WO2017203587A1 - Biomass gasification apparatus - Google Patents

Biomass gasification apparatus Download PDF

Info

Publication number
WO2017203587A1
WO2017203587A1 PCT/JP2016/065229 JP2016065229W WO2017203587A1 WO 2017203587 A1 WO2017203587 A1 WO 2017203587A1 JP 2016065229 W JP2016065229 W JP 2016065229W WO 2017203587 A1 WO2017203587 A1 WO 2017203587A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
pyrolysis gas
pyrolysis
pyrolyzer
reformer
Prior art date
Application number
PCT/JP2016/065229
Other languages
French (fr)
Japanese (ja)
Inventor
堂脇 直城
潤一 池田
大輔 人見
忠秀 齋藤
康輔 須田
恒 上内
亀山 光男
Original Assignee
株式会社ジャパンブルーエナジー
Abエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンブルーエナジー, Abエナジー株式会社 filed Critical 株式会社ジャパンブルーエナジー
Priority to PCT/JP2016/065229 priority Critical patent/WO2017203587A1/en
Priority to JP2017519000A priority patent/JP6412261B2/en
Priority to TW106111873A priority patent/TW201741446A/en
Publication of WO2017203587A1 publication Critical patent/WO2017203587A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/02Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment

Definitions

  • the present invention relates to a biomass gasification apparatus, and more specifically, a biomass pyrolyzer that pyrolyzes biomass, and a pyrolysis gas reformer that reforms by mixing the gas generated in the biomass pyrolyzer with steam. And a biomass gasification apparatus.
  • solar power generation, wind power generation, and tidal power generation are expected as temporary power supply sources, but cannot be expected as stable power supply facilities because the amount of power generation is not stable.
  • hydropower generation and tidal power generation are expected to have a certain level of demand if they are small-scale facilities, but there is a problem that the installation location is limited in order to construct large-scale facilities.
  • biomass such as timber, sewage sludge, livestock excrement, etc. exists uniformly in Japan.
  • large amounts of woody biomass such as construction wood waste, fallen forest wood, unwanted forest land residue, and thinned wood are generated. It is expected that these woody biomass will be effectively used as renewable energy.
  • biomass is supplied from the upper part of a vertical gasifier, and a packed moving bed of biomass is formed in the gasifier, and gasified from the lower part of the gasifier.
  • a biomass gasification apparatus equipped with a gasification furnace that supplies the agent and pyrolyzes the biomass descending the packed moving bed with the ascending gasifying agent and thermally decomposes it, the biomass is classified to a predetermined size Biomass gas having a vibration sieve that obtains a particle size distribution-adjusted biomass whose weight ratio of fine particles of biomass below the diameter is a predetermined value or less, and a biomass supply device that supplies the particle size distribution-adjusted biomass from the vibration sieve to the gasifier
  • Patent Document 1 An apparatus has been proposed (Patent Document 1).
  • the gasifier According to the gasifier, a uniform high-temperature gas upward flow can be formed in the packed moving bed, and the pressure loss in the packed moving bed can be reduced, so that stable gasification can be maintained.
  • the supplied biomass will be pyrolyzed uniformly.
  • An externally heated rotary kiln type pyrolysis section that thermally decomposes raw biomass by indirect heating and pyrolyzing to generate a tar containing pyrolysis gas, and a pyrolysis gas containing tar extracted from the pyrolysis section
  • a biomass gasification apparatus has been proposed that includes an oxidizing gas introduced into char to thermally decompose the tar content and a gasification section that gasifies the char (Patent Document 2).
  • the apparatus thermally decomposes biomass and then removes tar and char contained in the pyrolyzed gas by burning with oxidizing gas.
  • the equipment is not only complicated, but also the operation is complicated.
  • a part of the fuel gas is burned and lost.
  • Other devices include, for example, a carbonization device that carbonizes sewage sludge, woody biomass, etc., a high-temperature gasification section that gasifies the carbide generated from the carbonization device, and a combustible pyrolysis containing tar volatilized when the carbide is generated
  • a pyrolysis gasification system including a two-stage gasification furnace including a gas reforming section that performs gas reforming (Patent Document 3).
  • the pyrolysis gasification system is not only complicated because it includes a carbonization apparatus and a two-stage gasification furnace, but also requires complicated operation.
  • burning tar there is a concern that a part of the fuel gas is burned and lost.
  • a method for gasifying organic substances such as woody biomass
  • a method using a heat carrier medium is disclosed.
  • a method for producing a product gas having a high calorific value from an organic substance and a substance mixture in which a circulating heat-carrying medium passes through a heating zone, a reaction zone, a pyrolysis zone and a separation step, and subsequently enters the heating zone.
  • the organic substance or substance mixture is separated into pyrolysis gas as a solid carbon-containing residue and volatile phase by contact with a heated support medium heated in the pyrolysis zone, after passing through the pyrolysis zone
  • the solid carbon-containing residue is separated from the heat-carrying medium in the separation step, the pyrolysis gas is mixed with water vapor as the reaction medium, and a part of the heat contained in the heat-carrying medium heated in the reaction zone is exchanged
  • a method for producing a product gas having a high calorific value from an organic substance and a mixture of substances further heating to produce a product gas having a high calorific value, Mixed with pyrolysis gas in the zone and fed all solid carbon-containing residue to another combustion device where it is burned, and the hot exhaust gas of this combustion device is deposited on the heat carrier medium present in the heating zone.
  • Patent Document 4 There has been proposed a method for producing a product gas having a high calorific value from an organic substance and a substance mixture, in which a large amount of sensible heat is applied to the heat carrier medium at that time.
  • a mixture comprising pyrolysis coke and a heat-carrying medium is separated, and the obtained pyrolysis coke is burned in a combustion apparatus, and the sensible heat generated thereby is utilized.
  • the heat carrier medium is heated in the heating zone, and thereby, a product gas having a high calorific value is obtained at a low cost.
  • a pyrolyzer having a pyrolysis zone and a gas reformer having a reaction zone separately, and thus can be configured as either a serial connection type or a parallel connection type. It is characterized by.
  • a system has been proposed in which the preheater in the above method is devised for the purpose of maintaining the heating efficiency of the heat carrier medium (heat carrier) in the preheater in the heating zone and stabilizing the quality of the product gas. (Patent Document 5).
  • heat carrier medium heat carrier
  • the present invention optimizes the pyrolysis temperature of biomass and the reforming temperature of the generated pyrolysis gas, thereby increasing the generation amount of pyrolysis gas and increasing the production amount of hydrogen-containing gas that is the final product.
  • the present invention provides a biomass gasification apparatus that can reduce the generation amount of tar and dust.
  • the generated tar gas can be effectively gasified, and the remaining tar and dust remaining without being gasified can be efficiently recovered, thereby significantly reducing equipment troubles due to tar and dust.
  • An apparatus is provided.
  • the biomass is wrapped in the heat carrier layer and heated. Therefore, biomass can be pyrolyzed relatively uniformly, but operational troubles due to tar and dust generated during pyrolysis could not be avoided.
  • the heat carrier is preheated to a predetermined temperature and introduced into the pyrolysis gas reformer, where the heat carrier contacts the pyrolysis gas and steam introduced from the biomass pyrolyzer. Then, the pyrolysis gas is steam reformed and taken out as a product.
  • the heat carrier descends through the pipe and is introduced into the biomass pyrolyzer to cause thermal decomposition of the biomass.
  • the gas generated by the pyrolysis of biomass rises in the pipe and is introduced into the pyrolysis gas reformer.
  • the pyrolysis gas contains tar and soot and the like, the tar and soot and the like adhere to the inner wall and valve of the introduction pipe to the pyrolysis gas reformer, and sometimes the pyrolysis gas
  • the problem is that the heat carrier that is in countercurrent contact with the pipe is also stuck and clogged in the pipe. In order to solve this problem, it is conceivable to increase the diameter of the introduction pipe. However, even though this means can simply extend the time to blockage, it cannot be an essential solution.
  • the pyrolysis gas reformer and the biomass pyrolyzer are connected in series up and down, it has been impossible to separately control the temperature inside each reactor, ie, the biomass pyrolyzer and pyrolysis gas reformer.
  • the biomass pyrolyzer and pyrolysis gas reformer are connected in series up and down, it has been impossible to separately control the temperature inside each reactor, ie, the biomass pyrolyzer and pyrolysis gas reformer.
  • the biomass pyrolyzer internal temperature cannot be increased due to the necessity of maintaining the pyrolysis gas reformer internal temperature.
  • Patent Document 4 proposes a method in which a biomass pyrolyzer and a pyrolysis gas reformer are arranged in parallel to the flow of a heat carrier medium (heat carrier). According to this method, the temperature of the biomass pyrolyzer and the temperature of the pyrolysis gas reformer can be controlled separately, so that the above problem can be solved.
  • the pyrolysis gas generated in the biomass pyrolyzer has been introduced into the pyrolysis gas reformer by piping from the upper part of the biomass pyrolyzer.
  • Such a method of introducing pyrolysis gas has a problem that tar and dust etc. adhere to the inner wall and valve of the pipe through which the pyrolysis gas rises and falls to prevent clogging troubles from occurring.
  • a heat carrier medium heat carrier
  • the biomass pyrolysis temperature and the pyrolysis gas reforming temperature can be set to optimum values.
  • the amount of tar and dust generated during pyrolysis can be effectively reduced, pyrolysis gas can be generated efficiently, and the generated pyrolysis gas can be efficiently used under optimum conditions.
  • the temperatures of the biomass pyrolyzer and the pyrolysis gas reformer can be controlled separately, but the biomass pyrolyzer and the pyrolysis gas can be controlled separately.
  • the pyrolysis gas introduction pipe that introduces pyrolysis gas into the reformer, tar and dust adhere to the inner wall and valves, etc., and eventually the pyrolysis gas introduction pipe is closed. .
  • the inventors separately control the internal temperatures of the biomass pyrolyzer and the pyrolysis gas reformer, and set the biomass pyrolysis temperature and the pyrolysis gas reforming temperature to appropriate values, respectively.
  • the generation amount of tar and dust is reduced, in addition to biomass. Tar, dust, etc. adhere to the inner wall and valve of the pyrolysis gas introduction pipe for introducing the pyrolysis gas generated in the pyrolysis gas into the pyrolysis gas reformer, and the pyrolysis gas introduction pipe is blocked.
  • various investigations have been attempted regarding the configuration of the gasifier.
  • the biomass pyrolyzer and the pyrolysis gas reformer are arranged in parallel with respect to the flow of a plurality of granular materials and / or bulk materials [heat carrier medium (heat carrier)], and the pyrolysis gas
  • the introduction pipe is formed in the biomass pyrolyzer and the pyrolysis gas reformer on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, and the biomass pyrolyzer below the upper surface of the heat carrier layer and It has been found that the above problem can be solved by installing on the side surface of the pyrolysis gas reformer and making the pyrolysis gas introduction pipe a horizontal pipe.
  • the internal temperature can be controlled separately and the pyrolysis gas introduction pipe
  • a gas inlet gas inlet
  • a gas inlet gas outlet
  • a heat carrier in the biomass pyrolyzer and pyrolytic gas reformer is provided in the pyrolysis gas introduction pipe. Then, the pyrolysis gas passes through the heat carrier layer held in the pyrolysis gas introduction pipe, so that tar and dust are efficiently removed, and the tar is effectively heated. It was found that it was decomposed.
  • the heat carrier that has entered the pyrolysis gas introduction pipe is sequentially replaced as the heat carrier moves from the top to the bottom in the biomass pyrolysis gas reformer and pyrolysis gas reformer,
  • the tar and dust are remarkably efficiently removed and the tar is pyrolyzed and preferably reformed without the heat carrier being fixed and clogged with tar or the like in the pyrolysis gas introduction pipe.
  • the inner bottom surface of the pyrolysis gas introduction tube is protruded upward, the heat carriers flowing in the biomass pyrolysis device and the pyrolysis gas reformer respectively pass through the pyrolysis gas introduction tube. It is found that not only can the flow into the other container be prevented more effectively, but also the heat carrier in the pyrolysis gas introduction pipe can be effectively replaced and tar and dust can be removed more efficiently. It was.
  • the present invention (1) Biomass pyrolyzer having a biomass supply port, and a non-oxidizing gas supply port and / or a steam inlet, and a pyrolysis gas reformer having a steam inlet and a reformed gas outlet, A pyrolysis gas inlet pipe provided between the biomass pyrolyzer and the pyrolysis gas reformer, which introduces the pyrolysis gas generated in the biomass pyrolyzer into the pyrolysis gas reformer; And the biomass pyrolyzer and the pyrolysis gas reformer each further comprise a plurality of preheated granules and / or lump inlets and outlets, and the plurality of granules.
  • a gas reformer is provided in parallel with the plurality of granular and / or massive flows, and the pyrolysis gas introduction pipe is provided with the biomass pyrolyzer and the pyrolysis gas reformer.
  • the biomass gasification apparatus is provided on a side surface of the cracked gas reformer, and the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity.
  • (2) The biomass gasification apparatus according to (1), wherein an inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward.
  • the biomass gasification apparatus according to the above (1), (5) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center.
  • the biomass gasification apparatus according to the above (1), (6) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center.
  • the biomass gasification apparatus according to the above (1), (7) Any one of the above (1) to (6), wherein the outer shape of the cross section perpendicular to the longitudinal direction (the direction of flow of the pyrolysis gas) of the pyrolysis gas introduction tube is substantially circular or polygonal.
  • a gasifier for biomass as described in (8) The biomass according to any one of (1) to (6) above, wherein the outer shape of the cross section perpendicular to the longitudinal direction (flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe is substantially square Gasifier, (9) The biomass gasification apparatus according to any one of (1) to (8), wherein 1 to 3 pyrolysis gas introduction pipes are provided.
  • the steam injection port is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (1) to the biomass gasification apparatus according to any one of (11), (13) Any one of the above (1) to (11), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe.
  • Gasification apparatus for biomass as described in (14) One to three steam inlets are provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe, respectively.
  • the biomass gasifier described in the above, (21) The biomass gasification apparatus according to any one of (1) to (20) above, wherein the granular and / or lump is selected from the group consisting of metal balls and ceramic balls, (22) The biomass gasification apparatus according to (21), wherein the metal ball is made of stainless steel, (23) The biomass gasification apparatus according to (21), wherein the ceramic ball is made of one or more materials selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride. (24) The biomass gasifier according to any one of (1) to (23), wherein the biomass pyrolyzer has a gas phase temperature of 400 to 700 ° C.
  • this invention is the gasification method of biomass using the biomass gasification apparatus of said (1) description. That is, the present invention (31) A biomass pyrolyzer that heats biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam, and a gas generated in the biomass pyrolyzer in the presence of steam A plurality of preheated granulates and / or lumps are put into the biomass pyrolyzer and the pyrolysis gas reformer, and the plurality of the pyrolysis gas reformers to be heated are provided.
  • the biomass gasification method in which the pyrolysis of biomass and the reforming of pyrolysis gas generated by the pyrolysis of biomass are performed by the heat of the granules and / or the chunks, the plurality of granules and / or chunks described above Is separately fed to the biomass pyrolyzer and the pyrolysis gas reformer provided in parallel with the plurality of granular and / or lump flows,
  • the pyrolysis gas generated in the biomass pyrolyzer is formed in the biomass pyrolyzer and the pyrolysis gas reformer on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, respectively.
  • Pyrolysis gas provided on the side surfaces of the biomass pyrolyzer and pyrolysis gas reformer below the upper surface of the plurality of granular and / or lump layers and provided substantially horizontally with respect to the direction of gravity This is a method for gasifying biomass that is introduced into the pyrolysis gas reformer through the introduction pipe and reformed.
  • (32) The biomass gasification method according to (31), wherein the inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward.
  • (33) The inner bottom surface of the pyrolysis gas introduction pipe has a structure projecting upward with an inclination from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center portion, (31)
  • the biomass gasification method according to (31), (34) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe projects upward with an inclination of 5 to 45 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center.
  • the biomass gasification method according to (31) above, (35) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center.
  • the biomass gasification method according to (31) above, (36) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe projects upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center.
  • the biomass according to any one of (31) to (36), wherein an outer shape of a cross section perpendicular to a longitudinal direction (flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe is substantially square.
  • Gasification method (39) The biomass gasification method according to any one of (31) to (38), wherein 1 to 3 of the pyrolysis gas introduction pipes are provided, (40) The biomass gasification method according to any one of (31) to (36), wherein one or two pyrolysis gas introduction pipes are provided, (41) The biomass gasification according to any one of (31) to (40), wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein.
  • the steam injection port is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (31)
  • the method for gasifying biomass according to any one of (41), (43) Any one of the above (31) to (41), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe.
  • Gasification method of biomass as described in (44) One to three steam inlets are provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe, respectively.
  • Biomass gasification method according to any one of (46) Any of the above (31) to (45), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in the upper part of the biomass pyrolyzer and pyrolysis gas reformer A biomass gasification method according to claim 1; (47) In any one of the above (31) to (46), an inlet for the plurality of granular materials and / or agglomerates is provided above the biomass pyrolyzer and the pyrolysis gas reformer.
  • the biomass gasification method described, (48) In any one of the above (31) to (46), the introduction port for the plurality of granular materials and / or agglomerates is provided at the top of the biomass pyrolyzer and pyrolytic gas reformer.
  • the biomass gasification method described, (49) In any one of the above (31) to (48), the plurality of granular and / or lump discharge ports are provided below the biomass pyrolyzer and the pyrolysis gas reformer.
  • the biomass gasification method described, (50) In any one of the above (31) to (48), the plurality of granular and / or lump discharge ports are provided at the bottom of the biomass pyrolyzer and pyrolysis gas reformer.
  • the biomass gasification method described (51) The biomass gasification method according to any one of (31) to (50), wherein the granular material and / or the lump are selected from the group consisting of metal balls and ceramic balls, (52) The biomass gasification method according to (51), wherein the metal ball is made of stainless steel, (53) The biomass gasification method according to (51), wherein the ceramic balls are made of one or more materials selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride. (54) The biomass gasification method according to any one of (31) to (53) above, wherein the gas phase temperature of the biomass pyrolyzer is 400 to 700 ° C.
  • the present inventors have introduced a pyrolysis gas introduction pipe for introducing pyrolysis gas generated in the biomass pyrolysis apparatus into the pyrolysis gas reformer, that is, a pyrolysis gas introduction pipe.
  • the gas inlet (gas inlet) is installed in the biomass pyrolyzer at the side of the biomass pyrolyzer below the upper surface of the heat carrier layer, that is, in the heat carrier layer. Then, only a biomass pyrolyzer introduces a plurality of granular materials and / or lumps [heat carrier medium (heat carrier)] to thermally decompose biomass, and the generated pyrolysis gas is converted into conventional heat.
  • the present inventors have conducted various studies on the device configuration, and as a result, the device configuration can solve the problems of the present invention without inferior to the first device configuration. I found it.
  • the present invention (61) Biomass pyrolyzer comprising a biomass feed port and a non-oxidizing gas feed port and / or a steam inlet, and a pyrolysis gas reformer comprising a steam inlet and a reformed gas outlet, A pyrolysis gas inlet pipe provided between the biomass pyrolyzer and the pyrolysis gas reformer, which introduces the pyrolysis gas generated in the biomass pyrolyzer into the pyrolysis gas reformer; And the biomass pyrolyzer further includes a plurality of preheated granule and / or lump inlets and discharge ports, and is heated by the heat of the plurality of granulates and / or lump.
  • the pyrolysis of biomass is performed, while the pyrolysis gas reformer further includes a flow path of a gaseous or liquid heat medium that is preheated on the outside thereof, and the heat of the heat medium
  • the pyrolysis gas introduction pipe is formed in the biomass pyrolysis device on the biomass pyrolysis device side.
  • a biomass gasifier characterized in that the biomass pyrolyzer is provided on a side surface of the biomass pyrolyzer below the upper surface of the massive layer.
  • the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolysis device side between the biomass pyrolysis device and the pyrolysis gas reformer,
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (61), wherein the inner bottom surface has a structure projecting upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center.
  • Biomass gasification equipment (67)
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (61), wherein the inner bottom surface has a structure projecting upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center.
  • a gasifier for biomass as described in (69) The biomass according to any one of (61) to (67), wherein an outer shape of a cross section perpendicular to a longitudinal direction of the pyrolysis gas introduction pipe (flow direction of the pyrolysis gas) is a substantially square shape.
  • Gasifier, (70) The biomass gasification apparatus according to any one of (61) to (69), wherein one to three pyrolysis gas introduction pipes are provided, (71) The biomass gasification apparatus according to any one of (61) to (69), wherein one or two pyrolysis gas introduction pipes are provided, (72) The biomass gasification according to any one of (61) to (71), wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein.
  • the steam inlet is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (61)
  • the biomass gasification device according to any one of (77) The biomass according to any one of the above (61) to (76), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in an upper part of the biomass pyrolyzer.
  • Gasifier (78) The biomass gasification apparatus according to any one of (61) to (77), wherein the plurality of granular and / or lump-like inlets are provided above the biomass pyrolyzer.
  • the present invention is also a biomass gasification method using the biomass gasification apparatus described in (61) above. That is, the present invention (93) A biomass pyrolyzer that heats biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam, and a gas generated in the biomass pyrolyzer in the presence of steam. A plurality of preheated granulates and / or lumps are charged into the biomass pyrolyzer, and the plurality of granulates and / or lumps are heated.
  • Biomass is thermally decomposed by the heat it has, while a preheated gaseous or liquid heat medium is passed through the flow path of the heat medium provided outside the pyrolysis gas reformer,
  • the heat generated in the biomass pyrolyzer Through the pyrolysis gas introduction pipe provided on the side surface of the biomass pyrolyzer below the upper surface of the plurality of granular and / or bulk layers formed in the biomass pyrolyzer This is a method for gasifying biomass introduced into the pyrolysis gas reformer and reformed.
  • the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer side between the biomass pyrolyzer and the pyrolysis gas reformer,
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube
  • the biomass gasification method according to (93) wherein the inner bottom surface has a structure projecting upward from the both sides of the biomass pyrolyzer and the pyrolysis gas reformer with an inclination from both sides to the center.
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (93), wherein the inner bottom surface has a structure projecting upward with an inclination of 5 to 45 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center.
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (93), wherein the inner bottom surface has a structure projecting upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center.
  • the pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube
  • the above (93) wherein the inner bottom surface has a structure projecting upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center.
  • the steam inlet is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (93) to (104) the biomass gasification method according to any one of (106) Any one of the above (93) to (104), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe.
  • Biomass gasification method according to any one of (109) The biomass according to any one of (93) to (108), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in an upper part of the biomass pyrolyzer.
  • Gasification method (110) The biomass gasification method according to any one of (93) to (109), wherein the plurality of granular and / or massive inlets are provided above the biomass pyrolyzer.
  • (111) The biomass gasification method according to any one of (93) to (109), wherein the plurality of granular and / or lump introduction ports are provided at the top of the biomass pyrolyzer.
  • the biomass gasification method can be mentioned.
  • the temperature of the biomass pyrolyzer and the pyrolysis gas reformer can be controlled separately, the biomass pyrolysis temperature and the reforming temperature of the generated pyrolysis gas are both controlled. It can be optimized easily and over a long period of time. As a result, the amount of pyrolysis gas generated can be increased and the production of the hydrogen-containing gas that is the final product can be increased, as well as tar and dust generated by the pyrolysis of biomass. The amount can be reduced as much as possible.
  • the gas inlet (gas inlet) of the pyrolysis gas introduction pipe that introduces the pyrolysis gas generated in the biomass pyrolyzer into the pyrolysis gas reformer is in the heat carrier layer of the biomass pyrolyzer. Since the gas introduction port (gas outlet) of the pyrolysis gas introduction pipe is provided in the heat carrier layer of the pyrolysis gas reformer, heat is introduced into the pyrolysis gas introduction pipe. The carrier flows in and the heat carrier is held in the pyrolysis gas introduction pipe. Further, since the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity, the heat carrier in the pyrolysis gas introduction pipe, the biomass pyrolysis device, and the pyrolysis gas reformer are disposed above.
  • FIG. 1 shows a biomass gas according to the present invention having a first apparatus configuration in which a plurality of pre-heated granules and / or agglomerates are introduced into both a biomass pyrolyzer and a pyrolysis gas reformer. It is the schematic which showed one embodiment of the formation apparatus.
  • FIG. 2 shows a biomass gas according to the present invention having a first apparatus configuration in which a plurality of preheated particulates and / or agglomerates are introduced into both a biomass pyrolyzer and a pyrolysis gas reformer. It is the schematic which showed another one embodiment of the formation apparatus.
  • FIG. 1 shows a biomass gas according to the present invention having a first apparatus configuration in which a plurality of pre-heated granules and / or agglomerates are introduced into both a biomass pyrolyzer and a pyrolysis gas reformer. It is the schematic which showed another one embodiment of the formation apparatus.
  • FIG. 1 shows a biomass gas according
  • FIG. 3 shows an embodiment of the biomass gasification apparatus of the present invention, which includes a second apparatus configuration in which a plurality of pre-heated granular materials and / or agglomerates are charged only into the biomass pyrolyzer.
  • FIG. FIG. 4 is a schematic view showing several different embodiments of the pyrolysis gas introduction pipe provided between the biomass pyrolyzer and the pyrolysis gas reformer.
  • FIG. 5 is a schematic view of a conventional biomass gasification apparatus used in a comparative example.
  • the gasifier of the present invention includes a biomass supply port, a biomass pyrolyzer having a non-oxidizing gas supply port and / or a steam injection port, a steam injection port, and a reformed gas.
  • a pyrolysis gas reformer having an outlet; and the biomass pyrolysis device and the pyrolysis gas reformer for introducing pyrolysis gas generated in the biomass pyrolysis device into the pyrolysis gas reformer;
  • the biomass pyrolyzer and the pyrolytic gas reformer are each further provided with a plurality of preheated granules and / or agglomerates, that is, And a heat carrier medium (heat carrier) inlet and outlet.
  • a plurality of pre-heated granules and / or lump is introduced into the biomass pyrolyzer and pyrolysis gas reformer, and the heat of the plurality of granules and / or lump is used to generate biomass. Reforming of pyrolysis gas generated by pyrolysis and pyrolysis of biomass is performed.
  • the biomass pyrolyzer and the pyrolysis gas reformer are provided in parallel to the flow of the plurality of granular materials and / or bulk materials.
  • a biomass pyrolyzer and a pyrolysis gas reformer are provided in series in the vertical direction with respect to a plurality of granular and / or lump flows.
  • a plurality of particulates and / or agglomerates can be separately introduced into the biomass pyrolyzer and pyrolysis gas reformer, The temperature can be controlled separately.
  • the pyrolysis gas introduction pipe is formed in the biomass pyrolysis device and the pyrolysis gas reformer on both sides of the biomass pyrolysis device and the pyrolysis gas reformer, respectively.
  • the particulate and / or bulk layer that is, the side surface of the biomass pyrolyzer and pyrolyzed gas reformer below the upper surface of the heat carrier layer.
  • a gas inlet (gas inlet) of the pyrolysis gas introduction pipe is provided in a layer formed of a plurality of granular materials and / or lumps formed in the biomass pyrolyzer
  • a gas inlet (gas outlet) of the pyrolysis gas introduction pipe is formed in a layer composed of a plurality of granular materials and / or agglomerates formed in the pyrolysis gas reformer.
  • the pyrolysis gas intake port of the pyrolysis gas introduction pipe is provided in the layer composed of a plurality of particles and / or a lump, a plurality of particles present in the biomass pyrolyzer.
  • a part of the product and / or the lump can enter the inside of the pyrolysis gas introduction pipe, and a plurality of gas introduction ports to the pyrolysis gas reformer of the pyrolysis gas introduction pipe are provided. Since it is provided in the layer composed of the granular material and / or the lump, a part of the plurality of the granular material and / or lump existing in the pyrolysis gas reformer is provided in the pyrolysis gas introduction pipe.
  • the pyrolysis gas introduction tube can hold a plurality of particulates and / or agglomerates therein.
  • the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity, a plurality of particulates and / or lumps can easily enter the pyrolysis gas introduction pipe, and The plurality of granular materials and / or bulks held in the pyrolysis gas introduction pipe are moved through the biomass pyrolysis device and the pyrolysis gas reformer by gravity from the top to the bottom, and / or Or with the flow of a lump, it can be gradually and gradually replaced with a plurality of particles and / or lump that are moving from top to bottom.
  • tube can keep a new state. Furthermore, a plurality of particulates and / or lumps that have flowed into the pyrolysis gas inlet pipe from the biomass pyrolyzer are mixed into the pyrolysis gas reformer, while thermal decomposition from the pyrolysis gas reformer. It can be avoided that a plurality of particulates and / or lumps flowing into the gas introduction pipe are mixed into the biomass pyrolyzer.
  • a plurality of granular materials and / or lumps are held inside the pyrolysis gas introduction pipe, they are included in the pyrolysis gas that passes through them and is introduced into the pyrolysis gas reformer.
  • the tar, dust, and the like that are collected are brought into contact with the plurality of granular materials and / or lumps.
  • a part or most of the trapped tar is pyrolyzed and gasified by the heat of the plurality of particulates and / or lumps, and is preferably further modified.
  • tar and dust remaining without being gasified are discharged from the bottom portion of the biomass pyrolyzer and the bottom portion of the pyrolysis gas reformer while adhering to a plurality of granular materials and / or bulk materials. Thereby, tar and dust can be effectively removed from the pyrolysis gas.
  • the inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward. As described above, since the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward, a plurality of granular materials and / or lumps that have entered the pyrolysis gas introduction pipe from the biomass pyrolyzer.
  • the particulates and / or lumps are mixed into the pyrolysis gas reformer, while the plurality of granules and / or lumps that have flowed into the pyrolysis gas introduction pipe from the pyrolysis gas reformer, It can prevent more effectively mixing into a biomass pyrolyzer.
  • the inner bottom surface of the pyrolysis gas introduction pipe has a structure projecting upward with an inclination from both sides of the biomass pyrolyzer and pyrolysis gas reformer toward the center.
  • the inclination angle ( ⁇ ) is preferably 5 to 45 degrees, more preferably 10 to 30 degrees, and still more preferably 15 to 25 degrees.
  • the inclination angle ( ⁇ ) may be the same on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, or may be different from each other. By providing such an inclination, a plurality of particulates and / or lumps that have entered the pyrolysis gas introduction pipe from both the biomass pyrolyzer and pyrolysis gas reformer are stagnant at the point where they merge.
  • the replacement of a plurality of granular materials and / or lumps in the pyrolysis gas introduction pipe is promoted.
  • the outer shape of the cross section perpendicular to the longitudinal direction thereof, that is, the cross section perpendicular to the flow direction of the pyrolysis gas is preferably substantially circular or substantially polygonal, and more preferably substantially square. It is.
  • the inner diameter of the pyrolysis gas introduction pipe is not particularly limited as long as a plurality of granular materials and / or lumps can easily flow into and out of the pyrolysis gas introduction pipe.
  • the pyrolysis gas introduction pipe is preferably provided between 1 and 3 and more preferably 1 or 2 between the biomass pyrolyzer and the pyrolysis gas reformer.
  • the steam inlet is preferably one selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe. It is provided in the above position. More preferably, the steam inlet is provided in all of the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. Thereby, pyrolysis of biomass and reforming of pyrolysis gas can be achieved more satisfactorily.
  • the number of steam inlets is not particularly limited, but preferably 1 to 3, respectively, in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. More preferably, one is provided for each.
  • a preheater for preheating a plurality of granular materials and / or agglomerates is provided above the biomass pyrolyzer and the pyrolytic gas reformer. Thereby, this some granular material and / or lump are heated to predetermined temperature.
  • the preheater is provided at the upper part of the biomass pyrolyzer and pyrolysis gas reformer, where all the granular materials and / or lumps are heated to a predetermined temperature and heated to the same temperature.
  • the granular and / or lump can be separately introduced into the biomass pyrolyzer and the pyrolysis gas reformer.
  • one preheater is provided above each of the biomass pyrolyzer and pyrolytic gas reformer, that is, a total of two preheaters are provided, and the biomass pyrolyzer and pyrolytic gas reformer are provided in each preheater. It can also be introduced separately into the biomass pyrolyzer and pyrolysis gas reformer, heated to separate temperatures to match the respective temperatures of the reactor. In any of the above configurations, the effect can be sufficiently achieved. If the former configuration is adopted, the apparatus cost can be reduced, and when the biomass pyrolysis temperature is controlled by the amount of steam introduced into the biomass pyrolyzer, the steam introduced more effectively with the introduced steam. And reforming can be performed. On the other hand, if the latter form is adopted, temperature control can be easily performed and energy required for heating the granular material and / or the massive material can be reduced.
  • a plurality of granular and / or lump inlets are provided above (upper), preferably at the top of the biomass pyrolyzer and pyrolytic gas reformer, while the biomass pyrolyzer and pyrolytic gas.
  • a plurality of particulate and / or lump outlets are provided below the reformer (lower part), preferably at the bottom.
  • a so-called two-stage valve system in which a plurality of granular materials and / or massive inlets and outlets are provided with a total of two valves, one above and one below the pipe, is used.
  • the introduction and extraction method is an example, and the present invention is not limited to this method.
  • the plurality of granular materials and / or agglomerates is preferably made of one or more materials selected from the group consisting of metals and ceramics.
  • the metal is preferably selected from the group consisting of iron, stainless steel, nickel alloy steel, and titanium alloy steel, and more preferably stainless steel.
  • the ceramic is selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride, and more preferably alumina.
  • the shape of the plurality of granular materials and / or lumps is preferably spherical (ball), but is not necessarily a true sphere, and may be a spherical material having an elliptical or oval cross-sectional shape.
  • the diameter (maximum diameter) of the spherical object is preferably 3 to 25 mm, more preferably 8 to 15 mm. If the above upper limit is exceeded, fluidity inside the biomass pyrolyzer and pyrolysis gas reformer, i.e., free fall, may be impaired. May become stationary inside the organ and cause blockage.
  • the spherical substance itself may be fixed due to tar and dust adhering to the spherical substance, which may cause clogging.
  • the diameter of the spherical material is less than 3 mm, the spherical material grows by adhering to the inner wall of the biomass pyrolyzer due to the influence of tar and soot adhering to the spherical material. There is a concern that the pyrolyzer will be blocked.
  • the spherical object with tar attached is pulled out from the bottom valve of the biomass pyrolyzer and pyrolysis gas reformer, the spherical object of less than 3 mm is light, and since tar is attached, it falls naturally. Without being fixed, it may stick to the inside of the valve and promote blockage.
  • the biomass of the present invention refers to so-called biomass resources.
  • the biomass resources are plant biomass, for example, agricultural products such as thinned wood, sawn wood waste, pruned branches, forest land residue, unused trees, etc. , Rice straw, wheat straw, rice husks, etc., other marine plants, construction waste wood, etc .; biological biomass, for example, biological waste such as livestock waste and sewage sludge; and household waste such as dust and food waste Say etc.
  • the apparatus of the present invention is preferably suitable for gasification of plant biomass and biological biomass.
  • FIG. 1 shows that both the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) have a plurality of pre-heated granules and / or agglomerates (7), ie a heat carrier medium (heat).
  • a heat carrier medium hereinafter, the biomass gasification apparatus of the present invention.
  • the preheater (1) for heating a some granular material and / or a lump (7) previously is equipped with 1 unit
  • the pyrolysis gas introduction pipe (9) is provided in one between the biomass pyrolysis device (3) and the pyrolysis gas reformer (2), and thereby the biomass pyrolysis device (3).
  • the pyrolysis gas generated in is introduced into the pyrolysis gas reformer (2).
  • the pyrolysis gas introduction pipe (9) is connected to the biomass pyrolysis device (3) and the pyrolysis gas reformer (2) on both sides of the biomass pyrolysis device (3) and the pyrolysis gas reformer (2).
  • the biomass pyrolyzer (3) side gas inlet (gas inlet) (9-3) and the pyrolyzed gas reformer (2) side gas inlet (gas outlet) of the pyrolysis gas inlet pipe (9) ( All of 9-2) are provided in a plurality of granular and / or massive (7) layers.
  • the pyrolysis gas introduction pipe (9) is provided substantially horizontally with respect to the direction of gravity.
  • the internal bottom face of the pyrolysis gas introduction pipe (9) has a structure protruding upward.
  • the inner bottom surface may be a flat structure.
  • a plurality of granulates and / or agglomerates (7) Prior to being introduced into the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), a plurality of granulates and / or agglomerates (7), i.e. the heat carrier, are pre-heated in the preheater (1). Heated.
  • the heat carrier (7) is preferably heated to 1,000 to 1,100 ° C., more preferably 1,050 to 1,100 ° C. If it is less than the said lower limit, the gas generated by the pyrolysis of biomass may not be fully reformed in the pyrolysis gas reformer (2). On the other hand, if the above upper limit is exceeded, it is not possible to expect a significant increase in the effect just by applying extra heat. Moreover, it becomes a cause of the thermal efficiency fall of an installation.
  • the heat carrier (7) heated to the predetermined temperature in the preheater (1) is then subjected to a biomass pyrolyzer (3) and a pyrolysis gas reformer arranged in parallel with the flow of the heat carrier (7).
  • a biomass pyrolyzer (3) the heat carrier (7) is brought into contact with the biomass separately supplied from the biomass supply port (4) to the biomass pyrolyzer (3).
  • the biomass supply port (4) may be provided in the biomass pyrolyzer (3) itself, as shown in FIG. 1, the biomass pyrolyzer (3) vicinity, for example, a heat carrier (7 ) Can also be provided in the distribution piping to the biomass pyrolyzer (3).
  • the biomass pyrolyzer (3) contains non-oxidizing gas, for example, nitrogen, and optionally steam, from the non-oxidizing gas supply port (12) and the steam blow-in port (11 1 ), respectively. Supplied and kept in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam. And by contact with a heat carrier (7) and biomass, biomass is heated and thermally decomposed and pyrolysis gas produces
  • the generated pyrolysis gas passes through the pyrolysis gas introduction pipe (9) and is introduced into the pyrolysis gas reformer (2).
  • the upper limit of the gas phase temperature of the biomass pyrolyzer (3) is preferably 700 ° C, more preferably 650 ° C, and the lower limit is preferably 400 ° C, more preferably 500 ° C, and even more preferably 550 ° C.
  • biomass thermal decomposition may not advance. If the above upper limit is exceeded, heavy tar is generated. Such heavy tar cannot be sufficiently reformed by steam, and may cause equipment troubles due to tar.
  • the gas phase temperature of the biomass pyrolyzer (3) refers to the preheated heat carrier (7), the raw material biomass and the non-oxidizing gas, which are put into the biomass pyrolyzer (3). The temperature generated by mixing with steam that is optionally blown, and the gas phase temperature inside the biomass pyrolyzer (3) generated comprehensively from the radiation heat of the heat carrier (7) layer and the like.
  • the gas phase temperature of the biomass pyrolyzer (3) includes the supply rate and extraction rate of the heat carrier (7), the volume and occupation rate of the heat carrier layer in the biomass pyrolyzer (3), the supply amount of biomass, It can be appropriately controlled by the supply amount of non-oxidizing gas and / or steam.
  • the supply rate and extraction rate of the heat carrier (7) are determined from the biomass supply amount, and then the volume of the heat carrier layer and its occupancy in the biomass pyrolyzer (3) are gradually changed, By appropriately changing the supply amount of the oxidizing gas and / or steam, the gas phase temperature of the biomass pyrolyzer (3) can be controlled to a predetermined temperature.
  • the pyrolysis gas generated by pyrolyzing the biomass in the biomass pyrolyzer (3) is introduced into the pyrolysis gas reformer (2) through the pyrolysis gas introduction pipe (9).
  • the pyrolysis gas introduced is brought into contact with the heat carrier (7) in the presence of steam and heated.
  • the pyrolysis gas and steam react to reform the pyrolysis gas into a gas rich in hydrogen.
  • steam used for gas reforming is biomass pyrolyzer (3) and its vicinity, pyrolysis gas reformer (2) and its vicinity, and biomass pyrolyzer (3) and pyrolysis gas.
  • the upper limit of the gas phase temperature in the pyrolysis gas reformer (2) is preferably 1,000 ° C, more preferably 950 ° C, still more preferably 930 ° C, and the lower limit is preferably 700 ° C, more preferably.
  • the gas phase temperature in the pyrolysis gas reformer (2) is 850 ° C. or more, which is the more preferable lower limit value, the reforming of carbon monoxide by steam becomes remarkable, and further, at 880 ° C. or more, which is a more preferable lower limit value. The reforming of methane by steam becomes remarkable.
  • the gas phase temperature in the pyrolysis gas reformer (2) is more preferably 880 ° C. or higher.
  • a more preferable upper limit of the gas phase temperature in the pyrolysis gas reformer (2) is 950 ° C., and the pyrolysis gas can be sufficiently reformed below the temperature, but in order to reduce the amount of fuel used, 930 More preferably, it is not higher than ° C.
  • the gas phase temperature of the pyrolysis gas reformer (2) refers to the preheated heat carrier (7), pyrolysis gas and steam introduced into the pyrolysis gas reformer (2).
  • the gas phase temperature of the pyrolysis gas reformer (2) includes the supply temperature of the heat carrier (7), the supply rate and extraction speed of the heat carrier (7), and the heat carrier layer in the pyrolysis gas reformer (2). And the occupation ratio thereof, the amount of pyrolysis gas supplied from the biomass pyrolyzer (3), the supply amount of steam, and the like can be appropriately controlled.
  • the supply temperature and the extraction speed of the heat carrier (7), the volume of the heat carrier layer in the pyrolysis gas reformer (2) and the occupation ratio thereof are kept constant, and the supply temperature of the heat carrier (7) is desired.
  • the gas phase temperature of the biomass pyrolyzer (3) is set to a predetermined temperature by supplying the steam at a temperature preferably 100 to 400 ° C., more preferably 150 to 200 ° C. Can be controlled.
  • the upper and lower two valves are closed, first, the upper valve is opened, the heat carrier (7) is dropped into the pipe, the lower valve and the upper valve are opened. A heat carrier (7) is filled between the bulbs. Next, by closing the upper valve and opening the lower valve, the heat carrier (7) filled between the two valves is transferred to the biomass pyrolyzer (3) and pyrolytic gas reformer (2). Introduced or extracted from the biomass pyrolyzer (3) and pyrolytic gas reformer (2). By repeating such valve operation, the heat carrier (7) is introduced almost continuously into the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the biomass pyrolyzer (3).
  • the introduction and extraction method is an example, and the present invention is not limited to this method.
  • the heat carrier in the biomass pyrolyzer (3) A layer can be formed, the thickness of the layer can be controlled to an appropriate value, and the temperature of the biomass pyrolyzer (3) can be controlled to the predetermined temperature. The same applies to the pyrolysis gas reformer (2).
  • the internal temperature of the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) can be controlled individually.
  • the reforming reaction in the pyrolysis gas reformer (2) can be allowed to proceed at an appropriate temperature, and the pyrolysis of biomass in the biomass pyrolyzer (3) can be performed at an appropriate temperature. It becomes. Furthermore, it becomes possible to improve thermal efficiency.
  • the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) are arranged in parallel to the flow of the heat carrier, and each container (2, 3) is preferably in a bowl shape.
  • the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) if the extraction speed of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is too fast, the biomass pyrolyzer (3) and the pyrolysis gas reformer ( On the other hand, if the temperature of 2) becomes high and the extraction speed is too slow, the heat carrier dissipates heat, and the temperatures of the biomass pyrolyzer (3) and pyrolytic gas reformer (2) become low.
  • the supply rate and extraction rate of the heat carrier (7) to the biomass pyrolyzer (3) depend on the supply amount and type of biomass as a raw material, and the moisture and ash content of the biomass. Determined with respect to the amount of supply.
  • the feed rate of the dry raw material that is, dry biomass to the biomass pyrolyzer (3).
  • it is set to 5 to 30 times by mass, more preferably 10 to 20 times by mass, the supply rate of dry biomass to the biomass pyrolyzer (3). If it is less than the said minimum, the calorie
  • the supply rate and extraction rate of the heat carrier (7) to the pyrolysis gas reformer (2) depend on the amount of pyrolysis gas supplied and its temperature, the temperature of steam, its supply amount, and the like. Controlled. However, it is preferable that the biomass supply amount is determined in advance and is controlled based on fluctuations in the above factors at any time in the operation stage. Usually, it is set to 5 to 30 mass times the feed rate of the dry raw material, that is, dry biomass to the biomass pyrolyzer (3). Preferably, it is set to 5 to 15 times by mass, more preferably 10 to 15 times by mass, the supply rate of dry biomass to the biomass pyrolyzer (3).
  • the upper limit of the pressure in the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is preferably 104.33 kPa, more preferably 102.33 kPa, and the lower limit is preferably 100.33 kPa, more preferably Is 101.23 kPa. If the above upper limit is exceeded, the generated pyrolysis gas may flow backward from the biomass supply port (4) and leak to the outside of the biomass pyrolyzer (3). On the other hand, if it is less than the above lower limit, the generated pyrolysis gas is contained in the layer of the heat carrier (7) in the biomass pyrolyzer (3), pyrolysis gas reformer (2), and pyrolysis gas introduction pipe (9). The pyrolysis gas and accompanying tar may not be sufficiently gasified and reformed without being uniformly dispersed.
  • the steam inlets (11 1 , 11 2 , 11 3 ) are preferably configured to have a biomass pyrolyzer (3), a pyrolysis gas reformer (2) bottom, and a biomass pyrolyzer (3 ) And the pyrolysis gas reformer (2).
  • a biomass pyrolyzer (3) it is particularly preferable to install it in the upper part of the biomass pyrolyzer (3).
  • the steam inlet includes a lower part (11 2 ) of the pyrolysis gas reformer (2), an upper part (11 1 ) of the biomass pyrolyzer (3), and a pyrolysis gas introduction pipe (9 ) (11 3 ), one each, a total of three are installed, but this is not a limitation.
  • a plurality of steam inlets can be installed at each location.
  • the temperature of the supplied steam is not particularly limited, but is preferably 130 to 200 ° C, more preferably about 160 ° C.
  • superheated steam preferably 500 to 600 ° C. can also be used.
  • the supply amount of steam is substantially equal to the supply amount of biomass as a raw material.
  • the amount of steam varies depending on the moisture content of the raw material, and is not limited to the above.
  • the biomass supply port (4) should just be installed in the position which can supply biomass to a biomass pyrolyzer (3) effectively.
  • it is installed above the biomass pyrolyzer (3), that is, in a pipe for dropping the heat carrier (7) from the preheater (1) to the biomass pyrolyzer (3).
  • mixing with biomass and a heat carrier (7) can be performed efficiently, the contact time inside a biomass pyrolyzer (3) can be ensured appropriately, and biomass is fully pyrolyzed. be able to.
  • one biomass supply port (4) is described, it is not limited to this.
  • One or more biomass supply ports (4) are preferably installed, more preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 or 2. By installing a plurality of biomass supply ports (4), biomass having different properties can be simultaneously supplied from the respective supply ports.
  • the residence time of the biomass in the biomass pyrolyzer (3) is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, and further preferably 15 to 35 minutes. If the amount is less than the lower limit, heat is not uniformly transmitted to the biomass, and uniform pyrolysis is not performed, so that the amount of pyrolysis gas generated is reduced. On the other hand, even if the above upper limit is exceeded, a significant increase in the effect is not recognized, and on the contrary, an increase in equipment cost is caused.
  • the residence time of the biomass in the biomass pyrolyzer (3) can be appropriately adjusted from the moving speed of the heat carrier (7) and the biomass supply amount.
  • the residence time of the gas in the pyrolysis gas reformer (2) is preferably 1 to 10 seconds, more preferably 2 to 5 seconds.
  • the residence time of the gas in the pyrolysis gas reformer (2) can be set from the moving speed and filling amount of the heat carrier (7), the steam supply amount, and the scheduled pyrolysis gas amount.
  • the residence time in each vessel that is, the residence time and pyrolysis for biomass pyrolysis in the biomass pyrolyzer It was impossible to individually control the residence time for the decomposition of tar in the gas and the residence time required for the reforming reaction between the pyrolysis gas and steam in the pyrolysis gas reformer. .
  • the residence time in each container can be controlled independently by arranging the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) in parallel as in the present invention.
  • the temperature inside each container (2, 3) can be independently controlled without consuming new energy.
  • the heat carrier (7) that has passed through the biomass pyrolyzer (3) is composed of the pyrolysis residue (char) of biomass and the trace amount remaining without being thermally decomposed attached to the heat carrier (7). It is discharged from the bottom of the biomass pyrolyzer (3) together with tar and dust.
  • the treatment of the discharged matter including the discharged heat carrier (7) is performed by a conventionally known method such as separation of char in the discharged matter processing apparatus (5) as shown in FIG.
  • a conventionally known method such as separation of char in the discharged matter processing apparatus (5) as shown in FIG.
  • the method and apparatus described in Patent Documents 4 and 5 above can be employed.
  • the treatment of the discharged matter including the discharged heat carrier (7) is performed by a conventionally known method with or without being mixed with the heat carrier (7) discharged from the bottom of the biomass pyrolyzer (3). Is done.
  • the method and apparatus described in Patent Documents 4 and 5 can be employed in the same manner as described above.
  • the heat carrier (7) thus treated is returned again to the preheater (1) and supplied to the biomass pyrolyzer (3) and the pyrolysis gas reformer (2).
  • FIG. 2 shows that both the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) have a plurality of pre-heated granules and / or agglomerates (7), ie a heat carrier medium (heat).
  • a preheater (1 1 , 1 2 ) for preheating a plurality of granular materials and / or agglomerates (7) is used as a biomass pyrolyzer (3) and a pyrolysis gas reformer.
  • One device is provided on the top of each of the quality devices (2).
  • the other apparatus configuration is the same as the biomass gasification apparatus shown in FIG.
  • a plurality of granulates and / or agglomerates (7) i.e. a heat carrier, is introduced into the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) before the biomass pyrolyzer (3).
  • the preheaters (1 2 ) and (1 1 ) provided on the respective upper portions of the pyrolysis gas reformer (2) they are separately heated in advance.
  • the heat carrier (7) is preferably heated to 700 to 800 ° C, more preferably 750 to 800 ° C. If it is less than the said minimum, biomass may not fully be thermally decomposed in a biomass pyrolyzer (3).
  • the amount of steam blown into the biomass pyrolyzer (3) is changed, and the temperature is controlled to an appropriate temperature so that the thermal decomposition of the biomass is efficient. Can be implemented.
  • the heat carrier (7) is preferably 1,000 to 1,100 ° C., more preferably 1,050. Heated to ⁇ 1,100 ° C.
  • the gas generated by the pyrolysis of biomass may not be fully reformed in the pyrolysis gas reformer (2).
  • the above upper limit is exceeded, it is not possible to expect a significant increase in the effect just by applying extra heat, but it only increases the cost. Moreover, it becomes a cause of the thermal efficiency fall of an installation.
  • FIG. 4 shows several different embodiments of the pyrolysis gas inlet pipe (9) provided between the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) (I, II, III, IV, V, VI, VII, VIII, IX, X).
  • FIG. 4 shows a longitudinal section (a section along the flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe (9).
  • (g) schematically shows the flow direction of the pyrolysis gas. 4
  • the right side is a biomass pyrolyzer (3) (in FIG. 4, 3 to be displayed.)
  • the left side is an pyrolysis gas reformer (2) (in FIG.
  • the heat carrier (7) that has entered from both the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) will merge above the protruding portion.
  • the heat carrier (7) is a granular material and / or a lump, it is not easily mixed unlike liquids such as water and oil.
  • the heat carrier (7) that has entered the pyrolysis gas introduction pipe (9) from the biomass pyrolyzer (3) does not enter the pyrolysis gas reformer (2).
  • the heat carrier (7) that has entered the pyrolysis gas introduction pipe (9) from the pyrolysis gas reformer (2) does not enter the biomass pyrolysis device (3).
  • the pyrolysis gas introduction pipe (9) has a structure shown in (II), (III) and (IV) and (VII), (VIII) and (IX) of FIG. It is preferable to make it.
  • the height (h) of the protruding portion of the inner bottom surface of the pyrolysis gas introduction pipe (9) is the vertical width (height) (h) of the gas intake port and the introduction port of the pyrolysis gas introduction pipe (9).
  • 1 , h 2 ) is the same structure (II, VII) or higher (III, IV, VIII, IX). More preferably, the height (h) of the protruding portion is higher than the vertical width (height) (h 1 , h 2 ) of the gas inlet and the inlet of the pyrolysis gas inlet pipe (9). (III, IV, VIII, IX). If such a structure is employ
  • the protruding portion has an inclination angle ( ⁇ ) like (III), (IV), (VI), (VII), (VIII) and (IX) in FIG.
  • inclination angle
  • the protruding portion has an inclination angle ( ⁇ ) like (III), (IV), (VI), (VII), (VIII) and (IX) in FIG.
  • a structure is preferable. More preferred is the structure of (VII), (VIII) and (IX) in FIG.
  • a structure having an inclination angle ( ⁇ ) in two stages as shown in (III) of FIG. 4 is less susceptible to the stagnation as compared with the structure of (VIII) of FIG. 4 having the same inclination angle ( ⁇ ). May be less effective to avoid. Therefore, it is more preferable to increase the number of steps in the protruding portion that protrudes stepwise as shown in the left column of FIG.
  • the inclination angle ( ⁇ ) is preferably 5 to 45 degrees, more preferably 10 to 30 degrees, and still more preferably 15 to 25 degrees.
  • the structure of the pyrolysis gas introduction pipe (9) shown in (IV) and (IX) of FIG. 4 is basically a horizontal pipe, but on the inner upper surface of the pipe as shown in (IV).
  • a pyrolysis gas introduction pipe (9) provided with a space (gas reservoir) in the upper part, for example, (I), ( It is preferred to use II), (III), (IV), (VI), (VII), (VIII) and (IX).
  • the pyrolysis gas introduction pipe (9) shown in FIG. 4 is an example, and the present invention is not limited to this.
  • the outer shape of the cross section perpendicular to the longitudinal direction of the pyrolysis gas introduction pipe (9) (the cross section perpendicular to the flow direction of the pyrolysis gas) is as described above, and is preferably substantially circular or substantially polygonal. Yes, more preferably a substantially square shape.
  • the inner diameter of the pyrolysis gas introduction pipe that is, the vertical width (height) (h 1 ) of the gas inlet and the vertical width (height) (h 2 ) of the gas inlet are defined as the heat carrier.
  • (7) can easily flow into and out of the pyrolysis gas introduction pipe, preferably 8 to 50 times the size (maximum diameter) of the heat carrier (7), more preferably It is 10 to 40 times, more preferably 10 to 30 times.
  • the gasifier of the present invention (second apparatus configuration) includes a biomass supply port, a biomass pyrolyzer having a non-oxidizing gas supply port and / or a steam injection port, a steam injection port and a reformer.
  • the pyrolysis gas reformer having a gas outlet and the pyrolysis gas generated in the biomass pyrolysis device is introduced into the pyrolysis gas reformer, and the biomass pyrolysis device and the pyrolysis gas reforming are introduced.
  • the biomass pyrolyzer is further provided with a plurality of preheated granules and / or agglomerates, that is, a heat carrier medium (heat carrier).
  • the pyrolysis gas reformer further includes a preheated gas or liquid heat medium flow path on the outside thereof. Then, a plurality of granular materials and / or chunks heated in advance are introduced into the biomass pyrolyzer, and the pyrolysis of biomass is executed by the heat of the plurality of particulates and / or chunks, The preheated gaseous or liquid heat medium is introduced into the flow path of the gaseous or liquid heat medium provided outside the pyrolysis gas reformer, and the heat of the heat medium causes the biomass. The reforming of the pyrolysis gas generated by the pyrolysis of is performed.
  • the pyrolysis of biomass in the biomass pyrolyzer and the reforming of the pyrolysis gas in the pyrolysis gas reformer are performed in advance. Since it is separately performed by a granular material and / or a lump, and a gaseous or liquid heating medium preheated separately, each temperature can be controlled separately.
  • the pyrolysis gas introduction pipe is formed on the biomass pyrolyzer side with a plurality of granular and / or massive layers, ie, heat carrier layers, formed in the biomass pyrolyzer. It is provided on the side of the biomass pyrolyzer below the upper surface. That is, on the biomass pyrolyzer side, a gas inlet (gas inlet) of the pyrolysis gas introduction pipe is provided in a layer formed of a plurality of granular materials and / or lumps formed in the biomass pyrolyzer. Then, the pyrolysis gas generated in the biomass pyrolyzer through the pyrolysis gas introduction pipe is introduced into the pyrolysis gas reformer.
  • the pyrolysis gas intake port of the pyrolysis gas introduction pipe is provided in the layer composed of a plurality of particles and / or a lump, a plurality of particles present in the biomass pyrolyzer. A part of the material and / or the lump can enter the inside of the pyrolysis gas introduction pipe, and the pyrolysis gas introduction pipe holds a plurality of particles and / or lump in the inside. You can do it.
  • the pyrolysis gas introduction pipe is preferably provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer side between the biomass pyrolyzer and the pyrolysis gas reformer, It has a structure that rises upward toward the pyrolysis gas reformer side.
  • the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolysis device side, a plurality of granular materials and / or lumps are formed inside the pyrolysis gas introduction pipe. The plurality of granular materials and / or agglomerates retained in the pyrolysis gas introduction pipe are easily moved into the biomass pyrolysis device from the top to the bottom by gravity.
  • the pyrolysis gas introduction pipe has a structure that rises upward toward the pyrolysis gas reformer side downstream of the horizontal pipe, that is, on the pyrolysis gas reformer side.
  • a plurality of granular materials and / or lumps are held inside the pyrolysis gas introduction pipe, they are included in the pyrolysis gas that passes through them and is introduced into the pyrolysis gas reformer.
  • the tar, dust, and the like that are collected are brought into contact with the plurality of granular materials and / or lumps.
  • a part or most of the trapped tar is pyrolyzed and gasified by the heat of the plurality of particulates and / or lumps, and is preferably further modified.
  • tar and dust remaining without being gasified are discharged from the bottom portion of the biomass pyrolyzer while adhering to a plurality of granular materials and / or bulk materials. Thereby, tar and dust can be effectively removed from the pyrolysis gas.
  • a horizontal pipe extending from the biomass pyrolysis device side is connected to the pyrolysis gas reformer on the pyrolysis gas reformer side between the biomass pyrolysis device and the pyrolysis gas reformer.
  • the rising angle is not particularly limited and is more than 0 degree (horizontal) and 90 degrees or less.
  • it may be configured to rise upward at a substantially right angle and connect to the bottom of the pyrolysis gas reformer, or to rise slightly from the horizontal and connected to the side or bottom of the pyrolysis gas reformer. Also good.
  • the rising angle is preferably 5 degrees or more from the horizontal, more preferably 10 degrees or more from the horizontal, and further preferably 15 degrees or more from the horizontal.
  • the rising angle is large, for example, when it exceeds 45 degrees from the horizontal, it is preferably 5 toward the bottom of the horizontal piping at the rising portion from the biomass pyrolyzer side toward the pyrolysis gas reformer side.
  • the outer shape of the cross section perpendicular to the longitudinal direction, that is, the cross section perpendicular to the flow direction of the pyrolysis gas is preferably substantially circular or substantially polygonal, and more preferably substantially circular. It is.
  • the pyrolysis gas introduction pipe is preferably provided between 1 and 3 and more preferably 1 or 2 between the biomass pyrolyzer and the pyrolysis gas reformer.
  • the pyrolysis gas introduction pipe used in the first apparatus configuration described above that is, provided substantially horizontally in the direction of gravity. It is also possible to use a pyrolysis gas introduction pipe whose inner bottom surface protrudes upward.
  • the pyrolysis gas introduction pipe (II, III, IV, VII, VIII, IX) shown in FIG. 4 can be used.
  • the pyrolysis gas introduction pipe (III, IV, VIII, IX) shown in FIG. 4 can be used. Since the pyrolysis gas introduction pipe is horizontal and the inner bottom surface protrudes upward, a plurality of particulates and / or lumps that have entered from the biomass pyrolyzer enter the pyrolysis gas reformer. Can be effectively avoided. However, in a long-term operation, a plurality of granular materials and / or agglomerates may enter the pyrolysis gas reformer, so that the pyrolysis gas reformer side of the pyrolysis gas reformer side protrudes. A plurality of granular and / or lump pools (collecting sections) are provided at the bottom of the introduction pipe or inside the pyrolysis gas reformer, and if necessary, the granular and / or lump collected regularly. Is preferably extracted.
  • a preheater for preheating a plurality of granular materials and / or agglomerates is provided on the upper part of the biomass pyrolyzer. Thereby, this some granular material and / or lump are heated to predetermined temperature. Also, a plurality of granular and / or lump inlets are provided above (upper), preferably at the top of the biomass pyrolyzer, while below (lower), preferably at the bottom, of the biomass pyrolyzer. A plurality of granular and / or massive outlets are provided.
  • a so-called two-stage valve system in which a plurality of granular materials and / or massive inlets and outlets are provided with a total of two valves, one above and one below the pipe, is used.
  • the introduction and extraction method is an example, and the present invention is not limited to this method.
  • the above-mentioned pool part (collecting part) can be extracted by the same method.
  • the pyrolysis gas reformer is provided with a flow path of a gaseous or liquid heat medium heated in advance on the outside thereof.
  • the pyrolysis gas reformer may be a normal heat exchanger type pyrolysis gas reformer, and may be either a multi-tube type or a double-pipe type.
  • FIG. 3 shows an embodiment of the biomass gasification apparatus of the present invention, which includes a second apparatus configuration in which a plurality of pre-heated granular materials and / or agglomerates are charged only into the biomass pyrolyzer.
  • a plurality of pre-heated particulates and / or agglomerates (7) that is, a biomass pyrolyzer (3) that performs thermal decomposition of biomass by heat of a heat carrier, And a heat exchanger type pyrolysis gas reformer (2) for reforming the pyrolysis gas generated by the pyrolysis of biomass by the heat of the preheated gaseous or liquid heat medium. ing.
  • the preheater (1) for heating a some granular material and / or lump (7) previously is provided in the upper part of the biomass pyrolyzer (3).
  • the pyrolysis gas introduction pipe (9) is provided in one between the biomass pyrolysis device (3) and the pyrolysis gas reformer (2), and thereby the biomass pyrolysis device (3).
  • the pyrolysis gas generated in is introduced into the pyrolysis gas reformer (2).
  • the pyrolysis gas introduction pipe (9) has a plurality of granular and / or lump (7) layers formed in the biomass pyrolyzer (3) on the biomass pyrolyzer (3) side. It is provided on the side surface of the biomass pyrolyzer (3) below the upper surface (13).
  • the biomass pyrolyzer (3) side gas intake (gas inlet) (9-3) of the pyrolysis gas introduction pipe (9) is provided in the plurality of granular and / or massive (7) layers. ing.
  • the pyrolysis gas introduction pipe (9) is connected to the bottom of the pyrolysis gas reformer (2).
  • the pyrolysis gas introduction pipe (9) is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer (3) side, and toward the pyrolysis gas reformer (2) on the downstream side thereof. Standing up almost vertically. Further, at the bottom of the horizontal pipe at the rising portion, an inclination angle ( ⁇ ) of approximately 25 degrees from the bottom of the horizontal pipe from the biomass pyrolyzer (3) side to the pyrolysis gas reformer (2) side.
  • inclination angle
  • a plurality of granulates and / or agglomerates (7) is introduced into the biomass pyrolyzer (3) before it is introduced into the biomass pyrolyzer (3) with a preheater (1 ) In advance.
  • the heat carrier (7) is preferably heated to 700 to 800 ° C, more preferably 750 to 800 ° C. If it is less than the said minimum, biomass may not fully be thermally decomposed in a biomass pyrolyzer (3). Even if the upper limit is exceeded, as already described in the description of FIG.
  • the amount of steam blown into the biomass pyrolyzer (3) is changed, and the temperature is controlled to an appropriate temperature so that the thermal decomposition of the biomass is efficient. Can be implemented. However, it is preferable to further increase the thermal efficiency by setting the temperature of the heat carrier (7) to the upper limit or less.
  • the pyrolysis gas reformer (2) is a so-called heat exchanger type pyrolysis gas reformer.
  • the pyrolysis gas introduced from the pyrolysis gas introduction pipe (9) is mixed with the steam further introduced from the steam inlet (11 2 ) to form a heat exchanger type pyrolysis gas reformer (2). It is reformed by heat exchange with a heat medium that passes through the outer jacket, for example, hot hot air. Conditions such as gas phase temperature and pressure in the heat exchanger type pyrolysis gas reformer (2) are the same as those in the apparatus shown in FIG.
  • the gas phase temperature of the heat exchanger type pyrolysis gas reformer (2) is the gas phase temperature near the reformed gas outlet (8) in the upper part of the pyrolysis gas reformer (2).
  • the gas phase temperature includes the amount of steam supplied from the steam inlet (11 2 , 11 3 ) and the amount of pyrolysis gas with respect to the amount of pyrolysis gas supplied from the biomass pyrolyzer (3). It can be controlled by appropriately changing the temperature and flow rate of the heat medium passing through the jacket of the reformer (2).
  • Example 1 The biomass material used in Example 1 and the gasifier used for thermal decomposition and gas reforming of the biomass material are as follows.
  • waste wood As the biomass material, construction waste wood was used. The waste wood was crushed and used. The size of the waste wood after pulverization was about the size of sawdust, and the maximum size was about 2 to 6 mm. Table 1 shows the properties of the waste wood.
  • the gasifier used for the thermal decomposition of the biomass material and the reforming of the generated pyrolysis gas the one shown in FIG. 1 was used.
  • the gasifier had an apparatus configuration in which a biomass pyrolyzer (3) and a pyrolytic gas reformer (2) were arranged in parallel with the flow of the heat carrier (7).
  • the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) are provided with one preheater (1), and in the preheater (1), the biomass pyrolyzer (3) and the pyrolysis are provided.
  • the heat carrier (7) to be supplied to both of the gas reformers (2) was preliminarily heated in advance.
  • the biomass pyrolyzer (3) had an inner diameter of about 180 mm, a height of about 1,000 mm, and an internal volume of about 25 liters.
  • the pyrolysis gas reformer (2) had an inner diameter of about 180 mm, a height of about 2,350 mm, and an internal volume of about 60 liters.
  • the pyrolysis gas introduction pipe (9) is disposed in the biomass pyrolysis device (3) and the pyrolysis gas reformer (2) on both sides of the biomass pyrolysis device (3) and the pyrolysis gas reformer (2).
  • the pyrolysis gas introduction pipe (9) was provided substantially horizontally with respect to the direction of gravity.
  • the length of the pyrolysis gas introduction pipe (9) is about 500 mm, and the outer shape of the cross section perpendicular to the longitudinal direction, that is, the cross section perpendicular to the flow direction of the pyrolysis gas is a substantially square having a side of 180 mm.
  • the vertical width of the gas inlet of the pyrolysis gas inlet pipe (height) (h 1) and the gas inlet of the vertical width (height) (h 2) were both 150 mm.
  • a substantially spherical alumina ball having a diameter (maximum diameter) of 10 to 12 mm was used.
  • the biomass pyrolyzer (3) and pyrolytic gas reformer (2), and the preheater (1) are pre-filled with a heat carrier (7) to a height of about 70% of each container, and then The heat carrier (7) was heated to a temperature of about 500 ° C. in the preheater (1).
  • the heat carrier (7) is then separately introduced from the top of the biomass pyrolyzer (3) and pyrolysis gas reformer (2) in an amount of 30 kilograms / hour respectively, and the biomass pyrolyzer ( 3) and an appropriate amount were separately extracted from the bottom of the pyrolysis gas reformer (2), and circulation of the heat carrier (7) was started.
  • the gas phase temperature inside the biomass pyrolyzer (3) and pyrolytic gas reformer (2) and the temperature of the container itself gradually increased. While continuing the circulation of the heat carrier (7), the temperature of the heat carrier (7) inside the preheater (1) was gradually raised to 1,050 ° C. After the heat carrier (7) reaches the temperature, the circulation is further continued to gradually increase the gas phase temperature inside the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), From the time when the gas phase temperature of the pyrolyzer (3) exceeds 600 ° C., the biomass pyrolyzer (3) from the biomass supply port (4), the non-oxidizing gas supply port (12) and the steam inlet (11 1 ).
  • Biomass raw material, nitrogen gas and steam were introduced, respectively, and the temperature of the biomass pyrolyzer (3) was controlled to 600 ° C.
  • steam was further introduced and controlled from the steam inlet (11 2 ) so that the gas phase temperature of the pyrolysis gas reformer (2) was 950 ° C.
  • the heat carrier (7) is deposited in layers in the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the amount of deposition is the biomass pyrolyzer (3). And about 60% by volume of the internal volume of the pyrolysis gas reformer (2).
  • the extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is the same as the supply amount, and the biomass pyrolyzer (3) and pyrolysis gas reformer are the same. It was 30 kilograms / hour in the quality organ (2). Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 ° C. for all. However. The extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) can be individually controlled according to the respective temperature conditions.
  • the construction waste wood as a biomass raw material is gradually increased from the biomass supply port (4) to the biomass pyrolyzer (3) using a quantitative feeder, and finally about It was continuously introduced at 4 kg / hour (dry basis).
  • the temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount.
  • the temperature of the biomass pyrolyzer (3) was kept at 600 ° C.
  • the pressure in a biomass pyrolyzer (3) was hold
  • nitrogen gas was finally introduced at a fixed amount of 60 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3).
  • steam superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3).
  • the residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour.
  • gas generated by pyrolysis in the biomass pyrolyzer (3) was obtained at 5.2 kg / hour.
  • Char was discharged from the pyrolysis residue (char) discharge port (6) at 0.8 kg / hour.
  • the pyrolysis gas obtained in the biomass pyrolyzer (3) subsequently passes through the pyrolysis gas introduction pipe (9) from the lower part of the biomass pyrolyzer (3) and is maintained at the above temperature. It was introduced into the reformer (2).
  • the temperature in the biomass pyrolyzer (3) becomes unstable, but from the steam inlet (11 2 ) provided at the bottom of the pyrolysis gas reformer (2), The temperature was adjusted to 950 ° C. by introducing superheated steam (160 ° C., 0.6 MPa) while adjusting the amount thereof.
  • the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa.
  • the superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a constant amount of 2 kilograms / hour.
  • the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa.
  • a reformed gas having a temperature of 950 ° C. was obtained from the reformed gas outlet (8) in an amount of 7.2 kilograms / hour.
  • the resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 2 shows the composition of the obtained reformed gas.
  • the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. The amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.5 g / m 3 -normal.
  • Example 2 The biomass raw material used in Example 2 and the gasifier used for thermal decomposition and gas reforming of the biomass raw material are as follows.
  • Palm biomass waste was used as a biomass raw material.
  • the waste material was used after being roughly pulverized.
  • Palm palm waste has a form in which many pieces of soft string-like pieces of wood with a thickness of about 1 to 2 mm and a length of about 3 to 30 mm overlap each other. In other words, it is like a form in which cotton yarn is frayed. It was. When coarsely pulverized, it was shaped like a yarn ball (fiber ball), and its maximum dimension was about 0 to 30 mm. Table 3 shows the properties of the waste material.
  • the gasifier used for pyrolysis and gas reforming of the biomass raw material was the same as that used in Example 1, and the one shown in FIG. 1 was used.
  • the temperatures of the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) were 950 ° C. and 600 ° C., respectively. Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 ° C. for all.
  • the palm palm waste material as the biomass raw material is supplied to the biomass supply port (4 ) To the biomass pyrolyzer (3), while gradually increasing the supply amount, it was continuously introduced to finally reach about 5 kilograms / hour (dry basis).
  • the temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount. As a result, the temperature of the biomass pyrolyzer (3) was kept at 600 ° C.
  • the pressure in a biomass pyrolyzer (3) was hold
  • nitrogen gas was finally introduced at a fixed amount of 6 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3).
  • superheated steam 160 ° C., 0.6 MPa
  • the residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour. Thereby, the gas produced
  • the pyrolysis gas obtained in the biomass pyrolyzer (3) is subsequently passed through the pyrolysis gas introduction pipe (9) from the bottom of the biomass pyrolyzer (3) to a temperature of 950 ° C. and a pressure of 101.3 kPa. It was introduced into the retained pyrolysis gas reformer (2). At the beginning of the introduction of the pyrolysis gas, the temperature in the biomass pyrolyzer (3) becomes unstable, but from the steam inlet (11 2 ) provided at the bottom of the pyrolysis gas reformer (2), The temperature was adjusted to 950 ° C. by introducing superheated steam (160 ° C., 0.6 MPa) while adjusting the amount thereof.
  • the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa.
  • the superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a fixed amount of 3 kilograms / hour.
  • the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa.
  • a reformed gas having a temperature of 950 ° C. was obtained from the reformed gas outlet (8) in an amount of 9.1 kilograms / hour.
  • the resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 4 shows the composition of the reformed gas obtained.
  • the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. The amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.5 g / m 3 -normal.
  • Example 3 The biomass raw material used is the same as that used in Example 1. Moreover, what was shown in FIG. 2 was used for the gasification apparatus used for the thermal decomposition and gas reforming of biomass raw material.
  • the used apparatus was the apparatus structure which has arrange
  • the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) are each provided with one preheater (1 2 , 1 1 ), and in the preheater (1 2 , 1 1 ), The heat carrier (7) supplied to the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is separately heated in advance.
  • the dimensions and capacity of the biomass pyrolyzer (3) and pyrolysis gas reformer (2), the shape and dimensions of the pyrolysis gas introduction pipe (9), and the pyrolysis gas introduction pipe (9) are in the direction of gravity.
  • the material and dimensions of the heat carrier (7) were the same as those of Example 1.
  • the biomass carrier (3), pyrolysis gas reformer (2), and preheater (1 2 , 1 1 ) are pre-filled with a heat carrier (7) to a height of about 70% of each container. Then, the heat carrier (7) was preheated to a temperature of about 500 ° C. in the preheater (1 2 , 1 1 ), respectively.
  • Each heat carrier (7) is then introduced separately from the top of the biomass pyrolyzer (3) and pyrolytic gas reformer (2) in an amount of 30 kilograms / hour, respectively, and the biomass pyrolyzer Appropriate amounts were separately extracted from the bottom of (3) and the pyrolysis gas reformer (2), respectively, and circulation of the heat carrier (7) was started.
  • the gas phase temperature inside the biomass pyrolyzer (3) and pyrolytic gas reformer (2) and the temperature of the container itself gradually increased.
  • the temperature of the heat carrier (7) inside the preheater (1 2 ) is gradually raised to 800 ° C.
  • the inside of the preheater (1 1 ) The temperature of the heat carrier (7) was gradually raised to 1,050 ° C.
  • the circulation is further continued to gradually increase the gas phase temperature inside the biomass pyrolyzer (3) and pyrolysis gas reformer (2).
  • the biomass pyrolyzer is introduced from the biomass supply port (4), the non-oxidizing gas supply port (12), and the steam inlet (11 1 ).
  • biomass raw material, nitrogen gas and steam were introduced, respectively, and the temperature of the biomass pyrolyzer (3) was controlled to 600 ° C.
  • steam was further introduced and controlled from the steam inlet (11 2 ) so that the gas phase temperature of the pyrolysis gas reformer (2) was 950 ° C.
  • the heat carrier (7) is deposited in layers in the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the amount of deposition is the biomass pyrolyzer (3).
  • the extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is the same as the supply amount, and the biomass pyrolyzer (3) and pyrolysis gas reformer are the same. It was 30 kilograms / hour in the quality organ (2). Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 ° C. for all.
  • the construction waste wood as a biomass raw material is gradually increased from the biomass supply port (4) to the biomass pyrolyzer (3) using a quantitative feeder, and finally about It was continuously introduced at 4 kg / hour (dry basis).
  • the temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount.
  • the temperature of the biomass pyrolyzer (3) was kept at 600 ° C.
  • the pressure in a biomass pyrolyzer (3) was hold
  • nitrogen gas was finally introduced at a fixed amount of 60 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3).
  • steam superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3).
  • the residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour.
  • gas generated by pyrolysis in the biomass pyrolyzer (3) was obtained at 5.2 kg / hour.
  • Char was discharged from the pyrolysis residue (char) discharge port (6) at 0.8 kg / hour.
  • the pyrolysis gas obtained in the biomass pyrolyzer (3) subsequently passes through the pyrolysis gas introduction pipe (9) from the lower part of the biomass pyrolyzer (3) and is maintained at the above temperature. It was introduced into the reformer (2).
  • the temperature in the pyrolysis gas reformer (2) becomes unstable, but from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2).
  • the temperature was adjusted to 950 ° C. by introducing superheated steam (160 ° C., 0.6 MPa) while adjusting the amount thereof.
  • the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa.
  • the superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a constant amount of 2 kilograms / hour.
  • the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa.
  • a reformed gas having a temperature of 950 ° C. was obtained from the reformed gas outlet (8) in an amount of 7.2 kilograms / hour.
  • the resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 5 shows the composition of the reformed gas obtained.
  • the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. The amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.5 g / m 3 -normal.
  • Example 4 The biomass raw material used is the same as that used in Example 1.
  • the gasifier used for pyrolysis and gas reforming of the biomass material was the one shown in FIG.
  • the used apparatus is that the biomass pyrolyzer (3) pyrolyzes the biomass with the heat of the heat carrier (7), and the heat exchanger type pyrolytic gas reformer (2) heats the biomass.
  • the gas generated by the decomposition was modified by a gaseous heat medium, that is, high-temperature hot air.
  • the dimensions and capacity of the biomass pyrolyzer (3) and pyrolytic gas reformer (2), and the material and dimensions of the heat carrier (7) are the same as those in Example 1.
  • the pyrolysis gas introduction pipe (9) is located on the biomass pyrolyzer (3) side and is below the upper surface (13) of the heat carrier (7) layer formed in the biomass pyrolyzer (3). It was provided on the side of (3). On the other hand, on the pyrolysis gas reformer (2) side, the pyrolysis gas introduction pipe (9) was connected to the bottom of the pyrolysis gas reformer (2).
  • the pyrolysis gas introduction pipe (9) is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer (3) side, and toward the bottom of the pyrolysis gas reformer (2) on the downstream side. It stood up almost vertically.
  • Protrusions having The pyrolysis gas introduction pipe (9) has a length of about 1,000 mm (horizontal portion: about 500 mm, rising portion: about 500 mm), and is perpendicular to the longitudinal direction, that is, with respect to the flow direction of the pyrolysis gas.
  • the outer shape of the vertical cross section was a substantially square with a side of 180 mm.
  • the biomass pyrolyzer (3) and the preheater (1) are preliminarily filled with a heat carrier (7) to a height of about 70% of each container, and then the heat carrier (7) is added to the preheater (1).
  • the heat carrier (7) is introduced in an amount of 30 kg / hour from the top of the biomass pyrolyzer (3), and an appropriate amount is withdrawn from the bottom of the biomass pyrolyzer (3).
  • Circulation started. By circulation of the heat carrier (7), the gas phase temperature inside the biomass pyrolyzer (3) and the temperature of the container itself gradually increased.
  • the temperature of the heat carrier (7) inside the preheater (1) was gradually raised to 800 ° C.
  • the circulation is further continued to gradually increase the gas phase temperature inside the biomass pyrolyzer (3), and the gas phase temperature of the biomass pyrolyzer (3).
  • the biomass feed port (4), the non-oxidizing gas supply port (12), and the steam blow-in port (11 1 ) are fed into the biomass pyrolyzer (3), respectively.
  • steam were introduced, and the temperature of the biomass pyrolyzer (3) was controlled to 600 ° C.
  • the pyrolysis gas reformer (2) is blown into the pyrolysis gas reformer (2) at an amount of about 2 m 3 / hour from the heating medium inlet (10 1 ), the pyrolysis gas reformer (2 Further, steam was introduced from the steam inlet (11 2 ) and controlled so that the gas phase temperature of) was 950 ° C.
  • the heat carrier (7) was deposited in layers in the biomass pyrolyzer (3), and the amount deposited was approximately 60% by volume of the internal volume of the biomass pyrolyzer (3).
  • the extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) was the same as the supply amount, and was 30 kg / hour in the biomass pyrolyzer (3).
  • the temperature of the heat carrier (7) at the time of extraction was 400 degreeC.
  • the construction waste wood as a biomass raw material is gradually increased from the biomass supply port (4) to the biomass pyrolyzer (3) using a quantitative feeder, and finally about It was continuously introduced at 4 kg / hour (dry basis).
  • the temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount.
  • the temperature of the biomass pyrolyzer (3) was kept at 600 ° C.
  • the pressure in a biomass pyrolyzer (3) was hold
  • nitrogen gas was finally introduced at a fixed amount of 60 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3).
  • steam superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3).
  • the residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour.
  • gas generated by pyrolysis in the biomass pyrolyzer (3) was obtained at 5.1 kilogram / hour.
  • char was discharged from the pyrolysis residue (char) discharge port (6) at 0.9 kg / hour.
  • the pyrolysis gas obtained in the biomass pyrolyzer (3) is then passed from the bottom of the biomass pyrolyzer (3) through the pyrolysis gas introduction pipe (9) to improve the heat exchanger type pyrolysis gas. Introduced into the mass device (2).
  • high-temperature hot air previously heated to about 1,200 ° C. is provided outside the pyrolysis gas reformer (2) from the high-temperature hot air inlet (10 1 ). After being introduced into the heat medium flow path and exchanging heat with the pyrolysis gas flowing inside the pyrolysis gas reformer (2), it was discharged from the high temperature hot air outlet (10 2 ) at about 700 ° C.
  • the temperature in the pyrolysis gas reformer (2) becomes unstable, but gradually increases while adjusting the amount of hot hot air, and the lower part of the pyrolysis gas reformer (2) Further, superheated steam (160 ° C., 0.6 MPa) is introduced from the steam inlet (11 2 ) provided in the tank while adjusting the amount thereof, thereby allowing the inside of the pyrolysis gas reformer (2).
  • the temperature was adjusted to 950 ° C.
  • the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa.
  • the superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a constant amount of 2 kilograms / hour.
  • the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa.
  • a reformed gas having a temperature of 900 ° C. was obtained from the reformed gas outlet (8) in an amount of 7.1 kilogram / hour.
  • the resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 6 shows the composition of the reformed gas obtained.
  • the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. In addition, the amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.8 g / m 3 -normal.
  • Comparative Example 1 As the gasifier used for the pyrolysis of the biomass raw material and the reforming of the generated pyrolysis gas, the one described in FIG. That is, it is an apparatus in which a reforming region (300) is provided in series above and below the pyrolysis region (200). In other words, it is an apparatus in which a biomass pyrolyzer and a pyrolysis gas reformer are connected in series up and down. In the comparative example, about one-tenth of a small experimental device was used. The gasifier used was as shown in FIG. The material of the gasifier (A) main body is Inconel.
  • the gasification furnace (A) has a cylindrical shape with an inner diameter of 100 mm and a height of 650 mm, 300 mm from the bottom of the gasification furnace (A) is the thermal decomposition region (200), and 300 mm from the top is the reforming region (300). .
  • an alumina ball (D) (diameter: 5 to 15 mm) was used as a heat medium.
  • the upper part of the reforming region (300) is filled with a nickel catalyst (E).
  • a steam inlet (400) is provided between the thermal decomposition region (200) and the reforming region (300).
  • electric heaters (B) and (C) capable of temperature control are installed on the outer walls of the gasification furnace in the pyrolysis region (200) and the reforming region (300), respectively.
  • the same construction waste wood as in Example 1 was used as the raw material.
  • the raw material was intermittently introduced from the raw material supply pipe (100) into the thermal decomposition region (200) of the gasification furnace (A) at intervals of 30 to 40 seconds every 30 minutes by airflow conveyance.
  • the pyrolysis region (200) of the gasification furnace (A) was controlled to a temperature of 550 ° C. by heating an alumina ball as a heating medium using an electric heater (B).
  • the pyrolysis region (200) was maintained at a pressure of 0.103 MPa by introducing helium gas at 0.50 liter / min from the bottom (600) thereof.
  • the waste wood was pyrolyzed, and the generated gas was introduced into the reforming region (300) of the gasification furnace (A) maintained at the same pressure, and mixed with steam.
  • the temperature of the reforming region (300) of the gasification furnace (A) was 1,000 ° C., and the gas temperature at the outlet (500) of the reforming region (300) was 947 ° C.
  • the temperature of the reforming zone (300) was controlled to be constant by the electric heater (C).
  • the composition of the obtained reformed gas is as shown in Table 7. Further, the amount of tar in the reformed gas on the outlet side of the reforming region (300) was about 5 g / m 3 -normal.
  • the operation could be carried out continuously for 3 days, but the pressure in the pyrolysis region (200) began to increase slightly after the second day. After completion of the operation, the alumina ball (D) layer was inspected, and tar deposition was observed. Therefore, it is assumed that there is a problem with long-term continuous operation.
  • biomass raw materials are changed. Any biomass raw material can be continuously operated without any trouble caused by tar during the operation period, and the heat carrier (7) is caused by tar or the like in the pyrolysis gas introduction pipe (9).
  • the smooth introduction of pyrolysis gas from the biomass pyrolyzer (3) to the pyrolysis gas reformer (2) was maintained without causing the trouble of blocking.
  • the amount of tar in the resulting reformed gas was extremely small.
  • a preheater (1 2 , 1 1 ) is separately installed on the upper part of the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the heat carrier (7) is respectively installed.
  • a gasifier is used which is heated to different temperatures and supplied to the biomass pyrolyzer (3) and the pyrolysis gas reformer (2). As in Examples 1 and 2, good operation could be ensured, and the amount of tar in the resulting reformed gas was extremely small.
  • a heat exchanger type reformer that is heated with high-temperature hot air is used as the pyrolysis gas reformer (2). As in Examples 1 to 3, good operation could be secured. Further, although the amount of tar in the obtained reformed gas slightly increased, it did not hinder the smooth operation of the apparatus. Comparative Example 1 uses a conventional apparatus. Tar deposition on the alumina ball (D) layer was observed, and it was found that there was a problem with long-term continuous operation.
  • the amount of pyrolysis gas generated is increased by optimizing the pyrolysis temperature of biomass and the reforming temperature of the generated pyrolysis gas, and is the final product. Not only can the production amount of hydrogen-containing gas be increased, but also the generation amount of tar and dust can be reduced. In addition, the generated tar can be effectively gasified, and the tar and dust remaining without being gasified can be efficiently recovered, thereby significantly reducing the trouble of the equipment due to tar and dust. Therefore, it is expected that the gasification apparatus of the present invention will be greatly utilized for biomass gasification in the future. In addition, it is expected to be used for hydrogen production business and power generation business.

Abstract

The present invention provides an apparatus which is for producing a hydrogen-containing gas from biomass, and which can optimize biomass pyrolysis temperature and pyrolysis gas modification temperature to reduce problems caused by tar. The present invention pertains to a biomass gasification apparatus which is provided with a biomass pyrolysis device, a pyrolysis gas modification device, and pyrolysis gas introduction pipes, wherein: the biomass pyrolysis device and the pyrolysis gas modification device include an introduction opening and a discharge opening for a heat carrier; biomass pyrolysis and pyrolysis gas modification are carried out by the heat of the heat carrier; the biomass pyrolysis device and the pyrolysis gas modification device are arranged in parallel; and the pyrolysis gas introduction pipes are provided on container side surfaces of both of the biomass pyrolysis device and the pyrolysis gas modification device below an upper surface of a heat carrier layer formed in each device, and the pyrolysis gas introduction pipes are horizontally positioned.

Description

バイオマスのガス化装置Biomass gasifier
本発明は、バイオマスのガス化装置に関し、更に詳しくは、バイオマスを熱分解するバイオマス熱分解器と、上記バイオマス熱分解器において発生したガスをスチームと混合して改質する熱分解ガス改質器とを備えるバイオマスのガス化装置に関する。 The present invention relates to a biomass gasification apparatus, and more specifically, a biomass pyrolyzer that pyrolyzes biomass, and a pyrolysis gas reformer that reforms by mixing the gas generated in the biomass pyrolyzer with steam. And a biomass gasification apparatus.
2011年3月11日に発生した東日本大震災に端を発し、その後、安全性等の観点から多数の原子力発電設備の操業が停止している。それに伴って、電力供給不足が懸念されており、原子力発電の代替として、太陽光発電、風力発電、地熱発電、水力発電、潮力発電、バイオマス発電等の再生可能エネルギーによる発電設備が注目されている。 Starting from the Great East Japan Earthquake that occurred on March 11, 2011, the operation of many nuclear power generation facilities has been stopped since then in terms of safety. Along with this, there is a concern about the shortage of power supply, and as an alternative to nuclear power generation, power generation facilities using renewable energy such as solar power generation, wind power generation, geothermal power generation, hydroelectric power generation, tidal power generation, and biomass power generation are attracting attention. Yes.
このような状況下、日本国政府は「第四次エネルギー基本計画」を2014年4月11日に閣議決定し、主に再生可能エネルギーの導入を加速すること、及び、燃料電池技術等による分散型エネルギーシステムの普及を拡大することが、決定された。また、2016年3月22日に取りまとめられた「水素・燃料電池戦略ロードマップ改訂版」においては、再生可能エネルギー由来の水素の利活用に関し、技術面及び経済面の課題について検討を行うことが盛り込まれた。 Under such circumstances, the Government of Japan decided on the “Fourth Energy Basic Plan” on April 11, 2014, mainly to accelerate the introduction of renewable energy, and to disperse fuel cell technology, etc. It was decided to expand the spread of type energy systems. In addition, the “Hydrogen / Fuel Cell Strategy Roadmap Revision” compiled on March 22, 2016 will examine technical and economic issues related to the utilization of hydrogen derived from renewable energy. It was included.
再生可能エネルギーのうち、太陽光発電、風力発電及び潮力発電は、一時的な電力供給源として期待されてはいるものの、発電量が安定しないことから、安定した電力供給設備としては期待できない。また、水力発電及び潮力発電は、小規模設備であればある程度の需要が見込まれるが、大規模設備を建設するためには設置場所が限定されるという問題がある。 Among renewable energies, solar power generation, wind power generation, and tidal power generation are expected as temporary power supply sources, but cannot be expected as stable power supply facilities because the amount of power generation is not stable. In addition, hydropower generation and tidal power generation are expected to have a certain level of demand if they are small-scale facilities, but there is a problem that the installation location is limited in order to construct large-scale facilities.
一方、木材、下水汚泥、家畜排せつ物等のバイオマスは日本国内に均一に存在する。とりわけ、東日本大震災の影響による家屋の倒壊、森林崩壊等により、建設系木質廃材、森林の倒木、不要林地残材、間伐材等の木質系バイオマスが大量に発生している。これらの木質系バイオマスを再生可能エネルギーとして有効利用することが期待されている。 On the other hand, biomass such as timber, sewage sludge, livestock excrement, etc. exists uniformly in Japan. In particular, due to the collapse of houses and forest collapse due to the Great East Japan Earthquake, large amounts of woody biomass such as construction wood waste, fallen forest wood, unwanted forest land residue, and thinned wood are generated. It is expected that these woody biomass will be effectively used as renewable energy.
木質系バイオマスのガス化装置には、例えば、竪型のガス化炉の上部からバイオマスを供給してバイオマスの充填移動層を該ガス化炉内に形成し、該ガス化炉の下部からガス化剤を供給し、充填移動層を降下するバイオマスを、上昇するガス化剤と向流接触させ熱分解させて生成ガスを得るガス化炉を備えるバイオマスガス化装置において、バイオマスを分級して所定粒径以下のバイオマスの細粒物の重量比率が所定値以下である粒度分布調整バイオマスを得る振動篩と、振動篩からの粒度分布調整バイオマスをガス化炉に供給するバイオマス供給装置を有するバイオマスのガス化装置が提案されている(特許文献1)。該ガス化装置によれば、充填移動層内において均一な高温ガスの上昇流を形成でき、かつ充填移動層での圧力損失を低くすることができ、安定したガス化を維持することができる。しかし、供給されたバイオマスが均一に熱分解されるという保証はない。また、上記のように粒度分布調整バイオマスを得る必要があり、そのための装置を設けなければならず、コスト高に繋がる。 In the woody biomass gasifier, for example, biomass is supplied from the upper part of a vertical gasifier, and a packed moving bed of biomass is formed in the gasifier, and gasified from the lower part of the gasifier. In a biomass gasification apparatus equipped with a gasification furnace that supplies the agent and pyrolyzes the biomass descending the packed moving bed with the ascending gasifying agent and thermally decomposes it, the biomass is classified to a predetermined size Biomass gas having a vibration sieve that obtains a particle size distribution-adjusted biomass whose weight ratio of fine particles of biomass below the diameter is a predetermined value or less, and a biomass supply device that supplies the particle size distribution-adjusted biomass from the vibration sieve to the gasifier An apparatus has been proposed (Patent Document 1). According to the gasifier, a uniform high-temperature gas upward flow can be formed in the packed moving bed, and the pressure loss in the packed moving bed can be reduced, so that stable gasification can be maintained. However, there is no guarantee that the supplied biomass will be pyrolyzed uniformly. Moreover, it is necessary to obtain the particle size distribution-adjusted biomass as described above, and an apparatus for that purpose must be provided, leading to high costs.
原料バイオマスを間接加熱して熱分解し、タール分を含む熱分解ガスとチャーを発生させる外熱式ロータリーキルン形式の熱分解部と、該熱分解部から抽出されるタール分を含む熱分解ガスおよびチャーに対し、酸化ガスが導入されて、タール分を熱分解させるとともに、チャーをガス化させるガス化部とを備えるバイオマスガス化装置が提案されている(特許文献2)。該装置は、バイオマスを熱分解したのち、その熱分解ガスに含まれるタール及びチャーを酸化ガスで燃焼させて除去するものである。しかし、該設備は複雑であるばかりではなく、運転操作も煩雑となる。また、タールを燃焼させる際に、燃料ガスの一部も燃焼して損失してしまうことが懸念される。その他の装置として、例えば、下水汚泥や木質バイオマスなどを炭化する炭化装置を備え、その炭化装置から発生した炭化物をガス化する高温ガス化部と、炭化物生成時に揮発したタールを含む可燃性熱分解ガスの改質を行うガス改質部とからなる2段式のガス化炉を備えた熱分解ガス化システムが提案されている(特許文献3)。該熱分解ガス化システムは、炭化装置、2段ガス化炉を備えるので複雑であるばかりではなく、運転操作も煩雑となる。また、タールを燃焼させる際に、燃料ガスの一部も燃焼して損失してしまうことが懸念される。 An externally heated rotary kiln type pyrolysis section that thermally decomposes raw biomass by indirect heating and pyrolyzing to generate a tar containing pyrolysis gas, and a pyrolysis gas containing tar extracted from the pyrolysis section, and A biomass gasification apparatus has been proposed that includes an oxidizing gas introduced into char to thermally decompose the tar content and a gasification section that gasifies the char (Patent Document 2). The apparatus thermally decomposes biomass and then removes tar and char contained in the pyrolyzed gas by burning with oxidizing gas. However, the equipment is not only complicated, but also the operation is complicated. Moreover, when burning tar, there is a concern that a part of the fuel gas is burned and lost. Other devices include, for example, a carbonization device that carbonizes sewage sludge, woody biomass, etc., a high-temperature gasification section that gasifies the carbide generated from the carbonization device, and a combustible pyrolysis containing tar volatilized when the carbide is generated There has been proposed a pyrolysis gasification system including a two-stage gasification furnace including a gas reforming section that performs gas reforming (Patent Document 3). The pyrolysis gasification system is not only complicated because it includes a carbonization apparatus and a two-stage gasification furnace, but also requires complicated operation. Moreover, when burning tar, there is a concern that a part of the fuel gas is burned and lost.
木質系バイオマス等の有機物質のガス化方法として、熱担持媒体(ヒートキャリア)を使用する方法が開示されている。例えば、有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する方法であり、循環する熱担持媒体が、加熱帯域、反応帯域、熱分解帯域および分離工程を通過し、引き続き加熱帯域に戻り、その際、有機物質または物質混合物を熱分解帯域中で加熱した熱担持媒体と接触することにより固体の炭素含有残留物および揮発性相として熱分解ガスに分離し、熱分解帯域を通過後、固体の炭素含有残留物を分離工程で熱担持媒体から分離し、熱分解ガスを反応媒体としての水蒸気と混合し、反応帯域中で加熱した熱担持媒体に含まれる熱の一部を交換することにより高い発熱量を有する生成物ガスが生じるように更に加熱する、有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する方法において、水蒸気を熱分解帯域で熱分解ガスと混合し、全部の固体の炭素含有残留物を別の燃焼装置に供給し、ここで燃焼し、この燃焼装置の熱い排ガスを、加熱帯域に存在する熱担持媒体の堆積を通過させ、その際、大部分の顕熱を熱担持媒体に与える、有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する方法が提案されている(特許文献4)。該方法においては、熱分解反応器を出た直後に熱分解コークス及び熱担持媒体からなる混合物を分離し、得た熱分解コークスを燃焼装置で燃焼して、これにより発生した顕熱を利用して、加熱帯域内で熱担持媒体を加熱するものであり、これにより、低いコストで発熱量の高い生成物ガスを得ようとするものである。また、熱分解帯域を備える熱分解器と、反応帯域を備えるガス改質器とを別個独立して備えることを基本としており、それにより、直列接続型と並列接続型のいずれも構成し得ることを特徴としているものである。また、加熱帯域の予熱器における熱担持媒体(ヒートキャリア)の加熱効率を維持して、生成ガスの品質の安定化を図ることを目的として、上記方法における予熱器を工夫したシステムが提案されている(特許文献5)。しかし、これらの熱担持媒体(ヒートキャリア)を使用した方法及びシステムにおいても、熱分解時に発生するタールによるトラブルを十分には回避することができなかった。 As a method for gasifying organic substances such as woody biomass, a method using a heat carrier medium (heat carrier) is disclosed. For example, a method for producing a product gas having a high calorific value from an organic substance and a substance mixture, in which a circulating heat-carrying medium passes through a heating zone, a reaction zone, a pyrolysis zone and a separation step, and subsequently enters the heating zone. In return, the organic substance or substance mixture is separated into pyrolysis gas as a solid carbon-containing residue and volatile phase by contact with a heated support medium heated in the pyrolysis zone, after passing through the pyrolysis zone The solid carbon-containing residue is separated from the heat-carrying medium in the separation step, the pyrolysis gas is mixed with water vapor as the reaction medium, and a part of the heat contained in the heat-carrying medium heated in the reaction zone is exchanged In a method for producing a product gas having a high calorific value from an organic substance and a mixture of substances, further heating to produce a product gas having a high calorific value, Mixed with pyrolysis gas in the zone and fed all solid carbon-containing residue to another combustion device where it is burned, and the hot exhaust gas of this combustion device is deposited on the heat carrier medium present in the heating zone. There has been proposed a method for producing a product gas having a high calorific value from an organic substance and a substance mixture, in which a large amount of sensible heat is applied to the heat carrier medium at that time (Patent Document 4). In this method, immediately after leaving the pyrolysis reactor, a mixture comprising pyrolysis coke and a heat-carrying medium is separated, and the obtained pyrolysis coke is burned in a combustion apparatus, and the sensible heat generated thereby is utilized. Thus, the heat carrier medium is heated in the heating zone, and thereby, a product gas having a high calorific value is obtained at a low cost. In addition, it is basically provided with a pyrolyzer having a pyrolysis zone and a gas reformer having a reaction zone separately, and thus can be configured as either a serial connection type or a parallel connection type. It is characterized by. In addition, a system has been proposed in which the preheater in the above method is devised for the purpose of maintaining the heating efficiency of the heat carrier medium (heat carrier) in the preheater in the heating zone and stabilizing the quality of the product gas. (Patent Document 5). However, even in the method and system using these heat-carrying media (heat carriers), troubles due to tar generated during thermal decomposition could not be sufficiently avoided.
特開2011-231193号公報JP 2011-231193 A 特開2007-177106号公報JP 2007-177106 A 特開2011-68893号公報JP 2011-68893 A 特表2003-510403号公報Special table 2003-510403 gazette 特開2011-144329号公報JP2011-144329A
本発明は、バイオマスの熱分解温度及び発生した熱分解ガスの改質温度を最適化することにより、熱分解ガスの発生量を増大させ、かつ、最終製品である水素含有ガスの生産量を増大させ得るばかりではなく、タール及び煤塵の発生量を低減せしめ得るバイオマスのガス化装置を提供する。加えて、発生したタールを効果的にガス化し、かつ、ガス化されずに残存したタール及び煤塵を効率的に回収して、それにより、タール及び煤塵による装置トラブルを著しく軽減し得るバイオマスのガス化装置を提供するものである。 The present invention optimizes the pyrolysis temperature of biomass and the reforming temperature of the generated pyrolysis gas, thereby increasing the generation amount of pyrolysis gas and increasing the production amount of hydrogen-containing gas that is the final product. The present invention provides a biomass gasification apparatus that can reduce the generation amount of tar and dust. In addition, the generated tar gas can be effectively gasified, and the remaining tar and dust remaining without being gasified can be efficiently recovered, thereby significantly reducing equipment troubles due to tar and dust. An apparatus is provided.
熱担持媒体(ヒートキャリア)の持つ熱を利用して、バイオマスを熱分解し、かつ、発生した熱分解ガスを改質する、従来の方法においては、バイオマスがヒートキャリア層に包み込まれて加熱されることから、バイオマスを比較的均一に熱分解することはできるが、熱分解時に発生したタール及び煤塵等による操業上のトラブルを回避することができなかった。従来の方法では、ヒートキャリアが、予め所定温度に加熱されて熱分解ガス改質器に導入され、ここで、該ヒートキャリアが、バイオマス熱分解器から導入された熱分解ガス、及びスチームと接触されて、熱分解ガスはスチーム改質されて製品として取り出される。一方、ヒートキャリアは、配管内を通って下降し、バイオマス熱分解器に導入されてバイオマスの熱分解を生じさせる。バイオマスの熱分解により発生したガスは、配管内を上昇して熱分解ガス改質器に導入される。しかし、該熱分解ガスはタール及び煤塵等を含有していることから、これらタール及び煤塵等が熱分解ガス改質器への導入配管の内壁及びバルブ等に付着し、時には、該熱分解ガスと向流接触するヒートキャリアをも固着させて配管内に詰まらせてしまうと言う問題を引き起こした。該問題を解決するために、導入配管の直径を大きくすることが考えられる。しかし、該手段では、単に閉塞に至るまでの時間を延長することはできても、本質的な解決手段にはなり得なかった。また、ヒートキャリアの配管内での閉塞問題を解決するために、熱分解ガスが上昇する配管とヒートキャリアが下降する配管とを別々にする手段が考えられるが、この手段によっても、熱分解ガスが上昇する配管内壁及びバルブ等へのタール及び煤塵等の付着による閉塞トラブル等を回避できなかった。加えて、このように別々の配管を設置する方法では、装置及び操作が著しく複雑になってしまう。 In the conventional method that uses the heat of a heat carrier medium (heat carrier) to pyrolyze biomass and reforms the generated pyrolysis gas, the biomass is wrapped in the heat carrier layer and heated. Therefore, biomass can be pyrolyzed relatively uniformly, but operational troubles due to tar and dust generated during pyrolysis could not be avoided. In the conventional method, the heat carrier is preheated to a predetermined temperature and introduced into the pyrolysis gas reformer, where the heat carrier contacts the pyrolysis gas and steam introduced from the biomass pyrolyzer. Then, the pyrolysis gas is steam reformed and taken out as a product. On the other hand, the heat carrier descends through the pipe and is introduced into the biomass pyrolyzer to cause thermal decomposition of the biomass. The gas generated by the pyrolysis of biomass rises in the pipe and is introduced into the pyrolysis gas reformer. However, since the pyrolysis gas contains tar and soot and the like, the tar and soot and the like adhere to the inner wall and valve of the introduction pipe to the pyrolysis gas reformer, and sometimes the pyrolysis gas The problem is that the heat carrier that is in countercurrent contact with the pipe is also stuck and clogged in the pipe. In order to solve this problem, it is conceivable to increase the diameter of the introduction pipe. However, even though this means can simply extend the time to blockage, it cannot be an essential solution. Further, in order to solve the blockage problem in the heat carrier pipe, there can be considered a means for separating the pipe where the pyrolysis gas rises and the pipe where the heat carrier descends. It was not possible to avoid troubles such as clogging due to tar and dust adhering to the inner wall of the pipe and valves etc. In addition, such a method of installing separate pipes significantly complicates the apparatus and operation.
また、熱担持媒体(ヒートキャリア)の持つ熱を利用して、バイオマスを熱分解し、かつ、発生したガスを改質する、従来の方法においては、熱分解ガス改質器とバイオマス熱分解器とが上下に直列に接続されている故に、それぞれの反応器、即ち、バイオマス熱分解器及び熱分解ガス改質器内部の温度を別個にコントロールすることが不可能であった。例えば、バイオマスの熱分解温度が低下した際に、熱分解温度を上昇させようとしても、熱分解ガス改質器内部温度を維持する必要性のために、バイオマス熱分解器内部温度が上げられないという不具合があり、逆に、バイオマスの熱分解温度が上昇した際に、バイオマス熱分解器内部の温度を低下させようとしても、同様に、熱分解ガス改質器の温度を維持する必要性のために、バイオマス熱分解器内部温度を低下させることができないという不具合があった。従って、バイオマスの熱分解温度及び発生した熱分解ガスの改質温度を、継続して最適化することが容易ではなく、結果として、熱分解ガスの発生量及び最終製品の水素含有ガスの生産量が低下してしまうという問題があった。また、それに伴い、タール及び煤塵等の発生量が増加するという問題も発生した。本来であれば、バイオマス熱分解器と熱分解ガス改質器とは別個に温度コントロールできることが望ましい。 Moreover, in the conventional method of thermally decomposing biomass and reforming the generated gas using the heat of the heat carrier medium (heat carrier), the pyrolysis gas reformer and the biomass pyrolyzer Are connected in series up and down, it has been impossible to separately control the temperature inside each reactor, ie, the biomass pyrolyzer and pyrolysis gas reformer. For example, when the pyrolysis temperature of biomass decreases, even if an attempt is made to increase the pyrolysis temperature, the biomass pyrolyzer internal temperature cannot be increased due to the necessity of maintaining the pyrolysis gas reformer internal temperature. On the contrary, when the pyrolysis temperature of biomass rises, if the temperature inside the biomass pyrolyzer is lowered, it is necessary to maintain the temperature of the pyrolysis gas reformer as well. For this reason, there is a problem that the internal temperature of the biomass pyrolyzer cannot be lowered. Therefore, it is not easy to continuously optimize the pyrolysis temperature of biomass and the reforming temperature of the generated pyrolysis gas. As a result, the generation amount of pyrolysis gas and the production amount of hydrogen-containing gas in the final product There was a problem that would decrease. Along with this, there has also been a problem that the amount of tar and dust generated increases. Originally, it is desirable that the biomass pyrolyzer and the pyrolysis gas reformer can be temperature controlled separately.
特許文献4には、バイオマス熱分解器と熱分解ガス改質器とを、熱担持媒体(ヒートキャリア)の流れに対して並列に配置する方法が提案されている。該方法によれば、バイオマス熱分解器の温度と熱分解ガス改質器の温度とを、別個にコントロールし得るので、上記問題を解決し得る。該方法においては、バイオマス熱分解器で発生した熱分解ガスは、バイオマス熱分解器の上部から配管により熱分解ガス改質器に導入されていた。かかる熱分解ガスの導入方法では、熱分解ガスが上昇及び下降して通過する該配管の内壁及びバルブ等に、タール及び煤塵等が付着して、それによる閉塞トラブルを回避できない、という不具合が発生していた。 Patent Document 4 proposes a method in which a biomass pyrolyzer and a pyrolysis gas reformer are arranged in parallel to the flow of a heat carrier medium (heat carrier). According to this method, the temperature of the biomass pyrolyzer and the temperature of the pyrolysis gas reformer can be controlled separately, so that the above problem can be solved. In this method, the pyrolysis gas generated in the biomass pyrolyzer has been introduced into the pyrolysis gas reformer by piping from the upper part of the biomass pyrolyzer. Such a method of introducing pyrolysis gas has a problem that tar and dust etc. adhere to the inner wall and valve of the pipe through which the pyrolysis gas rises and falls to prevent clogging troubles from occurring. Was.
バイオマス熱分解器と熱分解ガス改質器とを別個に温度コントロールすることができれば、バイオマスの熱分解温度及び熱分解ガスの改質温度を、夫々最適な値にすることができる故に、バイオマスを熱分解する際に発生するタール及び煤塵等の量を効果的に低減することができると共に、熱分解ガスを効率的に発生せしめることができ、かつ、発生した熱分解ガスを最適条件で効率的に改質することができる。従って、配管内壁及びバルブ等へのタール及び煤塵等の付着を著しく低減することができると共に、改質ガスの生産量をも大幅に増加せしめることが可能となる。しかし、上記の特許文献4に記載のような装置構成では、バイオマス熱分解器と熱分解ガス改質器との温度を、夫々別個にコントロールすることができるものの、バイオマス熱分解器から熱分解ガス改質器へ熱分解ガスを導入する熱分解ガス導入管において、その内壁及びバルブ等へのタール及び煤塵等の付着が生じてしまい、結局、熱分解ガス導入管の閉塞トラブルが発生してしまう。 If the temperature of the biomass pyrolyzer and the pyrolysis gas reformer can be controlled separately, the biomass pyrolysis temperature and the pyrolysis gas reforming temperature can be set to optimum values. The amount of tar and dust generated during pyrolysis can be effectively reduced, pyrolysis gas can be generated efficiently, and the generated pyrolysis gas can be efficiently used under optimum conditions. Can be modified. Accordingly, it is possible to remarkably reduce the adhesion of tar, dust, etc. to the inner wall of the pipe and the valve, and to greatly increase the production amount of the reformed gas. However, in the apparatus configuration as described in Patent Document 4 above, the temperatures of the biomass pyrolyzer and the pyrolysis gas reformer can be controlled separately, but the biomass pyrolyzer and the pyrolysis gas can be controlled separately. In the pyrolysis gas introduction pipe that introduces pyrolysis gas into the reformer, tar and dust adhere to the inner wall and valves, etc., and eventually the pyrolysis gas introduction pipe is closed. .
そこで、本発明者らは、バイオマス熱分解器及び熱分解ガス改質器の夫々の内部温度を別個にコントロールして、バイオマスの熱分解温度及び熱分解ガスの改質温度を、夫々適切な値にすることにより、熱分解ガスの発生量を増大させ、かつ、最終製品である水素含有ガスの生産量を増大させるばかりではなく、タール及び煤塵等の発生量を低減せしめ、それに加えて、バイオマス熱分解器において発生した熱分解ガスを熱分解ガス改質器へと導入する熱分解ガス導入管の内壁及びバルブ等に、タール及び煤塵等が付着して、該熱分解ガス導入管が閉塞することを回避するためには、ガス化装置を如何なる構成にするべきかに関して、種々の検討を試みた。 Therefore, the inventors separately control the internal temperatures of the biomass pyrolyzer and the pyrolysis gas reformer, and set the biomass pyrolysis temperature and the pyrolysis gas reforming temperature to appropriate values, respectively. In addition to increasing the generation amount of pyrolysis gas and increasing the production amount of the hydrogen-containing gas that is the final product, the generation amount of tar and dust is reduced, in addition to biomass. Tar, dust, etc. adhere to the inner wall and valve of the pyrolysis gas introduction pipe for introducing the pyrolysis gas generated in the pyrolysis gas into the pyrolysis gas reformer, and the pyrolysis gas introduction pipe is blocked. In order to avoid this, various investigations have been attempted regarding the configuration of the gasifier.
その結果、バイオマス熱分解器と熱分解ガス改質器とを、複数の粒状物及び/又は塊状物[熱担持媒体(ヒートキャリア)]の流れに対して並列に配置し、かつ、熱分解ガス導入管を、バイオマス熱分解器と熱分解ガス改質器との両側において、バイオマス熱分解器及び熱分解ガス改質器内に形成される、ヒートキャリア層の上面より下方のバイオマス熱分解器及び熱分解ガス改質器の側面に設置し、かつ、該熱分解ガス導入管を水平配管にすることにより、上記問題を解決し得ることを見出した。即ち、バイオマス熱分解器と熱分解ガス改質器とを、ヒートキャリアの流れに対して並列に配置することにより、夫々別個に、内部温度をコントロールすることができ、かつ、熱分解ガス導入管のガス取り入れ口(ガス入口)とガス導入口(ガス出口)とをヒートキャリア層中に設けることにより、該熱分解ガス導入管内に、バイオマス熱分解器及び熱分解ガス改質器中のヒートキャリアを導入せしめて、そして、熱分解ガスが、熱分解ガス導入管内に保有された該ヒートキャリア層を通過することにより、タール及び煤塵等が効率的に除去されると共に、タールが効果的に熱分解されることを見出したのである。加えて、驚くべきことに、該熱分解ガス導入管内に侵入したヒートキャリアは、バイオマス熱分解器及び熱分解ガス改質器内のヒートキャリアの上から下への移動に伴って、逐次入れ替わり、それにより、熱分解ガス導入管内においてヒートキャリアがタール等により固着して閉塞することなく、著しく効率的にタール及び煤塵等が除去され、かつ、タールが熱分解され、好ましくは改質されることを見出したのである。そして、好ましくは、熱分解ガス導入管の内部底面を、上方に向かって突出させておけば、バイオマス熱分解器及び熱分解ガス改質器内を夫々流れるヒートキャリアが、熱分解ガス導入管を通して、他方の容器に流れ込むことを、より効果的に防止し得るばかりではなく、熱分解ガス導入管内のヒートキャリアが効果的に入れ替わり、より効率的にタール及び煤塵等を除去することができることを見出したのである。 As a result, the biomass pyrolyzer and the pyrolysis gas reformer are arranged in parallel with respect to the flow of a plurality of granular materials and / or bulk materials [heat carrier medium (heat carrier)], and the pyrolysis gas The introduction pipe is formed in the biomass pyrolyzer and the pyrolysis gas reformer on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, and the biomass pyrolyzer below the upper surface of the heat carrier layer and It has been found that the above problem can be solved by installing on the side surface of the pyrolysis gas reformer and making the pyrolysis gas introduction pipe a horizontal pipe. That is, by arranging the biomass pyrolyzer and the pyrolysis gas reformer in parallel with the heat carrier flow, the internal temperature can be controlled separately and the pyrolysis gas introduction pipe By providing a gas inlet (gas inlet) and a gas inlet (gas outlet) in the heat carrier layer, a heat carrier in the biomass pyrolyzer and pyrolytic gas reformer is provided in the pyrolysis gas introduction pipe. Then, the pyrolysis gas passes through the heat carrier layer held in the pyrolysis gas introduction pipe, so that tar and dust are efficiently removed, and the tar is effectively heated. It was found that it was decomposed. In addition, surprisingly, the heat carrier that has entered the pyrolysis gas introduction pipe is sequentially replaced as the heat carrier moves from the top to the bottom in the biomass pyrolysis gas reformer and pyrolysis gas reformer, As a result, the tar and dust are remarkably efficiently removed and the tar is pyrolyzed and preferably reformed without the heat carrier being fixed and clogged with tar or the like in the pyrolysis gas introduction pipe. Was found. Preferably, if the inner bottom surface of the pyrolysis gas introduction tube is protruded upward, the heat carriers flowing in the biomass pyrolysis device and the pyrolysis gas reformer respectively pass through the pyrolysis gas introduction tube. It is found that not only can the flow into the other container be prevented more effectively, but also the heat carrier in the pyrolysis gas introduction pipe can be effectively replaced and tar and dust can be removed more efficiently. It was.
即ち、本発明は、
(1)バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を備えるバイオマス熱分解器と、スチーム吹込み口及び改質ガス排出口を備える熱分解ガス改質器と、上記バイオマス熱分解器において発生した熱分解ガスを上記熱分解ガス改質器へと導入する、上記バイオマス熱分解器と上記熱分解ガス改質器との間に備えられた熱分解ガス導入管とを備え、かつ、上記バイオマス熱分解器及び上記熱分解ガス改質器が、夫々更に、予め加熱された複数の粒状物及び/又は塊状物の導入口及び排出口を備え、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解及びバイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化装置において、上記バイオマス熱分解器と上記熱分解ガス改質器とが、上記複数の粒状物及び/又は塊状物の流れに対して並列に備えられており、かつ、上記熱分解ガス導入管が、上記バイオマス熱分解器及び上記熱分解ガス改質器の両側において、上記バイオマス熱分解器及び上記熱分解ガス改質器内に夫々形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器及び上記熱分解ガス改質器の側面に備えられており、かつ、上記熱分解ガス導入管が、重力方向に対して略水平に備えられていることを特徴とするバイオマスのガス化装置である。
That is, the present invention
(1) Biomass pyrolyzer having a biomass supply port, and a non-oxidizing gas supply port and / or a steam inlet, and a pyrolysis gas reformer having a steam inlet and a reformed gas outlet, A pyrolysis gas inlet pipe provided between the biomass pyrolyzer and the pyrolysis gas reformer, which introduces the pyrolysis gas generated in the biomass pyrolyzer into the pyrolysis gas reformer; And the biomass pyrolyzer and the pyrolysis gas reformer each further comprise a plurality of preheated granules and / or lump inlets and outlets, and the plurality of granules. And / or a biomass gasification apparatus that performs pyrolysis of biomass and reforming of pyrolysis gas generated by pyrolysis of biomass by the heat of the lump. A gas reformer is provided in parallel with the plurality of granular and / or massive flows, and the pyrolysis gas introduction pipe is provided with the biomass pyrolyzer and the pyrolysis gas reformer. The biomass pyrolyzer and the heat below the upper surfaces of the plurality of granular and / or lump layers formed in the biomass pyrolyzer and the pyrolysis gas reformer on both sides of the mass device, respectively. The biomass gasification apparatus is provided on a side surface of the cracked gas reformer, and the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity.
好ましい態様として、
(2)上記熱分解ガス導入管の内部底面が、上方に向かって突出した構造を有している、上記(1)記載のバイオマスのガス化装置、
(3)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと傾斜を備えて上方に向かって突出した構造を有している、上記(1)記載のバイオマスのガス化装置、
(4)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、5~45度の傾斜を備えて上方に向かって突出した構造を有している、上記(1)記載のバイオマスのガス化装置、
(5)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、10~30度の傾斜を備えて上方に向かって突出した構造を有している、上記(1)記載のバイオマスのガス化装置、
(6)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、15~25度の傾斜を備えて上方に向かって突出した構造を有している、上記(1)記載のバイオマスのガス化装置、
(7)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が、略円形又は略多角形である、上記(1)~(6)のいずれか一つに記載のバイオマスのガス化装置、
(8)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が略四角形である、上記(1)~(6)のいずれか一つに記載のバイオマスのガス化装置、
(9)上記熱分解ガス導入管が、1~3本備えられている、上記(1)~(8)のいずれか一つに記載のバイオマスのガス化装置、
(10)上記熱分解ガス導入管が、1又は2本備えられている、上記(1)~(8)のいずれか一つに記載のバイオマスのガス化装置、
(11)上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、上記(1)~(10)のいずれか一つに記載のバイオマスのガス化装置、
(12)スチーム吹込み口が、バイオマス熱分解器及びその近傍、熱分解ガス改質器及びその近傍、並びに、熱分解ガス導入管より成る群から選ばれる一つ以上の位置に備えられる、上記(1)~(11)のいずれか一つに記載のバイオマスのガス化装置、
(13)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に備えられる、上記(1)~(11)のいずれか一つに記載のバイオマスのガス化装置、
(14)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1~3個備えられる、上記(1)~(11)のいずれか一つに記載のバイオマスのガス化装置、
(15)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1個備えられる、上記(1)~(11)のいずれか一つに記載のバイオマスのガス化装置、
(16)複数の粒状物及び/又は塊状物を予め加熱するための予熱器が、バイオマス熱分解器及び熱分解ガス改質器の上部に更に備えられる、上記(1)~(15)のいずれか一つに記載のバイオマスのガス化装置、
(17)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器及び熱分解ガス改質器の上方に備えられる、上記(1)~(16)のいずれか一つに記載のバイオマスのガス化装置、
(18)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器及び熱分解ガス改質器の頂部に備えられる、上記(1)~(16)のいずれか一つに記載のバイオマスのガス化装置、
(19)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器及び熱分解ガス改質器の下方に備えられる、上記(1)~(18)のいずれか一つに記載のバイオマスのガス化装置、
(20)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器及び熱分解ガス改質器の底部に備えられる、上記(1)~(18)のいずれか一つに記載のバイオマスのガス化装置、
(21)上記の粒状物及び/又は塊状物が、金属ボール及びセラミックボールより成る群から選ばれる、上記(1)~(20)のいずれか一つに記載のバイオマスのガス化装置、
(22)金属ボールが、ステンレス鋼製である、上記(21)記載のバイオマスのガス化装置、
(23)セラミックボールが、アルミナ、シリカ、シリコンカーバイド、タングステンカーバイド、ジルコニア及び窒化ケイ素のより成る群から選ばれる一以上の材質から成る、上記(21)記載のバイオマスのガス化装置、
(24)上記バイオマス熱分解器の気相温度が400~700℃である、上記(1)~(23)のいずれか一つに記載のバイオマスのガス化装置、
(25)上記バイオマス熱分解器の気相温度が500~700℃である、上記(1)~(23)のいずれか一つに記載のバイオマスのガス化装置、
(26)上記バイオマス熱分解器の気相温度が550~650℃である、上記(1)~(23)のいずれか一つに記載のバイオマスのガス化装置、
(27)上記熱分解ガス改質器の気相温度が700~1,000℃である、上記(1)~(26)のいずれか一つに記載のバイオマスのガス化装置、
(28)上記熱分解ガス改質器の気相温度が850~950℃である、上記(1)~(26)のいずれか一つに記載のバイオマスのガス化装置、
(29)上記熱分解ガス改質器の気相温度が880~930℃である、上記(1)~(26)のいずれか一つに記載のバイオマスのガス化装置、
(30)上記バイオマスが、植物系バイオマス、生物系バイオマス、生活雑排出物及び食品廃棄物より成る群から選ばれるバイオマス資源である、上記(1)~(29)のいずれか一つに記載のバイオマスのガス化装置
を挙げることができる。
As a preferred embodiment,
(2) The biomass gasification apparatus according to (1), wherein an inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward.
(3) The inner bottom surface of the pyrolysis gas introduction pipe has a structure projecting upward with an inclination from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the central portion, (1) The biomass gasification apparatus according to (1),
(4) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe projects upward with an inclination of 5 to 45 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. The biomass gasification apparatus according to the above (1),
(5) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. The biomass gasification apparatus according to the above (1),
(6) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. The biomass gasification apparatus according to the above (1),
(7) Any one of the above (1) to (6), wherein the outer shape of the cross section perpendicular to the longitudinal direction (the direction of flow of the pyrolysis gas) of the pyrolysis gas introduction tube is substantially circular or polygonal. A gasifier for biomass as described in
(8) The biomass according to any one of (1) to (6) above, wherein the outer shape of the cross section perpendicular to the longitudinal direction (flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe is substantially square Gasifier,
(9) The biomass gasification apparatus according to any one of (1) to (8), wherein 1 to 3 pyrolysis gas introduction pipes are provided.
(10) The biomass gasification apparatus according to any one of (1) to (8), wherein one or two pyrolysis gas introduction pipes are provided,
(11) The biomass gasification according to any one of (1) to (10), wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein. apparatus,
(12) The steam injection port is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (1) to the biomass gasification apparatus according to any one of (11),
(13) Any one of the above (1) to (11), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. Gasification apparatus for biomass as described in
(14) One to three steam inlets are provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe, respectively. (11) The biomass gasification apparatus according to any one of
(15) The above-mentioned (1) to (11), wherein one steam inlet is provided in each of the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. ) The biomass gasification device according to any one of
(16) Any of the above (1) to (15), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in the upper part of the biomass pyrolyzer and the pyrolysis gas reformer A biomass gasification apparatus according to claim 1,
(17) In any one of the above (1) to (16), an inlet for the plurality of granular materials and / or agglomerates is provided above the biomass pyrolyzer and the pyrolysis gas reformer. The biomass gasifier described in the above,
(18) In any one of the above (1) to (16), the introduction port for the plurality of granular materials and / or agglomerates is provided at the top of the biomass pyrolyzer and the pyrolysis gas reformer. The biomass gasifier described in the above,
(19) In any one of the above (1) to (18), the plurality of granular and / or lump discharge ports are provided below the biomass pyrolyzer and the pyrolysis gas reformer. The biomass gasifier described in the above,
(20) In any one of the above (1) to (18), the plurality of granular and / or lump discharge ports are provided at the bottom of the biomass pyrolyzer and pyrolysis gas reformer. The biomass gasifier described in the above,
(21) The biomass gasification apparatus according to any one of (1) to (20) above, wherein the granular and / or lump is selected from the group consisting of metal balls and ceramic balls,
(22) The biomass gasification apparatus according to (21), wherein the metal ball is made of stainless steel,
(23) The biomass gasification apparatus according to (21), wherein the ceramic ball is made of one or more materials selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride.
(24) The biomass gasifier according to any one of (1) to (23), wherein the biomass pyrolyzer has a gas phase temperature of 400 to 700 ° C.
(25) The biomass gasifier according to any one of (1) to (23), wherein the biomass pyrolyzer has a gas phase temperature of 500 to 700 ° C.
(26) The biomass gasification apparatus according to any one of (1) to (23), wherein the biomass pyrolyzer has a gas phase temperature of 550 to 650 ° C.
(27) The biomass gasification apparatus according to any one of (1) to (26), wherein the pyrolysis gas reformer has a gas phase temperature of 700 to 1,000 ° C.
(28) The biomass gasification apparatus according to any one of (1) to (26) above, wherein the pyrolysis gas reformer has a gas phase temperature of 850 to 950 ° C.
(29) The biomass gasification apparatus according to any one of (1) to (26) above, wherein the pyrolysis gas reformer has a gas phase temperature of 880 to 930 ° C.
(30) The biomass as described in any one of (1) to (29) above, wherein the biomass is a biomass resource selected from the group consisting of plant biomass, biological biomass, daily waste, and food waste A biomass gasification apparatus can be mentioned.
また、本発明は、上記(1)記載のバイオマスのガス化装置を使用したバイオマスのガス化方法である。即ち、本発明は、
(31)バイオマスを、非酸化性ガス雰囲気下又は非酸化性ガスとスチームとの混合ガス雰囲気下において加熱するバイオマス熱分解器と、上記バイオマス熱分解器において発生したガスを、スチームの存在下に加熱する熱分解ガス改質器とを備え、かつ、予め加熱された複数の粒状物及び/又は塊状物を、上記バイオマス熱分解器及び上記熱分解ガス改質器に投入せしめて、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解及びバイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化方法において、上記複数の粒状物及び/又は塊状物が、上記複数の粒状物及び/又は塊状物の流れに対して並列に備えられている上記バイオマス熱分解器と上記熱分解ガス改質器とに別個に投入され、上記バイオマス熱分解器において発生した熱分解ガスが、上記バイオマス熱分解器と上記熱分解ガス改質器の両側において、上記バイオマス熱分解器及び上記熱分解ガス改質器内に夫々形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器及び上記熱分解ガス改質器の側面に備えられ、かつ、重力方向に対して略水平に備えられた熱分解ガス導入管を通って、上記熱分解ガス改質器に導入されて改質されるバイオマスのガス化方法である。
Moreover, this invention is the gasification method of biomass using the biomass gasification apparatus of said (1) description. That is, the present invention
(31) A biomass pyrolyzer that heats biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam, and a gas generated in the biomass pyrolyzer in the presence of steam A plurality of preheated granulates and / or lumps are put into the biomass pyrolyzer and the pyrolysis gas reformer, and the plurality of the pyrolysis gas reformers to be heated are provided. In the biomass gasification method, in which the pyrolysis of biomass and the reforming of pyrolysis gas generated by the pyrolysis of biomass are performed by the heat of the granules and / or the chunks, the plurality of granules and / or chunks described above Is separately fed to the biomass pyrolyzer and the pyrolysis gas reformer provided in parallel with the plurality of granular and / or lump flows, The pyrolysis gas generated in the biomass pyrolyzer is formed in the biomass pyrolyzer and the pyrolysis gas reformer on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, respectively. Pyrolysis gas provided on the side surfaces of the biomass pyrolyzer and pyrolysis gas reformer below the upper surface of the plurality of granular and / or lump layers and provided substantially horizontally with respect to the direction of gravity This is a method for gasifying biomass that is introduced into the pyrolysis gas reformer through the introduction pipe and reformed.
好ましい態様として、
(32)上記熱分解ガス導入管の内部底面が、上方に向かって突出した構造を有している、上記(31)記載のバイオマスのガス化方法、
(33)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと傾斜を備えて上方に向かって突出した構造を有している、上記(31)記載のバイオマスのガス化方法、
(34)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、5~45度の傾斜を備えて上方に向かって突出した構造を有している、上記(31)記載のバイオマスのガス化方法、
(35)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、10~30度の傾斜を備えて上方に向かって突出した構造を有している、上記(31)記載のバイオマスのガス化方法、
(36)上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、15~25度の傾斜を備えて上方に向かって突出した構造を有している、上記(31)記載のバイオマスのガス化方法、
(37)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が、略円形又は略多角形である、上記(31)~(36)のいずれか一つに記載のバイオマスのガス化方法、
(38)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が略四角形である、上記(31)~(36)のいずれか一つに記載のバイオマスのガス化方法、
(39)上記熱分解ガス導入管が、1~3本備えられている、上記(31)~(38)のいずれか一つに記載のバイオマスのガス化方法、
(40)上記熱分解ガス導入管が、1又は2本備えられている、上記(31)~(36)のいずれか一つに記載のバイオマスのガス化方法、
(41)上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、上記(31)~(40)のいずれか一つに記載のバイオマスのガス化方法、
(42)スチーム吹込み口が、バイオマス熱分解器及びその近傍、熱分解ガス改質器及びその近傍、並びに、熱分解ガス導入管より成る群から選ばれる一つ以上の位置に備えられる、上記(31)~(41)のいずれか一つに記載のバイオマスのガス化方法、
(43)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に備えられる、上記(31)~(41)のいずれか一つに記載のバイオマスのガス化方法、
(44)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1~3個備えられる、上記(31)~(41)のいずれか一つに記載のバイオマスのガス化方法、
(45)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1個備えられる、上記(31)~(41)のいずれか一つに記載のバイオマスのガス化方法、
(46)複数の粒状物及び/又は塊状物を予め加熱するための予熱器が、バイオマス熱分解器及び熱分解ガス改質器の上部に更に備えられる、上記(31)~(45)のいずれか一つに記載のバイオマスのガス化方法、
(47)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器及び熱分解ガス改質器の上方に備えられる、上記(31)~(46)のいずれか一つに記載のバイオマスのガス化方法、
(48)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器及び熱分解ガス改質器の頂部に備えられる、上記(31)~(46)のいずれか一つに記載のバイオマスのガス化方法、
(49)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器及び熱分解ガス改質器の下方に備えられる、上記(31)~(48)のいずれか一つに記載のバイオマスのガス化方法、
(50)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器及び熱分解ガス改質器の底部に備えられる、上記(31)~(48)のいずれか一つに記載のバイオマスのガス化方法、
(51)上記の粒状物及び/又は塊状物が、金属ボール及びセラミックボールより成る群から選ばれる、上記(31)~(50)のいずれか一つに記載のバイオマスのガス化方法、
(52)金属ボールが、ステンレス鋼製である、上記(51)記載のバイオマスのガス化方法、
(53)セラミックボールが、アルミナ、シリカ、シリコンカーバイド、タングステンカーバイド、ジルコニア及び窒化ケイ素のより成る群から選ばれる一以上の材質から成る、上記(51)記載のバイオマスのガス化方法、
(54)上記バイオマス熱分解器の気相温度が400~700℃である、上記(31)~(53)のいずれか一つに記載のバイオマスのガス化方法、
(55)上記バイオマス熱分解器の気相温度が500~700℃である、上記(31)~(53)のいずれか一つに記載のバイオマスのガス化方法、
(56)上記バイオマス熱分解器の気相温度が550~650℃である、上記(31)~(53)のいずれか一つに記載のバイオマスのガス化方法、
(57)上記熱分解ガス改質器の気相温度が700~1,000℃である、上記(31)~(56)のいずれか一つに記載のバイオマスのガス化方法、
(58)上記熱分解ガス改質器の気相温度が850~950℃である、上記(31)~(56)のいずれか一つに記載のバイオマスのガス化方法、
(59)上記熱分解ガス改質器の気相温度が880~930℃である、上記(31)~(56)のいずれか一つに記載のバイオマスのガス化方法、
(60)上記バイオマスが、植物系バイオマス、生物系バイオマス、生活雑排出物及び食品廃棄物より成る群から選ばれるバイオマス資源である、上記(31)~(59)のいずれか一つに記載のバイオマスのガス化方法、
を挙げることができる。
As a preferred embodiment,
(32) The biomass gasification method according to (31), wherein the inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward.
(33) The inner bottom surface of the pyrolysis gas introduction pipe has a structure projecting upward with an inclination from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center portion, (31) The biomass gasification method according to (31),
(34) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe projects upward with an inclination of 5 to 45 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. The biomass gasification method according to (31) above,
(35) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. The biomass gasification method according to (31) above,
(36) A structure in which the inner bottom surface of the pyrolysis gas introduction pipe projects upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center. The biomass gasification method according to (31) above,
(37) Any one of the above (31) to (36), wherein an outer shape of a cross section perpendicular to the longitudinal direction (flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe is a substantially circular shape or a polygon Gasification method of biomass as described in
(38) The biomass according to any one of (31) to (36), wherein an outer shape of a cross section perpendicular to a longitudinal direction (flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe is substantially square. Gasification method,
(39) The biomass gasification method according to any one of (31) to (38), wherein 1 to 3 of the pyrolysis gas introduction pipes are provided,
(40) The biomass gasification method according to any one of (31) to (36), wherein one or two pyrolysis gas introduction pipes are provided,
(41) The biomass gasification according to any one of (31) to (40), wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein. Method,
(42) The steam injection port is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (31) The method for gasifying biomass according to any one of (41),
(43) Any one of the above (31) to (41), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. Gasification method of biomass as described in
(44) One to three steam inlets are provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe, respectively. (41) The method for gasifying biomass according to any one of
(45) The above (31) to (41), wherein one steam inlet is provided in each of the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. ) Biomass gasification method according to any one of
(46) Any of the above (31) to (45), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in the upper part of the biomass pyrolyzer and pyrolysis gas reformer A biomass gasification method according to claim 1;
(47) In any one of the above (31) to (46), an inlet for the plurality of granular materials and / or agglomerates is provided above the biomass pyrolyzer and the pyrolysis gas reformer. The biomass gasification method described,
(48) In any one of the above (31) to (46), the introduction port for the plurality of granular materials and / or agglomerates is provided at the top of the biomass pyrolyzer and pyrolytic gas reformer. The biomass gasification method described,
(49) In any one of the above (31) to (48), the plurality of granular and / or lump discharge ports are provided below the biomass pyrolyzer and the pyrolysis gas reformer. The biomass gasification method described,
(50) In any one of the above (31) to (48), the plurality of granular and / or lump discharge ports are provided at the bottom of the biomass pyrolyzer and pyrolysis gas reformer. The biomass gasification method described,
(51) The biomass gasification method according to any one of (31) to (50), wherein the granular material and / or the lump are selected from the group consisting of metal balls and ceramic balls,
(52) The biomass gasification method according to (51), wherein the metal ball is made of stainless steel,
(53) The biomass gasification method according to (51), wherein the ceramic balls are made of one or more materials selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride.
(54) The biomass gasification method according to any one of (31) to (53) above, wherein the gas phase temperature of the biomass pyrolyzer is 400 to 700 ° C.
(55) The biomass gasification method according to any one of (31) to (53), wherein the gas phase temperature of the biomass pyrolyzer is 500 to 700 ° C.
(56) The biomass gasification method according to any one of (31) to (53), wherein the biomass pyrolyzer has a gas phase temperature of 550 to 650 ° C.
(57) The biomass gasification method according to any one of the above (31) to (56), wherein the pyrolysis gas reformer has a gas phase temperature of 700 to 1,000 ° C.
(58) The biomass gasification method according to any one of (31) to (56) above, wherein the pyrolysis gas reformer has a gas phase temperature of 850 to 950 ° C.
(59) The biomass gasification method according to any one of (31) to (56) above, wherein the pyrolysis gas reformer has a gas phase temperature of 880 to 930 ° C.
(60) The biomass as described in any one of (31) to (59) above, wherein the biomass is a biomass resource selected from the group consisting of plant biomass, biological biomass, household waste, and food waste Biomass gasification method,
Can be mentioned.
本発明者らは、上記第一の装置構成と同じく、バイオマス熱分解器において発生した熱分解ガスを熱分解ガス改質器に導入するための熱分解ガス導入管、即ち、熱分解ガス導入管のガス取り入れ口(ガス入口)を、バイオマス熱分解器側において、バイオマス熱分解器内に形成される、ヒートキャリア層の上面より下方のバイオマス熱分解器の側面、即ち、ヒートキャリア層中に設置しておけば、バイオマス熱分解器にのみ、複数の粒状物及び/又は塊状物[熱担持媒体(ヒートキャリア)]を導入してバイオマスを熱分解し、発生した熱分解ガスを、従来の熱交換器型の熱分解ガス改質器に導入して、該熱分解ガスの改質を実行しても、上記と同様の効果が得られるのではないかとの考えに思い至った。そこで、本発明者らは、かかる装置構成について、更に種々検討を重ねたところ、該装置構成であっても、上記第一の装置構成に劣ることなく、本発明の課題を解決し得ることを見出した。 As in the first apparatus configuration, the present inventors have introduced a pyrolysis gas introduction pipe for introducing pyrolysis gas generated in the biomass pyrolysis apparatus into the pyrolysis gas reformer, that is, a pyrolysis gas introduction pipe. The gas inlet (gas inlet) is installed in the biomass pyrolyzer at the side of the biomass pyrolyzer below the upper surface of the heat carrier layer, that is, in the heat carrier layer. Then, only a biomass pyrolyzer introduces a plurality of granular materials and / or lumps [heat carrier medium (heat carrier)] to thermally decompose biomass, and the generated pyrolysis gas is converted into conventional heat. Even when introduced into an exchanger-type pyrolysis gas reformer and reforming the pyrolysis gas, the inventors have thought that the same effect as described above can be obtained. Therefore, the present inventors have conducted various studies on the device configuration, and as a result, the device configuration can solve the problems of the present invention without inferior to the first device configuration. I found it.
即ち、本発明は、
(61)バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を備えるバイオマス熱分解器と、スチーム吹込み口及び改質ガス排出口を備える熱分解ガス改質器と、上記バイオマス熱分解器において発生した熱分解ガスを上記熱分解ガス改質器へと導入する、上記バイオマス熱分解器と上記熱分解ガス改質器との間に備えられた熱分解ガス導入管とを備え、かつ、上記バイオマス熱分解器が、更に、予め加熱された複数の粒状物及び/又は塊状物の導入口及び排出口を備え、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解を実行し、一方、上記熱分解ガス改質器が、更に、その外側に予め加熱されたガス状又は液体状熱媒体の流路を備え、該熱媒体の持つ熱により、バイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化装置において、上記熱分解ガス導入管が、上記バイオマス熱分解器側において、上記バイオマス熱分解器内に形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器の側面に備えられていることを特徴とするバイオマスのガス化装置である。
That is, the present invention
(61) Biomass pyrolyzer comprising a biomass feed port and a non-oxidizing gas feed port and / or a steam inlet, and a pyrolysis gas reformer comprising a steam inlet and a reformed gas outlet, A pyrolysis gas inlet pipe provided between the biomass pyrolyzer and the pyrolysis gas reformer, which introduces the pyrolysis gas generated in the biomass pyrolyzer into the pyrolysis gas reformer; And the biomass pyrolyzer further includes a plurality of preheated granule and / or lump inlets and discharge ports, and is heated by the heat of the plurality of granulates and / or lump. The pyrolysis of biomass is performed, while the pyrolysis gas reformer further includes a flow path of a gaseous or liquid heat medium that is preheated on the outside thereof, and the heat of the heat medium By pyrolysis of biomass In the biomass gasification apparatus that performs reforming of the generated pyrolysis gas, the pyrolysis gas introduction pipe is formed in the biomass pyrolysis device on the biomass pyrolysis device side. And / or a biomass gasifier characterized in that the biomass pyrolyzer is provided on a side surface of the biomass pyrolyzer below the upper surface of the massive layer.
好ましい態様として、
(62)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間の上記バイオマス熱分解器側において、重力方向に対して略水平に備えられており、次いで、上記熱分解ガス改質器側に向かって、上方に立ち上がった構造を有している、上記(61)記載のバイオマスのガス化装置、
(63)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、上方に向かって突出した構造を有している、上記(61)記載のバイオマスのガス化装置、
(64)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと傾斜を備えて上方に向かって突出した構造を有している、上記(61)記載のバイオマスのガス化装置、
(65)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、5~45度の傾斜を備えて上方に向かって突出した構造を有している、上記(61)記載のバイオマスのガス化装置、
(66)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、10~30度の傾斜を備えて上方に向かって突出した構造を有している、上記(61)記載のバイオマスのガス化装置、
(67)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、15~25度の傾斜を備えて上方に向かって突出した構造を有している、上記(61)記載のバイオマスのガス化装置、
(68)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が、略円形又は略多角形である、上記(61)~(67)のいずれか一つに記載のバイオマスのガス化装置、
(69)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が略四角形である、上記(61)~(67)のいずれか一つに記載のバイオマスのガス化装置、
(70)上記熱分解ガス導入管が、1~3本備えられている、上記(61)~(69)のいずれか一つに記載のバイオマスのガス化装置、
(71)上記熱分解ガス導入管が、1又は2本備えられている、上記(61)~(69)のいずれか一つに記載のバイオマスのガス化装置、
(72)上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、上記(61)~(71)のいずれか一つに記載のバイオマスのガス化装置、
(73)スチーム吹込み口が、バイオマス熱分解器及びその近傍、熱分解ガス改質器及びその近傍、並びに、熱分解ガス導入管より成る群から選ばれる一つ以上の位置に備えられる、上記(61)~(72)のいずれか一つに記載のバイオマスのガス化装置、
(74)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に備えられる、上記(61)~(72)のいずれか一つに記載のバイオマスのガス化装置、
(75)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1~3個備えられる、上記(61)~(72)のいずれか一つに記載のバイオマスのガス化装置、
(76)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1個備えられる、上記(61)~(72)のいずれか一つに記載のバイオマスのガス化装置、
(77)複数の粒状物及び/又は塊状物を予め加熱するための予熱器が、バイオマス熱分解器の上部に更に備えられる、上記(61)~(76)のいずれか一つに記載のバイオマスのガス化装置、
(78)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器の上方に備えられる、上記(61)~(77)のいずれか一つに記載のバイオマスのガス化装置、
(79)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器の頂部に備えられる、上記(61)~(77)のいずれか一つに記載のバイオマスのガス化装置、
(80)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器の下方に備えられる、上記(61)~(79)のいずれか一つに記載のバイオマスのガス化装置、
(81)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器の底部に備えられる、上記(61)~(79)のいずれか一つに記載のバイオマスのガス化装置、
(82)上記の粒状物及び/又は塊状物が、金属ボール及びセラミックボールより成る群から選ばれる、上記(61)~(81)のいずれか一つに記載のバイオマスのガス化装置、
(83)金属ボールが、ステンレス鋼製である、上記(82)記載のバイオマスのガス化装置、
(84)セラミックボールが、アルミナ、シリカ、シリコンカーバイド、タングステンカーバイド、ジルコニア及び窒化ケイ素のより成る群から選ばれる一以上の材質から成る、上記(82)記載のバイオマスのガス化装置、
(85)上記の予め加熱されたガス状又は液体状熱媒体が高温熱風である、上記(61)~(84)のいずれか一つに記載のバイオマスのガス化装置、
(86)上記バイオマス熱分解器の気相温度が400~700℃である、上記(61)~(85)のいずれか一つに記載のバイオマスのガス化装置、
(87)上記バイオマス熱分解器の気相温度が500~700℃である、上記(61)~(85)のいずれか一つに記載のバイオマスのガス化装置、
(88)上記バイオマス熱分解器の気相温度が550~650℃である、上記(61)~(85)のいずれか一つに記載のバイオマスのガス化装置、
(89)上記熱分解ガス改質器の気相温度が700~1,000℃である、上記(61)~(88)のいずれか一つに記載のバイオマスのガス化装置、
(90)上記熱分解ガス改質器の気相温度が850~950℃である、上記(61)~(88)のいずれか一つに記載のバイオマスのガス化装置、
(91)上記熱分解ガス改質器の気相温度が880~930℃である、上記(61)~(88)のいずれか一つに記載のバイオマスのガス化装置、
(92)上記バイオマスが、植物系バイオマス、生物系バイオマス、生活雑排出物及び食品廃棄物より成る群から選ばれるバイオマス資源である、上記(61)~(91)のいずれか一つに記載のバイオマスのガス化装置
を挙げることができる。
As a preferred embodiment,
(62) The pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolysis device side between the biomass pyrolysis device and the pyrolysis gas reformer, The biomass gasification apparatus according to (61), wherein the biomass gasification apparatus has a structure that rises upward toward the pyrolysis gas reformer side,
(63) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The biomass gasification apparatus according to (61), wherein the inner bottom surface has a structure projecting upward,
(64) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The biomass gasification apparatus according to (61), wherein the inner bottom surface has a structure protruding upward from both sides of the biomass pyrolyzer and the pyrolysis gas reformer with an inclination from both sides. ,
(65) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (61), wherein the inner bottom surface has a structure projecting upward with an inclination of 5 to 45 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center. Biomass gasification equipment,
(66) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (61), wherein the inner bottom surface has a structure projecting upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. Biomass gasification equipment,
(67) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (61), wherein the inner bottom surface has a structure projecting upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center. Biomass gasification equipment,
(68) Any one of the above (61) to (67), wherein an outer shape of a cross section perpendicular to the longitudinal direction of the pyrolysis gas introduction pipe (the pyrolysis gas flow direction) is a substantially circular shape or a substantially polygonal shape. A gasifier for biomass as described in
(69) The biomass according to any one of (61) to (67), wherein an outer shape of a cross section perpendicular to a longitudinal direction of the pyrolysis gas introduction pipe (flow direction of the pyrolysis gas) is a substantially square shape. Gasifier,
(70) The biomass gasification apparatus according to any one of (61) to (69), wherein one to three pyrolysis gas introduction pipes are provided,
(71) The biomass gasification apparatus according to any one of (61) to (69), wherein one or two pyrolysis gas introduction pipes are provided,
(72) The biomass gasification according to any one of (61) to (71), wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein. apparatus,
(73) The steam inlet is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (61) The biomass gasification device according to any one of (72) to (72),
(74) Any one of the above (61) to (72), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. Gasification apparatus for biomass as described in
(75) In the above (61) to (61), one to three steam inlets are respectively provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. (72) The biomass gasification apparatus according to any one of (72),
(76) The above (61) to (72), wherein one steam inlet is provided in each of the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. ) The biomass gasification device according to any one of
(77) The biomass according to any one of the above (61) to (76), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in an upper part of the biomass pyrolyzer. Gasifier,
(78) The biomass gasification apparatus according to any one of (61) to (77), wherein the plurality of granular and / or lump-like inlets are provided above the biomass pyrolyzer. ,
(79) The biomass gasification apparatus according to any one of (61) to (77), wherein the plurality of granular and / or lump-like inlets are provided at the top of the biomass pyrolyzer. ,
(80) The biomass gasification apparatus according to any one of (61) to (79), wherein the plurality of granular and / or lump discharge ports are provided below the biomass pyrolyzer. ,
(81) The biomass gasification apparatus according to any one of (61) to (79), wherein the plurality of granular and / or lump discharge ports are provided at the bottom of the biomass pyrolyzer. ,
(82) The biomass gasification apparatus according to any one of (61) to (81), wherein the granular material and / or the lump are selected from the group consisting of metal balls and ceramic balls,
(83) The biomass gasification apparatus according to (82), wherein the metal ball is made of stainless steel,
(84) The biomass gasifier according to (82), wherein the ceramic ball is made of one or more materials selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride.
(85) The biomass gasification apparatus according to any one of (61) to (84), wherein the preheated gaseous or liquid heat medium is high-temperature hot air,
(86) The biomass gasification apparatus according to any one of (61) to (85), wherein the biomass pyrolyzer has a gas phase temperature of 400 to 700 ° C.
(87) The biomass gasification apparatus according to any one of (61) to (85), wherein the biomass pyrolyzer has a gas phase temperature of 500 to 700 ° C.
(88) The biomass gasification apparatus according to any one of (61) to (85), wherein the biomass pyrolyzer has a gas phase temperature of 550 to 650 ° C.
(89) The biomass gasification apparatus according to any one of (61) to (88), wherein the pyrolysis gas reformer has a gas phase temperature of 700 to 1,000 ° C.
(90) The biomass gasification apparatus according to any one of (61) to (88), wherein the pyrolysis gas reformer has a gas phase temperature of 850 to 950 ° C.
(91) The biomass gasification apparatus according to any one of (61) to (88), wherein the pyrolysis gas reformer has a gas phase temperature of 880 to 930 ° C.
(92) The biomass as described in any one of (61) to (91), wherein the biomass is a biomass resource selected from the group consisting of plant biomass, biological biomass, daily waste, and food waste A biomass gasification apparatus can be mentioned.
また、本発明は、上記(61)記載のバイオマスのガス化装置を使用したバイオマスのガス化方法である。即ち、本発明は、
(93)バイオマスを、非酸化性ガス雰囲気下又は非酸化性ガスとスチームとの混合ガス雰囲気下において加熱するバイオマス熱分解器と、上記バイオマス熱分解器において発生したガスを、スチームの存在下に加熱する熱分解ガス改質器とを備え、かつ、予め加熱された複数の粒状物及び/又は塊状物を、上記バイオマス熱分解器に投入せしめて、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解を実行し、一方、予め加熱されたガス状又は液体状熱媒体を、上記熱分解ガス改質器の外側に備えられた熱媒体の流路に通して、該ガス状又は液体状熱媒体の持つ熱により、バイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化方法において、上記バイオマス熱分解器において発生した熱分解ガスが、上記バイオマス熱分解器内に形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器の側面に備えられた熱分解ガス導入管を通って、上記熱分解ガス改質器に導入されて改質されるバイオマスのガス化方法である。
The present invention is also a biomass gasification method using the biomass gasification apparatus described in (61) above. That is, the present invention
(93) A biomass pyrolyzer that heats biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam, and a gas generated in the biomass pyrolyzer in the presence of steam. A plurality of preheated granulates and / or lumps are charged into the biomass pyrolyzer, and the plurality of granulates and / or lumps are heated. Biomass is thermally decomposed by the heat it has, while a preheated gaseous or liquid heat medium is passed through the flow path of the heat medium provided outside the pyrolysis gas reformer, In the biomass gasification method for reforming the pyrolysis gas generated by pyrolysis of biomass by the heat of the gaseous or liquid heat medium, the heat generated in the biomass pyrolyzer Through the pyrolysis gas introduction pipe provided on the side surface of the biomass pyrolyzer below the upper surface of the plurality of granular and / or bulk layers formed in the biomass pyrolyzer This is a method for gasifying biomass introduced into the pyrolysis gas reformer and reformed.
好ましい態様として、
(94)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間の上記バイオマス熱分解器側において、重力方向に対して略水平に備えられており、次いで、上記熱分解ガス改質器側に向かって、上方に立ち上がった構造を有している、上記(93)記載のバイオマスのガス化方法、
(95)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、上方に向かって突出した構造を有している、上記(93)記載のバイオマスのガス化方法、
(96)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと傾斜を備えて上方に向かって突出した構造を有している、上記(93)記載のバイオマスのガス化方法、
(97)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、5~45度の傾斜を備えて上方に向かって突出した構造を有している、上記(93)記載のバイオマスのガス化方法、
(98)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、10~30度の傾斜を備えて上方に向かって突出した構造を有している、上記(93)記載のバイオマスのガス化方法、
(99)上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間において重力方向に対して略水平に備えられており、かつ、上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと、15~25度の傾斜を備えて上方に向かって突出した構造を有している、上記(93)記載のバイオマスのガス化方法、
(100)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が、略円形又は略多角形である、上記(93)~(99)のいずれか一つに記載のバイオマスのガス化方法、
(101)上記熱分解ガス導入管の長手方向(熱分解ガスの流れ方向)に垂直な断面の外形が略四角形である、上記(93)~(99)のいずれか一つに記載のバイオマスのガス化方法、
(102)上記熱分解ガス導入管が、1~3本備えられている、上記(93)~(101)のいずれか一つに記載のバイオマスのガス化方法、
(103)上記熱分解ガス導入管が、1又は2本備えられている、上記(93)~(101)のいずれか一つに記載のバイオマスのガス化方法、
(104)上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、上記(93)~(101)のいずれか一つに記載のバイオマスのガス化方法、
(105)スチーム吹込み口が、バイオマス熱分解器及びその近傍、熱分解ガス改質器及びその近傍、並びに、熱分解ガス導入管より成る群から選ばれる一つ以上の位置に備えられる、上記(93)~(104)のいずれか一つに記載のバイオマスのガス化方法、
(106)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に備えられる、上記(93)~(104)のいずれか一つに記載のバイオマスのガス化方法、
(107)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1~3個備えられる、上記(93)~(104)のいずれか一つに記載のバイオマスのガス化方法、
(108)スチーム吹込み口が、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、夫々、1個備えられる、上記(93)~(104)のいずれか一つに記載のバイオマスのガス化方法、
(109)複数の粒状物及び/又は塊状物を予め加熱するための予熱器が、バイオマス熱分解器の上部に更に備えられる、上記(93)~(108)のいずれか一つに記載のバイオマスのガス化方法、
(110)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器の上方に備えられる、上記(93)~(109)のいずれか一つに記載のバイオマスのガス化方法、
(111)上記の複数の粒状物及び/又は塊状物の導入口が、バイオマス熱分解器の頂部に備えられる、上記(93)~(109)のいずれか一つに記載のバイオマスのガス化方法、
(112)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器の下方に備えられる、上記(93)~(111)のいずれか一つに記載のバイオマスのガス化方法、
(113)上記の複数の粒状物及び/又は塊状物の排出口が、バイオマス熱分解器の底部に備えられる、上記(93)~(111)のいずれか一つに記載のバイオマスのガス化方法、
(114)上記の粒状物及び/又は塊状物が、金属ボール及びセラミックボールより成る群から選ばれる、上記(93)~(113)のいずれか一つに記載のバイオマスのガス化方法、
(115)金属ボールが、ステンレス鋼製である、上記(114)記載のバイオマスのガス化方法、
(116)セラミックボールが、アルミナ、シリカ、シリコンカーバイド、タングステンカーバイド、ジルコニア及び窒化ケイ素のより成る群から選ばれる一以上の材質から成る、上記(114)記載のバイオマスのガス化方法、
(117)上記の予め加熱されたガス状又は液体状熱媒体が高温熱風である、上記(93)~(116)のいずれか一つに記載のバイオマスのガス化方法、
(118)上記バイオマス熱分解器の気相温度が400~700℃である、上記(93)~(117)のいずれか一つに記載のバイオマスのガス化方法、
(119)上記バイオマス熱分解器の気相温度が500~700℃である、上記(93)~(117)のいずれか一つに記載のバイオマスのガス化方法、
(120)上記バイオマス熱分解器の気相温度が550~650℃である、上記(93)~(117)のいずれか一つに記載のバイオマスのガス化方法、
(121)上記熱分解ガス改質器の気相温度が700~1,000℃である、上記(93)~(120)のいずれか一つに記載のバイオマスのガス化方法、
(122)上記熱分解ガス改質器の気相温度が850~950℃である、上記(93)~(120)のいずれか一つに記載のバイオマスのガス化方法、
(123)上記熱分解ガス改質器の気相温度が880~930℃である、上記(93)~(120)のいずれか一つに記載のバイオマスのガス化方法、
(124)上記バイオマスが、植物系バイオマス、生物系バイオマス、生活雑排出物及び食品廃棄物より成る群から選ばれるバイオマス資源である、上記(93)~(123)のいずれか一つに記載のバイオマスのガス化方法
を挙げることができる。
As a preferred embodiment,
(94) The pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer side between the biomass pyrolyzer and the pyrolysis gas reformer, The biomass gasification method according to (93), wherein the biomass gasification method has a structure that rises upward toward the pyrolysis gas reformer,
(95) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The method for gasifying biomass according to (93) above, wherein the inner bottom surface has a structure protruding upward.
(96) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The biomass gasification method according to (93), wherein the inner bottom surface has a structure projecting upward from the both sides of the biomass pyrolyzer and the pyrolysis gas reformer with an inclination from both sides to the center. ,
(97) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (93), wherein the inner bottom surface has a structure projecting upward with an inclination of 5 to 45 degrees from both sides of the biomass pyrolyzer and pyrolysis gas reformer to the center. Gasification method of biomass,
(98) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (93), wherein the inner bottom surface has a structure projecting upward with an inclination of 10 to 30 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center. Gasification method of biomass,
(99) The pyrolysis gas introduction tube is provided substantially horizontally with respect to the direction of gravity between the biomass pyrolysis device and the pyrolysis gas reformer, and the pyrolysis gas introduction tube The above (93), wherein the inner bottom surface has a structure projecting upward with an inclination of 15 to 25 degrees from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center. Gasification method of biomass,
(100) Any one of the above (93) to (99), wherein the outer shape of the cross section perpendicular to the longitudinal direction (the direction of flow of the pyrolysis gas) of the pyrolysis gas introduction tube is substantially circular or polygonal Gasification method of biomass as described in
(101) The biomass according to any one of (93) to (99), wherein an outer shape of a cross section perpendicular to the longitudinal direction (flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe is substantially square Gasification method,
(102) The biomass gasification method according to any one of (93) to (101), wherein one to three pyrolysis gas introduction pipes are provided,
(103) The biomass gasification method according to any one of (93) to (101), wherein one or two pyrolysis gas introduction pipes are provided,
(104) The biomass gasification according to any one of (93) to (101), wherein the pyrolysis gas introduction pipe has the plurality of particulates and / or agglomerates therein. Method,
(105) The steam inlet is provided at one or more positions selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe, (93) to (104) the biomass gasification method according to any one of
(106) Any one of the above (93) to (104), wherein the steam inlet is provided in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. Gasification method of biomass as described in
(107) The above (93) to (93), wherein one to three steam inlets are provided in the biomass pyrolyzer or its vicinity, the pyrolysis gas reformer or its vicinity, and the pyrolysis gas introduction pipe, respectively. (104) The biomass gasification method according to any one of (104),
(108) The above (93) to (104), wherein one steam inlet is provided in each of the biomass pyrolyzer or its vicinity, the pyrolysis gas reformer or its vicinity, and the pyrolysis gas introduction pipe. ) Biomass gasification method according to any one of
(109) The biomass according to any one of (93) to (108), wherein a preheater for preheating a plurality of granular materials and / or agglomerates is further provided in an upper part of the biomass pyrolyzer. Gasification method,
(110) The biomass gasification method according to any one of (93) to (109), wherein the plurality of granular and / or massive inlets are provided above the biomass pyrolyzer. ,
(111) The biomass gasification method according to any one of (93) to (109), wherein the plurality of granular and / or lump introduction ports are provided at the top of the biomass pyrolyzer. ,
(112) The biomass gasification method according to any one of (93) to (111), wherein the plurality of granular and / or lump discharge ports are provided below the biomass pyrolyzer. ,
(113) The biomass gasification method according to any one of (93) to (111), wherein the plurality of granular and / or lump discharge ports are provided at the bottom of the biomass pyrolyzer. ,
(114) The biomass gasification method according to any one of (93) to (113), wherein the granular material and / or the lump are selected from the group consisting of metal balls and ceramic balls,
(115) The biomass gasification method according to (114), wherein the metal ball is made of stainless steel,
(116) The biomass gasification method according to (114), wherein the ceramic balls are made of one or more materials selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride.
(117) The biomass gasification method according to any one of (93) to (116), wherein the preheated gaseous or liquid heat medium is high-temperature hot air,
(118) The biomass gasification method according to any one of (93) to (117), wherein the biomass pyrolyzer has a gas phase temperature of 400 to 700 ° C.
(119) The biomass gasification method according to any one of (93) to (117), wherein the biomass pyrolyzer has a gas phase temperature of 500 to 700 ° C.
(120) The biomass gasification method according to any one of (93) to (117), wherein the biomass pyrolyzer has a gas phase temperature of 550 to 650 ° C.
(121) The biomass gasification method according to any one of (93) to (120), wherein the pyrolysis gas reformer has a gas phase temperature of 700 to 1,000 ° C.
(122) The biomass gasification method according to any one of (93) to (120) above, wherein the pyrolysis gas reformer has a gas phase temperature of 850 to 950 ° C.
(123) The biomass gasification method according to any one of (93) to (120), wherein the pyrolysis gas reformer has a gas phase temperature of 880 to 930 ° C,
(124) The biomass according to any one of (93) to (123), wherein the biomass is a biomass resource selected from the group consisting of plant biomass, biological biomass, daily waste, and food waste. The biomass gasification method can be mentioned.
本発明の装置においては、バイオマス熱分解器と熱分解ガス改質器とを、別個に温度コントロールすることができることから、バイオマスの熱分解温度及び発生した熱分解ガスの改質温度を、いずれも容易かつ長期間に亘って最適化することができる。それにより、熱分解ガスの発生量を増大させることができ、かつ、最終製品である水素含有ガスの生産量をも増大させることができるばかりではなく、バイオマスの熱分解により発生するタール及び煤塵の量を極力低減させることができる。加えて、バイオマス熱分解器において発生した熱分解ガスを、熱分解ガス改質器へと導入する熱分解ガス導入管のガス取り入れ口(ガス入口)が、バイオマス熱分解器のヒートキャリア層中に設けられており、かつ、熱分解ガス導入管のガス導入口(ガス出口)が、熱分解ガス改質器のヒートキャリア層中に設けられていることから、該熱分解ガス導入管中へヒートキャリアが流入して、ヒートキャリアが熱分解ガス導入管中に保有される。更に、該熱分解ガス導入管が重力方向に対して略水平に備えられていることから、該熱分解ガス導入管中のヒートキャリアと、バイオマス熱分解器及び熱分解ガス改質器中を上から下へと移動しているヒートキャリアとの入れ替わりが生ずると共に、バイオマス熱分解器から熱分解ガス導入管中に流入したヒートキャリアが、熱分解ガス改質器中に混入することを回避し得、一方、熱分解ガス改質器から熱分解ガス導入管中に流入したヒートキャリアが、バイオマス熱分解器に混入することを回避し得る。従って、バイオマス熱分解器において発生した熱分解ガスが、該熱分解ガス導入管を通って、熱分解ガス改質器へと導入されるに際して、熱分解ガス中に含まれるタール及び煤塵が該ヒートキャリアに効率的に捕捉され、タールは効果的にガス化され、また、残ったタール及び煤塵は、該ヒートキャリアに付着したまま、バイオマス熱分解器及び熱分解ガス改質器の底部から抜き出されて回収され得る。従って、タール及び煤塵による装置トラブルを著しく軽減し得ると共に、発生したタールのガス化率を最大化して、高熱効率及び低コストで、バイオマスから水素含有ガスを製造し得るのである。 In the apparatus of the present invention, since the temperature of the biomass pyrolyzer and the pyrolysis gas reformer can be controlled separately, the biomass pyrolysis temperature and the reforming temperature of the generated pyrolysis gas are both controlled. It can be optimized easily and over a long period of time. As a result, the amount of pyrolysis gas generated can be increased and the production of the hydrogen-containing gas that is the final product can be increased, as well as tar and dust generated by the pyrolysis of biomass. The amount can be reduced as much as possible. In addition, the gas inlet (gas inlet) of the pyrolysis gas introduction pipe that introduces the pyrolysis gas generated in the biomass pyrolyzer into the pyrolysis gas reformer is in the heat carrier layer of the biomass pyrolyzer. Since the gas introduction port (gas outlet) of the pyrolysis gas introduction pipe is provided in the heat carrier layer of the pyrolysis gas reformer, heat is introduced into the pyrolysis gas introduction pipe. The carrier flows in and the heat carrier is held in the pyrolysis gas introduction pipe. Further, since the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity, the heat carrier in the pyrolysis gas introduction pipe, the biomass pyrolysis device, and the pyrolysis gas reformer are disposed above. It is possible to avoid the heat carrier flowing from the biomass pyrolyzer into the pyrolysis gas introduction pipe from being mixed into the pyrolysis gas reformer as well as the heat carrier moving from the bottom to the bottom. On the other hand, it is possible to avoid the heat carrier flowing into the pyrolysis gas introduction pipe from the pyrolysis gas reformer from being mixed into the biomass pyrolysis device. Therefore, when the pyrolysis gas generated in the biomass pyrolyzer is introduced into the pyrolysis gas reformer through the pyrolysis gas introduction pipe, tar and dust contained in the pyrolysis gas are in the heat. Efficiently captured by the carrier, tar is effectively gasified, and the remaining tar and dust are withdrawn from the bottom of the biomass pyrolyzer and pyrolysis gas reformer while adhering to the heat carrier. And can be recovered. Accordingly, it is possible to remarkably reduce the trouble of the apparatus due to tar and dust, and to maximize the gasification rate of the generated tar, and to produce the hydrogen-containing gas from the biomass with high thermal efficiency and low cost.
図1は、バイオマス熱分解器と熱分解ガス改質器との両方に、予め加熱された複数の粒状物及び/又は塊状物を投入する第一の装置構成を備える、本発明のバイオマスのガス化装置の一実施態様を示した概略図である。FIG. 1 shows a biomass gas according to the present invention having a first apparatus configuration in which a plurality of pre-heated granules and / or agglomerates are introduced into both a biomass pyrolyzer and a pyrolysis gas reformer. It is the schematic which showed one embodiment of the formation apparatus. 図2は、バイオマス熱分解器と熱分解ガス改質器との両方に、予め加熱された複数の粒状物及び/又は塊状物を投入する第一の装置構成を備える、本発明のバイオマスのガス化装置の別の一実施態様を示した概略図である。FIG. 2 shows a biomass gas according to the present invention having a first apparatus configuration in which a plurality of preheated particulates and / or agglomerates are introduced into both a biomass pyrolyzer and a pyrolysis gas reformer. It is the schematic which showed another one embodiment of the formation apparatus. 図3は、バイオマス熱分解器のみに、予め加熱された複数の粒状物及び/又は塊状物を投入する第二の装置構成を備える、本発明のバイオマスのガス化装置の一実施態様を示した概略図である。FIG. 3 shows an embodiment of the biomass gasification apparatus of the present invention, which includes a second apparatus configuration in which a plurality of pre-heated granular materials and / or agglomerates are charged only into the biomass pyrolyzer. FIG. 図4は、バイオマス熱分解器と熱分解ガス改質器との間に備えられる熱分解ガス導入管のいくつかの異なる実施態様を示した概略図である。FIG. 4 is a schematic view showing several different embodiments of the pyrolysis gas introduction pipe provided between the biomass pyrolyzer and the pyrolysis gas reformer. 図5は比較例において使用した従来のバイオマスのガス化装置の概略図である。FIG. 5 is a schematic view of a conventional biomass gasification apparatus used in a comparative example.
本発明のガス化装置(第一の装置構成)は、バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を備えるバイオマス熱分解器と、スチーム吹込み口及び改質ガス排出口を備える熱分解ガス改質器と、上記バイオマス熱分解器において発生した熱分解ガスを上記熱分解ガス改質器へと導入する、上記バイオマス熱分解器と上記熱分解ガス改質器との間に備えられた熱分解ガス導入管とを備え、かつ、上記バイオマス熱分解器及び上記熱分解ガス改質器が、夫々更に、予め加熱された複数の粒状物及び/又は塊状物、即ち、熱担持媒体(ヒートキャリア)の導入口及び排出口を備える。そして、予め加熱された複数の粒状物及び/又は塊状物が、バイオマス熱分解器及び熱分解ガス改質器に導入されて、該複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解及びバイオマスの熱分解により発生した熱分解ガスの改質が実行される。ここで、本発明のガス化装置においては、バイオマス熱分解器と熱分解ガス改質器とが、複数の粒状物及び/又は塊状物の流れに対して並列に備えられている。このように、従来のバイオマスのガス化装置のように、バイオマス熱分解器と熱分解ガス改質器とが、複数の粒状物及び/又は塊状物の流れに対して、上下直列に備えられているのではなく、並列に備えられていることから、複数の粒状物及び/又は塊状物を、バイオマス熱分解器と熱分解ガス改質器とに夫々別個に導入することができて、夫々の温度を別個にコントロールすることができるのである。 The gasifier of the present invention (first apparatus configuration) includes a biomass supply port, a biomass pyrolyzer having a non-oxidizing gas supply port and / or a steam injection port, a steam injection port, and a reformed gas. A pyrolysis gas reformer having an outlet; and the biomass pyrolysis device and the pyrolysis gas reformer for introducing pyrolysis gas generated in the biomass pyrolysis device into the pyrolysis gas reformer; And the biomass pyrolyzer and the pyrolytic gas reformer are each further provided with a plurality of preheated granules and / or agglomerates, that is, And a heat carrier medium (heat carrier) inlet and outlet. Then, a plurality of pre-heated granules and / or lump is introduced into the biomass pyrolyzer and pyrolysis gas reformer, and the heat of the plurality of granules and / or lump is used to generate biomass. Reforming of pyrolysis gas generated by pyrolysis and pyrolysis of biomass is performed. Here, in the gasification apparatus of the present invention, the biomass pyrolyzer and the pyrolysis gas reformer are provided in parallel to the flow of the plurality of granular materials and / or bulk materials. Thus, like a conventional biomass gasification apparatus, a biomass pyrolyzer and a pyrolysis gas reformer are provided in series in the vertical direction with respect to a plurality of granular and / or lump flows. Rather than being provided in parallel, a plurality of particulates and / or agglomerates can be separately introduced into the biomass pyrolyzer and pyrolysis gas reformer, The temperature can be controlled separately.
本発明のガス化装置においては、熱分解ガス導入管は、バイオマス熱分解器及び熱分解ガス改質器の両側において、バイオマス熱分解器及び熱分解ガス改質器内に夫々形成される、複数の粒状物及び/又は塊状物層、即ち、ヒートキャリア層の上面より下方のバイオマス熱分解器及び熱分解ガス改質器の側面に備えられている。即ち、バイオマス熱分解器側において、バイオマス熱分解器中に形成される、複数の粒状物及び/又は塊状物から成る層中に熱分解ガス導入管のガス取り入れ口(ガス入口)が備えられ、かつ、熱分解ガス改質器側において、熱分解ガス改質器中に形成される、複数の粒状物及び/又は塊状物から成る層中に、熱分解ガス導入管のガス導入口(ガス出口)が備えられる。そして、該熱分解ガス導入管を通過して、バイオマス熱分解器において発生した熱分解ガスが、熱分解ガス改質器へと導入されるのである。このように、熱分解ガス導入管の熱分解ガスの取り入れ口が、複数の粒状物及び/又は塊状物から成る層中に設けられていることから、バイオマス熱分解器中に存在する複数の粒状物及び/又は塊状物の一部が、該熱分解ガス導入管の内部へと侵入することができ、かつ、熱分解ガス導入管の熱分解ガス改質器へのガス導入口が、複数の粒状物及び/又は塊状物から成る層中に設けられていることから、熱分解ガス改質器中に存在する複数の粒状物及び/又は塊状物の一部が、該熱分解ガス導入管の内部へと侵入することができて、該熱分解ガス導入管が、その内部に複数の粒状物及び/又は塊状物を保有し得るのである。加えて、熱分解ガス導入管は、重力方向に対して略水平に備えられていることから、複数の粒状物及び/又は塊状物が、熱分解ガス導入管内部に侵入し易くなり、かつ、熱分解ガス導入管内部に保有された複数の粒状物及び/又は塊状物は、バイオマス熱分解器及び熱分解ガス改質器中を、上から下へと重力により移動する複数の粒状物及び/又は塊状物の流れに伴って、上から下へと移動している複数の粒状物及び/又は塊状物と、連続的に徐々に入れ替わることができる。そして、それにより、熱分解ガス導入管内部に保有された複数の粒状物及び/又は塊状物は、新しい状態を保ち得るのである。更には、バイオマス熱分解器から熱分解ガス導入管中に流入した複数の粒状物及び/又は塊状物が、熱分解ガス改質器中に混入し、一方、熱分解ガス改質器から熱分解ガス導入管中に流入した複数の粒状物及び/又は塊状物が、バイオマス熱分解器中に混入することを回避し得る。このように、熱分解ガス導入管内部に複数の粒状物及び/又は塊状物が保有されていることから、そこを通過して熱分解ガス改質器へと導入される熱分解ガス中に含まれるタール及び煤塵等は、該複数の粒状物及び/又は塊状物と接触されて捕捉されるのである。そして、捕捉されたタールの一部分又は大部分は、ここで、複数の粒状物及び/又は塊状物の持つ熱により熱分解されてガス化され、好ましくは、更に改質される。また、ガス化されずに残存したタール及び煤塵等は、複数の粒状物及び/又は塊状物に付着したまま、バイオマス熱分解器底部及び熱分解ガス改質器底部から排出される。これにより、効果的にタール及び煤塵等を熱分解ガスから除去することが可能となるのである。 In the gasification apparatus of the present invention, the pyrolysis gas introduction pipe is formed in the biomass pyrolysis device and the pyrolysis gas reformer on both sides of the biomass pyrolysis device and the pyrolysis gas reformer, respectively. The particulate and / or bulk layer, that is, the side surface of the biomass pyrolyzer and pyrolyzed gas reformer below the upper surface of the heat carrier layer. That is, on the biomass pyrolyzer side, a gas inlet (gas inlet) of the pyrolysis gas introduction pipe is provided in a layer formed of a plurality of granular materials and / or lumps formed in the biomass pyrolyzer, In addition, on the pyrolysis gas reformer side, a gas inlet (gas outlet) of the pyrolysis gas introduction pipe is formed in a layer composed of a plurality of granular materials and / or agglomerates formed in the pyrolysis gas reformer. ) Is provided. Then, the pyrolysis gas generated in the biomass pyrolyzer through the pyrolysis gas introduction pipe is introduced into the pyrolysis gas reformer. As described above, since the pyrolysis gas intake port of the pyrolysis gas introduction pipe is provided in the layer composed of a plurality of particles and / or a lump, a plurality of particles present in the biomass pyrolyzer. A part of the product and / or the lump can enter the inside of the pyrolysis gas introduction pipe, and a plurality of gas introduction ports to the pyrolysis gas reformer of the pyrolysis gas introduction pipe are provided. Since it is provided in the layer composed of the granular material and / or the lump, a part of the plurality of the granular material and / or lump existing in the pyrolysis gas reformer is provided in the pyrolysis gas introduction pipe. It can penetrate into the interior, and the pyrolysis gas introduction tube can hold a plurality of particulates and / or agglomerates therein. In addition, since the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity, a plurality of particulates and / or lumps can easily enter the pyrolysis gas introduction pipe, and The plurality of granular materials and / or bulks held in the pyrolysis gas introduction pipe are moved through the biomass pyrolysis device and the pyrolysis gas reformer by gravity from the top to the bottom, and / or Or with the flow of a lump, it can be gradually and gradually replaced with a plurality of particles and / or lump that are moving from top to bottom. And thereby, the some granular material and / or lump which were hold | maintained inside the pyrolysis gas introduction pipe | tube can keep a new state. Furthermore, a plurality of particulates and / or lumps that have flowed into the pyrolysis gas inlet pipe from the biomass pyrolyzer are mixed into the pyrolysis gas reformer, while thermal decomposition from the pyrolysis gas reformer. It can be avoided that a plurality of particulates and / or lumps flowing into the gas introduction pipe are mixed into the biomass pyrolyzer. As described above, since a plurality of granular materials and / or lumps are held inside the pyrolysis gas introduction pipe, they are included in the pyrolysis gas that passes through them and is introduced into the pyrolysis gas reformer. The tar, dust, and the like that are collected are brought into contact with the plurality of granular materials and / or lumps. Then, a part or most of the trapped tar is pyrolyzed and gasified by the heat of the plurality of particulates and / or lumps, and is preferably further modified. Further, tar and dust remaining without being gasified are discharged from the bottom portion of the biomass pyrolyzer and the bottom portion of the pyrolysis gas reformer while adhering to a plurality of granular materials and / or bulk materials. Thereby, tar and dust can be effectively removed from the pyrolysis gas.
本発明のガス化装置においては、熱分解ガス導入管の内部底面は、上方に向かって突出した構造を有していることが好ましい。このように、熱分解ガス導入管の内部底面が上方に向かって突出した構造を有していることにより、バイオマス熱分解器から熱分解ガス導入管へと侵入した複数の粒状物及び/又は塊状物と、熱分解ガス改質器から熱分解ガス導入管へと侵入した複数の粒状物及び/又は塊状物との混ざり合い、即ち、バイオマス熱分解器から熱分解ガス導入管中に流入した複数の粒状物及び/又は塊状物が、熱分解ガス改質器中に混入し、一方、熱分解ガス改質器から熱分解ガス導入管中に流入した複数の粒状物及び/又は塊状物が、バイオマス熱分解器に混入することをより効果的に防止することができる。より好ましくは、熱分解ガス導入管の内部底面は、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部に向かって傾斜を備えて上方に向かって突出した構造を有している。上記傾斜の角度(θ)は、好ましくは5~45度、より好ましくは10~30度、更に好ましくは15~25度である。該傾斜の角度(θ)は、バイオマス熱分解器及び熱分解ガス改質器の両側において同一であっても、また、夫々異なっていてもよい。このような傾斜を備えることにより、バイオマス熱分解器及び熱分解ガス改質器の両方から熱分解ガス導入管へと侵入した複数の粒状物及び/又は塊状物が、両者が合流する箇所において停滞することを防止して、複数の粒状物及び/又は塊状物の熱分解ガス導入管内での入れ替わりを促進するのである。上記熱分解ガス導入管において、その長手方向に垂直な断面、即ち、熱分解ガスの流れ方向に対して垂直な断面の外形は、好ましくは略円形又は略多角形であり、より好ましくは略四角形である。該熱分解ガス導入管の内径は、複数の粒状物及び/又は塊状物が熱分解ガス導入管内に容易に流入しかつ流出し得るものであれば特に制限はない。また、該熱分解ガス導入管は、バイオマス熱分解器と熱分解ガス改質器との間に、好ましくは1~3本、より好ましくは1又は2本備えられている。 In the gasifier of the present invention, it is preferable that the inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward. As described above, since the inner bottom surface of the pyrolysis gas introduction pipe protrudes upward, a plurality of granular materials and / or lumps that have entered the pyrolysis gas introduction pipe from the biomass pyrolyzer. Mixed with a plurality of particulates and / or lumps that have entered the pyrolysis gas inlet pipe from the pyrolysis gas reformer, that is, a plurality of particles that have flowed into the pyrolysis gas inlet pipe from the biomass pyrolyzer The particulates and / or lumps are mixed into the pyrolysis gas reformer, while the plurality of granules and / or lumps that have flowed into the pyrolysis gas introduction pipe from the pyrolysis gas reformer, It can prevent more effectively mixing into a biomass pyrolyzer. More preferably, the inner bottom surface of the pyrolysis gas introduction pipe has a structure projecting upward with an inclination from both sides of the biomass pyrolyzer and pyrolysis gas reformer toward the center. The inclination angle (θ) is preferably 5 to 45 degrees, more preferably 10 to 30 degrees, and still more preferably 15 to 25 degrees. The inclination angle (θ) may be the same on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, or may be different from each other. By providing such an inclination, a plurality of particulates and / or lumps that have entered the pyrolysis gas introduction pipe from both the biomass pyrolyzer and pyrolysis gas reformer are stagnant at the point where they merge. In this case, the replacement of a plurality of granular materials and / or lumps in the pyrolysis gas introduction pipe is promoted. In the pyrolysis gas introduction pipe, the outer shape of the cross section perpendicular to the longitudinal direction thereof, that is, the cross section perpendicular to the flow direction of the pyrolysis gas is preferably substantially circular or substantially polygonal, and more preferably substantially square. It is. The inner diameter of the pyrolysis gas introduction pipe is not particularly limited as long as a plurality of granular materials and / or lumps can easily flow into and out of the pyrolysis gas introduction pipe. The pyrolysis gas introduction pipe is preferably provided between 1 and 3 and more preferably 1 or 2 between the biomass pyrolyzer and the pyrolysis gas reformer.
本発明のガス化装置において、スチーム吹込み口は、好ましくは、バイオマス熱分解器及びその近傍、熱分解ガス改質器及びその近傍、並びに、熱分解ガス導入管より成る群から選ばれる一つ以上の位置に備えられる。より好ましくは、スチーム吹込み口は、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管の全てに備えられる。これにより、バイオマスの熱分解及び熱分解ガスの改質をより良好に達成することができる。スチーム吹込み口の個数に特に制限はないが、バイオマス熱分解器又はその近傍、熱分解ガス改質器又はその近傍、並びに、熱分解ガス導入管に、好ましくは、夫々、1~3個、より好ましくは、夫々、1個備えられる。 In the gasifier of the present invention, the steam inlet is preferably one selected from the group consisting of a biomass pyrolyzer and its vicinity, a pyrolysis gas reformer and its vicinity, and a pyrolysis gas introduction pipe. It is provided in the above position. More preferably, the steam inlet is provided in all of the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. Thereby, pyrolysis of biomass and reforming of pyrolysis gas can be achieved more satisfactorily. The number of steam inlets is not particularly limited, but preferably 1 to 3, respectively, in the biomass pyrolyzer or the vicinity thereof, the pyrolysis gas reformer or the vicinity thereof, and the pyrolysis gas introduction pipe. More preferably, one is provided for each.
本発明のガス化装置においては、バイオマス熱分解器及び熱分解ガス改質器の上部に、複数の粒状物及び/又は塊状物を予め加熱するための予熱器が備えられる。これにより、該複数の粒状物及び/又は塊状物が所定の温度に加熱される。該予熱器は、バイオマス熱分解器及び熱分解ガス改質器の上部に1器設けて、そこで全ての粒状物及び/又は塊状物を所定の温度に加熱して、該同一の温度に加熱された粒状物及び/又は塊状物を、バイオマス熱分解器と熱分解ガス改質器とに別個に導入することができる。また、予熱器を、バイオマス熱分解器及び熱分解ガス改質器の夫々の上部に1器ずつ、即ち、合計2器設けて、夫々の予熱器で、バイオマス熱分解器及び熱分解ガス改質器の夫々の温度に適合するように別々の温度に加熱して、バイオマス熱分解器と熱分解ガス改質器とに別個に導入することもできる。上記いずれの構成においても、十分に効果を達成することができる。前者の構成を採れば、装置コストを削減することができ、また、バイオマス熱分解器へのスチーム導入量によりバイオマス熱分解温度をコントロールする際には、導入したスチームにより、より効果的に熱分解及び改質を実行することが可能となる。一方、後者の形態を採れば、温度コントロールを容易に実施することができると共に、粒状物及び/又は塊状物の加熱に必要なエネルギーの削減が可能となる。 In the gasification apparatus of the present invention, a preheater for preheating a plurality of granular materials and / or agglomerates is provided above the biomass pyrolyzer and the pyrolytic gas reformer. Thereby, this some granular material and / or lump are heated to predetermined temperature. The preheater is provided at the upper part of the biomass pyrolyzer and pyrolysis gas reformer, where all the granular materials and / or lumps are heated to a predetermined temperature and heated to the same temperature. The granular and / or lump can be separately introduced into the biomass pyrolyzer and the pyrolysis gas reformer. Also, one preheater is provided above each of the biomass pyrolyzer and pyrolytic gas reformer, that is, a total of two preheaters are provided, and the biomass pyrolyzer and pyrolytic gas reformer are provided in each preheater. It can also be introduced separately into the biomass pyrolyzer and pyrolysis gas reformer, heated to separate temperatures to match the respective temperatures of the reactor. In any of the above configurations, the effect can be sufficiently achieved. If the former configuration is adopted, the apparatus cost can be reduced, and when the biomass pyrolysis temperature is controlled by the amount of steam introduced into the biomass pyrolyzer, the steam introduced more effectively with the introduced steam. And reforming can be performed. On the other hand, if the latter form is adopted, temperature control can be easily performed and energy required for heating the granular material and / or the massive material can be reduced.
また、バイオマス熱分解器及び熱分解ガス改質器の上方(上部)、好ましくは頂部に、複数の粒状物及び/又は塊状物の導入口が備えられ、一方、バイオマス熱分解器及び熱分解ガス改質器の下方(下部)、好ましくは底部に、複数の粒状物及び/又は塊状物の排出口が備えられる。複数の粒状物及び/又は塊状物の導入口及び排出口は、例えば、配管の上下に1個ずつ合計2個のバルブを備えた、いわゆる2段式バルブ方式が使用される。但し、該導入及び抜出し方式は、一例であり、この方式に限定されるものではない。 Also, a plurality of granular and / or lump inlets are provided above (upper), preferably at the top of the biomass pyrolyzer and pyrolytic gas reformer, while the biomass pyrolyzer and pyrolytic gas. Below the reformer (lower part), preferably at the bottom, a plurality of particulate and / or lump outlets are provided. For example, a so-called two-stage valve system in which a plurality of granular materials and / or massive inlets and outlets are provided with a total of two valves, one above and one below the pipe, is used. However, the introduction and extraction method is an example, and the present invention is not limited to this method.
複数の粒状物及び/又は塊状物、即ち、熱担持媒体(ヒートキャリア)は、好ましくは、金属及びセラミックより成る群から選ばれる一以上の材質から成る。金属としては、好ましくは、鉄、ステンレス鋼、ニッケル合金鋼、及び、チタン合金鋼より成る群から選ばれ、より好ましくは、ステンレス鋼が選ばれる。また、セラミックとしては、アルミナ、シリカ、シリコンカーバイド、タングステンカーバイド、ジルコニア及び窒化ケイ素のより成る群から選ばれ、より好ましくは、アルミナが選ばれる。複数の粒状物及び/又は塊状物の形状は、好ましくは球状(ボール)であるが、必ずしも真球である必要はなく、断面形状が楕円形又は長円形である球状物であってもよい。球状物の直径(最大径)は、好ましくは3~25mm、より好ましくは8~15mmである。上記上限を超えては、バイオマス熱分解器及び熱分解ガス改質器内部での流動性、即ち、自由落下性を損なうことがあり、これにより、球状物がバイオマス熱分解器及び熱分解ガス改質器内部で静止して閉塞の原因となることがある。一方、上記下限未満では、とりわけ、バイオマス熱分解器においては、球状物に付着したタール及び煤塵等により球状物自体が固着することがあり、閉塞の原因となることがある。例えば、球状物の直径が3mm未満では、球状物に付着したタール及び煤塵等の影響により、球状物が、とりわけ、バイオマス熱分解器の内壁に付着して成長し、最悪の場合には、バイオマス熱分解器を閉塞させてしまうことが懸念される。また、タールが付着した球状物が、バイオマス熱分解器及び熱分解ガス改質器の底部のバルブから抜き出される際、3mm未満の球状物は軽く、そのうえタールが付着しているために自然落下せずにバルブ内部に固着して閉塞を助長することがある。 The plurality of granular materials and / or agglomerates, that is, the heat carrier medium (heat carrier) is preferably made of one or more materials selected from the group consisting of metals and ceramics. The metal is preferably selected from the group consisting of iron, stainless steel, nickel alloy steel, and titanium alloy steel, and more preferably stainless steel. The ceramic is selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia, and silicon nitride, and more preferably alumina. The shape of the plurality of granular materials and / or lumps is preferably spherical (ball), but is not necessarily a true sphere, and may be a spherical material having an elliptical or oval cross-sectional shape. The diameter (maximum diameter) of the spherical object is preferably 3 to 25 mm, more preferably 8 to 15 mm. If the above upper limit is exceeded, fluidity inside the biomass pyrolyzer and pyrolysis gas reformer, i.e., free fall, may be impaired. May become stationary inside the organ and cause blockage. On the other hand, below the lower limit, in particular, in the biomass pyrolyzer, the spherical substance itself may be fixed due to tar and dust adhering to the spherical substance, which may cause clogging. For example, if the diameter of the spherical material is less than 3 mm, the spherical material grows by adhering to the inner wall of the biomass pyrolyzer due to the influence of tar and soot adhering to the spherical material. There is a concern that the pyrolyzer will be blocked. In addition, when the spherical object with tar attached is pulled out from the bottom valve of the biomass pyrolyzer and pyrolysis gas reformer, the spherical object of less than 3 mm is light, and since tar is attached, it falls naturally. Without being fixed, it may stick to the inside of the valve and promote blockage.
本発明のバイオマスとは、いわゆるバイオマス資源を言う。ここで、バイオマス資源とは、植物系バイオマス、例えば、林業から廃棄される間伐材、製材廃材、剪定枝、林地残材、未利用樹等、農業から廃棄される野菜残渣及び果樹残渣等の農作物、稲藁、麦藁及び籾殻等、その他海洋植物、建設系廃木材等;生物系バイオマス、例えば、家畜排せつ物及び下水汚泥に代表される生物系排せつ物;並びに塵芥等の生活雑排出物及び食品廃棄物等を言う。本発明の装置は、好ましくは植物系バイオマス及び生物系バイオマスのガス化に適している。 The biomass of the present invention refers to so-called biomass resources. Here, the biomass resources are plant biomass, for example, agricultural products such as thinned wood, sawn wood waste, pruned branches, forest land residue, unused trees, etc. , Rice straw, wheat straw, rice husks, etc., other marine plants, construction waste wood, etc .; biological biomass, for example, biological waste such as livestock waste and sewage sludge; and household waste such as dust and food waste Say etc. The apparatus of the present invention is preferably suitable for gasification of plant biomass and biological biomass.
以下、本発明のバイオマスのガス化装置を添付図面に基づいて説明する。図1は、バイオマス熱分解器(3)と熱分解ガス改質器(2)との両方に、予め加熱された複数の粒状物及び/又は塊状物(7)、即ち、熱担持媒体(ヒートキャリア)を投入する第一の装置構成を備える、本発明のバイオマスのガス化装置の一実施態様を示した概略図である。該バイオマスのガス化装置においては、バイオマス熱分解器(3)と熱分解ガス改質器(2)とが、複数の粒状物及び/又は塊状物(7)、即ち、ヒートキャリアの流れに対して並列に備えられている。そして、複数の粒状物及び/又は塊状物(7)を予め加熱するための予熱器(1)が1器、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の上部に備えられている。また、熱分解ガス導入管(9)が、バイオマス熱分解器(3)と熱分解ガス改質器(2)との間1本に備えられており、これにより、バイオマス熱分解器(3)において発生した熱分解ガスが、熱分解ガス改質器(2)へと導入される。ここで、熱分解ガス導入管(9)は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の両側において、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内に夫々形成される、複数の粒状物及び/又は塊状物(7)層の上面(13)より下方のバイオマス熱分解器(3)及び熱分解ガス改質器(2)の側面に備えられている。即ち、熱分解ガス導入管(9)のバイオマス熱分解器(3)側ガス取り入れ口(ガス入口)(9-3)及び熱分解ガス改質器(2)側ガス導入口(ガス出口)(9-2)のいずれもが、複数の粒状物及び/又は塊状物(7)層中に設けられている。また、熱分解ガス導入管(9)が、重力方向に対して略水平に備えられている。また、熱分解ガス導入管(9)の内部底面は、上方に向かって突出した構造を有していることが好ましい。但し、該内部底面は平らな構造であってもよい。 Hereinafter, the biomass gasification apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows that both the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) have a plurality of pre-heated granules and / or agglomerates (7), ie a heat carrier medium (heat It is the schematic which showed one embodiment of the gasification apparatus of the biomass of this invention provided with the 1st apparatus structure which throws in (carrier). In the biomass gasification apparatus, the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) are provided with a plurality of granular and / or lump (7), that is, with respect to the flow of the heat carrier. Are provided in parallel. And the preheater (1) for heating a some granular material and / or a lump (7) previously is equipped with 1 unit | set, the biomass pyrolyzer (3), and the pyrolysis gas reformer (2) upper part. It has been. Moreover, the pyrolysis gas introduction pipe (9) is provided in one between the biomass pyrolysis device (3) and the pyrolysis gas reformer (2), and thereby the biomass pyrolysis device (3). The pyrolysis gas generated in is introduced into the pyrolysis gas reformer (2). Here, the pyrolysis gas introduction pipe (9) is connected to the biomass pyrolysis device (3) and the pyrolysis gas reformer (2) on both sides of the biomass pyrolysis device (3) and the pyrolysis gas reformer (2). ) Are formed on the side surfaces of the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) below the upper surface (13) of the plurality of granular and / or lump (7) layers, respectively. It has been. Specifically, the biomass pyrolyzer (3) side gas inlet (gas inlet) (9-3) and the pyrolyzed gas reformer (2) side gas inlet (gas outlet) of the pyrolysis gas inlet pipe (9) ( All of 9-2) are provided in a plurality of granular and / or massive (7) layers. Further, the pyrolysis gas introduction pipe (9) is provided substantially horizontally with respect to the direction of gravity. Moreover, it is preferable that the internal bottom face of the pyrolysis gas introduction pipe (9) has a structure protruding upward. However, the inner bottom surface may be a flat structure.
複数の粒状物及び/又は塊状物(7)、即ち、ヒートキャリアは、バイオマス熱分解器(3)及び熱分解ガス改質器(2)に導入される前に、予熱器(1)において予め加熱される。ヒートキャリア(7)は、好ましくは1,000~1,100℃、より好ましくは1,050~1,100℃に加熱される。上記下限未満では、バイオマスの熱分解により発生したガスを、熱分解ガス改質器(2)において十分に改質することができないことがある。一方、上記上限を超えては、余分な熱を与えるばかりで著しい効果の増大は期待できず、却ってコスト高を招くばかりである。また、設備の熱効率低下の原因にもなる。 Prior to being introduced into the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), a plurality of granulates and / or agglomerates (7), i.e. the heat carrier, are pre-heated in the preheater (1). Heated. The heat carrier (7) is preferably heated to 1,000 to 1,100 ° C., more preferably 1,050 to 1,100 ° C. If it is less than the said lower limit, the gas generated by the pyrolysis of biomass may not be fully reformed in the pyrolysis gas reformer (2). On the other hand, if the above upper limit is exceeded, it is not possible to expect a significant increase in the effect just by applying extra heat. Moreover, it becomes a cause of the thermal efficiency fall of an installation.
予熱器(1)において上記所定温度に加熱されたヒートキャリア(7)は、次いで、ヒートキャリア(7)の流れに対して並列に配置されたバイオマス熱分解器(3)及び熱分解ガス改質器(2)に夫々別個に導入される。バイオマス熱分解器(3)においては、ヒートキャリア(7)は、別途、バイオマス供給口(4)からバイオマス熱分解器(3)に供給されたバイオマスと接触される。ここで、バイオマス供給口(4)は、バイオマス熱分解器(3)自体に設けられていても良いが、図1に示すように、バイオマス熱分解器(3)近傍、例えば、ヒートキャリア(7)のバイオマス熱分解器(3)への給配配管に設けることもできる。また、バイオマス熱分解器(3)には、非酸化性ガス、例えば、窒素、及び、任意的にスチームが、夫々、非酸化性ガス供給口(12)及びスチーム吹込み口(11)から供給されて、非酸化性ガス雰囲気又は非酸化性ガスとスチームとの混合ガス雰囲気に保たれている。そして、ヒートキャリア(7)とバイオマスとの接触により、バイオマスが加熱されて熱分解し、熱分解ガスが生成する。バイオマス熱分解器(3)を非酸化性ガス雰囲気にすることにより、バイオマスの燃焼を阻止して、バイオマスを効率よく熱分解させることができる。生成した熱分解ガスは、熱分解ガス導入管(9)を通過して、熱分解ガス改質器(2)に導入される。この際、生成した熱分解ガスに含まれるタール及び煤塵等は、熱分解ガス導入管(9)内に保有されるヒートキャリア(7)により捕捉され、タールの一部又は大部分はヒートキャリア(7)により加熱されてガス化され、残存したタール及び煤塵等は、ヒートキャリア(7)に付着したまま、バイオマス熱分解器(3)又は熱分解ガス改質器(2)底部から排出される。バイオマス熱分解器(3)の気相温度は、上限が、好ましくは700℃、より好ましくは650℃あり、下限が、好ましくは400℃、より好ましくは500℃、更に好ましくは550℃である。上記下限未満では、バイオマスの熱分解が進まないことがある。上記上限を超えては、重質なタールを発生させる。このような重質タールは、スチームにより十分に改質することができないことから、タールによる装置トラブルの原因となることがある。ここで、バイオマス熱分解器(3)の気相温度とは、バイオマス熱分解器(3)内に投入される、予め加熱されたヒートキャリア(7)、原料であるバイオマス及び非酸化性ガスと、任意的に吹き込まれるスチームとが混合されて生ずる温度、並びに、ヒートキャリア(7)層の輻射熱等から総合的に生ずるバイオマス熱分解器(3)内部の気相温度を言う。該バイオマス熱分解器(3)の気相温度は、ヒートキャリア(7)の供給速度及び抜出し速度、バイオマス熱分解器(3)内におけるヒートキャリア層の体積及びその占有率、バイオマスの供給量、非酸化性ガス及び/又はスチームの供給量等により適宜コントロールすることができる。通常、バイオマスの供給量からヒートキャリア(7)の供給速度及び抜出し速度を決定し、次いで、バイオマス熱分解器(3)内におけるヒートキャリア層の体積及びその占有率を徐々に変更しながら、非酸化性ガス及び/又はスチームの供給量を適宜変更することにより、バイオマス熱分解器(3)の気相温度を所定温度にコントロールすることができる。 The heat carrier (7) heated to the predetermined temperature in the preheater (1) is then subjected to a biomass pyrolyzer (3) and a pyrolysis gas reformer arranged in parallel with the flow of the heat carrier (7). Each is introduced separately into the vessel (2). In the biomass pyrolyzer (3), the heat carrier (7) is brought into contact with the biomass separately supplied from the biomass supply port (4) to the biomass pyrolyzer (3). Here, although the biomass supply port (4) may be provided in the biomass pyrolyzer (3) itself, as shown in FIG. 1, the biomass pyrolyzer (3) vicinity, for example, a heat carrier (7 ) Can also be provided in the distribution piping to the biomass pyrolyzer (3). In addition, the biomass pyrolyzer (3) contains non-oxidizing gas, for example, nitrogen, and optionally steam, from the non-oxidizing gas supply port (12) and the steam blow-in port (11 1 ), respectively. Supplied and kept in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam. And by contact with a heat carrier (7) and biomass, biomass is heated and thermally decomposed and pyrolysis gas produces | generates. By setting the biomass pyrolyzer (3) to a non-oxidizing gas atmosphere, it is possible to prevent the combustion of the biomass and efficiently thermally decompose the biomass. The generated pyrolysis gas passes through the pyrolysis gas introduction pipe (9) and is introduced into the pyrolysis gas reformer (2). At this time, tar, dust and the like contained in the generated pyrolysis gas are captured by the heat carrier (7) held in the pyrolysis gas introduction pipe (9), and a part or most of the tar is heat carrier ( 7) Heated and gasified by 7), remaining tar, dust, etc. are discharged from the bottom of the biomass pyrolyzer (3) or pyrolytic gas reformer (2) while adhering to the heat carrier (7). . The upper limit of the gas phase temperature of the biomass pyrolyzer (3) is preferably 700 ° C, more preferably 650 ° C, and the lower limit is preferably 400 ° C, more preferably 500 ° C, and even more preferably 550 ° C. If it is less than the said lower limit, biomass thermal decomposition may not advance. If the above upper limit is exceeded, heavy tar is generated. Such heavy tar cannot be sufficiently reformed by steam, and may cause equipment troubles due to tar. Here, the gas phase temperature of the biomass pyrolyzer (3) refers to the preheated heat carrier (7), the raw material biomass and the non-oxidizing gas, which are put into the biomass pyrolyzer (3). The temperature generated by mixing with steam that is optionally blown, and the gas phase temperature inside the biomass pyrolyzer (3) generated comprehensively from the radiation heat of the heat carrier (7) layer and the like. The gas phase temperature of the biomass pyrolyzer (3) includes the supply rate and extraction rate of the heat carrier (7), the volume and occupation rate of the heat carrier layer in the biomass pyrolyzer (3), the supply amount of biomass, It can be appropriately controlled by the supply amount of non-oxidizing gas and / or steam. Usually, the supply rate and extraction rate of the heat carrier (7) are determined from the biomass supply amount, and then the volume of the heat carrier layer and its occupancy in the biomass pyrolyzer (3) are gradually changed, By appropriately changing the supply amount of the oxidizing gas and / or steam, the gas phase temperature of the biomass pyrolyzer (3) can be controlled to a predetermined temperature.
熱分解ガス改質器(2)には、バイオマス熱分解器(3)においてバイオマスを熱分解することにより生成した熱分解ガスが、熱分解ガス導入管(9)を通って導入される。導入された熱分解ガスは、スチームの存在下にヒートキャリア(7)と接触されて加熱される。これにより、熱分解ガスとスチームとが反応して、熱分解ガスを水素に富むガスへと改質することができる。ここで、ガス改質に使用されるスチームは、バイオマス熱分解器(3)及びその近傍、熱分解ガス改質器(2)及びその近傍、並びに、バイオマス熱分解器(3)と熱分解ガス改質器(2)との間の熱分解ガス導入管(9)より成る群から選ばれる一つ以上の位置に備えられるスチーム吹込み口(11、11、11)から導入される。好ましくは、バイオマス熱分解器(3)又はその近傍、熱分解ガス改質器(2)又はその近傍、並びに、熱分解ガス導入管(9)に備えられるスチーム吹込み口(11、11、11)の全てから導入される。熱分解ガス改質器(2)における気相温度は、上限が、好ましくは1,000℃、より好ましくは950℃、更に好ましくは930℃であり、下限が、好ましくは700℃、より好ましくは850℃、更に好ましくは880℃である。上記下限未満では、改質反応が進まないことがある。一方、上記上限を超えても、著しい効果の増大は期待できず、ヒートキャリアの加熱に要する熱量が増大して、コスト高を招く。熱分解ガス改質器(2)における気相温度が、上記のより好ましい下限値である850℃以上において、スチームによる一酸化炭素の改質が顕著となり、更に好ましい下限値である880℃以上において、スチームによるメタンの改質が顕著になる。従って、一酸化炭素及びメタンの両方を効率的に改質するためには、熱分解ガス改質器(2)における気相温度が880℃以上であることが更に好ましい。熱分解ガス改質器(2)における気相温度のより好ましい上限は950℃であり、該温度以下で十分に熱分解ガスを改質し得るが、燃料使用量の削減を図るためには930℃以下であることが更に好ましい。ここで、熱分解ガス改質器(2)の気相温度とは、熱分解ガス改質器(2)内に投入される、予め加熱されたヒートキャリア(7)、熱分解ガス及びスチームが混合されて生ずる温度、並びに、ヒートキャリア(7)層の輻射熱等から総合的に生ずる熱分解ガス改質器(2)内部の気相温度を言う。熱分解ガス改質器(2)の気相温度は、ヒートキャリア(7)の供給温度、ヒートキャリア(7)の供給速度及び抜出し速度、熱分解ガス改質器(2)内におけるヒートキャリア層の体積及びその占有率、バイオマス熱分解器(3)から供給される熱分解ガスの量、スチームの供給量等により適宜コントロールすることができる。通常、ヒートキャリア(7)の供給速度及び抜出し速度、熱分解ガス改質器(2)内におけるヒートキャリア層の体積及びその占有率を一定にしておき、ヒートキャリア(7)の供給温度を所望の気相温度より好ましくは100~400℃、より好ましくは150~200℃高くして供給し、スチームの供給量を適宜変更することにより、バイオマス熱分解器(3)の気相温度を所定温度にコントロールすることができる。 The pyrolysis gas generated by pyrolyzing the biomass in the biomass pyrolyzer (3) is introduced into the pyrolysis gas reformer (2) through the pyrolysis gas introduction pipe (9). The pyrolysis gas introduced is brought into contact with the heat carrier (7) in the presence of steam and heated. As a result, the pyrolysis gas and steam react to reform the pyrolysis gas into a gas rich in hydrogen. Here, steam used for gas reforming is biomass pyrolyzer (3) and its vicinity, pyrolysis gas reformer (2) and its vicinity, and biomass pyrolyzer (3) and pyrolysis gas. It introduce | transduces from the steam inlet (11 1 , 11 2 , 11 3 ) provided at one or more positions selected from the group consisting of the pyrolysis gas introduction pipe (9) between the reformer (2). . Preferably, the biomass pyrolyzer (3) or its vicinity, the pyrolysis gas reformer (2) or its vicinity, and the steam inlets (11 1 , 11 2 ) provided in the pyrolysis gas introduction pipe (9) 11 3 ). The upper limit of the gas phase temperature in the pyrolysis gas reformer (2) is preferably 1,000 ° C, more preferably 950 ° C, still more preferably 930 ° C, and the lower limit is preferably 700 ° C, more preferably. It is 850 degreeC, More preferably, it is 880 degreeC. If it is less than the lower limit, the reforming reaction may not proceed. On the other hand, even if the upper limit is exceeded, a significant increase in the effect cannot be expected, and the amount of heat required for heating the heat carrier increases, resulting in high costs. When the gas phase temperature in the pyrolysis gas reformer (2) is 850 ° C. or more, which is the more preferable lower limit value, the reforming of carbon monoxide by steam becomes remarkable, and further, at 880 ° C. or more, which is a more preferable lower limit value. The reforming of methane by steam becomes remarkable. Therefore, in order to efficiently reform both carbon monoxide and methane, the gas phase temperature in the pyrolysis gas reformer (2) is more preferably 880 ° C. or higher. A more preferable upper limit of the gas phase temperature in the pyrolysis gas reformer (2) is 950 ° C., and the pyrolysis gas can be sufficiently reformed below the temperature, but in order to reduce the amount of fuel used, 930 More preferably, it is not higher than ° C. Here, the gas phase temperature of the pyrolysis gas reformer (2) refers to the preheated heat carrier (7), pyrolysis gas and steam introduced into the pyrolysis gas reformer (2). The temperature generated by mixing and the gas phase temperature inside the pyrolysis gas reformer (2) generated comprehensively from the radiant heat of the heat carrier (7) layer and the like. The gas phase temperature of the pyrolysis gas reformer (2) includes the supply temperature of the heat carrier (7), the supply rate and extraction speed of the heat carrier (7), and the heat carrier layer in the pyrolysis gas reformer (2). And the occupation ratio thereof, the amount of pyrolysis gas supplied from the biomass pyrolyzer (3), the supply amount of steam, and the like can be appropriately controlled. Usually, the supply temperature and the extraction speed of the heat carrier (7), the volume of the heat carrier layer in the pyrolysis gas reformer (2) and the occupation ratio thereof are kept constant, and the supply temperature of the heat carrier (7) is desired. The gas phase temperature of the biomass pyrolyzer (3) is set to a predetermined temperature by supplying the steam at a temperature preferably 100 to 400 ° C., more preferably 150 to 200 ° C. Can be controlled.
上記のバイオマス熱分解器(3)におけるバイオマスの熱分解、及び、熱分解ガス改質器(2)における熱分解ガスの改質に必要な熱の殆どは、上記の温度に予め加熱された複数の粒状物及び/又は塊状物(7)、即ち、熱担持媒体(ヒートキャリア)の持つ熱により供給される。ヒートキャリア(7)のバイオマス熱分解器(3)及び熱分解ガス改質器(2)への導入、並びに、ヒートキャリア(7)のバイオマス熱分解器(3)及び熱分解ガス改質器(2)からの抜出しは、例えば、配管の上下に1個ずつ合計2個のバルブを備えた、いわゆる2段式バルブ方式(図示せず)を使用して行われる。該2段式バルブ方式の操作を簡単に説明すると、上下2個のバルブを閉じておき、まず、上のバルブを開いてヒートキャリア(7)を配管内部に落下させ、下のバルブと上のバルブとの間にヒートキャリア(7)を充填する。次いで、上のバルブを閉じ、下のバルブを開くことによって、2個のバルブの間に充填されたヒートキャリア(7)をバイオマス熱分解器(3)及び熱分解ガス改質器(2)へ導入し、又は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)から抜き出す。このようなバルブ操作を繰り返すことによって、ヒートキャリア(7)はバイオマス熱分解器(3)及び熱分解ガス改質器(2)にほぼ連続的に導入され、かつ、バイオマス熱分解器(3)及び熱分解ガス改質器(2)からほぼ連続的に抜出される。該導入及び抜出し方式は、一例であり、この方式に限定されるものではない。ヒートキャリア(7)のバイオマス熱分解器(3)への導入及びヒートキャリア(7)のバイオマス熱分解器(3)からの抜出し速度を制御することにより、バイオマス熱分解器(3)においてヒートキャリア層を形成せしめると共に、その層の厚さを適切な値に制御し、かつ、バイオマス熱分解器(3)の温度を上記所定温度に制御することができる。熱分解ガス改質器(2)も同様である。このように、熱分解ガス改質器(2)とバイオマス熱分解器(3)とを並列に配置することにより、熱分解ガス改質器(2)とバイオマス熱分解器(3)の内部温度を個別にコントロールすることが可能になる。これにより、熱分解ガス改質器(2)における改質反応を適正温度で進行させることが可能になると共に、バイオマス熱分解器(3)におけるバイオマスの熱分解を適正温度で実行させることが可能となるのである。更には、熱効率を改善することが可能となる。また、熱分解ガス改質器(2)とバイオマス熱分解器(3)とを、ヒートキャリアの流れに対して並列に配置し、かつ、夫々の容器(2,3)を好ましくは竪型に配置して、ヒートキャリアを重力により自然落下させることにより、ヒートキャリアを移動させるための動力を必要とせず、エネルギー節約型の効率的なガス化装置にすることができる。 Most of the heat necessary for the pyrolysis of biomass in the biomass pyrolyzer (3) and the reforming of the pyrolysis gas in the pyrolysis gas reformer (2) is preheated to the above temperature. The granular and / or lump (7), that is, supplied by the heat of the heat carrier medium (heat carrier). Introduction of heat carrier (7) into biomass pyrolyzer (3) and pyrolysis gas reformer (2), and biomass pyrolyzer (3) and pyrolysis gas reformer (7) of heat carrier (7) The extraction from 2) is performed using, for example, a so-called two-stage valve system (not shown) provided with a total of two valves, one above and one below the pipe. Briefly explaining the operation of the two-stage valve system, the upper and lower two valves are closed, first, the upper valve is opened, the heat carrier (7) is dropped into the pipe, the lower valve and the upper valve are opened. A heat carrier (7) is filled between the bulbs. Next, by closing the upper valve and opening the lower valve, the heat carrier (7) filled between the two valves is transferred to the biomass pyrolyzer (3) and pyrolytic gas reformer (2). Introduced or extracted from the biomass pyrolyzer (3) and pyrolytic gas reformer (2). By repeating such valve operation, the heat carrier (7) is introduced almost continuously into the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the biomass pyrolyzer (3). And is continuously withdrawn from the pyrolysis gas reformer (2). The introduction and extraction method is an example, and the present invention is not limited to this method. By controlling the introduction rate of the heat carrier (7) into the biomass pyrolyzer (3) and the extraction rate of the heat carrier (7) from the biomass pyrolyzer (3), the heat carrier in the biomass pyrolyzer (3) A layer can be formed, the thickness of the layer can be controlled to an appropriate value, and the temperature of the biomass pyrolyzer (3) can be controlled to the predetermined temperature. The same applies to the pyrolysis gas reformer (2). Thus, by arranging the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) in parallel, the internal temperature of the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) Can be controlled individually. As a result, the reforming reaction in the pyrolysis gas reformer (2) can be allowed to proceed at an appropriate temperature, and the pyrolysis of biomass in the biomass pyrolyzer (3) can be performed at an appropriate temperature. It becomes. Furthermore, it becomes possible to improve thermal efficiency. Further, the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) are arranged in parallel to the flow of the heat carrier, and each container (2, 3) is preferably in a bowl shape. By arranging and allowing the heat carrier to naturally drop by gravity, it is possible to provide an energy saving efficient gasifier without requiring power for moving the heat carrier.
ここで、ヒートキャリア(7)のバイオマス熱分解器(3)及び熱分解ガス改質器(2)からの抜出し速度が速過ぎると、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の温度が高くなり、一方、抜出し速度が遅過ぎると、ヒートキャリアが放熱して、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の温度が低くなる。ヒートキャリア(7)のバイオマス熱分解器(3)への供給速度及び抜出し速度は、原料であるバイオマスの供給量及びその種類、並びに、バイオマスの水分及び灰分量等に依存するが、通常、バイオマスの供給量に対して決定される。通常、乾燥原料、即ち、乾燥バイオマスのバイオマス熱分解器(3)への供給速度の5~60質量倍に設定される。好ましくは、乾燥バイオマスのバイオマス熱分解器(3)への供給速度の5~30質量倍に設定され、より好ましくは10~20質量倍に設定される。上記下限未満では、バイオマスを熱分解するために必要な熱量を供給できない。一方、上記上限を超えては、ヒートキャリア(7)の供給量が過剰になるばかりであり、そのためバイオマス熱分解器(3)を必要以上に大きくしなければならず、また、ヒートキャリア(7)の加熱に余分な熱量を必要とする。また、ヒートキャリア(7)の熱分解ガス改質器(2)への供給速度及び抜出し速度は、供給される熱分解ガスの量及びその温度、スチームの温度及びその供給量等に依存してコントロールされる。但し、予めバイオマスの供給量に対して決定しておき、操作段階において、随時、上記因子の変動等に基づいてコントロールすることが好ましい。通常、乾燥原料、即ち、乾燥バイオマスのバイオマス熱分解器(3)への供給速度の5~30質量倍に設定される。好ましくは、乾燥バイオマスのバイオマス熱分解器(3)への供給速度の5~15質量倍に設定され、より好ましくは10~15質量倍に設定される。上記下限未満では、熱分解ガスを改質するために必要な熱量を供給できない。一方、上記上限を超えては、ヒートキャリア(7)の供給量が過剰になるばかりであり、そのため熱分解ガス改質器(2)を必要以上に大きくしなければならず、また、ヒートキャリア(7)の加熱に余分な熱量を必要とする。 Here, if the extraction speed of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is too fast, the biomass pyrolyzer (3) and the pyrolysis gas reformer ( On the other hand, if the temperature of 2) becomes high and the extraction speed is too slow, the heat carrier dissipates heat, and the temperatures of the biomass pyrolyzer (3) and pyrolytic gas reformer (2) become low. The supply rate and extraction rate of the heat carrier (7) to the biomass pyrolyzer (3) depend on the supply amount and type of biomass as a raw material, and the moisture and ash content of the biomass. Determined with respect to the amount of supply. Usually, it is set to 5 to 60 mass times the feed rate of the dry raw material, that is, dry biomass to the biomass pyrolyzer (3). Preferably, it is set to 5 to 30 times by mass, more preferably 10 to 20 times by mass, the supply rate of dry biomass to the biomass pyrolyzer (3). If it is less than the said minimum, the calorie | heat amount required in order to thermally decompose biomass cannot be supplied. On the other hand, if the above upper limit is exceeded, the supply amount of the heat carrier (7) becomes excessive, and therefore the biomass pyrolyzer (3) must be made larger than necessary, and the heat carrier (7) ) Requires an extra amount of heat. Further, the supply rate and extraction rate of the heat carrier (7) to the pyrolysis gas reformer (2) depend on the amount of pyrolysis gas supplied and its temperature, the temperature of steam, its supply amount, and the like. Controlled. However, it is preferable that the biomass supply amount is determined in advance and is controlled based on fluctuations in the above factors at any time in the operation stage. Usually, it is set to 5 to 30 mass times the feed rate of the dry raw material, that is, dry biomass to the biomass pyrolyzer (3). Preferably, it is set to 5 to 15 times by mass, more preferably 10 to 15 times by mass, the supply rate of dry biomass to the biomass pyrolyzer (3). If it is less than the lower limit, the amount of heat necessary for reforming the pyrolysis gas cannot be supplied. On the other hand, if the above upper limit is exceeded, the amount of heat carrier (7) supplied becomes excessive, and therefore the pyrolysis gas reformer (2) must be made larger than necessary, and the heat carrier An extra amount of heat is required for heating in (7).
バイオマス熱分解器(3)及び熱分解ガス改質器(2)中の圧力の上限は、好ましくは104.33kPa、より好ましくは102.33kPaであり、下限は、好ましくは100.33kPa、より好ましくは101.23kPaである。上記上限を超えては、生成した熱分解ガスが、バイオマス供給口(4)から逆流してバイオマス熱分解器(3)の外部へと漏れることがある。一方、上記下限未満では、生成した熱分解ガスが、バイオマス熱分解器(3)及び熱分解ガス改質器(2)、熱分解ガス導入管(9)におけるヒートキャリア(7)の層内部に均一分散して通過せず、熱分解ガス及び同伴するタール等が十分にガス化及び改質されないことがある。 The upper limit of the pressure in the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is preferably 104.33 kPa, more preferably 102.33 kPa, and the lower limit is preferably 100.33 kPa, more preferably Is 101.23 kPa. If the above upper limit is exceeded, the generated pyrolysis gas may flow backward from the biomass supply port (4) and leak to the outside of the biomass pyrolyzer (3). On the other hand, if it is less than the above lower limit, the generated pyrolysis gas is contained in the layer of the heat carrier (7) in the biomass pyrolyzer (3), pyrolysis gas reformer (2), and pyrolysis gas introduction pipe (9). The pyrolysis gas and accompanying tar may not be sufficiently gasified and reformed without being uniformly dispersed.
上記のようにスチーム吹込み口(11、11、11)は、好ましくは、バイオマス熱分解器(3)、熱分解ガス改質器(2)底部、及び、バイオマス熱分解器(3)と熱分解ガス改質器(2)との間の熱分解ガス導入管(9)に設置される。バイオマス熱分解器(3)に設置するに際しては、とりわけ、バイオマス熱分解器(3)の上部に設置することが好ましい。これにより、バイオマス熱分解器(3)中に導入したスチームとヒートキャリア(7)との接触を、より効果的に実行することができ、かつ、該スチームと、バイオマスの熱分解により発生したガスとの接触時間をより長くとることができるばかりではなく、ヒートキャリア(7)との接触時間をも長くとることができる。そして、結果として、熱分解ガス、及びヒートキャリアに付着したタール等のガス化及び改質を効率的に実施することができる。図1においては、スチーム吹込み口は、熱分解ガス改質器(2)の下部(11)、バイオマス熱分解器(3)の上部(11)、及び、熱分解ガス導入管(9)(11)に、夫々、1個、合計3個設置されているが、これに限定されるものではない。スチーム吹込み口は、夫々の箇所に、複数個設置することもできる。供給するスチームの温度は、特に限定されないが、好ましくは130~200℃、より好ましくは約160℃である。また、好ましくは500~600℃の過熱蒸気を使用することもできる。例えば、より好ましい約160℃のスチームを供給するに際して、スチームの供給量は、原料であるバイオマスの供給量とほぼ等量が供給されることが好ましい。ただし、スチームの量は原料の水分量によって増減するので、上記に限定されるものではない。 As described above, the steam inlets (11 1 , 11 2 , 11 3 ) are preferably configured to have a biomass pyrolyzer (3), a pyrolysis gas reformer (2) bottom, and a biomass pyrolyzer (3 ) And the pyrolysis gas reformer (2). When installing in the biomass pyrolyzer (3), it is particularly preferable to install it in the upper part of the biomass pyrolyzer (3). Thereby, the contact between the steam introduced into the biomass pyrolyzer (3) and the heat carrier (7) can be carried out more effectively, and the gas generated by pyrolysis of the steam and biomass. Not only can be made longer, but also the contact time with the heat carrier (7) can be made longer. As a result, gasification and reforming of pyrolysis gas and tar attached to the heat carrier can be efficiently performed. In FIG. 1, the steam inlet includes a lower part (11 2 ) of the pyrolysis gas reformer (2), an upper part (11 1 ) of the biomass pyrolyzer (3), and a pyrolysis gas introduction pipe (9 ) (11 3 ), one each, a total of three are installed, but this is not a limitation. A plurality of steam inlets can be installed at each location. The temperature of the supplied steam is not particularly limited, but is preferably 130 to 200 ° C, more preferably about 160 ° C. In addition, superheated steam of preferably 500 to 600 ° C. can also be used. For example, when a more preferable steam at about 160 ° C. is supplied, it is preferable that the supply amount of steam is substantially equal to the supply amount of biomass as a raw material. However, the amount of steam varies depending on the moisture content of the raw material, and is not limited to the above.
バイオマス供給口(4)は、バイオマス熱分解器(3)に、効果的にバイオマスを供給し得る位置に設置されていればよい。好ましくは、バイオマス熱分解器(3)の上方、即ち、予熱器(1)からバイオマス熱分解器(3)にヒートキャリア(7)を落下させる配管に設置されることが望ましい。これにより、バイオマスとヒートキャリア(7)との混合を効率よく行うことができ、バイオマス熱分解器(3)内部での接触時間を適切に確保することができて、バイオマスを十分に熱分解することができる。図1においては、バイオマス供給口(4)は、1個記載されているが、これに限定されることはない。バイオマス供給口(4)は、好ましくは1個以上、より好ましくは1~5個、更に好ましくは1~3個、更により好ましくは1又は2個設置することができる。バイオマス供給口(4)を複数設置することにより、性状の異なるバイオマスを、夫々の供給口から、同時に供給することもできる。 The biomass supply port (4) should just be installed in the position which can supply biomass to a biomass pyrolyzer (3) effectively. Preferably, it is installed above the biomass pyrolyzer (3), that is, in a pipe for dropping the heat carrier (7) from the preheater (1) to the biomass pyrolyzer (3). Thereby, mixing with biomass and a heat carrier (7) can be performed efficiently, the contact time inside a biomass pyrolyzer (3) can be ensured appropriately, and biomass is fully pyrolyzed. be able to. In FIG. 1, although one biomass supply port (4) is described, it is not limited to this. One or more biomass supply ports (4) are preferably installed, more preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 or 2. By installing a plurality of biomass supply ports (4), biomass having different properties can be simultaneously supplied from the respective supply ports.
バイオマス熱分解器(3)におけるバイオマスの滞留時間は、好ましくは5~60分間、より好ましくは10~40分間、更に好ましくは15~35分間である。上記下限未満では、バイオマスに均一に熱が伝わらず、均一な熱分解が行なわれないことから熱分解ガスの発生量が低減する。一方、上記上限を超えても、著しい効果の増大は認められず、却って、設備コストの増加を招く。ここで、バイオマス熱分解器(3)におけるバイオマスの滞留時間は、ヒートキャリア(7)の移動速度とバイオマス供給量とから適切に調節され得る。また、熱分解ガス改質器(2)におけるガスの滞留時間は、好ましくは1~10秒、より好ましくは2~5秒である。熱分解ガス改質器(2)におけるガスの滞留時間は、ヒートキャリア(7)の移動速度及び充填量、スチーム供給量並びに予定される熱分解ガス量とから設定し得る。従来のように、熱分解ガス改質器とバイオマス熱分解器とを、上下直列に接続すると、夫々の容器における滞留時間、即ち、バイオマス熱分解器におけるバイオマス熱分解のための滞留時間及び熱分解ガス中のタールの分解のための滞留時間、並びに、熱分解ガス改質器における熱分解ガスとスチームとの改質反応に必要な滞留時間を、夫々個別にコントロールすることが不可能であった。しかし、本発明のように、熱分解ガス改質器(2)とバイオマス熱分解器(3)とを、並列に配置することにより、夫々の容器における滞留時間を夫々独立してコントロールすることができることから、新たなエネルギーを消費することなく、夫々の容器(2,3)内部の温度を夫々独立してコントロールすることが可能になった。 The residence time of the biomass in the biomass pyrolyzer (3) is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, and further preferably 15 to 35 minutes. If the amount is less than the lower limit, heat is not uniformly transmitted to the biomass, and uniform pyrolysis is not performed, so that the amount of pyrolysis gas generated is reduced. On the other hand, even if the above upper limit is exceeded, a significant increase in the effect is not recognized, and on the contrary, an increase in equipment cost is caused. Here, the residence time of the biomass in the biomass pyrolyzer (3) can be appropriately adjusted from the moving speed of the heat carrier (7) and the biomass supply amount. The residence time of the gas in the pyrolysis gas reformer (2) is preferably 1 to 10 seconds, more preferably 2 to 5 seconds. The residence time of the gas in the pyrolysis gas reformer (2) can be set from the moving speed and filling amount of the heat carrier (7), the steam supply amount, and the scheduled pyrolysis gas amount. When the pyrolysis gas reformer and the biomass pyrolyzer are connected in series, as in the past, the residence time in each vessel, that is, the residence time and pyrolysis for biomass pyrolysis in the biomass pyrolyzer It was impossible to individually control the residence time for the decomposition of tar in the gas and the residence time required for the reforming reaction between the pyrolysis gas and steam in the pyrolysis gas reformer. . However, the residence time in each container can be controlled independently by arranging the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) in parallel as in the present invention. As a result, the temperature inside each container (2, 3) can be independently controlled without consuming new energy.
上記のようにして、バイオマス熱分解器(3)を通過したヒートキャリア(7)は、バイオマスの熱分解残渣(チャー)、及び、ヒートキャリア(7)に付着した熱分解されないで残った微量のタール及び煤塵等と一緒に、バイオマス熱分解器(3)の底部から排出される。排出されたヒートキャリア(7)を含む排出物の処理は、図1に示すように排出物処理装置(5)においてチャーを分離する等の従来公知の方法によって実施される。例えば、上記の特許文献4及び5に記載されている方法及び装置を採用することができる。一方、熱分解ガス改質器(2)を通過したヒートキャリア(7)は、ヒートキャリア(7)に付着した微量のタール及び煤塵等と一緒に、熱分解ガス改質器(2)の底部から排出される。排出されたヒートキャリア(7)を含む排出物の処理は、バイオマス熱分解器(3)の底部から排出されたヒートキャリア(7)と混合され又は混合されずして、従来公知の方法によって実施される。例えば、上記と同様に特許文献4及び5に記載されている方法及び装置を採用することができる。このようにして処理されたヒートキャリア(7)は、再度、予熱器(1)に戻されてバイオマス熱分解器(3)及び熱分解ガス改質器(2)に供給される。 As described above, the heat carrier (7) that has passed through the biomass pyrolyzer (3) is composed of the pyrolysis residue (char) of biomass and the trace amount remaining without being thermally decomposed attached to the heat carrier (7). It is discharged from the bottom of the biomass pyrolyzer (3) together with tar and dust. The treatment of the discharged matter including the discharged heat carrier (7) is performed by a conventionally known method such as separation of char in the discharged matter processing apparatus (5) as shown in FIG. For example, the method and apparatus described in Patent Documents 4 and 5 above can be employed. On the other hand, the heat carrier (7) that has passed through the pyrolysis gas reformer (2), together with a small amount of tar and soot adhering to the heat carrier (7), the bottom of the pyrolysis gas reformer (2). Discharged from. The treatment of the discharged matter including the discharged heat carrier (7) is performed by a conventionally known method with or without being mixed with the heat carrier (7) discharged from the bottom of the biomass pyrolyzer (3). Is done. For example, the method and apparatus described in Patent Documents 4 and 5 can be employed in the same manner as described above. The heat carrier (7) thus treated is returned again to the preheater (1) and supplied to the biomass pyrolyzer (3) and the pyrolysis gas reformer (2).
図2は、バイオマス熱分解器(3)と熱分解ガス改質器(2)との両方に、予め加熱された複数の粒状物及び/又は塊状物(7)、即ち、熱担持媒体(ヒートキャリア)を投入する第一の装置構成を備える、本発明のバイオマスのガス化装置の別の一実施態様を示した概略図である。該バイオマスのガス化装置においては、複数の粒状物及び/又は塊状物(7)を予め加熱するための予熱器(1、1)が、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の上部に夫々1器ずつ備えられている。その他の装置構成は、図1に示したバイオマスのガス化装置と同一である。 FIG. 2 shows that both the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) have a plurality of pre-heated granules and / or agglomerates (7), ie a heat carrier medium (heat It is the schematic which showed another one embodiment of the biomass gasification apparatus of this invention provided with the 1st apparatus structure which throws in a carrier. In the biomass gasification apparatus, a preheater (1 1 , 1 2 ) for preheating a plurality of granular materials and / or agglomerates (7) is used as a biomass pyrolyzer (3) and a pyrolysis gas reformer. One device is provided on the top of each of the quality devices (2). The other apparatus configuration is the same as the biomass gasification apparatus shown in FIG.
複数の粒状物及び/又は塊状物(7)、即ち、ヒートキャリアは、バイオマス熱分解器(3)及び熱分解ガス改質器(2)に導入される前に、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の夫々の上部に備えられた予熱器(1)及び(1)において、予め別々に加熱される。バイオマス熱分解器(3)の上部に備えられた予熱器(1)において、ヒートキャリア(7)は、好ましくは700~800℃、より好ましくは750~800℃に加熱される。上記下限未満では、バイオマスを、バイオマス熱分解器(3)において十分に熱分解することができないことがある。上記上限を超えても、上記の図1の説明において既に述べたように、バイオマス熱分解器(3)に吹き込むスチーム量等を変化させて、適正温度にコントロールしてバイオマスの熱分解を効率的に実施することができる。しかし、予熱器(1)を2器にした場合には、ヒートキャリア(7)の温度を上記上限以下とすることにより、より熱効率を高めることが好ましい。一方、熱分解ガス改質器(2)の上部に備えられた予熱器(1)においては、ヒートキャリア(7)は、好ましくは1,000~1,100℃、より好ましくは1,050~1,100℃に加熱される。上記下限未満では、バイオマスの熱分解により発生したガスを、熱分解ガス改質器(2)において十分に改質することができないことがある。また、上記上限を超えては、余分な熱を与えるばかりで著しい効果の増大は期待できず、却ってコスト高を招くばかりである。また、設備の熱効率低下の原因にもなる。 A plurality of granulates and / or agglomerates (7), i.e. a heat carrier, is introduced into the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) before the biomass pyrolyzer (3). And in the preheaters (1 2 ) and (1 1 ) provided on the respective upper portions of the pyrolysis gas reformer (2), they are separately heated in advance. In the preheater (1 2 ) provided at the top of the biomass pyrolyzer (3), the heat carrier (7) is preferably heated to 700 to 800 ° C, more preferably 750 to 800 ° C. If it is less than the said minimum, biomass may not fully be thermally decomposed in a biomass pyrolyzer (3). Even if the upper limit is exceeded, as already described in the description of FIG. 1 above, the amount of steam blown into the biomass pyrolyzer (3) is changed, and the temperature is controlled to an appropriate temperature so that the thermal decomposition of the biomass is efficient. Can be implemented. However, when two preheaters (1) are used, it is preferable to further increase the thermal efficiency by setting the temperature of the heat carrier (7) to the upper limit or less. On the other hand, in the preheater (1 1 ) provided in the upper part of the pyrolysis gas reformer (2), the heat carrier (7) is preferably 1,000 to 1,100 ° C., more preferably 1,050. Heated to ˜1,100 ° C. If it is less than the said lower limit, the gas generated by the pyrolysis of biomass may not be fully reformed in the pyrolysis gas reformer (2). In addition, if the above upper limit is exceeded, it is not possible to expect a significant increase in the effect just by applying extra heat, but it only increases the cost. Moreover, it becomes a cause of the thermal efficiency fall of an installation.
図4は、バイオマス熱分解器(3)と熱分解ガス改質器(2)との間に備えられた熱分解ガス導入管(9)のいくつかの異なる実施態様(I,II,III,IV,V,VI,VII,VIII,IX,X)を示した概略図である。図4は、熱分解ガス導入管(9)の長手方向の断面(熱分解ガスの流れ方向に沿う断面)を示したものである。また、図4中、(g)は熱分解ガスの流れ方向を模式的に示したものである。図4において、向かって右側がバイオマス熱分解器(3)であり(図4中、と表示している。)、左側が熱分解ガス改質器(2)である(図4中、と表示している。)。また、熱分解ガス導入管(9)内のヒートキャリア(7)のみを着色して模式的に示しており、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内のヒートキャリア(7)は表示していない。また、図4には示していないが、熱分解ガス導入管(9)は、その内部底面が、上方に向かって突出していない、平面のものであっても構わない。図4に示された全ての熱分解ガス導入管(9)は、本発明のバイオマスの熱分解装置、例えば、図1及び図2に示したバイオマスの熱分解装置に使用し得るものである。即ち、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の両側において、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内に夫々形成される、ヒートキャリア(7)層の上面(13)より下方のバイオマス熱分解器(3)及び熱分解ガス改質器(2)の側面に備えられており、かつ、該熱分解ガス導入管(9)が、重力方向に対して略水平に備えられ、かつ、熱分解ガス導入管(9)の内部底面が、上方に向かって突出した構造を有しているものである。図4の(I)及び(VI)に示した熱分解ガス導入管(9)は、その内部底面が上方に向かって突出しているものであり、その突出部分の高さ(h)は、熱分解ガス導入管(9)のガス取り入れ口(ガス入口)及びガス導入口(ガス出口)の垂直方向の幅(高さ)(h,h)より低い。従って、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の双方から侵入したヒートキャリア(7)は、その突出部分の上方で合流することになる。しかし、ヒートキャリア(7)は、粒状物及び/又は塊状物であることから、水や油のような液体とは異なり、容易に混ざり合うものではない。従って、バイオマス熱分解器(3)から熱分解ガス導入管(9)内に侵入したヒートキャリア(7)が熱分解ガス改質器(2)内部に侵入することはない。また、その逆に、熱分解ガス改質器(2)から熱分解ガス導入管(9)内に侵入したヒートキャリア(7)がバイオマス熱分解器(3)内部に侵入することもない。但し、相当の長期間に亘って、バイオマスの熱分解装置の操業を継続すると稀には混入することが予想される。それを確実に回避するためには、熱分解ガス導入管(9)を、図4の(II)、(III)及び(IV)並びに(VII)、(VIII)及び(IX)に示した構造にすることが好ましい。即ち、熱分解ガス導入管(9)の内部底面の突出部分の高さ(h)が、熱分解ガス導入管(9)のガス取り入れ口及び導入口の垂直方向の幅(高さ)(h,h)と同一である構造(II,VII)、又はそれより高い構造(III,IV,VIII,IX)である。より好ましくは、上記の突出部分の高さ(h)が、熱分解ガス導入管(9)のガス取り入れ口及び導入口の垂直方向の幅(高さ)(h,h)より高い構造(III,IV,VIII,IX)である。このような構造を採用すれば、ヒートキャリア(7)の混合をより確実に防止することができる。また、図4の(I)及び(II)のように突出部分が、熱分解ガス導入管(9)の底面から垂直に伸びるような構造である場合には、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の双方から侵入したヒートキャリア(7)同士が合流する箇所、又は、ヒートキャリア(7)が突出部分に接触する箇所において、夫々から侵入したヒートキャリア(7)が停滞することがある。従って、この停滞を回避するために、図4の(III)、(IV)、(VI)、(VII)、(VIII)及び(IX)のように突出部分が、傾斜角度(θ)を有する構造とすることが好ましい。より好ましくは、図4の(VII)、(VIII)及び(IX)の構造である。例えば、図4の(III)のように2段階で傾斜角度(θ)を備える構造は、同一の傾斜角度(θ)を有する図4の(VIII)の構造と比較して、上記の停滞を回避する作用に劣ることがある。従って、図4の左列に示されているような段階的に突出する形状の突出部においては、その段階の数を増やすことがより好ましい。該傾斜角度(θ)は、好ましくは5~45度、より好ましくは10~30度、更に好ましくは15~25度である。また、図4の(IV)及び(IX)に示す熱分解ガス導入管(9)のように、その構造は基本的には水平配管であるが、(IV)のように配管の内部上面に凹部を設けたり、また、(IX)のように配管の内部上面に傾斜を設けた凹部を設けた構造とすることもできる。また、熱分解ガス導入管(9)のガス取り入れ口及びガス導入口の垂直方向の幅(高さ)(h,h)は、互いに同一であっても異なっていてもよい。傾斜角度(θ)も、バイオマス熱分解器及び熱分解ガス改質器の両側において、互いに同一であっても異なっていてもよい。また、図4の(V)及び(X)に示したように、熱分解ガス導入管(9)の上部に空間部(ガス溜まり)を設けない構造とすることも可能である。この場合には、バイオマス熱分解器(3)において発生したガスは、熱分解ガス導入管(9)の内部に存在するヒートキャリア(7)層の空隙を通過して、熱分解ガス改質器(2)へと導入されることになる。該構造の熱分解ガス導入管(9)においても、本発明のバイオマスのガス化装置の連続操業を十分に達成することができる。但し、相当長時間の連続操業を行うためには、安全性の観点から、上部に空間部(ガス溜まり)を設けた熱分解ガス導入管(9)、例えば、図4の(I)、(II)、(III)、(IV)、(VI)、(VII)、(VIII)及び(IX)を使用することが好ましい。図4に示された熱分解ガス導入管(9)は例示であって、これに限定されるものではない。また、熱分解ガス導入管(9)の長手方向に垂直な断面(熱分解ガスの流れ方向に対して垂直な断面)の外形は、上記の通りであり、好ましくは略円形又は略多角形であり、より好ましくは略四角形である。また、該熱分解ガス導入管の内径、即ち、ガス取り入れ口の垂直方向の幅(高さ)(h)及びガス導入口の垂直方向の幅(高さ)(h)は、ヒートキャリア(7)が熱分解ガス導入管内に容易に流入しかつ流出し得るものであれば特に制限はなく、好ましくは、ヒートキャリア(7)の寸法(最大径)の8~50倍、より好ましくは10~40倍、更に好ましくは10~30倍である。 FIG. 4 shows several different embodiments of the pyrolysis gas inlet pipe (9) provided between the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) (I, II, III, IV, V, VI, VII, VIII, IX, X). FIG. 4 shows a longitudinal section (a section along the flow direction of the pyrolysis gas) of the pyrolysis gas introduction pipe (9). In FIG. 4, (g) schematically shows the flow direction of the pyrolysis gas. 4, the right side is a biomass pyrolyzer (3) (in FIG. 4, 3 to be displayed.), The left side is an pyrolysis gas reformer (2) (in FIG. 4, 2 Is displayed.) In addition, only the heat carrier (7) in the pyrolysis gas introduction pipe (9) is colored and schematically shown, and the heat carrier in the biomass pyrolysis device (3) and the pyrolysis gas reformer (2) is shown. (7) is not displayed. Although not shown in FIG. 4, the pyrolysis gas introduction pipe (9) may have a flat surface whose inner bottom surface does not protrude upward. All the pyrolysis gas introduction pipes (9) shown in FIG. 4 can be used for the biomass pyrolysis apparatus of the present invention, for example, the biomass pyrolysis apparatus shown in FIGS. That is, on both sides of the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), heat carriers (3) formed in the biomass pyrolyzer (3) and pyrolysis gas reformer (2), respectively. 7) Provided on the side surfaces of the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) below the upper surface (13) of the layer, and the pyrolysis gas introduction pipe (9) It is provided substantially horizontally with respect to the direction and has a structure in which the inner bottom surface of the pyrolysis gas introduction pipe (9) protrudes upward. The pyrolysis gas introduction pipe (9) shown in (I) and (VI) of FIG. 4 has an inner bottom surface protruding upward, and the height (h) of the protruding portion is the heat It is lower than the vertical width (height) (h 1 , h 2 ) of the gas inlet (gas inlet) and the gas inlet (gas outlet) of the cracked gas inlet pipe (9). Therefore, the heat carrier (7) that has entered from both the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) will merge above the protruding portion. However, since the heat carrier (7) is a granular material and / or a lump, it is not easily mixed unlike liquids such as water and oil. Therefore, the heat carrier (7) that has entered the pyrolysis gas introduction pipe (9) from the biomass pyrolyzer (3) does not enter the pyrolysis gas reformer (2). Conversely, the heat carrier (7) that has entered the pyrolysis gas introduction pipe (9) from the pyrolysis gas reformer (2) does not enter the biomass pyrolysis device (3). However, if the operation of the biomass pyrolysis apparatus is continued for a considerably long period of time, it is expected to be mixed in rarely. In order to avoid this without fail, the pyrolysis gas introduction pipe (9) has a structure shown in (II), (III) and (IV) and (VII), (VIII) and (IX) of FIG. It is preferable to make it. That is, the height (h) of the protruding portion of the inner bottom surface of the pyrolysis gas introduction pipe (9) is the vertical width (height) (h) of the gas intake port and the introduction port of the pyrolysis gas introduction pipe (9). 1 , h 2 ) is the same structure (II, VII) or higher (III, IV, VIII, IX). More preferably, the height (h) of the protruding portion is higher than the vertical width (height) (h 1 , h 2 ) of the gas inlet and the inlet of the pyrolysis gas inlet pipe (9). (III, IV, VIII, IX). If such a structure is employ | adopted, mixing of a heat carrier (7) can be prevented more reliably. Moreover, when the projecting portion extends vertically from the bottom surface of the pyrolysis gas introduction pipe (9) as in (I) and (II) of FIG. 4, the biomass pyrolyzer (3) and Heat carrier (7) that invades from each of the places where the heat carriers (7) that have entered from both of the pyrolysis gas reformers (2) merge or where the heat carrier (7) contacts the protruding portion. May stagnate. Therefore, in order to avoid this stagnation, the protruding portion has an inclination angle (θ) like (III), (IV), (VI), (VII), (VIII) and (IX) in FIG. A structure is preferable. More preferred is the structure of (VII), (VIII) and (IX) in FIG. For example, a structure having an inclination angle (θ) in two stages as shown in (III) of FIG. 4 is less susceptible to the stagnation as compared with the structure of (VIII) of FIG. 4 having the same inclination angle (θ). May be less effective to avoid. Therefore, it is more preferable to increase the number of steps in the protruding portion that protrudes stepwise as shown in the left column of FIG. The inclination angle (θ) is preferably 5 to 45 degrees, more preferably 10 to 30 degrees, and still more preferably 15 to 25 degrees. Moreover, the structure of the pyrolysis gas introduction pipe (9) shown in (IV) and (IX) of FIG. 4 is basically a horizontal pipe, but on the inner upper surface of the pipe as shown in (IV). It is also possible to provide a structure in which a concave portion is provided, or a concave portion in which an inclination is provided on the inner upper surface of the pipe as in (IX). Moreover, the vertical width (height) (h 1 , h 2 ) of the gas inlet and the gas inlet of the pyrolysis gas inlet pipe (9) may be the same as or different from each other. The inclination angle (θ) may be the same as or different from each other on both sides of the biomass pyrolyzer and the pyrolysis gas reformer. Moreover, as shown to (V) and (X) of FIG. 4, it is also possible to set it as the structure which does not provide a space part (gas reservoir) in the upper part of a pyrolysis gas introduction pipe | tube (9). In this case, the gas generated in the biomass pyrolyzer (3) passes through the voids of the heat carrier (7) layer present in the pyrolyzed gas introduction pipe (9), and then the pyrolyzed gas reformer. (2) will be introduced. Also in the pyrolysis gas introduction pipe (9) having this structure, the continuous operation of the biomass gasification apparatus of the present invention can be sufficiently achieved. However, in order to perform continuous operation for a considerably long time, from the viewpoint of safety, a pyrolysis gas introduction pipe (9) provided with a space (gas reservoir) in the upper part, for example, (I), ( It is preferred to use II), (III), (IV), (VI), (VII), (VIII) and (IX). The pyrolysis gas introduction pipe (9) shown in FIG. 4 is an example, and the present invention is not limited to this. The outer shape of the cross section perpendicular to the longitudinal direction of the pyrolysis gas introduction pipe (9) (the cross section perpendicular to the flow direction of the pyrolysis gas) is as described above, and is preferably substantially circular or substantially polygonal. Yes, more preferably a substantially square shape. Further, the inner diameter of the pyrolysis gas introduction pipe, that is, the vertical width (height) (h 1 ) of the gas inlet and the vertical width (height) (h 2 ) of the gas inlet are defined as the heat carrier. There is no particular limitation as long as (7) can easily flow into and out of the pyrolysis gas introduction pipe, preferably 8 to 50 times the size (maximum diameter) of the heat carrier (7), more preferably It is 10 to 40 times, more preferably 10 to 30 times.
また、本発明のガス化装置(第二の装置構成)は、バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を備えるバイオマス熱分解器と、スチーム吹込み口及び改質ガス排出口を備える熱分解ガス改質器と、上記バイオマス熱分解器において発生した熱分解ガスを上記熱分解ガス改質器へと導入する、上記バイオマス熱分解器と上記熱分解ガス改質器との間に備えられた熱分解ガス導入管とを備え、かつ、上記バイオマス熱分解器が、更に、予め加熱された複数の粒状物及び/又は塊状物、即ち、熱担持媒体(ヒートキャリア)の導入口及び排出口を備え、また、上記熱分解ガス改質器が、更に、その外側に予め加熱されたガス状又は液体状熱媒体の流路を備える。そして、予め加熱された複数の粒状物及び/又は塊状物が、バイオマス熱分解器に導入されて、該複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解が実行され、一方、予め加熱されたガス状又は液体状熱媒体が、熱分解ガス改質器の外側に備えられたガス状又は液体状熱媒体の流路に導入されて、該熱媒体の持つ熱により、バイオマスの熱分解により発生した熱分解ガスの改質が実行される。このように、本発明のガス化装置においては、バイオマス熱分解器内でのバイオマスの熱分解と、熱分解ガス改質器内での熱分解ガスの改質とが、予め加熱された複数の粒状物及び/又は塊状物と、予め加熱されたガス状又は液体状熱媒体とで、夫々別個に実行されることから、夫々の温度を別個にコントロールすることができる。 The gasifier of the present invention (second apparatus configuration) includes a biomass supply port, a biomass pyrolyzer having a non-oxidizing gas supply port and / or a steam injection port, a steam injection port and a reformer. The pyrolysis gas reformer having a gas outlet and the pyrolysis gas generated in the biomass pyrolysis device is introduced into the pyrolysis gas reformer, and the biomass pyrolysis device and the pyrolysis gas reforming are introduced. The biomass pyrolyzer is further provided with a plurality of preheated granules and / or agglomerates, that is, a heat carrier medium (heat carrier). ), And the pyrolysis gas reformer further includes a preheated gas or liquid heat medium flow path on the outside thereof. Then, a plurality of granular materials and / or chunks heated in advance are introduced into the biomass pyrolyzer, and the pyrolysis of biomass is executed by the heat of the plurality of particulates and / or chunks, The preheated gaseous or liquid heat medium is introduced into the flow path of the gaseous or liquid heat medium provided outside the pyrolysis gas reformer, and the heat of the heat medium causes the biomass. The reforming of the pyrolysis gas generated by the pyrolysis of is performed. As described above, in the gasification apparatus of the present invention, the pyrolysis of biomass in the biomass pyrolyzer and the reforming of the pyrolysis gas in the pyrolysis gas reformer are performed in advance. Since it is separately performed by a granular material and / or a lump, and a gaseous or liquid heating medium preheated separately, each temperature can be controlled separately.
本発明のガス化装置においては、熱分解ガス導入管は、バイオマス熱分解器側において、バイオマス熱分解器内に形成される、複数の粒状物及び/又は塊状物層、即ち、ヒートキャリア層の上面より下方のバイオマス熱分解器側面に備えられている。即ち、バイオマス熱分解器側において、バイオマス熱分解器中に形成される、複数の粒状物及び/又は塊状物から成る層中に熱分解ガス導入管のガス取り入れ口(ガス入口)が備えられる。そして、該熱分解ガス導入管を通過して、バイオマス熱分解器において発生した熱分解ガスが、熱分解ガス改質器へと導入されるのである。このように、熱分解ガス導入管の熱分解ガスの取り入れ口が、複数の粒状物及び/又は塊状物から成る層中に設けられていることから、バイオマス熱分解器中に存在する複数の粒状物及び/又は塊状物の一部が、該熱分解ガス導入管の内部へと侵入することができて、該熱分解ガス導入管が、その内部に複数の粒状物及び/又は塊状物を保有し得るのである。 In the gasification apparatus of the present invention, the pyrolysis gas introduction pipe is formed on the biomass pyrolyzer side with a plurality of granular and / or massive layers, ie, heat carrier layers, formed in the biomass pyrolyzer. It is provided on the side of the biomass pyrolyzer below the upper surface. That is, on the biomass pyrolyzer side, a gas inlet (gas inlet) of the pyrolysis gas introduction pipe is provided in a layer formed of a plurality of granular materials and / or lumps formed in the biomass pyrolyzer. Then, the pyrolysis gas generated in the biomass pyrolyzer through the pyrolysis gas introduction pipe is introduced into the pyrolysis gas reformer. As described above, since the pyrolysis gas intake port of the pyrolysis gas introduction pipe is provided in the layer composed of a plurality of particles and / or a lump, a plurality of particles present in the biomass pyrolyzer. A part of the material and / or the lump can enter the inside of the pyrolysis gas introduction pipe, and the pyrolysis gas introduction pipe holds a plurality of particles and / or lump in the inside. You can do it.
加えて、上記熱分解ガス導入管は、好ましくは、バイオマス熱分解器と熱分解ガス改質器との間のバイオマス熱分解器側において、重力方向に対して略水平に備えられており、次いで、熱分解ガス改質器側に向かって、上方に立ち上がった構造を有している。このように、熱分解ガス導入管が、バイオマス熱分解器側において、重力方向に対して略水平に備えられていることから、複数の粒状物及び/又は塊状物が、熱分解ガス導入管内部に侵入し易くなり、かつ、熱分解ガス導入管内部に保有された複数の粒状物及び/又は塊状物は、バイオマス熱分解器中を、上から下へと重力により移動する複数の粒状物及び/又は塊状物の流れに伴って、上から下へと移動している複数の粒状物及び/又は塊状物と、連続的に徐々に入れ替わることができる。そして、それにより、熱分解ガス導入管内部に保有された複数の粒状物及び/又は塊状物は、新しい状態を保ち得るのである。一方、熱分解ガス導入管は、上記の水平配管の下流、即ち、熱分解ガス改質器側において、熱分解ガス改質器側に向かって、上方に立ち上がった構造を有していることから、バイオマス熱分解器から熱分解ガス導入管中に流入した複数の粒状物及び/又は塊状物が、熱分解ガス改質器中に混入することを回避し得る。このように、熱分解ガス導入管内部に複数の粒状物及び/又は塊状物が保有されていることから、そこを通過して熱分解ガス改質器へと導入される熱分解ガス中に含まれるタール及び煤塵等は、該複数の粒状物及び/又は塊状物と接触されて捕捉されるのである。そして、捕捉されたタールの一部分又は大部分は、ここで、複数の粒状物及び/又は塊状物の持つ熱により熱分解されてガス化され、好ましくは、更に改質される。また、ガス化されずに残存したタール及び煤塵等は、複数の粒状物及び/又は塊状物に付着したまま、バイオマス熱分解器底部から排出される。これにより、効果的にタール及び煤塵等を熱分解ガスから除去することが可能となるのである。 In addition, the pyrolysis gas introduction pipe is preferably provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer side between the biomass pyrolyzer and the pyrolysis gas reformer, It has a structure that rises upward toward the pyrolysis gas reformer side. As described above, since the pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolysis device side, a plurality of granular materials and / or lumps are formed inside the pyrolysis gas introduction pipe. The plurality of granular materials and / or agglomerates retained in the pyrolysis gas introduction pipe are easily moved into the biomass pyrolysis device from the top to the bottom by gravity. Along with the flow of the lump, it can be gradually and gradually replaced with a plurality of particles and / or lump that are moving from top to bottom. And thereby, the some granular material and / or lump which were hold | maintained inside the pyrolysis gas introduction pipe | tube can keep a new state. On the other hand, the pyrolysis gas introduction pipe has a structure that rises upward toward the pyrolysis gas reformer side downstream of the horizontal pipe, that is, on the pyrolysis gas reformer side. In addition, it is possible to avoid mixing a plurality of particulates and / or lumps that have flowed into the pyrolysis gas introduction pipe from the biomass pyrolyzer into the pyrolysis gas reformer. As described above, since a plurality of granular materials and / or lumps are held inside the pyrolysis gas introduction pipe, they are included in the pyrolysis gas that passes through them and is introduced into the pyrolysis gas reformer. The tar, dust, and the like that are collected are brought into contact with the plurality of granular materials and / or lumps. Then, a part or most of the trapped tar is pyrolyzed and gasified by the heat of the plurality of particulates and / or lumps, and is preferably further modified. Further, tar and dust remaining without being gasified are discharged from the bottom portion of the biomass pyrolyzer while adhering to a plurality of granular materials and / or bulk materials. Thereby, tar and dust can be effectively removed from the pyrolysis gas.
上記熱分解ガス導入管は、バイオマス熱分解器と熱分解ガス改質器との間の熱分解ガス改質器側において、バイオマス熱分解器側から伸びる水平配管が、熱分解ガス改質器に向かって、上方に立ち上がった構造を有していればよい。該立ち上がり角度に特に制限はなく、0度(水平)を超え90度以下である。例えば、略直角に上方に立ち上がり、熱分解ガス改質器の底部に接続するような形態でもよく、また、水平から僅かに立ち上がって、熱分解ガス改質器の側面又は底部に接続されていてもよい。該立ち上がりの角度は、好ましくは水平から5度以上、より好ましくは水平から10度以上、更に好ましくは水平から15度以上である。ここで、該立ち上がりの角度が大きいとき、例えば、水平から45度を超えるときには、該立ち上がり部の水平配管底部に、バイオマス熱分解器側から熱分解ガス改質器側に向かって、好ましくは5~45度、より好ましくは10~30度、更に好ましくは15~25度の傾斜角度(θ)を持つ突出部を備えることが好ましい。これにより、熱分解ガス導入管内に侵入している、複数の粒状物及び/又は塊状物の入れ替わりを促進し、かつ、立ち上がり部での複数の粒状物及び/又は塊状物の停滞を回避することができる。該熱分解ガス導入管において、その長手方向に垂直な断面、即ち、熱分解ガスの流れ方向に対して垂直な断面の外形は、好ましくは略円形又は略多角形であり、より好ましくは略円形である。また、該熱分解ガス導入管は、バイオマス熱分解器と熱分解ガス改質器との間に、好ましくは1~3本、より好ましくは1又は2本備えられている。また、本発明のガス化装置(第二の装置構成)においても、熱分解ガス導入管として、上記の第一の装置構成において使用する熱分解ガス導入管、即ち、重力方向に略水平に備えられ、かつ、内部底面が上方に向かって突出している熱分解ガス導入管を使用することもできる。例えば、図4に示された熱分解ガス導入管(II,III,IV,VII,VIII,IX)を使用することができる。好ましくは、図4に示された熱分解ガス導入管(III,IV,VIII,IX)を使用することができる。該熱分解ガス導入管は、水平かつ内部底面が上方に向かって突出していることから、バイオマス熱分解器から侵入した複数の粒状物及び/又は塊状物が熱分解ガス改質器に侵入することを効果的に回避することができる。但し、長期間操業においては、複数の粒状物及び/又は塊状物が熱分解ガス改質器に侵入することがあるため、熱分解ガス導入管の突出部より熱分解ガス改質器側の該導入管底部、又は、熱分解ガス改質器内部に、複数の粒状物及び/又は塊状物のたまり部(捕集部)を設けて、必要なら定期的にたまった粒状物及び/又は塊状物を抜き出すことが好ましい。 In the pyrolysis gas introduction pipe, a horizontal pipe extending from the biomass pyrolysis device side is connected to the pyrolysis gas reformer on the pyrolysis gas reformer side between the biomass pyrolysis device and the pyrolysis gas reformer. What is necessary is just to have the structure which stood up upwards. The rising angle is not particularly limited and is more than 0 degree (horizontal) and 90 degrees or less. For example, it may be configured to rise upward at a substantially right angle and connect to the bottom of the pyrolysis gas reformer, or to rise slightly from the horizontal and connected to the side or bottom of the pyrolysis gas reformer. Also good. The rising angle is preferably 5 degrees or more from the horizontal, more preferably 10 degrees or more from the horizontal, and further preferably 15 degrees or more from the horizontal. Here, when the rising angle is large, for example, when it exceeds 45 degrees from the horizontal, it is preferably 5 toward the bottom of the horizontal piping at the rising portion from the biomass pyrolyzer side toward the pyrolysis gas reformer side. It is preferable to provide a protrusion having an inclination angle (θ) of ˜45 degrees, more preferably 10 to 30 degrees, and still more preferably 15 to 25 degrees. This facilitates replacement of a plurality of particulates and / or lumps entering the pyrolysis gas introduction pipe and avoids stagnation of the plurality of particulates and / or lumps at the rising portion. Can do. In the pyrolysis gas introduction pipe, the outer shape of the cross section perpendicular to the longitudinal direction, that is, the cross section perpendicular to the flow direction of the pyrolysis gas is preferably substantially circular or substantially polygonal, and more preferably substantially circular. It is. The pyrolysis gas introduction pipe is preferably provided between 1 and 3 and more preferably 1 or 2 between the biomass pyrolyzer and the pyrolysis gas reformer. Also in the gasifier of the present invention (second apparatus configuration), the pyrolysis gas introduction pipe used in the first apparatus configuration described above, that is, provided substantially horizontally in the direction of gravity. It is also possible to use a pyrolysis gas introduction pipe whose inner bottom surface protrudes upward. For example, the pyrolysis gas introduction pipe (II, III, IV, VII, VIII, IX) shown in FIG. 4 can be used. Preferably, the pyrolysis gas introduction pipe (III, IV, VIII, IX) shown in FIG. 4 can be used. Since the pyrolysis gas introduction pipe is horizontal and the inner bottom surface protrudes upward, a plurality of particulates and / or lumps that have entered from the biomass pyrolyzer enter the pyrolysis gas reformer. Can be effectively avoided. However, in a long-term operation, a plurality of granular materials and / or agglomerates may enter the pyrolysis gas reformer, so that the pyrolysis gas reformer side of the pyrolysis gas reformer side protrudes. A plurality of granular and / or lump pools (collecting sections) are provided at the bottom of the introduction pipe or inside the pyrolysis gas reformer, and if necessary, the granular and / or lump collected regularly. Is preferably extracted.
本発明のガス化装置においては、バイオマス熱分解器の上部に、複数の粒状物及び/又は塊状物を予め加熱するための予熱器が備えられる。これにより、該複数の粒状物及び/又は塊状物が所定の温度に加熱される。また、バイオマス熱分解器の上方(上部)、好ましくは頂部に、複数の粒状物及び/又は塊状物の導入口が備えられ、一方、バイオマス熱分解器の下方(下部)、好ましくは底部に、複数の粒状物及び/又は塊状物の排出口が備えられる。複数の粒状物及び/又は塊状物の導入口及び排出口は、例えば、配管の上下に1個ずつ合計2個のバルブを備えた、いわゆる2段式バルブ方式が使用される。但し、該導入及び抜出し方式は、一例であり、この方式に限定されるものではない。また、上記のたまり部(捕集部)においても同様の方式により抜き出すことができる。一方、熱分解ガス改質器は、その外側に予め加熱されたガス状又は液体状熱媒体の流路を備えている。該熱分解ガス改質器は、通常の熱交換器型の熱分解ガス改質器であってよく、多重管式又は二重管式のいずれであってもよい。 In the gasifier of the present invention, a preheater for preheating a plurality of granular materials and / or agglomerates is provided on the upper part of the biomass pyrolyzer. Thereby, this some granular material and / or lump are heated to predetermined temperature. Also, a plurality of granular and / or lump inlets are provided above (upper), preferably at the top of the biomass pyrolyzer, while below (lower), preferably at the bottom, of the biomass pyrolyzer. A plurality of granular and / or massive outlets are provided. For example, a so-called two-stage valve system in which a plurality of granular materials and / or massive inlets and outlets are provided with a total of two valves, one above and one below the pipe, is used. However, the introduction and extraction method is an example, and the present invention is not limited to this method. Further, the above-mentioned pool part (collecting part) can be extracted by the same method. On the other hand, the pyrolysis gas reformer is provided with a flow path of a gaseous or liquid heat medium heated in advance on the outside thereof. The pyrolysis gas reformer may be a normal heat exchanger type pyrolysis gas reformer, and may be either a multi-tube type or a double-pipe type.
図3は、バイオマス熱分解器のみに、予め加熱された複数の粒状物及び/又は塊状物を投入する第二の装置構成を備える、本発明のバイオマスのガス化装置の一実施態様を示した概略図である。該バイオマスのガス化装置においては、予め加熱された複数の粒状物及び/又は塊状物(7)、即ち、ヒートキャリアの持つ熱によりバイオマスの熱分解を実行するバイオマス熱分解器(3)と、予め加熱されたガス状又は液体状熱媒体の持つ熱により、バイオマスの熱分解により発生した熱分解ガスの改質を実行する熱交換器型の熱分解ガス改質器(2)とが備えられている。そして、複数の粒状物及び/又は塊状物(7)を予め加熱するための予熱器(1)が、バイオマス熱分解器(3)の上部に備えられている。また、熱分解ガス導入管(9)が、バイオマス熱分解器(3)と熱分解ガス改質器(2)との間1本に備えられており、これにより、バイオマス熱分解器(3)において発生した熱分解ガスが、熱分解ガス改質器(2)へと導入される。ここで、熱分解ガス導入管(9)は、バイオマス熱分解器(3)側において、バイオマス熱分解器(3)内に形成される、複数の粒状物及び/又は塊状物(7)層の上面(13)より下方のバイオマス熱分解器(3)の側面に備えられている。即ち、熱分解ガス導入管(9)のバイオマス熱分解器(3)側ガス取り入れ口(ガス入口)(9-3)が、複数の粒状物及び/又は塊状物(7)層中に設けられている。一方、熱分解ガス改質器(2)側においては、熱分解ガス導入管(9)は、熱分解ガス改質器(2)の底部に接続されている。また、熱分解ガス導入管(9)は、バイオマス熱分解器(3)側において重力方向に対して略水平に備えられており、その下流側において熱分解ガス改質器(2)に向かって略垂直に立ち上がっている。また、該立ち上がり部分の水平配管の底部には、バイオマス熱分解器(3)側から熱分解ガス改質器(2)側に向かって、水平配管の底部から略25度の傾斜角度(θ)を有する突出部が備えられている。 FIG. 3 shows an embodiment of the biomass gasification apparatus of the present invention, which includes a second apparatus configuration in which a plurality of pre-heated granular materials and / or agglomerates are charged only into the biomass pyrolyzer. FIG. In the biomass gasification apparatus, a plurality of pre-heated particulates and / or agglomerates (7), that is, a biomass pyrolyzer (3) that performs thermal decomposition of biomass by heat of a heat carrier, And a heat exchanger type pyrolysis gas reformer (2) for reforming the pyrolysis gas generated by the pyrolysis of biomass by the heat of the preheated gaseous or liquid heat medium. ing. And the preheater (1) for heating a some granular material and / or lump (7) previously is provided in the upper part of the biomass pyrolyzer (3). Moreover, the pyrolysis gas introduction pipe (9) is provided in one between the biomass pyrolysis device (3) and the pyrolysis gas reformer (2), and thereby the biomass pyrolysis device (3). The pyrolysis gas generated in is introduced into the pyrolysis gas reformer (2). Here, the pyrolysis gas introduction pipe (9) has a plurality of granular and / or lump (7) layers formed in the biomass pyrolyzer (3) on the biomass pyrolyzer (3) side. It is provided on the side surface of the biomass pyrolyzer (3) below the upper surface (13). That is, the biomass pyrolyzer (3) side gas intake (gas inlet) (9-3) of the pyrolysis gas introduction pipe (9) is provided in the plurality of granular and / or massive (7) layers. ing. On the other hand, on the pyrolysis gas reformer (2) side, the pyrolysis gas introduction pipe (9) is connected to the bottom of the pyrolysis gas reformer (2). In addition, the pyrolysis gas introduction pipe (9) is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer (3) side, and toward the pyrolysis gas reformer (2) on the downstream side thereof. Standing up almost vertically. Further, at the bottom of the horizontal pipe at the rising portion, an inclination angle (θ) of approximately 25 degrees from the bottom of the horizontal pipe from the biomass pyrolyzer (3) side to the pyrolysis gas reformer (2) side. A protrusion having
複数の粒状物及び/又は塊状物(7)、即ち、ヒートキャリアは、バイオマス熱分解器(3)に導入される前に、バイオマス熱分解器(3)の上部に備えられた予熱器(1)において、予め加熱される。バイオマス熱分解器(3)の上部に備えられた予熱器(1)において、ヒートキャリア(7)は、好ましくは700~800℃、より好ましくは750~800℃に加熱される。上記下限未満では、バイオマスを、バイオマス熱分解器(3)において十分に熱分解することができないことがある。上記上限を超えても、上記の図1の説明において既に述べたように、バイオマス熱分解器(3)に吹き込むスチーム量等を変化させて、適正温度にコントロールしてバイオマスの熱分解を効率的に実施することができる。しかし、ヒートキャリア(7)の温度を上記上限以下とすることにより、より熱効率を高めることが好ましい。 A plurality of granulates and / or agglomerates (7), i.e. a heat carrier, is introduced into the biomass pyrolyzer (3) before it is introduced into the biomass pyrolyzer (3) with a preheater (1 ) In advance. In the preheater (1) provided at the top of the biomass pyrolyzer (3), the heat carrier (7) is preferably heated to 700 to 800 ° C, more preferably 750 to 800 ° C. If it is less than the said minimum, biomass may not fully be thermally decomposed in a biomass pyrolyzer (3). Even if the upper limit is exceeded, as already described in the description of FIG. 1 above, the amount of steam blown into the biomass pyrolyzer (3) is changed, and the temperature is controlled to an appropriate temperature so that the thermal decomposition of the biomass is efficient. Can be implemented. However, it is preferable to further increase the thermal efficiency by setting the temperature of the heat carrier (7) to the upper limit or less.
図3において、熱分解ガス改質器(2)は、いわゆる熱交換器型の熱分解ガス改質器である。熱分解ガス導入管(9)より導入された熱分解ガスは、スチーム吹込み口(11)から更に導入されたスチームと混合されて、熱交換器型の熱分解ガス改質器(2)の外套を通過する熱媒体、例えば、高温熱風と熱交換されて改質される。熱交換器型の熱分解ガス改質器(2)内における気相温度、圧力等の条件は、図1で示した装置と同様である。ここで、熱交換器型の熱分解ガス改質器(2)の気相温度とは、熱分解ガス改質器(2)内上部の改質ガス排出口(8)近傍の気相温度を言う。該気相温度は、バイオマス熱分解器(3)から供給される熱分解ガスの量に対して、スチーム吹込み口(11、11)から導入されるスチーム供給量、並びに、熱分解ガス改質器(2)の外套を通過する熱媒体の温度及び流量を適宜変更することにより、コントロールすることができる。 In FIG. 3, the pyrolysis gas reformer (2) is a so-called heat exchanger type pyrolysis gas reformer. The pyrolysis gas introduced from the pyrolysis gas introduction pipe (9) is mixed with the steam further introduced from the steam inlet (11 2 ) to form a heat exchanger type pyrolysis gas reformer (2). It is reformed by heat exchange with a heat medium that passes through the outer jacket, for example, hot hot air. Conditions such as gas phase temperature and pressure in the heat exchanger type pyrolysis gas reformer (2) are the same as those in the apparatus shown in FIG. Here, the gas phase temperature of the heat exchanger type pyrolysis gas reformer (2) is the gas phase temperature near the reformed gas outlet (8) in the upper part of the pyrolysis gas reformer (2). To tell. The gas phase temperature includes the amount of steam supplied from the steam inlet (11 2 , 11 3 ) and the amount of pyrolysis gas with respect to the amount of pyrolysis gas supplied from the biomass pyrolyzer (3). It can be controlled by appropriately changing the temperature and flow rate of the heat medium passing through the jacket of the reformer (2).
以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited by these Examples.
(実施例1)
実施例1において使用したバイオマス原料、並びに、該バイオマス原料の熱分解及びガス改質に使用したガス化装置は、下記の通りである。
Example 1
The biomass material used in Example 1 and the gasifier used for thermal decomposition and gas reforming of the biomass material are as follows.
バイオマス原料としては、建設系廃木材を使用した。該廃木材を粉砕して使用した。粉砕後の廃木材の大きさは、おが粉程度の寸法であり、最大寸法が2~6mm程度のものであった。該廃木材の性状を表1に示す。 As the biomass material, construction waste wood was used. The waste wood was crushed and used. The size of the waste wood after pulverization was about the size of sawdust, and the maximum size was about 2 to 6 mm. Table 1 shows the properties of the waste wood.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1の各値に関して、
水分は、JIS Z 7302-3:2009に準拠し、
灰分は、JIS Z 7302-4:2009に準拠し、
揮発分は、JIS M 8812-7:2006に準拠し、かつ、
高位発熱量は、JIS Z 7302-2:1999に準拠して測定したものである。
また、元素組成のうち、炭素(C)、水素(H)及び窒素(N)は、いずれもJIS Z 7302-8:2002に準拠し、
硫黄(S)は、JIS Z 7302‐7:2002に準拠し、かつ、
塩素(Cl)は、JIS Z 7302‐6:1999に準拠して測定したものである。
また、酸素(O)は、100質量%から、C、H、N、S、Cl及び灰分の各質量%を差し引いて求めたものである。
ここで、灰分、揮発分、固定炭素及び元素組成は、いずれも乾燥基準で算出したものである。また、水分は、バイオマス原料の受け入れ時のものである。
For each value in Table 1,
Moisture conforms to JIS Z 7302-3: 2009,
Ash content conforms to JIS Z 7302-4: 2009,
Volatile content conforms to JIS M 8812-7: 2006, and
The higher heating value is measured in accordance with JIS Z 7302-2: 1999.
In addition, among the elemental compositions, carbon (C), hydrogen (H), and nitrogen (N) all comply with JIS Z 7302-8: 2002,
Sulfur (S) conforms to JIS Z 7302-7: 2002, and
Chlorine (Cl) is measured in accordance with JIS Z 7302-6: 1999.
Further, oxygen (O) is obtained by subtracting each mass% of C, H, N, S, Cl and ash from 100 mass%.
Here, the ash, volatile matter, fixed carbon, and elemental composition are all calculated on a dry basis. In addition, the moisture is from when the biomass raw material is received.
バイオマス原料の熱分解及び発生した熱分解ガスの改質に使用したガス化装置としては、図1に示したものを使用した。該ガス化装置は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)を、ヒートキャリア(7)の流れに対して並列に配置した装置構成を有するものであった。バイオマス熱分解器(3)及び熱分解ガス改質器(2)の上部に予熱器(1)を1器備えており、該予熱器(1)において、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の両者に供給するヒートキャリア(7)を、一括して予め加熱するものであった。バイオマス熱分解器(3)の内径は約180mmであり、高さは約1,000mmであり、内容積は約25リットルであった。また、熱分解ガス改質器(2)の内径は約180mmであり、高さは約2,350mmであり、内容積は約60リットルであった。また、熱分解ガス導入管(9)としては、図4の(VIII)に示す構造のものを使用した。ここで、突出部の傾斜の角度(θ)は、両側共に25度であった。熱分解ガス導入管(9)は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の両側において、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内に夫々形成される、ヒートキャリア(7)層の上面(13)より下方のバイオマス熱分解器(3)及び熱分解ガス改質器(2)の側面に備えられていた。また、熱分解ガス導入管(9)は、重力方向に対して略水平に備えられていた。該熱分解ガス導入管(9)の長さは約500mmであり、長手方向に垂直な断面、即ち、熱分解ガスの流れ方向に対して垂直な断面の外形は、一辺180mmの略正方形であり、熱分解ガス導入管のガス取り入れ口の垂直方向の幅(高さ)(h)及びガス導入口の垂直方向の幅(高さ)(h)は、いずれも150mmであった。ヒートキャリア(7)としては、直径(最大径)10~12mmの略球形のアルミナ製ボールを使用した。 As the gasifier used for the thermal decomposition of the biomass material and the reforming of the generated pyrolysis gas, the one shown in FIG. 1 was used. The gasifier had an apparatus configuration in which a biomass pyrolyzer (3) and a pyrolytic gas reformer (2) were arranged in parallel with the flow of the heat carrier (7). The biomass pyrolyzer (3) and the pyrolysis gas reformer (2) are provided with one preheater (1), and in the preheater (1), the biomass pyrolyzer (3) and the pyrolysis are provided. The heat carrier (7) to be supplied to both of the gas reformers (2) was preliminarily heated in advance. The biomass pyrolyzer (3) had an inner diameter of about 180 mm, a height of about 1,000 mm, and an internal volume of about 25 liters. The pyrolysis gas reformer (2) had an inner diameter of about 180 mm, a height of about 2,350 mm, and an internal volume of about 60 liters. As the pyrolysis gas introduction pipe (9), the one having the structure shown in FIG. 4 (VIII) was used. Here, the inclination angle (θ) of the protrusion was 25 degrees on both sides. The pyrolysis gas introduction pipe (9) is disposed in the biomass pyrolysis device (3) and the pyrolysis gas reformer (2) on both sides of the biomass pyrolysis device (3) and the pyrolysis gas reformer (2). They were provided on the side surfaces of the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) below the upper surface (13) of the heat carrier (7) layer formed respectively. Further, the pyrolysis gas introduction pipe (9) was provided substantially horizontally with respect to the direction of gravity. The length of the pyrolysis gas introduction pipe (9) is about 500 mm, and the outer shape of the cross section perpendicular to the longitudinal direction, that is, the cross section perpendicular to the flow direction of the pyrolysis gas is a substantially square having a side of 180 mm. , the vertical width of the gas inlet of the pyrolysis gas inlet pipe (height) (h 1) and the gas inlet of the vertical width (height) (h 2) were both 150 mm. As the heat carrier (7), a substantially spherical alumina ball having a diameter (maximum diameter) of 10 to 12 mm was used.
バイオマス熱分解器(3)及び熱分解ガス改質器(2)、並びに、予熱器(1)内部に、ヒートキャリア(7)を予め夫々の容器の70%程度の高さまで充填し、次いで、該ヒートキャリア(7)を、予熱器(1)において略500℃の温度に加熱した。次いで、該ヒートキャリア(7)を、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の頂部から夫々30キログラム/時間の量で別個に導入し、かつ、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の底部から夫々別個に適量を抜出し、ヒートキャリア(7)の循環を開始した。該ヒートキャリア(7)の循環により、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内部の気相温度及び容器自体の温度が徐々に上昇した。このようなヒートキャリア(7)の循環を継続しながら、同時に、予熱器(1)内部のヒートキャリア(7)温度を1,050℃まで徐々に昇温した。ヒートキャリア(7)が該温度に達した後、更に、循環を継続して、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内部の気相温度を徐々に上昇させ、バイオマス熱分解器(3)の気相温度が600℃を超えるころから、バイオマス供給口(4)、非酸化性ガス供給口(12)及びスチーム吹込み口(11)からバイオマス熱分解器(3)に、夫々、バイオマス原料、窒素ガス及びスチームを導入し、バイオマス熱分解器(3)の温度が600℃になるようにコントロールした。一方、熱分解ガス改質器(2)の気相温度は、950℃になるように、更に、スチーム吹込み口(11)からスチームを導入してコントロールした。このとき、ヒートキャリア(7)は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)において、いずれも層状に堆積しており、その堆積量は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の夫々の内容積の約60体積%であった。バイオマス熱分解器(3)及び熱分解ガス改質器(2)からのヒートキャリア(7)の抜出し量は、いずれも供給量と同一であり、バイオマス熱分解器(3)及び熱分解ガス改質器(2)において、夫々30キログラム/時間であった。また、抜出し時のヒートキャリア(7)の温度は、いずれも400℃であった。但し。バイオマス熱分解器(3)及び熱分解ガス改質器(2)からのヒートキャリア(7)の抜出し量は、それぞれの温度状況に応じて個別にコントロールすることも可能である。 The biomass pyrolyzer (3) and pyrolytic gas reformer (2), and the preheater (1) are pre-filled with a heat carrier (7) to a height of about 70% of each container, and then The heat carrier (7) was heated to a temperature of about 500 ° C. in the preheater (1). The heat carrier (7) is then separately introduced from the top of the biomass pyrolyzer (3) and pyrolysis gas reformer (2) in an amount of 30 kilograms / hour respectively, and the biomass pyrolyzer ( 3) and an appropriate amount were separately extracted from the bottom of the pyrolysis gas reformer (2), and circulation of the heat carrier (7) was started. By the circulation of the heat carrier (7), the gas phase temperature inside the biomass pyrolyzer (3) and pyrolytic gas reformer (2) and the temperature of the container itself gradually increased. While continuing the circulation of the heat carrier (7), the temperature of the heat carrier (7) inside the preheater (1) was gradually raised to 1,050 ° C. After the heat carrier (7) reaches the temperature, the circulation is further continued to gradually increase the gas phase temperature inside the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), From the time when the gas phase temperature of the pyrolyzer (3) exceeds 600 ° C., the biomass pyrolyzer (3) from the biomass supply port (4), the non-oxidizing gas supply port (12) and the steam inlet (11 1 ). ), Biomass raw material, nitrogen gas and steam were introduced, respectively, and the temperature of the biomass pyrolyzer (3) was controlled to 600 ° C. On the other hand, steam was further introduced and controlled from the steam inlet (11 2 ) so that the gas phase temperature of the pyrolysis gas reformer (2) was 950 ° C. At this time, the heat carrier (7) is deposited in layers in the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the amount of deposition is the biomass pyrolyzer (3). And about 60% by volume of the internal volume of the pyrolysis gas reformer (2). The extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is the same as the supply amount, and the biomass pyrolyzer (3) and pyrolysis gas reformer are the same. It was 30 kilograms / hour in the quality organ (2). Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 ° C. for all. However. The extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) can be individually controlled according to the respective temperature conditions.
上記の操作において、バイオマス原料としての建設系廃木材を、定量フィーダーを使用して、バイオマス供給口(4)からバイオマス熱分解器(3)に、徐々に供給量を増やしつつ、最終的に約4キログラム/時間(乾燥基準)になるように連続的に導入した。バイオマス熱分解器(3)の温度は、バイオマス原料の導入に伴って徐々に低下したが、同時に、窒素ガス及び過熱蒸気を、その供給量を調節しながらバイオマス熱分解器(3)に導入することによって、バイオマス熱分解器(3)の温度を600℃に保持した。また、バイオマス熱分解器(3)内の圧力を101.3kPaに保持した。ここで、窒素ガスは、バイオマス熱分解器(3)の上部に設けられた非酸化性ガス供給口(12)から、最終的に60リットル/時間の一定量で導入された。また、スチームとしては、過熱蒸気(160℃、0.6MPa)が使用され、バイオマス熱分解器(3)の上部に設けられたスチーム吹込み口(11)から、最終的に2キログラム/時間の一定量で導入された。バイオマス熱分解器(3)におけるバイオマス原料の滞留時間は、約1時間であった。これにより、バイオマス熱分解器(3)において熱分解により生じたガスが5.2キログラム/時間で得られた。また、チャーが0.8キログラム/時間で熱分解残渣(チャー)排出口(6)から排出された。 In the above operation, the construction waste wood as a biomass raw material is gradually increased from the biomass supply port (4) to the biomass pyrolyzer (3) using a quantitative feeder, and finally about It was continuously introduced at 4 kg / hour (dry basis). The temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount. As a result, the temperature of the biomass pyrolyzer (3) was kept at 600 ° C. Moreover, the pressure in a biomass pyrolyzer (3) was hold | maintained at 101.3 kPa. Here, nitrogen gas was finally introduced at a fixed amount of 60 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3). As the steam, superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3). Was introduced in a certain amount. The residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour. As a result, gas generated by pyrolysis in the biomass pyrolyzer (3) was obtained at 5.2 kg / hour. Char was discharged from the pyrolysis residue (char) discharge port (6) at 0.8 kg / hour.
バイオマス熱分解器(3)において得られた熱分解ガスは、続いて、バイオマス熱分解器(3)下部から熱分解ガス導入管(9)を通過して、上記温度に保持された熱分解ガス改質器(2)に導入された。熱分解ガスの導入当初は、バイオマス熱分解器(3)内の温度は不安定となるが、熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)から、更に、過熱蒸気(160℃、0.6MPa)を、その量を調節しながら導入することにより、温度950℃になるように調節した。この時、熱分解ガス改質器(2)は、圧力101.3kPaに保持されていた。熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)からの過熱蒸気は、最終的に2キログラム/時間の一定量で導入された。 The pyrolysis gas obtained in the biomass pyrolyzer (3) subsequently passes through the pyrolysis gas introduction pipe (9) from the lower part of the biomass pyrolyzer (3) and is maintained at the above temperature. It was introduced into the reformer (2). At the beginning of the introduction of the pyrolysis gas, the temperature in the biomass pyrolyzer (3) becomes unstable, but from the steam inlet (11 2 ) provided at the bottom of the pyrolysis gas reformer (2), The temperature was adjusted to 950 ° C. by introducing superheated steam (160 ° C., 0.6 MPa) while adjusting the amount thereof. At this time, the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa. The superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a constant amount of 2 kilograms / hour.
上記操作により、バイオマス熱分解器(3)が温度600℃及び圧力101.3kPaに保持され、かつ、熱分解ガス改質器(2)が温度950℃及び圧力101.3kPaに保持された。これにより、温度950℃の改質ガスが7.2キログラム/時間の量で改質ガス出口(8)から得られた。 By the above operation, the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa. As a result, a reformed gas having a temperature of 950 ° C. was obtained from the reformed gas outlet (8) in an amount of 7.2 kilograms / hour.
得られた改質ガスをゴム製バッグに捕集し、ガスクロマトグラフィー[島津製作所製GC-14A(商標)]によりガス組成を測定した。表2には、得られた改質ガスの組成を示した。また、該操業を3日間連続して実施することができた。該操業期間中、トラブル、とりわけ、タールに起因するトラブルのない良好な連続運転を維持することができた。また、操業期間中、熱分解ガス導入管(9)内でヒートキャリア(7)がタール等により閉塞するというトラブルを生ずることもなく、バイオマス熱分解器(3)から熱分解ガス改質器(2)への熱分解ガスのスムーズな導入が維持された。また、熱分解ガス改質器(2)出口(8)から取り出された改質ガス中のタール量は、約0.5g/m-normalであった。 The resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 2 shows the composition of the obtained reformed gas. In addition, the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. The amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.5 g / m 3 -normal.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(実施例2)
実施例2において使用したバイオマス原料、及び、該バイオマス原料の熱分解及びガス改質に使用したガス化装置は、下記の通りである。
(Example 2)
The biomass raw material used in Example 2 and the gasifier used for thermal decomposition and gas reforming of the biomass raw material are as follows.
バイオマス原料としては、パームヤシ廃材を使用した。該廃材を粗粉砕して使用した。パームヤシ廃材は、太さ約1~2mm、長さ約3~30mmの柔らかいひも状の木片が何本も重なった形態を有しており、換言すれば、木綿糸がほつれたような形態であった。それを粗粉砕すると、糸玉(ファイバーボール)のような形状となり、その最大寸法は0~30mm程度であった。該廃材の性状を表3に示す。 Palm biomass waste was used as a biomass raw material. The waste material was used after being roughly pulverized. Palm palm waste has a form in which many pieces of soft string-like pieces of wood with a thickness of about 1 to 2 mm and a length of about 3 to 30 mm overlap each other. In other words, it is like a form in which cotton yarn is frayed. It was. When coarsely pulverized, it was shaped like a yarn ball (fiber ball), and its maximum dimension was about 0 to 30 mm. Table 3 shows the properties of the waste material.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
表3の各値に関して、
水分は、JIS Z 7302-3:2009に準拠し、
灰分は、JIS Z 7302-4:2009に準拠し、
揮発分は、JIS M 8812-7:2006に準拠し、かつ、
高位発熱量は、JIS Z 7302-2:1999に準拠して測定したものである。
また、元素組成のうち、炭素(C)、水素(H)及び窒素(N)は、いずれもJIS Z 7302-8:2002に準拠し、
硫黄(S)は、JIS Z 7302‐7:2002に準拠し、かつ、
塩素(Cl)は、JIS Z 7302‐6:1999に準拠して測定したものである。
また、酸素(O)は、100質量%から、C、H、N、S、Cl及び灰分の各質量%を差し引いて求めたものである。
ここで、灰分、揮発分、固定炭素及び元素組成は、いずれも乾燥基準で算出したものである。また、水分は、バイオマス原料の受け入れ時のものである。
For each value in Table 3,
Moisture conforms to JIS Z 7302-3: 2009,
Ash content conforms to JIS Z 7302-4: 2009,
Volatile content conforms to JIS M 8812-7: 2006, and
The higher heating value is measured in accordance with JIS Z 7302-2: 1999.
In addition, among the elemental compositions, carbon (C), hydrogen (H), and nitrogen (N) all comply with JIS Z 7302-8: 2002,
Sulfur (S) conforms to JIS Z 7302-7: 2002, and
Chlorine (Cl) is measured in accordance with JIS Z 7302-6: 1999.
Further, oxygen (O) is obtained by subtracting each mass% of C, H, N, S, Cl and ash from 100 mass%.
Here, the ash, volatile matter, fixed carbon, and elemental composition are all calculated on a dry basis. In addition, the moisture is from when the biomass raw material is received.
バイオマス原料の熱分解及びガス改質に使用したガス化装置は、実施例1で使用したものと同一であり、図1に示したものを使用した。 The gasifier used for pyrolysis and gas reforming of the biomass raw material was the same as that used in Example 1, and the one shown in FIG. 1 was used.
実施例1と同一の条件及び操作方法により、熱分解ガス改質器(2)及びバイオマス熱分解器(3)の温度を、夫々、950℃及び600℃にした。また、抜出し時のヒートキャリア(7)の温度は、いずれも400℃であった。 Under the same conditions and operation method as in Example 1, the temperatures of the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) were 950 ° C. and 600 ° C., respectively. Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 ° C. for all.
熱分解ガス改質器(2)及びバイオマス熱分解器(3)の温度を、上記所定値にコントロールする操作において、バイオマス原料としてのパームヤシ廃材を、定量フィーダーを使用して、バイオマス供給口(4)からバイオマス熱分解器(3)に、徐々に供給量を増やしつつ、最終的に約5キログラム/時間(乾燥基準)になるように連続的に導入した。バイオマス熱分解器(3)の温度は、バイオマス原料の導入に伴って徐々に低下したが、同時に、窒素ガス及び過熱蒸気を、その供給量を調節しながらバイオマス熱分解器(3)に導入することによって、バイオマス熱分解器(3)の温度を600℃に保持した。また、バイオマス熱分解器(3)内の圧力を101.3kPaに保持した。ここで、窒素ガスは、バイオマス熱分解器(3)の上部に設けられた非酸化性ガス供給口(12)から、最終的に6リットル/時間の一定量で導入された。また、スチームとしては、過熱蒸気(160℃、0.6MPa)が使用され、バイオマス熱分解器(3)の上部に設けられたスチーム吹込み口(11)から、最終的に2キログラム/時間の一定量で導入された。バイオマス熱分解器(3)におけるバイオマス原料の滞留時間は、約1時間であった。これにより、バイオマス熱分解器(3)において熱分解により生じたガスが6.1キログラム/時間で得られた。また、チャーが0.9キログラム/時間で熱分解残渣(チャー)排出口(6)から排出された。 In the operation of controlling the temperatures of the pyrolysis gas reformer (2) and the biomass pyrolyzer (3) to the above-mentioned predetermined values, the palm palm waste material as the biomass raw material is supplied to the biomass supply port (4 ) To the biomass pyrolyzer (3), while gradually increasing the supply amount, it was continuously introduced to finally reach about 5 kilograms / hour (dry basis). The temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount. As a result, the temperature of the biomass pyrolyzer (3) was kept at 600 ° C. Moreover, the pressure in a biomass pyrolyzer (3) was hold | maintained at 101.3 kPa. Here, nitrogen gas was finally introduced at a fixed amount of 6 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3). As the steam, superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3). Was introduced in a certain amount. The residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour. Thereby, the gas produced | generated by the pyrolysis in the biomass pyrolyzer (3) was obtained at 6.1 kilogram / hour. Further, char was discharged from the pyrolysis residue (char) discharge port (6) at 0.9 kg / hour.
バイオマス熱分解器(3)において得られた熱分解ガスは、続いて、バイオマス熱分解器(3)下部から熱分解ガス導入管(9)を通過して、温度950℃及び圧力101.3kPaに保持された熱分解ガス改質器(2)に導入された。熱分解ガスの導入当初は、バイオマス熱分解器(3)内の温度は不安定となるが、熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)から、更に、過熱蒸気(160℃、0.6MPa)を、その量を調節しながら導入することにより、温度950℃になるように調節した。この時、熱分解ガス改質器(2)は、圧力101.3kPaに保持されていた。熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)からの過熱蒸気は、最終的に3キログラム/時間の一定量で導入された。 The pyrolysis gas obtained in the biomass pyrolyzer (3) is subsequently passed through the pyrolysis gas introduction pipe (9) from the bottom of the biomass pyrolyzer (3) to a temperature of 950 ° C. and a pressure of 101.3 kPa. It was introduced into the retained pyrolysis gas reformer (2). At the beginning of the introduction of the pyrolysis gas, the temperature in the biomass pyrolyzer (3) becomes unstable, but from the steam inlet (11 2 ) provided at the bottom of the pyrolysis gas reformer (2), The temperature was adjusted to 950 ° C. by introducing superheated steam (160 ° C., 0.6 MPa) while adjusting the amount thereof. At this time, the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa. The superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a fixed amount of 3 kilograms / hour.
上記操作により、バイオマス熱分解器(3)が温度600℃及び圧力101.3kPaに保持され、かつ、熱分解ガス改質器(2)が温度950℃及び圧力101.3kPaに保持された。これにより、温度950℃の改質ガスが9.1キログラム/時間の量で改質ガス出口(8)から得られた。 By the above operation, the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa. As a result, a reformed gas having a temperature of 950 ° C. was obtained from the reformed gas outlet (8) in an amount of 9.1 kilograms / hour.
得られた改質ガスをゴム製バッグに捕集し、ガスクロマトグラフィー[島津製作所製GC-14A(商標)]によりガス組成を測定した。表4に得られた改質ガスの組成を示した。また、該操業を3日間連続して実施することができた。該操業期間中、トラブル、とりわけ、タールに起因するトラブルのない良好な連続運転を維持することができた。また、操業期間中、熱分解ガス導入管(9)内でヒートキャリア(7)がタール等により閉塞するというトラブルを生ずることもなく、バイオマス熱分解器(3)から熱分解ガス改質器(2)への熱分解ガスのスムーズな導入が維持された。また、熱分解ガス改質器(2)出口(8)から取り出された改質ガス中のタール量は、約0.5g/m-normalであった。 The resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 4 shows the composition of the reformed gas obtained. In addition, the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. The amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.5 g / m 3 -normal.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(実施例3)
使用したバイオマス原料は、実施例1において使用したものと同一である。また、バイオマス原料の熱分解及びガス改質に使用したガス化装置は、図2に示したものを使用した。使用した装置は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)を、ヒートキャリア(7)の流れに対して並列に配置した装置構成であった。バイオマス熱分解器(3)及び熱分解ガス改質器(2)の上部に夫々1器ずつ予熱器(1,1)を備えており、該予熱器(1,1)において、バイオマス熱分解器(3)及び熱分解ガス改質器(2)に供給するヒートキャリア(7)を、夫々別個に予め加熱するものである。その他、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の寸法及び容量、熱分解ガス導入管(9)の形状及び寸法、かつ、熱分解ガス導入管(9)が重力方向に対して略水平に備えられていること、並びに、ヒートキャリア(7)の材質及び寸法、その他は、実施例1と同一であった。
(Example 3)
The biomass raw material used is the same as that used in Example 1. Moreover, what was shown in FIG. 2 was used for the gasification apparatus used for the thermal decomposition and gas reforming of biomass raw material. The used apparatus was the apparatus structure which has arrange | positioned the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) in parallel with respect to the flow of the heat carrier (7). The biomass pyrolyzer (3) and the pyrolysis gas reformer (2) are each provided with one preheater (1 2 , 1 1 ), and in the preheater (1 2 , 1 1 ), The heat carrier (7) supplied to the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is separately heated in advance. In addition, the dimensions and capacity of the biomass pyrolyzer (3) and pyrolysis gas reformer (2), the shape and dimensions of the pyrolysis gas introduction pipe (9), and the pyrolysis gas introduction pipe (9) are in the direction of gravity. And the material and dimensions of the heat carrier (7) were the same as those of Example 1.
バイオマス熱分解器(3)及び熱分解ガス改質器(2)、並びに、予熱器(1,1)内部に、ヒートキャリア(7)を予め夫々の容器の70%程度の高さまで充填し、次いで、該ヒートキャリア(7)を、予熱器(1,1)において、夫々、略500℃の温度に予め加熱した。次いで、夫々のヒートキャリア(7)を、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の頂部から夫々30キログラム/時間の量で別個に導入し、かつ、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の底部から夫々別個に適量を抜出し、ヒートキャリア(7)の循環を開始した。該ヒートキャリア(7)の循環により、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内部の気相温度及び容器自体の温度が徐々に上昇した。このようなヒートキャリア(7)の循環を継続しながら、同時に、予熱器(1)内部のヒートキャリア(7)温度を800℃まで徐々に昇温し、一方、予熱器(1)内部のヒートキャリア(7)温度を1,050℃まで徐々に昇温した。夫々のヒートキャリア(7)が上記温度に達した後、更に、循環を継続して、バイオマス熱分解器(3)及び熱分解ガス改質器(2)内部の気相温度を徐々に上昇させ、バイオマス熱分解器(3)の気相温度が600℃を超えるころから、バイオマス供給口(4)、非酸化性ガス供給口(12)及びスチーム吹込み口(11)からバイオマス熱分解器(3)に、夫々、バイオマス原料、窒素ガス及びスチームを導入し、バイオマス熱分解器(3)の温度が600℃になるようにコントロールした。一方、熱分解ガス改質器(2)の気相温度は、950℃になるように、更に、スチーム吹込み口(11)からスチームを導入してコントロールした。このとき、ヒートキャリア(7)は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)において、いずれも層状に堆積しており、その堆積量は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の夫々の内容積の約60体積%であった。バイオマス熱分解器(3)及び熱分解ガス改質器(2)からのヒートキャリア(7)の抜出し量は、いずれも供給量と同一であり、バイオマス熱分解器(3)及び熱分解ガス改質器(2)において、夫々30キログラム/時間であった。また、抜出し時のヒートキャリア(7)の温度は、いずれも400℃であった。 The biomass carrier (3), pyrolysis gas reformer (2), and preheater (1 2 , 1 1 ) are pre-filled with a heat carrier (7) to a height of about 70% of each container. Then, the heat carrier (7) was preheated to a temperature of about 500 ° C. in the preheater (1 2 , 1 1 ), respectively. Each heat carrier (7) is then introduced separately from the top of the biomass pyrolyzer (3) and pyrolytic gas reformer (2) in an amount of 30 kilograms / hour, respectively, and the biomass pyrolyzer Appropriate amounts were separately extracted from the bottom of (3) and the pyrolysis gas reformer (2), respectively, and circulation of the heat carrier (7) was started. By the circulation of the heat carrier (7), the gas phase temperature inside the biomass pyrolyzer (3) and pyrolytic gas reformer (2) and the temperature of the container itself gradually increased. While continuing the circulation of the heat carrier (7), the temperature of the heat carrier (7) inside the preheater (1 2 ) is gradually raised to 800 ° C., while the inside of the preheater (1 1 ) The temperature of the heat carrier (7) was gradually raised to 1,050 ° C. After each heat carrier (7) reaches the above temperature, the circulation is further continued to gradually increase the gas phase temperature inside the biomass pyrolyzer (3) and pyrolysis gas reformer (2). From the time when the gas phase temperature of the biomass pyrolyzer (3) exceeds 600 ° C, the biomass pyrolyzer is introduced from the biomass supply port (4), the non-oxidizing gas supply port (12), and the steam inlet (11 1 ). In (3), biomass raw material, nitrogen gas and steam were introduced, respectively, and the temperature of the biomass pyrolyzer (3) was controlled to 600 ° C. On the other hand, steam was further introduced and controlled from the steam inlet (11 2 ) so that the gas phase temperature of the pyrolysis gas reformer (2) was 950 ° C. At this time, the heat carrier (7) is deposited in layers in the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the amount of deposition is the biomass pyrolyzer (3). And about 60% by volume of the internal volume of the pyrolysis gas reformer (2). The extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) and the pyrolysis gas reformer (2) is the same as the supply amount, and the biomass pyrolyzer (3) and pyrolysis gas reformer are the same. It was 30 kilograms / hour in the quality organ (2). Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 ° C. for all.
上記の操作において、バイオマス原料としての建設系廃木材を、定量フィーダーを使用して、バイオマス供給口(4)からバイオマス熱分解器(3)に、徐々に供給量を増やしつつ、最終的に約4キログラム/時間(乾燥基準)になるように連続的に導入した。バイオマス熱分解器(3)の温度は、バイオマス原料の導入に伴って徐々に低下したが、同時に、窒素ガス及び過熱蒸気を、その供給量を調節しながらバイオマス熱分解器(3)に導入することによって、バイオマス熱分解器(3)の温度を600℃に保持した。また、バイオマス熱分解器(3)内の圧力を101.3kPaに保持した。ここで、窒素ガスは、バイオマス熱分解器(3)の上部に設けられた非酸化性ガス供給口(12)から、最終的に60リットル/時間の一定量で導入された。また、スチームとしては、過熱蒸気(160℃、0.6MPa)が使用され、バイオマス熱分解器(3)の上部に設けられたスチーム吹込み口(11)から、最終的に2キログラム/時間の一定量で導入された。バイオマス熱分解器(3)におけるバイオマス原料の滞留時間は、約1時間であった。これにより、バイオマス熱分解器(3)において熱分解により生じたガスが5.2キログラム/時間で得られた。また、チャーが0.8キログラム/時間で熱分解残渣(チャー)排出口(6)から排出された。 In the above operation, the construction waste wood as a biomass raw material is gradually increased from the biomass supply port (4) to the biomass pyrolyzer (3) using a quantitative feeder, and finally about It was continuously introduced at 4 kg / hour (dry basis). The temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount. As a result, the temperature of the biomass pyrolyzer (3) was kept at 600 ° C. Moreover, the pressure in a biomass pyrolyzer (3) was hold | maintained at 101.3 kPa. Here, nitrogen gas was finally introduced at a fixed amount of 60 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3). As the steam, superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3). Was introduced in a certain amount. The residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour. As a result, gas generated by pyrolysis in the biomass pyrolyzer (3) was obtained at 5.2 kg / hour. Char was discharged from the pyrolysis residue (char) discharge port (6) at 0.8 kg / hour.
バイオマス熱分解器(3)において得られた熱分解ガスは、続いて、バイオマス熱分解器(3)下部から熱分解ガス導入管(9)を通過して、上記温度に保持された熱分解ガス改質器(2)に導入された。熱分解ガスの導入当初は、熱分解ガス改質器(2)内の温度は不安定となるが、熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)から、更に、過熱蒸気(160℃、0.6MPa)を、その量を調節しながら導入することにより、温度950℃になるように調節した。この時、熱分解ガス改質器(2)は、圧力101.3kPaに保持されていた。熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)からの過熱蒸気は、最終的に2キログラム/時間の一定量で導入された。 The pyrolysis gas obtained in the biomass pyrolyzer (3) subsequently passes through the pyrolysis gas introduction pipe (9) from the lower part of the biomass pyrolyzer (3) and is maintained at the above temperature. It was introduced into the reformer (2). At the beginning of introduction of the pyrolysis gas, the temperature in the pyrolysis gas reformer (2) becomes unstable, but from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2). Furthermore, the temperature was adjusted to 950 ° C. by introducing superheated steam (160 ° C., 0.6 MPa) while adjusting the amount thereof. At this time, the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa. The superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a constant amount of 2 kilograms / hour.
上記操作により、バイオマス熱分解器(3)が温度600℃及び圧力101.3kPaに保持され、かつ、熱分解ガス改質器(2)が温度950℃及び圧力101.3kPaに保持された。これにより、温度950℃の改質ガスが7.2キログラム/時間の量で改質ガス出口(8)から得られた。 By the above operation, the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa. As a result, a reformed gas having a temperature of 950 ° C. was obtained from the reformed gas outlet (8) in an amount of 7.2 kilograms / hour.
得られた改質ガスをゴム製バッグに捕集し、ガスクロマトグラフィー[島津製作所製GC-14A(商標)]によりガス組成を測定した。表5に得られた改質ガスの組成を示した。また、該操業を3日間連続して実施することができた。該操業期間中、トラブル、とりわけ、タールに起因するトラブルのない良好な連続運転を維持することができた。また、操業期間中、熱分解ガス導入管(9)内でヒートキャリア(7)がタール等により閉塞するというトラブルを生ずることもなく、バイオマス熱分解器(3)から熱分解ガス改質器(2)への熱分解ガスのスムーズな導入が維持された。また、熱分解ガス改質器(2)出口(8)から取り出された改質ガス中のタール量は、約0.5g/m-normalであった。 The resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 5 shows the composition of the reformed gas obtained. In addition, the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. The amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.5 g / m 3 -normal.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例4)
使用したバイオマス原料は、実施例1において使用したものと同一である。また、バイオマス原料の熱分解及びガス改質に使用したガス化装置は、図3に示したものを使用した。使用した装置は、バイオマス熱分解器(3)において、ヒートキャリア(7)の持つ熱によりバイオマスを熱分解し、かつ、熱交換器型の熱分解ガス改質器(2)において、バイオマスの熱分解により発生したガスを、ガス状熱媒体、即ち、高温熱風により改質するものであった。また、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の寸法及び容量、並びに、ヒートキャリア(7)の材質及び寸法は、実施例1と同一である。熱分解ガス導入管(9)は、バイオマス熱分解器(3)側において、バイオマス熱分解器(3)内に形成されるヒートキャリア(7)層の上面(13)より下方のバイオマス熱分解器(3)の側面に備えられていた。一方、熱分解ガス改質器(2)側において熱分解ガス導入管(9)は、熱分解ガス改質器(2)の底部に接続されていた。熱分解ガス導入管(9)は、バイオマス熱分解器(3)側において重力方向に対して略水平に備えられており、その下流側において熱分解ガス改質器(2)の底部に向かって略垂直に立ち上がっていた。また、該立ち上がり部分の水平配管の底部には、バイオマス熱分解器(3)側から熱分解ガス改質器(2)側に向かって、水平配管の底部から略25度の傾斜角度(θ)を有する突出部が備えられていた。該熱分解ガス導入管(9)の長さは約1,000mm(水平部分:約500mm、立ち上がり部分:約500mm)であり、長手方向に垂直な断面、即ち、熱分解ガスの流れ方向に対して垂直な断面の外形は、一辺180mmの略正方形であった。
Example 4
The biomass raw material used is the same as that used in Example 1. The gasifier used for pyrolysis and gas reforming of the biomass material was the one shown in FIG. The used apparatus is that the biomass pyrolyzer (3) pyrolyzes the biomass with the heat of the heat carrier (7), and the heat exchanger type pyrolytic gas reformer (2) heats the biomass. The gas generated by the decomposition was modified by a gaseous heat medium, that is, high-temperature hot air. The dimensions and capacity of the biomass pyrolyzer (3) and pyrolytic gas reformer (2), and the material and dimensions of the heat carrier (7) are the same as those in Example 1. The pyrolysis gas introduction pipe (9) is located on the biomass pyrolyzer (3) side and is below the upper surface (13) of the heat carrier (7) layer formed in the biomass pyrolyzer (3). It was provided on the side of (3). On the other hand, on the pyrolysis gas reformer (2) side, the pyrolysis gas introduction pipe (9) was connected to the bottom of the pyrolysis gas reformer (2). The pyrolysis gas introduction pipe (9) is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer (3) side, and toward the bottom of the pyrolysis gas reformer (2) on the downstream side. It stood up almost vertically. Further, at the bottom of the horizontal pipe at the rising portion, an inclination angle (θ) of approximately 25 degrees from the bottom of the horizontal pipe from the biomass pyrolyzer (3) side to the pyrolysis gas reformer (2) side. Protrusions having The pyrolysis gas introduction pipe (9) has a length of about 1,000 mm (horizontal portion: about 500 mm, rising portion: about 500 mm), and is perpendicular to the longitudinal direction, that is, with respect to the flow direction of the pyrolysis gas. The outer shape of the vertical cross section was a substantially square with a side of 180 mm.
バイオマス熱分解器(3)及び予熱器(1)内部に、ヒートキャリア(7)を予め夫々の容器の70%程度の高さまで充填し、次いで、該ヒートキャリア(7)を、予熱器(1)において500℃の温度に加熱した。次いで、該ヒートキャリア(7)を、バイオマス熱分解器(3)の頂部から30キログラム/時間の量で導入し、かつ、バイオマス熱分解器(3)の底部から適量を抜出し、ヒートキャリア(7)の循環を開始した。該ヒートキャリア(7)の循環により、バイオマス熱分解器(3)内部の気相温度及び容器自体の温度が徐々に上昇した。このようなヒートキャリア(7)の循環を継続しながら、同時に、予熱器(1)内部のヒートキャリア(7)温度を800℃まで徐々に昇温した。ヒートキャリア(7)が該温度に達した後、更に、循環を継続して、バイオマス熱分解器(3)内部の気相温度を徐々に上昇させ、バイオマス熱分解器(3)の気相温度が600℃を超えるころから、バイオマス供給口(4)、非酸化性ガス供給口(12)及びスチーム吹込み口(11)からバイオマス熱分解器(3)に、夫々、バイオマス原料、窒素ガス及びスチームを導入し、バイオマス熱分解器(3)の温度が600℃になるようにコントロールした。一方、熱分解ガス改質器(2)には、その熱媒体入口(10)から1,200℃の高温熱風を約2m/時間の量で吹き込みながら、熱分解ガス改質器(2)の気相温度が、950℃になるように、更に、スチーム吹込み口(11)からスチームを導入してコントロールした。このとき、ヒートキャリア(7)は、バイオマス熱分解器(3)において、層状に堆積しており、その堆積量は、バイオマス熱分解器(3)の内容積の約60体積%であった。バイオマス熱分解器(3)からのヒートキャリア(7)の抜出し量は、供給量と同一であり、バイオマス熱分解器(3)において、30キログラム/時間であった。また、抜出し時のヒートキャリア(7)の温度は、400℃であった。 The biomass pyrolyzer (3) and the preheater (1) are preliminarily filled with a heat carrier (7) to a height of about 70% of each container, and then the heat carrier (7) is added to the preheater (1). ) To a temperature of 500 ° C. Next, the heat carrier (7) is introduced in an amount of 30 kg / hour from the top of the biomass pyrolyzer (3), and an appropriate amount is withdrawn from the bottom of the biomass pyrolyzer (3). ) Circulation started. By circulation of the heat carrier (7), the gas phase temperature inside the biomass pyrolyzer (3) and the temperature of the container itself gradually increased. While continuing the circulation of the heat carrier (7), the temperature of the heat carrier (7) inside the preheater (1) was gradually raised to 800 ° C. After the heat carrier (7) reaches the temperature, the circulation is further continued to gradually increase the gas phase temperature inside the biomass pyrolyzer (3), and the gas phase temperature of the biomass pyrolyzer (3). When the temperature exceeds 600 ° C., the biomass feed port (4), the non-oxidizing gas supply port (12), and the steam blow-in port (11 1 ) are fed into the biomass pyrolyzer (3), respectively. And steam were introduced, and the temperature of the biomass pyrolyzer (3) was controlled to 600 ° C. On the other hand, while the high-temperature hot air of 1,200 ° C. is blown into the pyrolysis gas reformer (2) at an amount of about 2 m 3 / hour from the heating medium inlet (10 1 ), the pyrolysis gas reformer (2 Further, steam was introduced from the steam inlet (11 2 ) and controlled so that the gas phase temperature of) was 950 ° C. At this time, the heat carrier (7) was deposited in layers in the biomass pyrolyzer (3), and the amount deposited was approximately 60% by volume of the internal volume of the biomass pyrolyzer (3). The extraction amount of the heat carrier (7) from the biomass pyrolyzer (3) was the same as the supply amount, and was 30 kg / hour in the biomass pyrolyzer (3). Moreover, the temperature of the heat carrier (7) at the time of extraction was 400 degreeC.
上記の操作において、バイオマス原料としての建設系廃木材を、定量フィーダーを使用して、バイオマス供給口(4)からバイオマス熱分解器(3)に、徐々に供給量を増やしつつ、最終的に約4キログラム/時間(乾燥基準)になるように連続的に導入した。バイオマス熱分解器(3)の温度は、バイオマス原料の導入に伴って徐々に低下したが、同時に、窒素ガス及び過熱蒸気を、その供給量を調節しながらバイオマス熱分解器(3)に導入することによって、バイオマス熱分解器(3)の温度を600℃に保持した。また、バイオマス熱分解器(3)内の圧力を101.3kPaに保持した。ここで、窒素ガスは、バイオマス熱分解器(3)の上部に設けられた非酸化性ガス供給口(12)から、最終的に60リットル/時間の一定量で導入された。また、スチームとしては、過熱蒸気(160℃、0.6MPa)が使用され、バイオマス熱分解器(3)の上部に設けられたスチーム吹込み口(11)から、最終的に2キログラム/時間の一定量で導入された。バイオマス熱分解器(3)におけるバイオマス原料の滞留時間は、約1時間であった。これにより、バイオマス熱分解器(3)において熱分解により生じたガスが5.1キログラム/時間で得られた。また、チャーが0.9キログラム/時間で熱分解残渣(チャー)排出口(6)から排出された。 In the above operation, the construction waste wood as a biomass raw material is gradually increased from the biomass supply port (4) to the biomass pyrolyzer (3) using a quantitative feeder, and finally about It was continuously introduced at 4 kg / hour (dry basis). The temperature of the biomass pyrolyzer (3) gradually decreased with the introduction of the biomass raw material, but at the same time, nitrogen gas and superheated steam were introduced into the biomass pyrolyzer (3) while adjusting the supply amount. As a result, the temperature of the biomass pyrolyzer (3) was kept at 600 ° C. Moreover, the pressure in a biomass pyrolyzer (3) was hold | maintained at 101.3 kPa. Here, nitrogen gas was finally introduced at a fixed amount of 60 liters / hour from the non-oxidizing gas supply port (12) provided in the upper part of the biomass pyrolyzer (3). As the steam, superheated steam (160 ° C., 0.6 MPa) is used, and finally 2 kg / hour from the steam inlet (11 1 ) provided at the top of the biomass pyrolyzer (3). Was introduced in a certain amount. The residence time of the biomass raw material in the biomass pyrolyzer (3) was about 1 hour. As a result, gas generated by pyrolysis in the biomass pyrolyzer (3) was obtained at 5.1 kilogram / hour. Further, char was discharged from the pyrolysis residue (char) discharge port (6) at 0.9 kg / hour.
バイオマス熱分解器(3)において得られた熱分解ガスは、続いて、バイオマス熱分解器(3)下部から熱分解ガス導入管(9)を通過して、熱交換器型の熱分解ガス改質器(2)に導入された。該熱分解ガス改質器(2)においては、予め約1,200℃に加熱された高温熱風が、高温熱風入口(10)から熱分解ガス改質器(2)の外側に備えられている熱媒体流路に導入され、熱分解ガス改質器(2)内部を流れる熱分解ガスと熱交換された後、約700℃で高温熱風出口(10)から排出された。熱分解ガスの導入当初は、熱分解ガス改質器(2)内の温度は不安定となるが、高温熱風の量を調節しながら徐々増やし、かつ、熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)から、更に、過熱蒸気(160℃、0.6MPa)を、その量を調節しながら導入することにより、熱分解ガス改質器(2)内の温度が950℃になるように調節した。この時、熱分解ガス改質器(2)は、圧力101.3kPaに保持されていた。熱分解ガス改質器(2)下部に設けられたスチーム吹込み口(11)からの過熱蒸気は、最終的に2キログラム/時間の一定量で導入された。 The pyrolysis gas obtained in the biomass pyrolyzer (3) is then passed from the bottom of the biomass pyrolyzer (3) through the pyrolysis gas introduction pipe (9) to improve the heat exchanger type pyrolysis gas. Introduced into the mass device (2). In the pyrolysis gas reformer (2), high-temperature hot air previously heated to about 1,200 ° C. is provided outside the pyrolysis gas reformer (2) from the high-temperature hot air inlet (10 1 ). After being introduced into the heat medium flow path and exchanging heat with the pyrolysis gas flowing inside the pyrolysis gas reformer (2), it was discharged from the high temperature hot air outlet (10 2 ) at about 700 ° C. At the beginning of the introduction of the pyrolysis gas, the temperature in the pyrolysis gas reformer (2) becomes unstable, but gradually increases while adjusting the amount of hot hot air, and the lower part of the pyrolysis gas reformer (2) Further, superheated steam (160 ° C., 0.6 MPa) is introduced from the steam inlet (11 2 ) provided in the tank while adjusting the amount thereof, thereby allowing the inside of the pyrolysis gas reformer (2). The temperature was adjusted to 950 ° C. At this time, the pyrolysis gas reformer (2) was maintained at a pressure of 101.3 kPa. The superheated steam from the steam inlet (11 2 ) provided at the lower part of the pyrolysis gas reformer (2) was finally introduced at a constant amount of 2 kilograms / hour.
上記操作により、バイオマス熱分解器(3)が温度600℃及び圧力101.3kPaに保持され、かつ、熱分解ガス改質器(2)が温度950℃及び圧力101.3kPaに保持された。これにより、温度900℃の改質ガスが7.1キログラム/時間の量で改質ガス出口(8)から得られた。 By the above operation, the biomass pyrolyzer (3) was maintained at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolysis gas reformer (2) was maintained at a temperature of 950 ° C. and a pressure of 101.3 kPa. As a result, a reformed gas having a temperature of 900 ° C. was obtained from the reformed gas outlet (8) in an amount of 7.1 kilogram / hour.
得られた改質ガスをゴム製バッグに捕集し、ガスクロマトグラフィー[島津製作所製GC-14A(商標)]によりガス組成を測定した。表6に得られた改質ガスの組成を示した。また、該操業を3日間連続して実施することができた。該操業期間中、トラブル、とりわけ、タールに起因するトラブルのない良好な連続運転を維持することができた。また、操業期間中、熱分解ガス導入管(9)内でヒートキャリア(7)がタール等により閉塞するというトラブルを生ずることもなく、バイオマス熱分解器(3)から熱分解ガス改質器(2)への熱分解ガスのスムーズな導入が維持された。また、熱分解ガス改質器(2)出口(8)から取り出された改質ガス中のタール量は、約0.8g/m-normalであった。 The resulting reformed gas was collected in a rubber bag, and the gas composition was measured by gas chromatography [GC-14A (trademark) manufactured by Shimadzu Corporation]. Table 6 shows the composition of the reformed gas obtained. In addition, the operation could be carried out continuously for 3 days. During the operation period, it was possible to maintain a good continuous operation without any trouble, in particular, trouble caused by tar. Further, during the operation period, there is no trouble that the heat carrier (7) is clogged by tar or the like in the pyrolysis gas introduction pipe (9), and the pyrolysis gas reformer ( The smooth introduction of pyrolysis gas into 2) was maintained. In addition, the amount of tar in the reformed gas taken out from the pyrolysis gas reformer (2) outlet (8) was about 0.8 g / m 3 -normal.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(比較例1)
バイオマス原料の熱分解及び発生した熱分解ガスの改質に使用したガス化装置としては、特許文献5の図1に記載のものを使用した。即ち、熱分解領域(200)の上部に改質領域(300)が上下に直列に備えられている装置である。換言すれば、バイオマス熱分解器と熱分解ガス改質器とが、上下に直列に接続されている装置である。比較例においては、実機の約10分の1の実験用小型装置を使用した。使用したガス化装置は図5に示した通りである。ガス化炉(A)本体の材質はインコネルである。ガス化炉(A)は内径100mm及び高さ650mmの円筒状であり、ガス化炉(A)底部から300mmが熱分解領域(200)であり、頂部から300mmが改質領域(300)である。熱分解領域(200)には、熱媒体としてアルミナボール(D)(直径は5~15mm)を使用した。改質領域(300)の上部にはニッケル触媒(E)が充填されている。上記の熱分解領域(200)と改質領域(300)との間にスチーム導入口(400)が設けられている。また、該熱分解領域(200)と改質領域(300)のガス化炉外壁には、夫々、温度制御可能な電気加熱器(B)及び(C)が設置されている。
(Comparative Example 1)
As the gasifier used for the pyrolysis of the biomass raw material and the reforming of the generated pyrolysis gas, the one described in FIG. That is, it is an apparatus in which a reforming region (300) is provided in series above and below the pyrolysis region (200). In other words, it is an apparatus in which a biomass pyrolyzer and a pyrolysis gas reformer are connected in series up and down. In the comparative example, about one-tenth of a small experimental device was used. The gasifier used was as shown in FIG. The material of the gasifier (A) main body is Inconel. The gasification furnace (A) has a cylindrical shape with an inner diameter of 100 mm and a height of 650 mm, 300 mm from the bottom of the gasification furnace (A) is the thermal decomposition region (200), and 300 mm from the top is the reforming region (300). . In the pyrolysis region (200), an alumina ball (D) (diameter: 5 to 15 mm) was used as a heat medium. The upper part of the reforming region (300) is filled with a nickel catalyst (E). A steam inlet (400) is provided between the thermal decomposition region (200) and the reforming region (300). In addition, electric heaters (B) and (C) capable of temperature control are installed on the outer walls of the gasification furnace in the pyrolysis region (200) and the reforming region (300), respectively.
原料としては、実施例1と同じ建設系廃木材を使用した。原料を、気流搬送により原料供給配管(100)から、ガス化炉(A)の熱分解領域(200)に30~40秒間隔で0.11グラム毎断続的に導入した。ガス化炉(A)の熱分解領域(200)は、電気加熱器(B)を使用して熱媒体としてのアルミナボールを加熱することにより、550℃の温度に制御された。また、熱分解領域(200)は、その底部(600)からヘリウムガスが0.50リットル/分で導入されて、0.103MPaの圧力に保持された。該廃木材は熱分解されて、発生したガスは、同一の圧力に保持されたガス化炉(A)の改質領域(300)に導入され、スチームと混合された。 As the raw material, the same construction waste wood as in Example 1 was used. The raw material was intermittently introduced from the raw material supply pipe (100) into the thermal decomposition region (200) of the gasification furnace (A) at intervals of 30 to 40 seconds every 30 minutes by airflow conveyance. The pyrolysis region (200) of the gasification furnace (A) was controlled to a temperature of 550 ° C. by heating an alumina ball as a heating medium using an electric heater (B). The pyrolysis region (200) was maintained at a pressure of 0.103 MPa by introducing helium gas at 0.50 liter / min from the bottom (600) thereof. The waste wood was pyrolyzed, and the generated gas was introduced into the reforming region (300) of the gasification furnace (A) maintained at the same pressure, and mixed with steam.
ガス化炉(A)の改質領域(300)の温度は1,000℃であり、改質領域(300)の出口部(500)におけるガス温度は947℃であった。改質領域(300)の温度は、電気加熱器(C)により一定に制御された。得られた改質ガスの組成は、表7に示す通りである。また、改質領域(300)の出口側の改質ガス中のタール量は、約5g/m-normalであった。該装置においては、操業を3日間連続して実施することができたが、2日目を過ぎるあたりから、熱分解領域(200)内の圧力が多少上昇し始めた。操業終了後、アルミナボール(D)層を点検したところタールの沈積が認められた。従って、長期間の連続操業には問題があると推察される。 The temperature of the reforming region (300) of the gasification furnace (A) was 1,000 ° C., and the gas temperature at the outlet (500) of the reforming region (300) was 947 ° C. The temperature of the reforming zone (300) was controlled to be constant by the electric heater (C). The composition of the obtained reformed gas is as shown in Table 7. Further, the amount of tar in the reformed gas on the outlet side of the reforming region (300) was about 5 g / m 3 -normal. In the apparatus, the operation could be carried out continuously for 3 days, but the pressure in the pyrolysis region (200) began to increase slightly after the second day. After completion of the operation, the alumina ball (D) layer was inspected, and tar deposition was observed. Therefore, it is assumed that there is a problem with long-term continuous operation.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
実施例1及び2は、バイオマス原料を変えたものである。いずれのバイオマス原料であっても、操業期間中、タールに起因するトラブルのない良好な連続運転を継続することができ、熱分解ガス導入管(9)内でヒートキャリア(7)がタール等により閉塞するというトラブルを生ずることもなく、バイオマス熱分解器(3)から熱分解ガス改質器(2)への熱分解ガスのスムーズな導入が維持された。加えて、得られた改質ガス中のタール量は、極めて少ないものであった。実施例3は、バイオマス熱分解器(3)及び熱分解ガス改質器(2)の上部に夫々別個に予熱器(1,1)を設置して、ヒートキャリア(7)を、夫々異なる温度に加熱して、バイオマス熱分解器(3)及び熱分解ガス改質器(2)に供給するガス化装置を使用したものである。実施例1及び2と同様に良好な操業を確保することができ、かつ、得られた改質ガス中のタール量は、極めて少ないものであった。実施例4は、熱分解ガス改質器(2)として、高温熱風で加熱する熱交換器型の改質器を使用したものである。実施例1~3と同様に良好な操業を確保することができた。また、得られた改質ガス中のタール量は、僅かに増加したものの、装置のスムーズな操業を阻害するものではなかった。比較例1は、従来の装置を使用したものである。アルミナボール(D)層へのタールの沈積が認められ、長期間の連続操業には問題があることが分かった。加えて、実施例1~4と比較例1との結果から、いずれにおいても、改質ガス組成はほぼ等しく、本発明のガス化装置を使用すれば、従来の縦型直列2段ガス化炉と同程度にガス化処理ができることが分かった。また、改質ガス中のタール量では、本発明の装置において著しく低下しており、バイオマスのガス化装置として有用であることが示された。 In Examples 1 and 2, biomass raw materials are changed. Any biomass raw material can be continuously operated without any trouble caused by tar during the operation period, and the heat carrier (7) is caused by tar or the like in the pyrolysis gas introduction pipe (9). The smooth introduction of pyrolysis gas from the biomass pyrolyzer (3) to the pyrolysis gas reformer (2) was maintained without causing the trouble of blocking. In addition, the amount of tar in the resulting reformed gas was extremely small. In Example 3, a preheater (1 2 , 1 1 ) is separately installed on the upper part of the biomass pyrolyzer (3) and the pyrolysis gas reformer (2), and the heat carrier (7) is respectively installed. A gasifier is used which is heated to different temperatures and supplied to the biomass pyrolyzer (3) and the pyrolysis gas reformer (2). As in Examples 1 and 2, good operation could be ensured, and the amount of tar in the resulting reformed gas was extremely small. In Example 4, a heat exchanger type reformer that is heated with high-temperature hot air is used as the pyrolysis gas reformer (2). As in Examples 1 to 3, good operation could be secured. Further, although the amount of tar in the obtained reformed gas slightly increased, it did not hinder the smooth operation of the apparatus. Comparative Example 1 uses a conventional apparatus. Tar deposition on the alumina ball (D) layer was observed, and it was found that there was a problem with long-term continuous operation. In addition, from the results of Examples 1 to 4 and Comparative Example 1, in any case, the reformed gas composition is almost equal, and if the gasifier of the present invention is used, a conventional vertical series two-stage gasifier is used. It was found that gasification treatment can be performed to the same extent. Further, the amount of tar in the reformed gas is significantly reduced in the apparatus of the present invention, indicating that it is useful as a biomass gasification apparatus.
本発明のバイオマスのガス化装置によれば、バイオマスの熱分解温度及び発生した熱分解ガスの改質温度を最適化することにより、熱分解ガスの発生量を増大させ、かつ、最終製品である水素含有ガスの生産量を増大させ得るばかりではなく、タール及び煤塵の発生量を低減せしめ得る。加えて、発生したタールを効果的にガス化し、かつ、ガス化されずに残存したタール及び煤塵を効率的に回収して、それにより、タール及び煤塵による装置トラブルを著しく軽減し得る。従って、本発明のガス化装置は、今後、バイオマスのガス化に大いに利用されることが期待される。加えて、水素製造事業及び発電事業への利用も期待される。 According to the biomass gasification apparatus of the present invention, the amount of pyrolysis gas generated is increased by optimizing the pyrolysis temperature of biomass and the reforming temperature of the generated pyrolysis gas, and is the final product. Not only can the production amount of hydrogen-containing gas be increased, but also the generation amount of tar and dust can be reduced. In addition, the generated tar can be effectively gasified, and the tar and dust remaining without being gasified can be efficiently recovered, thereby significantly reducing the trouble of the equipment due to tar and dust. Therefore, it is expected that the gasification apparatus of the present invention will be greatly utilized for biomass gasification in the future. In addition, it is expected to be used for hydrogen production business and power generation business.
1,1、1 予熱器
2  熱分解ガス改質器
3  バイオマス熱分解器
4  バイオマス供給口
5  排出物処理装置
6  熱分解残渣(チャー)排出口
7  複数の粒状物及び/又は塊状物[熱担持媒体(ヒートキャリア)]
8  改質ガス排出口
9  熱分解ガス導入管
9-2 熱分解ガス導入管の熱分解ガス改質器側ガス導入口(ガス出口)
9-3 熱分解ガス導入管のバイオマス熱分解器側ガス取り入れ口(ガス入口)
10、10 熱媒体入口、出口
11、11、11 スチーム吹込み口
12 非酸化性ガス供給口
13 バイオマス熱分解器及び熱分解ガス改質器内に夫々形成される、複数の粒状物及び/又は塊状物層の上面
g  熱分解ガスの流れ方向
h  熱分解ガス導入管内部底面の突出部分の高さ
 熱分解ガス導入管のガス取り入れ口の垂直方向の幅(高さ)
 熱分解ガス導入管のガス導入口の垂直方向の幅(高さ)
θ 熱分解ガス導入管の内部底面突出部の傾斜角度
A   ガス化炉
B   電気加熱器
C   電気加熱器
D   アルミナボール(熱媒体)
E   ニッケル触媒
100 原料供給配管
200 熱分解領域
300 改質領域
400 スチーム導入口
500 改質ガス出口
600 ヘリウム導入口
1, 1 1 , 1 2 Preheater 2 Pyrolysis gas reformer 3 Biomass pyrolyzer 4 Biomass supply port 5 Waste treatment device 6 Pyrolysis residue (char) discharge port 7 Multiple granular and / or lump [ Thermal support medium (heat carrier)]
8 Reformed gas outlet 9 Pyrolysis gas introduction pipe 9-2 Pyrolysis gas reformer side gas introduction port (gas outlet) of pyrolysis gas introduction pipe
9-3 Biomass pyrolyzer side gas inlet of the pyrolysis gas inlet pipe (gas inlet)
10 1 , 10 2 Heat medium inlet, outlet 11 1 , 11 2 , 11 3 Steam inlet 12 Non-oxidizing gas supply port 13 A plurality of formed in the biomass pyrolyzer and pyrolytic gas reformer, respectively The upper surface g of the granular material and / or the lump material layer The flow direction h of the pyrolysis gas h The height h of the protruding portion of the inner bottom surface of the pyrolysis gas introduction tube 1 The vertical width (height of the gas inlet of the pyrolysis gas introduction tube )
h 2 Vertical width (height) of the gas inlet of the pyrolysis gas inlet pipe
θ Inclination angle A of the inner bottom protrusion of the pyrolysis gas inlet tube A Gasification furnace B Electric heater C Electric heater D Alumina ball (heat medium)
E Nickel catalyst 100 Raw material supply pipe 200 Pyrolysis region 300 Reforming region 400 Steam inlet 500 Reformed gas outlet 600 Helium inlet

Claims (12)

  1. バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を備えるバイオマス熱分解器と、スチーム吹込み口及び改質ガス排出口を備える熱分解ガス改質器と、上記バイオマス熱分解器において発生した熱分解ガスを上記熱分解ガス改質器へと導入する、上記バイオマス熱分解器と上記熱分解ガス改質器との間に備えられた熱分解ガス導入管とを備え、かつ、上記バイオマス熱分解器及び上記熱分解ガス改質器が、夫々更に、予め加熱された複数の粒状物及び/又は塊状物の導入口及び排出口を備え、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解及びバイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化装置において、上記バイオマス熱分解器と上記熱分解ガス改質器とが、上記複数の粒状物及び/又は塊状物の流れに対して並列に備えられており、かつ、上記熱分解ガス導入管が、上記バイオマス熱分解器及び上記熱分解ガス改質器の両側において、上記バイオマス熱分解器及び上記熱分解ガス改質器内に夫々形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器及び上記熱分解ガス改質器の側面に備えられており、かつ、上記熱分解ガス導入管が、重力方向に対して略水平に備えられていることを特徴とするバイオマスのガス化装置。 Biomass pyrolyzer having a biomass supply port, a non-oxidizing gas supply port and / or a steam blow-in port, a pyrolysis gas reformer having a steam blow-in port and a reformed gas discharge port, and the biomass heat A pyrolysis gas introduction pipe provided between the biomass pyrolysis device and the pyrolysis gas reformer for introducing the pyrolysis gas generated in the cracker into the pyrolysis gas reformer; In addition, the biomass pyrolyzer and the pyrolysis gas reformer each further include a plurality of preheated granular and / or lump inlets and outlets, and the plurality of granular and / or The biomass pyrolyzer and the pyrolysis gas in the biomass gasification apparatus for performing the pyrolysis of the biomass and reforming of the pyrolysis gas generated by the pyrolysis of the biomass by the heat of the lump. And a pyrolyzed gas introduction pipe, the biomass pyrolyzer and the pyrolytic gas reformer are provided in parallel with the flow of the plurality of particulates and / or agglomerates. The biomass pyrolyzer and the pyrolysis gas below the upper surfaces of the plurality of granular and / or lump layers formed in the biomass pyrolyzer and the pyrolysis gas reformer, respectively, on both sides of A biomass gasification apparatus which is provided on a side surface of a reformer and wherein the pyrolysis gas introduction pipe is provided substantially horizontally with respect to a direction of gravity.
  2. 上記熱分解ガス導入管の内部底面が、上方に向かって突出した構造を有している、請求項1記載のバイオマスのガス化装置。 The biomass gasification apparatus according to claim 1, wherein an inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward.
  3. 上記熱分解ガス導入管の内部底面が、バイオマス熱分解器及び熱分解ガス改質器の両側から中央部へと傾斜を備えて上方に向かって突出した構造を有している、請求項1記載のバイオマスのガス化装置。 The inner bottom surface of the pyrolysis gas introduction pipe has a structure projecting upward with an inclination from both sides of the biomass pyrolyzer and the pyrolysis gas reformer to the center. Biomass gasifier.
  4. 上記熱分解ガス導入管の長手方向に垂直な断面の外形が略四角形である、請求項1~3のいずれか一つに記載のバイオマスのガス化装置。 The biomass gasification apparatus according to any one of claims 1 to 3, wherein an outer shape of a cross section perpendicular to the longitudinal direction of the pyrolysis gas introduction pipe is substantially rectangular.
  5. 上記熱分解ガス導入管が、1又は2本備えられている、請求項1~4のいずれか一つに記載のバイオマスのガス化装置。 The biomass gasification apparatus according to any one of claims 1 to 4, wherein one or two of the pyrolysis gas introduction pipes are provided.
  6. 上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、請求項1~5のいずれか一つに記載のバイオマスのガス化装置。 The biomass gasification apparatus according to any one of claims 1 to 5, wherein the pyrolysis gas introduction pipe has the plurality of particulates and / or agglomerates therein.
  7. バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を備えるバイオマス熱分解器と、スチーム吹込み口及び改質ガス排出口を備える熱分解ガス改質器と、上記バイオマス熱分解器において発生した熱分解ガスを上記熱分解ガス改質器へと導入する、上記バイオマス熱分解器と上記熱分解ガス改質器との間に備えられた熱分解ガス導入管とを備え、かつ、上記バイオマス熱分解器が、更に、予め加熱された複数の粒状物及び/又は塊状物の導入口及び排出口を備え、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解を実行し、一方、上記熱分解ガス改質器が、更に、その外側に予め加熱されたガス状又は液体状熱媒体の流路を備え、該熱媒体の持つ熱により、バイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化装置において、上記熱分解ガス導入管が、上記バイオマス熱分解器側において、上記バイオマス熱分解器内に形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器の側面に備えられていることを特徴とするバイオマスのガス化装置。 Biomass pyrolyzer having a biomass supply port, a non-oxidizing gas supply port and / or a steam blow-in port, a pyrolysis gas reformer having a steam blow-in port and a reformed gas discharge port, and the biomass heat A pyrolysis gas introduction pipe provided between the biomass pyrolysis device and the pyrolysis gas reformer for introducing the pyrolysis gas generated in the cracker into the pyrolysis gas reformer; The biomass pyrolyzer further includes a plurality of pre-heated granular and / or lump inlets and outlets, and the heat of the plurality of granular and / or lump-like materials causes the biomass to decompose. On the other hand, the pyrolysis gas reformer is further provided with a flow path of a gaseous or liquid heating medium preheated outside thereof, and heat of the biomass is generated by the heat of the heating medium. Caused by decomposition In the biomass gasification apparatus for performing reforming of pyrolysis gas, the pyrolysis gas introduction pipe is formed in the biomass pyrolysis device on the biomass pyrolysis device side, and the plurality of granular materials and / or Alternatively, the biomass gasification apparatus is provided on a side surface of the biomass pyrolyzer below the upper surface of the massive layer.
  8. 上記熱分解ガス導入管が、上記バイオマス熱分解器と上記熱分解ガス改質器との間の上記バイオマス熱分解器側において、重力方向に対して略水平に備えられており、次いで、上記熱分解ガス改質器側に向かって、上方に立ち上がった構造を有している、請求項7記載のバイオマスのガス化装置。 The pyrolysis gas introduction pipe is provided substantially horizontally with respect to the direction of gravity on the biomass pyrolyzer side between the biomass pyrolyzer and the pyrolysis gas reformer. The biomass gasification apparatus according to claim 7, wherein the biomass gasification apparatus has a structure that rises upward toward the cracked gas reformer.
  9. 上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、請求項7又は8記載のバイオマスのガス化装置。 The biomass gasification apparatus according to claim 7 or 8, wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein.
  10. バイオマスを、非酸化性ガス雰囲気下又は非酸化性ガスとスチームとの混合ガス雰囲気下において加熱するバイオマス熱分解器と、上記バイオマス熱分解器において発生したガスを、スチームの存在下に加熱する熱分解ガス改質器とを備え、かつ、予め加熱された複数の粒状物及び/又は塊状物を、上記バイオマス熱分解器及び上記熱分解ガス改質器に投入せしめて、上記複数の粒状物及び/又は塊状物の持つ熱により、バイオマスの熱分解及びバイオマスの熱分解により発生した熱分解ガスの改質を実行するバイオマスのガス化方法において、上記複数の粒状物及び/又は塊状物が、上記複数の粒状物及び/又は塊状物の流れに対して並列に備えられている上記バイオマス熱分解器と上記熱分解ガス改質器とに別個に投入され、上記バイオマス熱分解器において発生した熱分解ガスが、上記バイオマス熱分解器と上記熱分解ガス改質器の両側において、上記バイオマス熱分解器及び上記熱分解ガス改質器内に夫々形成される、上記複数の粒状物及び/又は塊状物層の上面より下方の上記バイオマス熱分解器及び上記熱分解ガス改質器の側面に備えられ、かつ、重力方向に対して略水平に備えられた熱分解ガス導入管を通って、上記熱分解ガス改質器に導入されて改質されるバイオマスのガス化方法。 A biomass pyrolyzer that heats biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of non-oxidizing gas and steam, and heat that heats the gas generated in the biomass pyrolyzer in the presence of steam A plurality of granules and / or lump that have been heated in advance and are put into the biomass pyrolyzer and the pyrolysis gas reformer, and the plurality of granules and In the method for biomass gasification in which the pyrolysis of biomass and the reforming of pyrolysis gas generated by the pyrolysis of biomass are performed by the heat of the lump, the plurality of granules and / or lump is the above The biomass pyrolyzer and the pyrolysis gas reformer provided in parallel to the flow of a plurality of particulates and / or agglomerates are separately charged, The pyrolysis gas generated in the pyrolyzer is formed in the biomass pyrolyzer and the pyrolysis gas reformer on both sides of the biomass pyrolyzer and the pyrolysis gas reformer, respectively. Pyrolysis gas provided on the side surfaces of the biomass pyrolyzer and pyrolysis gas reformer below the upper surface of the plurality of granular and / or lump layers and provided substantially horizontally with respect to the direction of gravity A method for gasifying biomass that is introduced into the pyrolysis gas reformer and reformed through an introduction pipe.
  11. 上記熱分解ガス導入管の内部底面が、上方に向かって突出した構造を有している、請求項10記載のバイオマスのガス化方法。 The biomass gasification method according to claim 10, wherein an inner bottom surface of the pyrolysis gas introduction pipe has a structure protruding upward.
  12. 上記熱分解ガス導入管が、その内部に上記複数の粒状物及び/又は塊状物を保有している、請求項10又は11記載のバイオマスのガス化方法。 The biomass gasification method according to claim 10 or 11, wherein the pyrolysis gas introduction pipe has the plurality of granular materials and / or agglomerates therein.
PCT/JP2016/065229 2016-05-23 2016-05-23 Biomass gasification apparatus WO2017203587A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/065229 WO2017203587A1 (en) 2016-05-23 2016-05-23 Biomass gasification apparatus
JP2017519000A JP6412261B2 (en) 2016-05-23 2016-05-23 Biomass gasifier
TW106111873A TW201741446A (en) 2016-05-23 2017-04-10 Biomass gasifier device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/065229 WO2017203587A1 (en) 2016-05-23 2016-05-23 Biomass gasification apparatus

Publications (1)

Publication Number Publication Date
WO2017203587A1 true WO2017203587A1 (en) 2017-11-30

Family

ID=60411695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065229 WO2017203587A1 (en) 2016-05-23 2016-05-23 Biomass gasification apparatus

Country Status (3)

Country Link
JP (1) JP6412261B2 (en)
TW (1) TW201741446A (en)
WO (1) WO2017203587A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065851A1 (en) * 2017-09-29 2019-04-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2020008622A1 (en) * 2018-07-06 2020-01-09 株式会社 翼エンジニアリングサービス Method for producing hydrogen using biomass as raw material
EP4098942A1 (en) * 2021-05-29 2022-12-07 François Hustache Method for processing organic waste by pyrolysis
GB2583097B (en) * 2019-04-15 2023-08-16 Big Atom Ltd Pyrolysis apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016061A (en) * 2005-07-05 2007-01-25 Ishikawajima Harima Heavy Ind Co Ltd Gasification process of solid fuel and gasifier using the process
JP2008088434A (en) * 2007-10-29 2008-04-17 Mitsubishi Heavy Ind Ltd Biomass gasification furnace
JP2008260801A (en) * 2007-04-10 2008-10-30 Ihi Corp Method for eliminating tar from gasified gas and device for the same
JP2010121049A (en) * 2008-11-20 2010-06-03 Jfe Engineering Corp Apparatus and method for gasification of organic raw material
US20130153826A1 (en) * 2011-07-21 2013-06-20 Antonin Paquet Use of char particles in the production of synthesis gas and in hydrocarbon reforming

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19945771C1 (en) * 1999-09-24 2001-02-22 Muehlen Gmbh & Co Kg Dr Process for gasifying organic materials comprises cracking the materials by contacting with a hot heat carrier medium which is removed from a solid carbonaceous residue after leaving the pyrolysis reactor and conveyed to a heating zone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016061A (en) * 2005-07-05 2007-01-25 Ishikawajima Harima Heavy Ind Co Ltd Gasification process of solid fuel and gasifier using the process
JP2008260801A (en) * 2007-04-10 2008-10-30 Ihi Corp Method for eliminating tar from gasified gas and device for the same
JP2008088434A (en) * 2007-10-29 2008-04-17 Mitsubishi Heavy Ind Ltd Biomass gasification furnace
JP2010121049A (en) * 2008-11-20 2010-06-03 Jfe Engineering Corp Apparatus and method for gasification of organic raw material
US20130153826A1 (en) * 2011-07-21 2013-06-20 Antonin Paquet Use of char particles in the production of synthesis gas and in hydrocarbon reforming

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065851A1 (en) * 2017-09-29 2019-04-04 株式会社ジャパンブルーエナジー Biomass gasification device
JP2019065160A (en) * 2017-09-29 2019-04-25 株式会社ジャパンブルーエナジー Biomass gasifier
US11066612B1 (en) 2017-09-29 2021-07-20 Japan Blue Energy Co., Ltd. Biomass gasification device
WO2020008622A1 (en) * 2018-07-06 2020-01-09 株式会社 翼エンジニアリングサービス Method for producing hydrogen using biomass as raw material
JPWO2020008622A1 (en) * 2018-07-06 2021-08-02 株式会社翼エンジニアリングサービス Hydrogen production method using biomass as a raw material
JP7140341B2 (en) 2018-07-06 2022-09-21 株式会社翼エンジニアリングサービス Hydrogen production method using biomass as raw material
GB2583097B (en) * 2019-04-15 2023-08-16 Big Atom Ltd Pyrolysis apparatus and method
EP4098942A1 (en) * 2021-05-29 2022-12-07 François Hustache Method for processing organic waste by pyrolysis

Also Published As

Publication number Publication date
JP6412261B2 (en) 2018-10-24
TW201741446A (en) 2017-12-01
JPWO2017203587A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP5756231B2 (en) Biomass gasifier
JP6899102B2 (en) Biomass gasifier
US6941879B2 (en) Process and gas generator for generating fuel gas
JP6412261B2 (en) Biomass gasifier
US20110094158A1 (en) Scalable biomass reactor and method
GB2539518A (en) A gasification system
CN101781583A (en) Method and device for utilizing high value through pyrolysis and gasification of coal
CN106318417A (en) Method and system for the manufacture of bio-methane and eco-methane
CN105885950B (en) A kind of three combination pyrolytic gasifications of solid waste and coke tar cracking integral system
CN105874038A (en) Apparatus for pyrolysing carbonaceous material
CN100543116C (en) The oxygen deprivation fluidized bed combustion downdraft gasification process and the device that prepare no tar products gas
CN205740917U (en) A kind of solid waste three combination pyrolytic gasification and coke tar cracking integral system
JP2023085579A (en) Biomass gasification device
JP2023085580A (en) Biomass gasification device
CN117946767A (en) Gasification system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017519000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903069

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16903069

Country of ref document: EP

Kind code of ref document: A1