基づいて不足分の水素を水素供給系50から供給するので、本発明のBTL製造装置におけるBTLオイルの収率が上がる。
(原料および前処理)
本発明で使用可能なバイオマスは、熱分解処理により乾留ガスを発生する炭素源を有するものであれば特に限定されるものではなく、幅広いバイオマスのなかから適宜用いることが可能である。
本発明で適用可能なバイオマス原料として、水産物由来原料(海藻、水産加工品の残渣等)、林業由来原料(木材チップ、剪定残渣、樹皮等)、農業由来原料(バイオマス用植物、農作物残渣、草木、農作物収穫後の不要物、トウモロコシの芯等のバイオエタノール抽出後の残渣)、畜産由来原料(家畜・家禽の糞尿、食品加工残渣)、汚泥由来原料、ヘドロおよびこれらの混合物が挙げられるがこれらに限定されるものではない。
なお、本発明においては、異なる由来のバイオマスの混合物を出発原料として用いることが可能であるが、後述する前処理により所定の原料基準を有する原料とするために単品が好ましい。特に、海藻・木材チップ等の成分内容が比較的安定している単品を用いることが好ましい。
なお、これらのバイオマス原料は、由来に依存して異なる炭素含有量および水素含有量を有している。例えば、木材チップの場合、乾燥基準で炭素約50から60質量%、水素4〜8質量%、汚泥の場合炭素約40から50質量%、水素10〜20質量%、が含まれている。このようにバイオマス原料は、水素含有量に対して炭素含有量が過剰である。
このような炭素含有量、水素含有量に基づいて本発明では、最適な炭素:水素モル比(C:H)となうように水素を添加するが、一般には、C:H=1:1.5から1:6、好ましくは1:2から1:5、より好ましくは1:2から1:4となるように水素含有量を調整する。
この際に、バイオマス原料は、粗製原料として種々の形態で提供される。そのため、本発明では、2つの観点このような粗製原料を製造原料とするための前処理を施す。
本発明における前処理は、(1)所定の炭素水素モル比範囲内となるように十分な水分調整を行うこと(水分調整は、熱分解におけるエネルギの削減という観点からも重要である)と、(2)効率よく熱分解するように所定のサイズにあらかじめ粉砕しておくことが重要である。
しかしながら、前処理装置の導入、水分調整に要するエネルギ、粉砕装置の導入、粉砕装置の効率などの観点からこれらのバイオマス原料の前処理は適宜選択される。本発明で重要なのは、バイオマス原料が所定の原料基準(炭素および水素の含有率、水分含有量、サイズ)を満たすことである。
なお、バイオマス原料は、例えば木材チップのように予め水分含有量が十分に少ない場合には水分調整を省略してもよく、また汚泥のように乾燥後粉砕を要しない場合には粉砕を省略してもよい。
本発明での前処理は、使用する炭素源(バイオマス原料)及びその状況に応じて適宜選択される。前処理の際に重要であるのは、不純物のできる限り除去すること及び水分調整、サイズ調整である。
目標とする水分含有率は、60%未満、好ましくは30%未満、より好ましくは10%未満である。水分含有量が高すぎると熱分解装置での過剰の蒸発によるエネルギ消費が大きくなりすぎる。
バイオマスのサイズは、効率的熱分解を行うという観点から細かいほど好ましい。このようにして前処理することにより、単位重量当たりの炭素含有量および水素含有量が想定できる。換言すると、本発明においては、このようにして前処理したバイオマス原料を出発原料の原料基準として、単位重量当たりの炭素および水素含有率に基づいて、後述する水素の添加量の算出基準とする。
なお、本発明の特定の実施形態において、バイオマス原料を水分調整しながら破砕・粉砕をすることが好ましい。
前処理装置は、周知の装置から目的・バイオマスの状況に応じて適宜選択することができ木材チップをバイオマス原料として使用する場合、前処理装置は、粗粉砕するための一次粉砕装置と微粉砕するための二次粉砕装置とから構成されている。このように一次粉砕装置と二次粉砕装置とを組み合わせて木材チップを所定のサイズにすることにより、使用する熱分解装置20における熱分解効率が定まり、また木材チップは、由来に応じて(例えば、針葉樹由来木材チップ、広葉樹由来木材チップなど)炭素含有率と水素含有率がある程度の範囲内で定まる。
また、海藻などを原料とする場合、予め乾燥したものを用いてもよいが、水分含有量を調整するための脱水装置や乾燥装置などの水分含有量調整装置と、粉砕装置(一次粉砕・二次粉砕等)を組み合わせた前処理装置を使用する。
このように前処理することによって、木材チップと同様に炭素含有率と水素含有率がある程度の範囲内で定まる。
本発明においては、このような明確な原料基準を有するバイオマス原料を出発原料とすることが特徴の一つである。
なお、前処理装置10と、熱分解装置20およびその後段の装置とは分離されていてもよい。すなわち、原料供給元で前処理または前処理の一部を行いBTL製造システムで所望のBTLオイルを製造することも本発明の範囲内である。
(熱分解)
本発明において前処理されたバイオマス原料は、次いで熱分解装置20で粗製乾留ガスに熱分解される。本発明において適用可能な熱分解装置20は、例えば図2に示す通り前処理されたバイオマス原料投入する投入口21と、熱分解装置20内の雰囲気を置換する機能と、発生した乾留ガスを次工程に搬送するキャリアガス機能とを有するキャリアガス導入口23と、発生した乾留ガス(粗製乾留ガス)を排出する排出口22とを有しており、投入口21から投入したバイオマス原料を熱分解する図示しない熱源を有する装置であり、このような機能を有する熱分解装置であれば特に限定されるものではく、ロータリーキルン方式等の連続式であってもバッチ式であっても適用可能である。
図2に示す熱分解装置20は、投入口21から投入したバイオマス原料を原料押し込み装置21aにより押し込む構成を有している。この際に、原料中に含まれる空気は投入21口下方から排除され、熱分解装置20内部に入る時には実質量の酸素が除去される。
そのため、キャリアガスの導入により相当量の空気が置換される。そして、導入したバイオマス原料は、図示しない加熱手段によりキャリアガス雰囲気下で熱分解温度まで加熱されて熱分解されて不純物を含む乾留ガスと、残余の固体成分とになる。
なお、熱分解装置の熱源は、従来の通りオイルであることもできるが、熱分釜内の温度制御が容易である点から電気エネルギを使用するものあるいはオイル式とのハイブリッドが好ましい。
なお、電気エネルギを使用する場合には、本発明で得られた炭化水素(ガス及び/又はオイル)を熱源にあるいは、本発明により発生した水素と炭化水素とを混合したものをエネルギ源として使用することが好ましい。電気エネルギを使用する熱分解装置としては、従来のような電気炉であってもよいが、マイクロ波による加熱又はセラミック発熱体による加熱方式であってもよい。
なお、本発明の好ましい実施形態において、熱分解装置は、バイオマス原料の投入量を測定するための投入量測定装置(例えば、重量センサ)、キャリアガスの流量を測定するための流量センサ、炉内温度を測定するための温度センサ、装置内圧力を測定する圧力センサ、乾留ガスの排出量と排出圧を測定するための流量センサなど周知のセンサを設けていることが好ましい。
特に、熱分解装置は、バイオマス原料の投入量を測定するための重量センサ、キャリアガスの流量を測定するための流量センサ乾留ガスの排出量と排出温度を測定するための流量センサと温度センサからの情報は、炭素含有量と、水素含有量(したがって、炭素と水素とのモル比)を計算するのに重要である。
電熱方式は、これらのセンサからの情報に基づいて制御が容易であり、エネルギコスト削減、立ち上がりの早さ、メンテナンス・操作の容易性の点で好ましい。特にマイクロ波形式の場合、電気炉に比較してエネルギコストが1/10程度となり(インバータ回路を入れることによりさらに半分)、立ちあがりがより早く(5分程度)、より高温熱分解が可能となり、小型化が可能であり、そしてメンテナンス・操作が容易であるという利点がある。
なお、このように所定のバイオマス原料を一般には700℃以上の高温で熱分解することにより、熱分解するバイオマス原料の種類、前処理の程度に依存して所定の熱分解率で水性ガスを主体とした乾留ガスが生成する(粗製乾留ガス)。
本発明においては、一定の原料を一定の処理をしたバイオマス原料を出発原料として使用するので、熱分解装置20により安定した効率で乾留ガスを発生することが可能である。
キャリアガス供給系30としては、水蒸気を発生させる水を貯蔵する水タンク31と発生した水蒸気を過熱するための誘導加熱ライン32とから主として構成されている。過熱水蒸気は、600℃から900℃程度の温度にまで加熱することが可能であるので、熱分解装置20の熱源として使用することも可能である。
なお、図3に示す実施形態では、過熱水蒸気を後述する水素供給系60へ送り触媒反応により水素を発生するために使用することも可能であり、またイオン交換スクラバなどの精製装置50からの水を熱時水タンク31に送る構成とすることも可能である。
このように構成することにより、装置構成が簡単となりなおかつ消費エネルギが少なくなるという利点がある。
(精製装置)
精製装置40は、生成した粗製乾留ガスから不純物を除去する装置であり、当該技術分野に周知の装置を組み合わせて構成することができる。本発明の好ましい実施形態において、図4に示す通り脱硫・脱タール装置41と、イオン交換スクラバ43との組み合わせまたは脱硫・脱タール装置41とイオン交換スクラバ43とサイクロン42との組み合わせが精製した乾留ガスがより純粋であり、最終生成物である炭化水素オイルに塩素等のイオン成分を含まない点で好ましい。
すなわち、イオン交換スクラバは、陰イオン交換樹脂層と陽イオン交換樹脂層の両方を有するスクラバであり、HCl、HCN、Cl、NO,SO等のガス処理時98%以上の効率で除去可能である。また、一つのチャンバ内で汚染ガスの吸着処理とイオン交換繊維の再生を同時に行うことが可能である。
従来、この種の熱分解により発生したガスは、通常のスクラバで処理されていた。しかしながら、バイオマス原料の由来によっては、通常のスクラバでは塩素やヨウ素などのハロゲンや金属イオンを十分に除去できず精製したガス中に残存する場合があり、最終製品である炭化水素オイルに悪影響を及ぼす場合があった。そこで、本発明では、イオン交換スクラバを採用することが好ましい。
また、粗製水性ガスには硫黄成分やタール成分などが含まれる場合が多く、最終製品である炭化水素オイルに悪影響を及ぼす場合がある。そこで、本発明では、脱硫/脱タール装置によるこれらの成分の除去を行う。このような装置は、本発明の目的を奏するものであれば特に限定されないが、上流から下流に向かうに従って密となる活性炭により構成することができ、メンテナンスの面から複数の活性炭層を切り替える構成とすることも可能である。
脱硫・脱タール装置41は、例えば特許文献2に記載の通り公知の装置であり、同様にサイクロン42も周知の装置である。
このようにして構成することによって、本発明の前処理と組み合わせてバイオマス原料の由来に無関係に一定の性状を有する精製還流ガスを得ることができる。すなわち、イオン成分、特にハロゲン成分や硫黄分などを実質的に含まない還流ガスとすることが好ましい。このような精製乾留ガスは、塩素等を含まない目的とする炭化水素オイルを提供するのに極めて有利である。
(水素供給系)
本発明において、炭素と比較して不足している水素を補うために精製した水性ガスを水素と混合する。すなわち、本発明により炭化水素オイルを製造するために必要な水素は、精製した水性ガスからの炭素と比較して不足している。そのため、本発明のシステム及び方法により良好な収率(収量)で炭化水素オイルを製造するために、水素供給系から精製した水性ガスに水素を供給する。本発明においては、水素をオンサイトで合成して、合成した水素を要求量に応じて使用することが好ましく、キャリアガスとして使用する過熱水蒸気と水素発生触媒により発生した水素を利用することより好ましい。
より具体的には、図5に示す通り、CaBr/FeO触媒を図3に示す過熱水蒸気と接触させることにより、水蒸気を酸素と水素とに分解する。得られた水素を水素タンクに取り込み、必要に応じて精製した水性ガスと混合するのに使用する。
このようにして、水素をシステム内で製造することが可能となる。システム内で水素を製造できる水素供給系60を配置することによって、多量の水素を精製した水性ガスに供給することができる。これにより本発明のシステムで良好な収量で炭化水素を得ることが可能となる。また、得られた水素を発電に利用することも可能である。
(乾留ガスへの水素添加)
本発明において、このような水素供給系からの水素を精製した乾留ガスに添加するが、水素の添加は、キャリアガス中に予め添加してもよくあるいは過熱水蒸気の水源にマイクロバブルとして添加してもよいが、図6に示す通り、調整装置を設けることが好ましい。
(調整装置)
図6に示す調整装置50は、精製装置40で精製した乾留ガスと、水素供給系60からの水素と、好ましくは後述するFT合成塔80からの未反応ガスとを所定量で混合して、FT合成塔へ送る混合ガスを調整する装置であり、各ガスのガス圧を調整するための電磁弁等の制御弁52a、52b、52cを備えたガス混合器51と混合したガスを一時的に貯蔵するバッファタンク53とから構成されている。ガス混合器51は、図示しない気体圧縮手段を備えていることが好ましい。このような気体圧縮手段として、例えば過熱水蒸気を熱媒とした熱交換チューブをガス混合器51内に配置することによってガス混合器51内の混合ガスは膨張して加圧される。
この際の水素の添加量は、例えば図7に示す通りに決定される。
すなわち、本発明においては、前処理により予め原料基準が定められている(水素含有率と炭素含有率)、この原料基準により乾留ガスの水素含有率と炭素含有率が定まる。
そして、実際の熱分解装置20の運転により発生し、熱分解装置20から排出されるガスの量を測定することにより乾留ガスの単位時間当たりの発生量を算定する。なお、乾留ガスのガス発生量は、排出口21から単位時間当たりに排出されるガスの流量から単位時間当たりに導入するキャリアガスの流量を減じた値として近似的に求めることができる。
そして、乾留ガスの組成(炭素および水素の含有率)と流量から不足分の水素量を算定する。
また、本発明の特定の実施形態において、FT合成塔80からの未反応ガスを混合する場合、一般に未反応ガスの成分は、低級炭化水素であるので、これらの組成とその流量から要求水素量の補正を行って実際に導入する水素量を算定する。
調整装置50は、このようにして算定した水素添加量に基づいて水素供給系50から所定量の水素ガスを制御弁52cを介して、精製装置40から精製した乾留ガスを制御弁52aを介して、そして所望によりオフガスを制御弁52bを介して各々流量制御してガス混合器41に送り、そして、これらの気体の混合ガスをバッファタンク43に圧縮一時貯蔵する構成となっている。
このようにして、調整装置40内で、炭素:水素モル比が最適化された混合ガスを調製することが可能となる。
そしてこのようにして、炭素と水素の割合が最適化された混合ガスを後段のFT合成塔に送る。
(FT合成)
本発明において、炭素と水素の割合を最適化した混合ガスをFT合成塔70に送り、所定の分子量範囲を有する炭化水素となるまでFT合成反応を施す。FT合成塔自体は、当該技術分野で周知のフィッシャ・トロプシュ触媒を周知の方法で充填したFT合成塔から構成される。
FT合成塔70において、炭素と水素の割合が最適化された混合ガスを、例えば図示しない圧縮器で圧縮され、所定温度、代表的には200から250℃の温度でフィッシャ・トロプシュ触媒と接触させることにより、所望の炭化水素へと転化させる。
このようにして合成した炭化水素を含む気体は、分離装置80、一般的にはコンデンサにより炭化水素オイル90と、低級炭化水素から主として構成されるオフガス(未反応ガス)とに分離する装置である。
本発明の好ましい実施形態において、分離された未反応ガスは、所望により図示しない未反応ガスタンクに一時的に貯蔵された後に、再び調整装置50に戻して、精製した乾留ガスと、水素と混合されて、再びFT合成塔70で炭化水素合成反応に供される。なお、本発明でいう未反応ガスとは、所望の分子量まで転化されなかったガスを意味し、一般には未反応水性ガスと低級炭化水素(メタン、エタン、ブタン、プロパン等)を意味する。
このように、未反応ガスを循環させることによりBTLの収量が増加する。
このように構成された本発明のBTL製造システムでは、前処理したバイオマス原料を出発原料として熱分解して熱分解により発生した乾留ガスを精製し、精製する。この際に、バイオマス原料に含まれる不純物は、予め想定範囲内であり、実質的に全ての不純物を脱硫・脱タール装置およびイオン交換スクラバを含む精製装置により除去することが可能である。そのため、炭素:水素含有率が所定範囲内にある乾留ガスが安定して生成する。このような乾留ガスに所定量の水素を添加することによって収率よくBTLオイルを製造することが可能となる。また。分離した未反応のガスを調整装置に循環して、所定量の水素と乾留ガスとともにFT合成を行うので収率はより一層向上できる。
さらに、バイオマス原料を単一のバイオマスで構成することによって、製造するBTLは安定した性状を示すので本発明のBTL製造装置は、ジェットバイオ燃料等の所定範囲内の炭化水素成分で構成されたバイオ燃料を選択的に製造することが可能となる。
(製造方法)
次に本発明のBTLの製造方法を図8に基づいて説明する。
本発明のBTLの製造方法は、バイオマス原料を熱分解して乾留ガスを発生させ、乾留ガスを精製後に炭化水素合成触媒により炭化水素オイルを得るBTLの製造方法であって、バイオマス原料を所定のサイズ、所定の水分含有率および単位質量当たり所定範囲の炭素含有量と水素含有率になるように前処理する前処理工程(A)と、前処理したバイオマス原料を熱分解装置に投入して乾留ガスを発生させる乾留ガス発生工程(B)と、発生した乾留ガスを精製する精製工程(C)と、精製した乾留ガスに所定の炭素:水素モル比となるように水素を添加して合成用の混合ガスを調製する混合ガス調製工程(D)と、調製した混合ガスを炭化水素に転化する炭化水素オイル製造工程(E)と炭化水素製造工程で得られた混合ガスを炭化水素オイルと、未反応分とに分離する分離工程(F)とを含む.
まず、工程Aでは、既知の炭素含有量と水素含有量になるようにバイオマス原料を予め前処理を行い、工程Bでは前処理したバイオマス原料を熱分解装置に投入して熱分解し、工程Cで不純物を精製する。
このようにして精製された乾留ガス中の炭素含有量と水素含有量は既知範囲内であり、最適な炭素と水素とのモル比を得るために必要な水素量は、例えば図7に示す通りに計算により求めることができる。このようにして計算した量の水素を工程Dにおいて、精製した乾留ガスに添加して混合ガスにおける炭素成分と水素成分の量を調整して最適化する。
この際のモル比は、前述の通りC:H=1:1.5から1:6、好ましくは1:2から1:5、より好ましくは1:2から1:4である。
このようにして、炭素と水素とのモル比を調整した混合ガスを工程EでFT合成により炭化水素に転化する。
そして、工程Fにおいて工程Eで得られた成分を炭化水素オイルと未反応分とに分離し、炭化水素オイルをBTLとして回収する。
未反応分は、所望に応じて、工程Dに戻して再びFT合成にすることもできる。
このように本発明の方法では、炭素分が過剰であり水素分が不足する数多くのバイオマス原料に水素を添加するので、炭素分を余すことなく炭化水素オイルに転化できる。また、未反応分を調整工程に戻して再びFT合成を行うことによって収量は更に増加することが可能である。
以上、本発明の実施の形態を説明したが、本発明はこれらの実施の形態に限定されることなく幅広く適用可能である。
(Basic configuration)
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. First, the basic configuration of the BTL manufacturing system of the present invention will be described with reference to FIG.
As shown in FIG. 1, the hydrocarbon production system of the present invention heats a biomass raw material pretreated by the pretreatment device 10 for pretreating the biomass raw material to a predetermined size and moisture content, and the pretreatment treatment device 10. FT synthesis tower 70, which is a thermal decomposition apparatus 20 that decomposes into a dry distillation gas, a purification apparatus 40 that purifies the dry distillation gas, and a hydrocarbon synthesis apparatus that uses the purified gas as hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst. And a hydrogen supply device 60 for supplying the dry distillation gas with a shortage of hydrogen for hydrocarbon synthesis, and the BTL production system of the present invention includes an adjusting device 50 for mixing the purified dry distillation gas and hydrogen, have. More preferably, in the BTL production system of the present invention, the adjusting device 50 has a configuration for returning unreacted gas to the adjusting device 50 in the FT synthesis tower.
As will be described later, the pyrolysis apparatus 20 replaces the inlet 21 for introducing biomass as a raw material and the atmosphere in the pyrolysis apparatus 20, and sends the generated dry distillation gas to the subsequent purification apparatus 40. A gas supply system 30 is provided.
The BTL production apparatus of the present invention purifies a dry distillation gas generated by thermally decomposing a predetermined pretreated biomass with a thermal decomposition apparatus 20 with a purification apparatus 40, and adds hydrogen to the purified dry distillation gas to form a mixed gas. The mixed gas is converted into hydrocarbon oil by the FT synthesis tower. At this time, since the shortage of hydrogen is supplied from the hydrogen supply system 50 based on the carbon content and hydrogen content of the biomass raw material, the yield of BTL oil in the BTL production apparatus of the present invention increases.
(Raw material and pretreatment)
The biomass that can be used in the present invention is not particularly limited as long as it has a carbon source that generates dry distillation gas by thermal decomposition treatment, and can be appropriately used from a wide range of biomass.
Biomass raw materials applicable in the present invention include marine product-derived raw materials (seaweed, processed fishery product residues, etc.), forestry-derived raw materials (wood chips, pruning residues, bark, etc.), agricultural raw materials (plants for biomass, crop residues, vegetation) , Waste after crop harvesting, residues after bioethanol extraction such as corn core), livestock-derived materials (livestock and poultry manure, food processing residues), sludge-derived materials, sludge, and mixtures thereof. It is not limited to.
In the present invention, a mixture of biomass derived from different sources can be used as a starting material, but a single product is preferable in order to obtain a raw material having a predetermined raw material standard by a pretreatment described later. In particular, it is preferable to use a single product having relatively stable component contents such as seaweed and wood chips.
These biomass raw materials have different carbon contents and hydrogen contents depending on the origin. For example, in the case of wood chips, about 50 to 60% by mass of carbon and 4 to 8% by mass of hydrogen are included on a dry basis, and in the case of sludge, about 40 to 50% by mass of carbon and 10 to 20% by mass of hydrogen are included. Thus, the biomass raw material has an excessive carbon content relative to the hydrogen content.
In the present invention, hydrogen is added based on such carbon content and hydrogen content so as to obtain an optimal carbon: hydrogen molar ratio (C: H). Generally, C: H = 1: 1. The hydrogen content is adjusted to be from 5 to 1: 6, preferably from 1: 2 to 1: 5, more preferably from 1: 2 to 1: 4.
At this time, the biomass material is provided in various forms as a crude material. Therefore, in the present invention, two viewpoints are used for pretreatment for using such a crude material as a production material.
In the pretreatment in the present invention, (1) sufficient moisture adjustment to be within a predetermined carbon hydrogen molar ratio range (moisture adjustment is important from the viewpoint of energy reduction in thermal decomposition); (2) It is important to pulverize to a predetermined size in advance so as to efficiently thermally decompose.
However, pretreatment of these biomass raw materials is appropriately selected from the viewpoints of introduction of a pretreatment device, energy required for moisture adjustment, introduction of a pulverizer, efficiency of the pulverizer, and the like. What is important in the present invention is that the biomass raw material satisfies predetermined raw material standards (carbon and hydrogen content, water content, and size).
For biomass raw materials, for example, when the moisture content is sufficiently low, such as wood chips, moisture adjustment may be omitted, and when pulverization after drying is not required, such as sludge, grinding is omitted. May be.
The pretreatment in the present invention is appropriately selected according to the carbon source (biomass raw material) to be used and its situation. What is important in the pretreatment is removal of impurities as much as possible, moisture adjustment, and size adjustment.
The target moisture content is less than 60%, preferably less than 30%, more preferably less than 10%. If the water content is too high, energy consumption due to excessive evaporation in the thermal decomposition apparatus becomes too large.
The size of biomass is preferably as fine as possible from the viewpoint of efficient thermal decomposition. By pretreating in this way, the carbon content and hydrogen content per unit weight can be assumed. In other words, in the present invention, the biomass raw material pretreated in this way is used as a raw material reference for the starting raw material, and is used as a reference for calculating the amount of hydrogen to be described later based on the carbon and hydrogen content per unit weight.
In the specific embodiment of the present invention, it is preferable to crush and pulverize the biomass raw material while adjusting the water content.
The pretreatment device can be appropriately selected from known devices according to the purpose and the status of biomass. When wood chips are used as a biomass raw material, the pretreatment device finely pulverizes with a primary pulverizer for coarse pulverization. A secondary pulverizing apparatus. Thus, by combining the primary pulverizer and the secondary pulverizer to make the wood chip a predetermined size, the thermal decomposition efficiency in the thermal decomposition apparatus 20 to be used is determined, and the wood chip is determined according to the origin (for example, The carbon content and the hydrogen content are determined within a certain range.
When seaweed or the like is used as a raw material, it may be dried in advance. However, a moisture content adjusting device such as a dehydrating device or a drying device for adjusting the moisture content, and a pulverizing device (primary Use a pre-treatment device combined with the following grinding).
By performing the pretreatment in this way, the carbon content and the hydrogen content are determined within a certain range as in the case of wood chips.
In the present invention, one of the characteristics is that a biomass raw material having such a clear raw material standard is used as a starting raw material.
Note that the pretreatment device 10, the thermal decomposition device 20, and the subsequent device may be separated. That is, it is also within the scope of the present invention to perform a pretreatment or a part of the pretreatment at the raw material supplier and produce a desired BTL oil in the BTL production system.
(Thermal decomposition)
The biomass raw material pretreated in the present invention is then thermally decomposed into crude dry distillation gas by the thermal decomposition apparatus 20. The pyrolysis apparatus 20 applicable in the present invention includes, for example, an inlet 21 for introducing a pretreated biomass raw material as shown in FIG. 2, a function of replacing the atmosphere in the pyrolysis apparatus 20, and the generated dry distillation gas. It has a carrier gas introduction port 23 having a carrier gas function to be transported to the process, and a discharge port 22 for discharging the generated dry distillation gas (crude dry distillation gas), and pyrolyzes the biomass material input from the input port 21 It is a device having a heat source (not shown), and is not particularly limited as long as it is a pyrolysis device having such a function, and can be applied to a continuous type such as a rotary kiln type or a batch type. .
The pyrolysis apparatus 20 shown in FIG. 2 has a configuration in which a biomass raw material charged from the charging port 21 is pushed by a raw material pushing device 21a. At this time, air contained in the raw material is removed from the lower side of the inlet 21 and a substantial amount of oxygen is removed when entering the inside of the thermal decomposition apparatus 20.
Therefore, a considerable amount of air is replaced by the introduction of the carrier gas. The introduced biomass raw material is heated to a pyrolysis temperature in a carrier gas atmosphere by a heating means (not shown) and pyrolyzed to become a dry distillation gas containing impurities and a remaining solid component.
The heat source of the thermal decomposition apparatus can be oil as in the past, but those using electric energy or a hybrid with an oil type are preferred from the viewpoint of easy temperature control in the heat separator.
When electric energy is used, the hydrocarbon (gas and / or oil) obtained by the present invention is used as a heat source, or the mixture of hydrogen and hydrocarbons generated by the present invention is used as an energy source. It is preferable to do. The thermal decomposition apparatus using electric energy may be a conventional electric furnace, but may be a heating method using microwaves or a heating method using a ceramic heating element.
In a preferred embodiment of the present invention, the pyrolysis apparatus includes an input amount measuring device (for example, a weight sensor) for measuring the input amount of biomass raw material, a flow rate sensor for measuring the flow rate of the carrier gas, and the inside of the furnace It is preferable to provide a known sensor such as a temperature sensor for measuring the temperature, a pressure sensor for measuring the pressure in the apparatus, and a flow rate sensor for measuring the discharge amount and discharge pressure of the dry distillation gas.
In particular, the pyrolysis apparatus is composed of a weight sensor for measuring the input amount of biomass raw material, a flow sensor for measuring the flow rate of the carrier gas, a flow sensor and a temperature sensor for measuring the discharge amount and discharge temperature of the dry distillation gas. This information is important for calculating the carbon content and the hydrogen content (and hence the molar ratio of carbon to hydrogen).
The electric heating method is easy to control based on information from these sensors, and is preferable in terms of energy cost reduction, quick start-up, and ease of maintenance and operation. In particular, in the case of the micro-wave type, the energy cost is about 1/10 compared to an electric furnace (an additional half by inserting an inverter circuit), the start-up is faster (about 5 minutes), and higher-temperature pyrolysis is possible. There is an advantage that downsizing is possible and maintenance and operation are easy.
In this way, the predetermined biomass material is generally pyrolyzed at a high temperature of 700 ° C. or higher, so that water gas is mainly formed at a predetermined pyrolysis rate depending on the type of biomass material to be pyrolyzed and the degree of pretreatment. A dry distillation gas is produced (crude dry distillation gas).
In the present invention, a biomass raw material obtained by subjecting a certain raw material to a certain treatment is used as a starting raw material, so that the pyrolysis apparatus 20 can generate dry distillation gas with stable efficiency.
The carrier gas supply system 30 is mainly composed of a water tank 31 for storing water for generating water vapor and an induction heating line 32 for overheating the generated water vapor. Since the superheated steam can be heated to a temperature of about 600 ° C. to 900 ° C., it can also be used as a heat source for the thermal decomposition apparatus 20.
In the embodiment shown in FIG. 3, superheated steam can be sent to a hydrogen supply system 60 to be described later and used for generating hydrogen by catalytic reaction, and water from a purification device 50 such as an ion exchange scrubber can be used. It is also possible to use a configuration for sending the water to the hot water tank 31.
This configuration has an advantage that the apparatus configuration is simplified and energy consumption is reduced.
(Purification equipment)
The purification device 40 is a device that removes impurities from the generated crude dry distillation gas, and can be configured by combining devices well known in the art. In a preferred embodiment of the present invention, as shown in FIG. 4, a dry distillation in which a combination of a desulfurization / detarring device 41 and an ion exchange scrubber 43 or a combination of a desulfurization / detarging device 41, an ion exchange scrubber 43 and a cyclone 42 is purified. It is preferable in that the gas is purer and the hydrocarbon oil as the final product does not contain ionic components such as chlorine.
In other words, the ion exchange scrubber is a scrubber having both an anion exchange resin layer and a cation exchange resin layer, and is removed at an efficiency of 98% or more during gas treatment of HCl, HCN, Cl 2 , NO 2 , SO 2, etc. Is possible. Further, it is possible to simultaneously perform the adsorption treatment of the contaminated gas and the regeneration of the ion exchange fiber in one chamber.
Conventionally, the gas generated by this type of pyrolysis has been treated with a normal scrubber. However, depending on the origin of biomass raw materials, ordinary scrubbers may not sufficiently remove halogens and metal ions such as chlorine and iodine, and may remain in the purified gas, adversely affecting the hydrocarbon oil that is the final product. There was a case. Therefore, in the present invention, it is preferable to employ an ion exchange scrubber.
In addition, the crude water gas often contains a sulfur component, a tar component, and the like, which may adversely affect the hydrocarbon oil that is the final product. Therefore, in the present invention, these components are removed by a desulfurization / detar apparatus. Such an apparatus is not particularly limited as long as it achieves the object of the present invention, but can be composed of activated carbon that becomes denser from upstream to downstream, and is configured to switch a plurality of activated carbon layers in terms of maintenance. It is also possible to do.
The desulfurization / detar apparatus 41 is a known apparatus as described in, for example, Patent Document 2, and the cyclone 42 is also a known apparatus.
By comprising in this way, the refinement | purification recirculation | reflux gas which has a fixed property irrespective of the origin of biomass raw material can be obtained combining with the pretreatment of this invention. That is, it is preferable to use a reflux gas substantially free of ionic components, particularly halogen components and sulfur components. Such purified carbonization gas is extremely advantageous for providing the desired hydrocarbon oil containing no chlorine or the like.
(Hydrogen supply system)
In the present invention, purified water gas is mixed with hydrogen in order to make up for the lack of hydrogen compared to carbon. That is, the hydrogen required to produce hydrocarbon oils according to the present invention is deficient compared to carbon from purified water gas. Therefore, in order to produce hydrocarbon oil with a good yield (yield) by the system and method of the present invention, hydrogen is supplied from the hydrogen supply system to the purified water gas. In the present invention, it is preferable to synthesize hydrogen on-site and use the synthesized hydrogen according to the required amount, more preferably to use superheated steam used as a carrier gas and hydrogen generated by a hydrogen generation catalyst. .
More specifically, as shown in FIG. 5, by bringing a CaBr / FeO catalyst into contact with the superheated steam shown in FIG. 3, the steam is decomposed into oxygen and hydrogen. The resulting hydrogen is taken into a hydrogen tank and used to mix with purified water gas as necessary.
In this way, hydrogen can be produced in the system. By arranging a hydrogen supply system 60 capable of producing hydrogen in the system, a large amount of hydrogen can be supplied to the purified water gas. This makes it possible to obtain hydrocarbons with a good yield in the system of the present invention. It is also possible to use the obtained hydrogen for power generation.
(Hydrogen addition to dry distillation gas)
In the present invention, hydrogen from such a hydrogen supply system is added to the purified dry distillation gas. Hydrogen may be added in advance to the carrier gas or added to the water source of superheated steam as microbubbles. However, it is preferable to provide an adjusting device as shown in FIG.
(Adjustment device)
The adjustment device 50 shown in FIG. 6 mixes a dry distillation gas purified by the purification device 40, hydrogen from the hydrogen supply system 60, and preferably an unreacted gas from the FT synthesis tower 80 described later in a predetermined amount, It is a device that adjusts the mixed gas sent to the FT synthesis tower, and temporarily mixes the gas mixed with the gas mixer 51 provided with control valves 52a, 52b, 52c such as electromagnetic valves for adjusting the gas pressure of each gas. It comprises a buffer tank 53 for storage. The gas mixer 51 preferably includes gas compression means (not shown). As such a gas compression means, for example, by arranging a heat exchange tube using superheated steam as a heat medium in the gas mixer 51, the mixed gas in the gas mixer 51 is expanded and pressurized.
The amount of hydrogen added at this time is determined, for example, as shown in FIG.
That is, in the present invention, the raw material standard is determined in advance by pretreatment (hydrogen content and carbon content), and the hydrogen content and carbon content of the dry distillation gas are determined by this raw material standard.
Then, the amount of dry distillation gas generated per unit time is calculated by measuring the amount of gas generated by the actual operation of the thermal decomposition apparatus 20 and discharged from the thermal decomposition apparatus 20. The gas generation amount of the dry distillation gas can be approximately determined as a value obtained by subtracting the flow rate of the carrier gas introduced per unit time from the flow rate of the gas discharged from the discharge port 21 per unit time.
Then, the amount of hydrogen shortage is calculated from the composition of carbonized gas (carbon and hydrogen content) and the flow rate.
Further, in the specific embodiment of the present invention, when the unreacted gas from the FT synthesis tower 80 is mixed, the component of the unreacted gas is generally a lower hydrocarbon. The amount of hydrogen to be actually introduced is calculated by correcting the above.
Based on the hydrogen addition amount calculated in this way, the adjustment device 50 supplies a predetermined amount of hydrogen gas from the hydrogen supply system 50 via the control valve 52c and the dry distillation gas purified from the purification device 40 via the control valve 52a. If necessary, the flow rate of the off-gas is controlled through the control valve 52b and sent to the gas mixer 41, and the mixed gas of these gases is temporarily stored in the buffer tank 43.
In this way, it is possible to prepare a mixed gas in which the carbon: hydrogen molar ratio is optimized in the adjusting device 40.
In this way, the mixed gas in which the ratio of carbon and hydrogen is optimized is sent to the subsequent FT synthesis tower.
(FT synthesis)
In the present invention, a mixed gas in which the ratio of carbon and hydrogen is optimized is sent to the FT synthesis tower 70 and subjected to the FT synthesis reaction until it becomes a hydrocarbon having a predetermined molecular weight range. The FT synthesis tower itself is composed of an FT synthesis tower in which a Fischer-Tropsch catalyst known in the art is packed by a known method.
In the FT synthesis tower 70, a mixed gas having an optimized ratio of carbon and hydrogen is compressed by, for example, a compressor (not shown) and brought into contact with a Fischer-Tropsch catalyst at a predetermined temperature, typically 200 to 250 ° C. Conversion to the desired hydrocarbon.
The gas containing hydrocarbons thus synthesized is a separation device 80, generally a device that separates hydrocarbon oil 90 and off-gas (unreacted gas) mainly composed of lower hydrocarbons by a condenser. .
In a preferred embodiment of the present invention, the separated unreacted gas is temporarily stored in an unreacted gas tank (not shown) if desired, and then returned to the adjusting device 50 to be mixed with purified dry distillation gas and hydrogen. Then, it is again subjected to the hydrocarbon synthesis reaction in the FT synthesis tower 70. In the present invention, the unreacted gas means a gas that has not been converted to a desired molecular weight, and generally means an unreacted water gas and a lower hydrocarbon (methane, ethane, butane, propane, etc.).
Thus, the yield of BTL is increased by circulating unreacted gas.
In the BTL production system of the present invention configured as described above, the pyrolyzed gas generated by pyrolysis is purified by using the pretreated biomass material as a starting material, and purified. At this time, impurities contained in the biomass raw material are within an assumed range in advance, and substantially all impurities can be removed by a purification apparatus including a desulfurization / detarring apparatus and an ion exchange scrubber. Therefore, a dry distillation gas having a carbon: hydrogen content within a predetermined range is stably generated. By adding a predetermined amount of hydrogen to such dry distillation gas, it becomes possible to produce BTL oil with high yield. Also. Since the separated unreacted gas is circulated to the adjusting device and FT synthesis is performed together with a predetermined amount of hydrogen and dry distillation gas, the yield can be further improved.
Furthermore, since the BTL to be produced shows a stable property by constituting the biomass raw material with a single biomass, the BTL production apparatus of the present invention is a bio-material composed of hydrocarbon components within a predetermined range such as jet biofuel. The fuel can be selectively produced.
(Production method)
Next, the manufacturing method of BTL of this invention is demonstrated based on FIG.
The BTL production method of the present invention is a BTL production method in which a biomass raw material is pyrolyzed to generate dry distillation gas, and after refining the dry distillation gas, hydrocarbon oil is obtained by a hydrocarbon synthesis catalyst. A pretreatment step (A) for pretreatment so as to obtain a carbon content and hydrogen content in a predetermined range per size, a predetermined moisture content and a unit mass, and a biomass raw material which has been pretreated are put into a pyrolysis apparatus and dry-distilled For the synthesis of a carbonization gas generation step (B) for generating a gas, a purification step (C) for purifying the generated carbonization gas, and hydrogen is added to the purified carbonization gas at a predetermined carbon: hydrogen molar ratio. The mixed gas obtained in the mixed gas preparation step (D), the hydrocarbon oil production step (E) for converting the prepared mixed gas into hydrocarbons, and the hydrocarbon production step Including and Le, and a separation step of separating the unreacted fraction (F).
First, in the process A, the biomass raw material is pretreated in advance so as to have a known carbon content and hydrogen content, and in the process B, the pretreated biomass raw material is put into a thermal decomposition apparatus and thermally decomposed, and the process C To purify impurities.
The carbon content and hydrogen content in the carbonized gas thus purified are within a known range, and the amount of hydrogen necessary to obtain the optimum carbon-hydrogen molar ratio is, for example, as shown in FIG. Can be obtained by calculation. In step D, the amount of hydrogen calculated in this way is added to the refined dry distillation gas to optimize the amount of carbon and hydrogen components in the mixed gas.
The molar ratio at this time is C: H = 1: 1.5 to 1: 6, preferably 1: 2 to 1: 5, more preferably 1: 2 to 1: 4, as described above.
In this way, the mixed gas in which the molar ratio of carbon and hydrogen is adjusted is converted into a hydrocarbon by FT synthesis in Step E.
And the component obtained at the process E in the process F is isolate | separated into a hydrocarbon oil and an unreacted part, and hydrocarbon oil is collect | recovered as BTL.
The unreacted component can be returned to step D and re-synthesised as desired.
As described above, in the method of the present invention, hydrogen is added to a large number of biomass raw materials having an excess carbon content and a shortage of hydrogen content, so that the hydrocarbon oil can be converted without leaving a carbon content. Further, the yield can be further increased by returning the unreacted component to the adjustment step and performing FT synthesis again.
Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be widely applied.

本発明のBTL製造システムおよび製造方法では、前処理したバイオマス原料を出発原料として熱分解して熱分解により発生した乾留ガスを精製し、精製する。この際に、バイオマス原料に含まれる不純物は、予め想定範囲内であり、実質的に全ての不純物を脱硫・脱タール装置およびイオン交換スクラバを含む精製装置により除去することが可能である。そのため、炭素:水素含有率が所定範囲内にある乾留ガスが安定して生成する。このような乾留ガスに所定量の水素を添加することによって収率よくBTLオイルを製造することが可能となる。また。分離した未反応のガスを調整装置に循環して、所定量の水素と乾留ガスとともにFT合成を行うので収率はより一層向上できる。
さらに、バイオマス原料を単一のバイオマスで構成することによって、製造するBTLは安定した性状を示すので本発明のBTL製造装置は、ジェットバイオ燃料等の所定範囲内の炭化水素成分で構成されたバイオ燃料を選択的に製造することが可能となる。
In the BTL production system and production method of the present invention, the dry-distilled gas generated by the thermal decomposition is purified by the thermal decomposition using the pretreated biomass material as the starting material, and purified. At this time, impurities contained in the biomass raw material are within an assumed range in advance, and substantially all impurities can be removed by a purification apparatus including a desulfurization / detarring apparatus and an ion exchange scrubber. Therefore, a dry distillation gas having a carbon: hydrogen content within a predetermined range is stably generated. By adding a predetermined amount of hydrogen to such dry distillation gas, it becomes possible to produce BTL oil with high yield. Also. Since the separated unreacted gas is circulated to the adjusting device and FT synthesis is performed together with a predetermined amount of hydrogen and dry distillation gas, the yield can be further improved.
Furthermore, since the BTL to be produced shows a stable property by constituting the biomass raw material with a single biomass, the BTL production apparatus of the present invention is a bio-material composed of hydrocarbon components within a predetermined range such as jet biofuel. The fuel can be selectively produced.

10 前処理装置
20 熱分解装置
30 キャリアガス供給系
40 精製装置
50 調整装置
60 水素供給系
70 FT合成塔
80 炭化水素オイル
DESCRIPTION OF SYMBOLS 10 Pretreatment apparatus 20 Pyrolysis apparatus 30 Carrier gas supply system 40 Refinement apparatus 50 Adjustment apparatus 60 Hydrogen supply system 70 FT synthesis tower 80 Hydrocarbon oil

Claims (12)

バイオマス原料を所定のサイズ、所定の水分含有率および単位質量当たり所定範囲の炭素含有量と水素含有率に前処理するための前処理装置と、
バイオマス原料を熱分解して乾留ガスとする熱分解装置と、乾留ガスを精製する精製装置と、
精製した気体を炭化水素合成触媒の存在下に炭化水素オイルとする炭化水素合成装置と、から構成されたBTL製造システムであって、
前記精製装置と前記炭化水素合成装置との間に、水素ガスを計量添加する水素供給系と、前記精製装置で精製された乾留ガスと前記水素供給系から計量添加される水素とを前記バイオマス原料に含有する炭素成分と水素成分の含有量に基づいて前記乾留ガスに炭素:水素のモル比が1:2から1:6となるような混合ガスを調整する調整装置とを備えていることを特徴とするBTL製造システム。
A pretreatment device for pretreating a biomass raw material to a predetermined size, a predetermined moisture content, and a predetermined range of carbon content and hydrogen content per unit mass;
A pyrolysis device that pyrolyzes biomass raw material into dry distillation gas, a purification device that purifies dry distillation gas,
A hydrocarbon synthesizer that converts purified gas into hydrocarbon oil in the presence of a hydrocarbon synthesis catalyst, and a BTL production system comprising:
A hydrogen supply system for metering and adding hydrogen gas between the purification device and the hydrocarbon synthesis device, a dry distillation gas purified by the purification device and hydrogen metered and added from the hydrogen supply system And an adjusting device for adjusting the mixed gas so that the carbon: hydrogen molar ratio is from 1: 2 to 1: 6 based on the content of the carbon component and the hydrogen component contained in the dry distillation gas. A featured BTL manufacturing system.
前記熱分解装置は、バイオマス原料の投入量を測定するための重量センサ、キャリアガスの流量を測定するための流量センサ乾留ガスの排出量と排出温度を測定するための流量センサと温度センサとを備えており、前記システムは、これらのセンサにより単位時間当たりの乾留ガス中の炭素含有量と水素含有量を測定するための電子計算機を備えており、測定した結果とバイマス原料の種類に基づいて水素の添加量を算出し、算出した水素添加量に基づいて前記水素供給系より水素を供給することを特徴とする請求項2に記載のBTL製造システム。   The pyrolysis apparatus includes a weight sensor for measuring the input amount of the biomass raw material, a flow sensor for measuring the flow rate of the carrier gas, a flow rate sensor for measuring the discharge amount and discharge temperature of the dry distillation gas, and a temperature sensor. The system is equipped with an electronic computer for measuring the carbon content and hydrogen content in the dry distillation gas per unit time by these sensors, and based on the measurement results and the type of the biomass The BTL manufacturing system according to claim 2, wherein a hydrogen addition amount is calculated, and hydrogen is supplied from the hydrogen supply system based on the calculated hydrogen addition amount. 前記ガス調整装置は、さらに炭化水素合成装置からの未反応のガスを混合するためのガス供給ラインを有しており、前記精製した乾留ガスと、前記水素供給装置からの水素と前記炭化水素合成装置からの未反応ガスとを混合することを特徴とする請求項1に記載のBTL製造システム。   The gas regulator further includes a gas supply line for mixing unreacted gas from the hydrocarbon synthesizer, and the purified dry distillation gas, hydrogen from the hydrogen supplier, and the hydrocarbon synthesis The BTL manufacturing system according to claim 1, wherein unreacted gas from the apparatus is mixed. 前記ガス調整装置は、各々流量調整バブルを備えた精製した乾留ガスの導入口と水素ガスの導入口と未反応ガス導入口を有するガス混合部と、混合ガスを一時的に貯蔵する少なくとも1つのバッファタンクより構成されていることを特徴とする請求項1に記載のBTL製造システム。   The gas adjusting device includes a gas mixing section having a purified dry distillation gas inlet, a hydrogen gas inlet and an unreacted gas inlet each having a flow rate adjustment bubble, and at least one for temporarily storing the mixed gas. The BTL manufacturing system according to claim 1, comprising a buffer tank. 過熱水蒸気をキャリアガスまたはキャリアガスおよび熱分解装置の熱源として、前記熱分解装置に導入することを特徴とする請求項1に記載のBTL製造システム。   The BTL manufacturing system according to claim 1, wherein superheated steam is introduced into the thermal decomposition apparatus as a carrier gas or a carrier gas and a heat source of the thermal decomposition apparatus. 前記精製装置は、脱硫装置とイオン交換スクラバとから構成されていることを特徴とする請求項1に記載のBTL製造システム。   The BTL manufacturing system according to claim 1, wherein the refining device is composed of a desulfurization device and an ion exchange scrubber. 前記バイオマス原料が、木材、草木、農産物、農産物残渣またはこれらの混合物由来のバイオマス原料であり、前記前処理装置が粉砕装置から構成されていることを特徴とする請求項1に記載のBTL製造システム。   2. The BTL manufacturing system according to claim 1, wherein the biomass raw material is a biomass raw material derived from wood, vegetation, agricultural products, agricultural product residues, or a mixture thereof, and the pretreatment device includes a crushing device. . 前記バイオマス原料が所定量の水分を含むバイオマス原料であり、前記前処理装置が水分調整装置または水分調整装置と粉砕装置とから構成されていることを特徴とする請求項1に記載のBTL製造システム。   2. The BTL manufacturing system according to claim 1, wherein the biomass raw material is a biomass raw material containing a predetermined amount of water, and the pretreatment device includes a water adjustment device or a water adjustment device and a pulverization device. . 前記製造する炭化水素オイルがジェットバイオ燃料であることを特徴とする請求項1に記載のBTL製造システム。   The BTL production system according to claim 1, wherein the hydrocarbon oil to be produced is a jet biofuel. バイオマス原料を所定のサイズ、所定の水分含有率および単位質量当たり所定範囲の炭素含有量と水素含有率になるように前処理する前処理工程と、
前処理したバイオマス原料を熱分解装置に投入して乾留ガスを発生させる乾留ガス発生工程と、
発生した乾留ガスを精製する精製工程と、精製した乾留ガスに所定の炭素:水素モル比となるように水素を添加して合成用の混合ガスを調製する混合ガス調製工程と、
調製した混合ガスを炭化水素に転化する炭化水素オイル製造工程と炭化水素製造工程で得られた混合ガスを炭化水素オイルと、未反応分とに分離する分離工程とを含むことを特徴とするBTLの製造方法。
A pretreatment step of pretreating the biomass raw material so as to have a predetermined size, a predetermined moisture content, and a predetermined range of carbon content and hydrogen content per unit mass;
A dry distillation gas generation step in which a pretreated biomass material is introduced into a thermal decomposition apparatus to generate dry distillation gas;
A purification step for purifying the generated dry distillation gas, a mixed gas preparation step for preparing a mixed gas for synthesis by adding hydrogen to the purified dry distillation gas so as to have a predetermined carbon: hydrogen molar ratio,
A BTL comprising a hydrocarbon oil production process for converting the prepared mixed gas into hydrocarbons, and a separation process for separating the mixed gas obtained in the hydrocarbon production process into hydrocarbon oil and unreacted components Manufacturing method.
さらに、分離工程で生じた未反応分を混合ガス調製工程に戻す未反応分循環工程を有することを特徴とする請求項10に記載のBTLの製造方法。   The method for producing a BTL according to claim 10, further comprising an unreacted component circulation step for returning an unreacted component generated in the separation step to the mixed gas preparation step. 導入するバイオマス原料中に含まれる炭素と水素との比率に基づいて、混合ガス中の炭素と水素との比率がモル比で1:2から1:4となるように水素を添加することを特徴とする請求項10に記載のBTLの製造方法。   Based on the ratio of carbon to hydrogen contained in the biomass raw material to be introduced, hydrogen is added so that the ratio of carbon to hydrogen in the mixed gas is 1: 2 to 1: 4 in molar ratio. The method for producing a BTL according to claim 10.
JP2011509376A 2009-04-14 2010-04-13 BTL manufacturing system and BTL manufacturing method Pending JPWO2010119972A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16897609P 2009-04-14 2009-04-14
US61/168,976 2009-04-14
PCT/JP2010/056897 WO2010119972A1 (en) 2009-04-14 2010-04-13 Btl fuel production system and method for producing btl fuel

Publications (1)

Publication Number Publication Date
JPWO2010119972A1 true JPWO2010119972A1 (en) 2012-10-22

Family

ID=42982628

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2011509376A Pending JPWO2010119972A1 (en) 2009-04-14 2010-04-13 BTL manufacturing system and BTL manufacturing method
JP2011509377A Pending JPWO2010119973A1 (en) 2009-04-14 2010-04-13 Hydrocarbon oil production system and method for producing hydrocarbon oil

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011509377A Pending JPWO2010119973A1 (en) 2009-04-14 2010-04-13 Hydrocarbon oil production system and method for producing hydrocarbon oil

Country Status (2)

Country Link
JP (2) JPWO2010119972A1 (en)
WO (2) WO2010119972A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675589A (en) * 2018-07-23 2018-10-19 哈尔滨金源伟业环保科技有限公司 A kind of continous way greasy filth pyrolysis treatment systems and pyrolysis treating method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115324B2 (en) 2011-02-10 2015-08-25 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation
WO2012106795A1 (en) * 2011-02-11 2012-08-16 Steve Kresnyak Enhancement of fischer-tropsch process for hydrocarbon fuel formulation
JP5800313B2 (en) * 2011-04-19 2015-10-28 Ggiジャパン株式会社 Pyrolysis system and method for producing pyrolysis oil
US9315452B2 (en) 2011-09-08 2016-04-19 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment
CA2776369C (en) 2012-05-09 2014-01-21 Steve Kresnyak Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment
EA028870B1 (en) * 2012-11-12 2018-01-31 Ланцатек Нью Зилэнд Лимитед Biomass liquefaction through gas fermentation
EP2784288B1 (en) * 2013-03-28 2020-02-19 Lumenion AG Power plant and method for generating electric power
WO2020054063A1 (en) * 2018-09-14 2020-03-19 株式会社 ユーリカ エンジニアリング Synthetic gas production system for low-carbon ft synthetic oil production
JP6552030B1 (en) * 2018-09-14 2019-07-31 株式会社 ユーリカ エンジニアリング Syngas production system for low carbon FT synthetic oil production
JP7392854B2 (en) * 2020-06-22 2023-12-06 株式会社Ihi Hydrocarbon generation system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5461073A (en) * 1977-10-24 1979-05-17 Nippon Kasei Chem Toxic gas absorption and adsorption apparatus
US4678860A (en) * 1985-10-04 1987-07-07 Arizona Board Of Regents Process of producing liquid hydrocarbon fuels from biomass
JPH03205302A (en) * 1989-12-29 1991-09-06 Alpha Kuresuto:Kk Method for producing hydrogen
JPH11323352A (en) * 1998-05-20 1999-11-26 Chiyoda Corp Manufacture of hydrocarbon oil
JP5136831B2 (en) * 2007-08-17 2013-02-06 バイオマスエナジー株式会社 Equipment for producing hydrocarbons from biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675589A (en) * 2018-07-23 2018-10-19 哈尔滨金源伟业环保科技有限公司 A kind of continous way greasy filth pyrolysis treatment systems and pyrolysis treating method

Also Published As

Publication number Publication date
JPWO2010119973A1 (en) 2012-10-22
WO2010119973A1 (en) 2010-10-21
WO2010119972A1 (en) 2010-10-21

Similar Documents

Publication Publication Date Title
WO2010119972A1 (en) Btl fuel production system and method for producing btl fuel
Huang et al. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel
Demirbaş Hydrogen production from biomass by the gasification process
US8182771B2 (en) Method and apparatus for substitute natural gas generation
US9670413B2 (en) Methods and apparatuses for thermally converting biomass
US20130247448A1 (en) Optimization of torrefaction volatiles for producing liquid fuel from biomass
CN101100621A (en) Method and device for preparing biomass hydrogen-rich combustion gas
KR20130001284A (en) Process and ststem for producing synthesis gas from biomass by pyrolysis
Lan et al. Research on the characteristics of biomass gasification in a fluidized bed
Salaudeen et al. Steam gasification of hydrochar derived from hydrothermal carbonization of fruit wastes
EP2814916B1 (en) Fuel processing
WO2012017893A1 (en) Waste processing system
JP2011219708A (en) System and method for producing jet biofuel
Aprianti et al. H ${} _2 $-rich syngas production by sorption enhanced steam gasification of palm empty fruit bunch
EP2610326A1 (en) Industrial method for obtaining lower alcohols from solar power
JP2020040861A (en) Method and apparatus for producing amorphous silica
KR101032178B1 (en) Gasification system for converting carbonaceous feedstock into synthesis gas and method thereof
WO2010128886A2 (en) Method for producing hydrocarbons from gaseous products of the plasma treatment of solid wastes (variants)
Mohammed et al. Catalytic gasification of empty fruit bunch for enhanced production of hydrogen rich fuel gas
JP2015199774A (en) Thermal treatment of carbonaceous materials utilizing fluidized bed reactor
Dossow et al. Electrification of gasification-based biomass-to-X processes-a critical review and in-depth assessment
JP2006152240A (en) Pyrolysis and gasification method and pyrolysis and gasification apparatus
CN103992811A (en) Method and system for preparing liquid fuel and electricity from low-rank coal and natural gas
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system
EP4245719A1 (en) Method of regulating the h2/co ratio in synthetic gases by simultaneous gasification of solid and liquid biomass and/or waste