WO2021221165A1 - Biomass gasification device - Google Patents

Biomass gasification device Download PDF

Info

Publication number
WO2021221165A1
WO2021221165A1 PCT/JP2021/017236 JP2021017236W WO2021221165A1 WO 2021221165 A1 WO2021221165 A1 WO 2021221165A1 JP 2021017236 W JP2021017236 W JP 2021017236W WO 2021221165 A1 WO2021221165 A1 WO 2021221165A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
pyrolyzer
biomass
housing
medium
Prior art date
Application number
PCT/JP2021/017236
Other languages
French (fr)
Japanese (ja)
Inventor
直城 堂脇
恒 上内
Original Assignee
株式会社ジャパンブルーエナジー
株式会社Jbecエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンブルーエナジー, 株式会社Jbecエンジニアリング filed Critical 株式会社ジャパンブルーエナジー
Priority to US17/922,347 priority Critical patent/US20230174877A1/en
Priority to JP2022518154A priority patent/JPWO2021221165A1/ja
Publication of WO2021221165A1 publication Critical patent/WO2021221165A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/12Continuous processes using solid heat-carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/005Reducing the tar content by partial oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K3/00Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
    • C10K3/001Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by thermal treatment
    • C10K3/003Reducing the tar content
    • C10K3/006Reducing the tar content by steam reforming
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/09Mechanical details of gasifiers not otherwise provided for, e.g. sealing means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0993Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1853Steam reforming, i.e. injection of steam only

Definitions

  • the present invention relates to a biomass gasification device using a heat-supporting medium.
  • sewage sludge having an ash content of 20% by weight is dried and then pyrolyzed in an air-blown fluidized layer pyrolysis furnace at 500 to 800 ° C. to pyrolyze the pyrolysis gas.
  • a method of generating turbine power by burning with air at a high temperature of 1000 to 1,250 ° C and generating steam with the heat Japanese Patent Laid-Open No. 2002-322902
  • high ash biomass as a raw material is circulated by air blowing.
  • Pyrolysis is carried out in a flow heating furnace at a temperature of 450 to 850 ° C., and char, which is a thermal decomposition residue, is recovered by a cyclone, while pyrolysis gas containing tar is reformed at 1000 to 1200 ° C. in the presence of oxygen.
  • Method Japanese Unexamined Patent Publication No. 2004-517405
  • the char is pyrolyzed by the same method to separate the char, and then the char is granulated and supplied into the circulating flow reforming furnace.
  • a method of producing a granulated sintered body by sintering at a temperature of 900 to 1000 ° C. (Japanese Patent No. 4155507) or the like is disclosed.
  • a heat-carrying medium for carrying heat a preheater for heating the heat-carrying medium, a reformer for steam reforming of the heat-decomposed gas, and a heat-decomposing wood biomass raw material.
  • the preheater, the reformer, and the heat decomposer 20 are provided with a heat decomposer, a separator for separating the heat-bearing medium and the char, and a hot air furnace that burns the char to generate hot air.
  • Devices arranged vertically in order from the top are known (Japanese Patent Laid-Open No. 2011-144329).
  • the heat-decomposed coke obtained by separating the mixture consisting of the heat-decomposed coke and the heat-bearing medium is burned in a combustion device, and the heat-bearing medium is heated in the heating zone by utilizing the apparent heat generated thereby.
  • An embodiment of producing a product gas having a high calorific value from an organic substance and a substance mixture Japanese Patent No. 4264525) is known.
  • a pyrolysis gas introduction tube for introducing the pyrolysis gas from the pyrolysis device to the pyrolysis gas reformer is formed on the pyrolysis device side on the upper surface of the preheated heat-bearing medium layer formed in the pyrolysis device.
  • a gasification method Japanese Patent Laid-Open No. 2019-65160 installed on the side surface of a lower pyrolyzer is known.
  • the spherical ceramic balls which are heat-supporting media housed in the preheater and the pyrolyzer, hardly move and may stay.
  • the present invention has been made in view of these points, and provides a biomass gasification device capable of smoothly moving a heat-carrying medium housed in a temporary holding portion such as a preheater or a pyrolyzer. do.
  • the biomass gasifier according to the present invention A biomass gasifier equipped with a temporary holding section for temporarily accommodating and discharging a heat-carrying medium.
  • the temporary holding part is With the housing
  • the partition wall provided in the housing and A discharge portion provided below the partition wall for discharging the heat-carrying medium, and a discharge portion.
  • a gap may be provided between the partition wall and the inner wall of the side portion of the housing for passing the heat-carrying medium, and the tube portion for passing the heat-carrying medium through the inner wall of the side portion of the housing. May be provided.
  • the temporary holding portion is a preheater that preheats the heat-supporting simple substance.
  • the discharge part is a preheater discharge part, and is The heat-supporting medium discharged from the preheater discharge unit may be supplied to the pyrolyzer.
  • the temporary holding unit is a thermal cracker that receives a supply of a heat-supporting medium preheated by a preheater and executes thermal decomposition of biomass by the heat of the heat-supporting medium.
  • the discharge part is a pyrolyzer discharge part, and is The heat-carrying medium discharged from the pyrolyzer discharge unit may be supplied to the preheater via the circulation unit.
  • the front surface of the partition wall is positioned so that the central region is higher than the peripheral region, and an inclined surface may be provided between the central region and the peripheral region.
  • the back surface of the partition wall is positioned at a position where the central region is lower than the peripheral region, and an inclined surface may be provided between the central region and the peripheral region.
  • a plurality of fixing members for fixing the main body to the housing are provided between the main body of the partition and the inner side wall of the housing, and the gap between the fixing members is heat-supported. It may be a gap for the medium to pass through.
  • the main body of the partition has a disk shape.
  • the main body may be fixed to the housing by a fixing member provided between the inner side wall of the housing or a fixing member provided on the back surface of the main body.
  • the housing has an upper tank and a lower tank provided below the upper tank.
  • the cross section of the lower end of the upper tank is smaller than the cross section of the upper end of the lower tank.
  • a partition wall is provided below the lower end of the upper tank. A gap may be formed between the partition wall and the lower tank.
  • a gap for passing the heat-supporting medium is provided between the partition wall and the inner wall of the side portion of the housing, or a tube portion for passing the heat-supporting medium through the inner wall of the side portion of the front housing.
  • the heat-carrying medium housed in the temporary holding portion such as a preheater or a pyrolyzer can be smoothly moved.
  • FIG. 1 is a schematic view showing one form of a biomass gasification device.
  • FIG. 2 is a diagram showing the movement (before movement) of the heat-carrying medium in the pyrolyzer in the biomass gasifier of the present embodiment.
  • FIG. 3 is a diagram showing the movement (after movement) of the heat-carrying medium in the pyrolyzer in the biomass gasifier of the reference example.
  • FIG. 4 is a diagram showing the movement (before movement) of the heat-carrying medium in the pyrolyzer in the biomass gasifier of the present embodiment.
  • FIG. 5 is a diagram showing the movement (after movement) of the heat-carrying medium in the pyrolyzer 20 in the biomass gasification device of the present embodiment.
  • FIG. 6 is a diagram showing an example of a partition wall installed in the lower tank in the biomass gasification device of the present embodiment.
  • FIG. 7 is a diagram showing one aspect of the preheater in the biomass gasification device of the present embodiment.
  • FIG. 8 is a diagram showing one aspect of a pyrolyzer in the biomass gasification device of the present embodiment.
  • FIG. 9 is a diagram showing another aspect of the preheater in the biomass gasifier of the present embodiment.
  • FIG. 10 is a diagram showing another aspect of the pyrolyzer in the biomass gasifier of the present embodiment.
  • FIG. 11 is a schematic view showing another form of the biomass gasifier.
  • FIG. 12 is a plan view showing a mode in which a plurality of fixing members are provided between the main body of the partition wall and the inner side wall of the housing.
  • the biomass gasifier of the present embodiment receives heat from the preheater 10 that preheats the heat-bearing medium 30 and the heat-supporting medium 30 that has been preheated by the preheater 10.
  • a thermal decomposition device (biomass thermal decomposition device) 20 that executes thermal decomposition of biomass by the heat of the supporting medium 30 and a thermal decomposition gas generated by the thermal decomposition are partially burned by air or oxygen to execute steam reforming. It has a thermal decomposition gas reformer 40 and a control device 100 (see FIG. 11) that performs various controls.
  • the heat-supporting medium 30 (also referred to as "heat carrier”) is a plurality of granules and / or lumps, preferably made of one or more materials selected from the group consisting of metals and ceramics.
  • the metal is preferably selected from the group consisting of iron, stainless steel, nickel alloy steel, and titanium alloy steel, and more preferably stainless steel.
  • the ceramic is selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia and silicon nitride, and more preferably alumina.
  • the shape of the heat-supporting medium 30 is preferably spherical (ball), but it does not necessarily have to be a true sphere, and it may be a spherical object having an elliptical or oval cross-sectional shape.
  • the diameter (maximum diameter) of the spherical object is preferably 3 to 25 mm, more preferably 8 to 15 mm. Exceeding the above upper limit (25 mm) may impair the fluidity inside the pyrolyzer 20, that is, the free fall property, which causes the spherical object to stand still inside the pyrolyzer 20 and cause blockage. May become.
  • the spheroids themselves may stick to the spheroids due to tar and soot and dust adhering to the spheroids in the pyrolyzer 20, which may cause blockage.
  • the diameter of the spherical object is less than 3 mm, the spherical object adheres to the inner wall of the pyrolyzer 20 and grows due to the influence of tar and dust adhering to the spherical object, and in the worst case, the pyrolyzer There is a concern that 20 will be blocked.
  • the spherical object to which tar is attached is extracted from the valve at the bottom of the pyrolyzer 20
  • the spherical object having a thickness of less than 3 mm is light, and since the tar is attached, it does not fall naturally and sticks to the inside of the valve. May promote obstruction.
  • the biomass of this embodiment means a so-called biomass resource.
  • the biomass resource refers to plant-based biomass, for example, agricultural products such as thinned wood, sludge waste, pruned branches, forest land residue, unused trees, etc., which are discarded from agriculture, and vegetable residues and fruit tree residues, which are discarded from agriculture.
  • plant-based biomass for example, agricultural products such as thinned wood, sludge waste, pruned branches, forest land residue, unused trees, etc., which are discarded from agriculture, and vegetable residues and fruit tree residues, which are discarded from agriculture.
  • biological biomass for example, biological waste such as livestock excrement and sewage sludge
  • the apparatus of this embodiment is preferably suitable for gasification of plant-based biomass and biological-based biomass.
  • high ash biomass having an ash content of preferably 5.0% by mass or more, more preferably 10.0 to 30.0% by mass, and further preferably 15.0 to 20.0% by mass on a drying basis.
  • high ash biomass having an ash content of preferably 5.0% by mass or more, more preferably 10.0 to 30.0% by mass, and further preferably 15.0 to 20.0% by mass on a drying basis.
  • it is suitable for gasification of sewage sludge and livestock excrement.
  • the heat-supporting medium 30 preheated by the preheater 10 is supplied from the preheater 10 to the pyrolyzer 20 via a valve by free fall.
  • the heat-supporting medium 30 causes thermal decomposition of the biomass supplied into the pyrolyzer 20 by its own heat.
  • the heat-supporting medium 30 in the pyrolyzer 20 is discharged from the pyrolyzer 20 by free fall via a valve, and is preferably recirculated to the preheater 10.
  • the biomass gasifier of the present embodiment has temporary holding units 10 and 20 for accommodating the heat-supporting medium 30 to be supplied and discharging the heat-supporting medium 30.
  • the temporary holding portions 10 and 20 are provided in the housings 111 and 121 and the housings 111 and 121, and are provided below the partition walls 115 and 125 having a front surface and the partition walls 115 and 125 to generate heat. It has discharge sections 119 and 129 for discharging the carrier medium 30.
  • a gap G may be provided between the partition walls 115 and 125 and the side inner walls of the housings 111 and 121 for the heat-supporting medium 30 to pass through (see FIGS. 7 and 8).
  • the temporary holding portion means the preheater 10 and the pyrolyzer 20.
  • partition walls 115 and 125 may be provided inside the housings 111 and 121 of the preheater 10 and the pyrolyzer 20 respectively.
  • the preheater 10 is provided in the preheating housing 111, the preheating housing 111, and has a front surface, and is below the preheating partition 115 and the preheating partition 115. It may have a preheater discharge unit 119 for discharging the heat-carrying medium 30.
  • the heat-carrying medium 30 discharged from the preheater discharge unit 119 is supplied from the top surface of the pyrolyzer 20 to the inside of the pyrolyzer 20 provided below.
  • a gap G is provided between the inner wall of the side portion of the preheating housing 111 and the preheating partition wall 115, and the heat-carrying medium 30 falls downward through the gap G.
  • the pyrolyzer 20 is provided in the pyrolysis housing 121 and the pyrolysis housing 121 and has a front surface, and is more than the pyrolysis partition 125 and the pyrolysis partition 125. It may have a pyrolyzer discharge unit 129, which is provided below and discharges the heat-bearing medium 30.
  • a gap G is provided between the inner wall of the side portion of the pyrolysis housing 121 and the pyrolysis partition wall 125, and the heat-carrying medium 30 falls downward through the gap G.
  • the heat-carrying medium 30 discharged from the pyrolyzer discharge unit 29 is returned to the preheater 10 provided above via the discharge treatment unit 240 and the circulation unit 290 (see FIG. 1).
  • pipe portions 131 and 141 for passing the heat-carrying medium 30 may be provided on the inner wall of the side portions of the housings 111 and 121.
  • a preheating tube portion 131 for passing the heat-carrying medium 30 is provided on the inner wall of the side portion of the preheating housing 111, and by passing through the preheating tube portion 131, The heat-carrying medium 30 may be supplied from above to the pyrolyzer 20 provided below.
  • a thermal decomposition tube portion 141 for passing the heat carrying medium 30 is provided on the inner wall of the side portion of the thermal decomposition housing 121, and the heat is generated by passing through the thermal decomposition tube portion 141.
  • the carrying medium 30 may be discharged from above with respect to the discharge processing unit 240 provided below.
  • the partition walls 115 and 125 may be provided inside the housings 111 and 121.
  • the pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-carrying medium 30 in the upper tanks 111a, 121a is once the upper tank.
  • It may have a structure in which the lower tanks 111b and 121b are discharged from the bottom of the tank to the outside.
  • the pyrolyzer 20 located below the preheater 10 in the biomass gasifier is provided with an inlet 127 for the heat-bearing medium 30 (see FIG. 1) at the top (upper part), preferably at the top, for thermal decomposition.
  • a discharge port for the heat-bearing medium 30 (this discharge port constitutes the pyrolyzer discharge section 129) is provided below (lower), preferably at the bottom, of the vessel 20.
  • a so-called two-stage valve system is provided above the introduction port 127 of the heat-carrying medium 30 and below the pyrolyzer discharge unit 129, for example, having a total of two valves, one above and one below the pipe. May be good.
  • a first valve 50 may be provided between the preheater 10 and the pyrolyzer 20.
  • the first valve 50 may have an adjusting portion, a first opening / closing portion provided below the adjusting portion, and a second opening / closing portion provided below the first opening / closing portion. Then, even if the control device 100 controls so that the first opening / closing portion is opened while the second opening / closing portion is closed and the second opening / closing portion is opened while the first opening / closing portion is closed. good.
  • Each of the first opening / closing part and the second opening / closing part may be a damper valve.
  • first opening / closing portion is the first damper valve 51a and the second opening / closing portion is the second damper valve 51b will be described. Further, the embodiment in which the adjusting portion of the first valve 50 is the swing valve 52 will be described.
  • the upper and lower first damper valves 51a and the second damper valve 51b are closed, and first, the upper first damper valve 51a is opened to drop the heat carrier into the pipe, and between the second damper valve 51b and the first damper valve 51a. Is filled with a heat carrier.
  • the heat carrier filled between the first damper valve 51a and the second damper valve 51b is introduced into the pyrolyzer 20 or the pyrolyzer 20 is introduced. Extract from.
  • the heat carrier is introduced into the pyrolyzer 20 substantially continuously and is withdrawn from the pyrolyzer 20 substantially continuously.
  • the introduction / extraction method is an example, and the method is not limited to this method.
  • the second valve 90 may be provided between the pyrolyzer 20 and the waste treatment device 240.
  • the second valve 90 may have a pair of damper valves 91a and 91b which are an example of an opening / closing part and a swing valve 92 which is an example of an adjusting part. Similar to the first valve 50, in the second valve 90, the swing valve 92, the first damper valve 91a, and the second damper valve 91b may be arranged in order from the top.
  • the waste treatment device 240 is provided with a filter F, and the soot contained in the biomass gas falls downward through the filter F and does not pass through the filter F. 30 is circulated by a circulation unit 290 composed of an elevator type, an escalator type, etc., and is charged into the preheater 10.
  • the preheater 10 is preferably provided on the upper part of the pyrolyzer 20, where all the heat-bearing media 30 are heated to a predetermined temperature, and the heat-bearing medium 30 heated to the temperature is brought into the pyrolyzer. Can be supplied to 20.
  • the pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-carrying medium 30 in the upper tanks 111a, 121a is once the upper tank 111a.
  • 121a after being laterally discharged to the outside of the upper tanks 111a, 121a, descend along the tank walls of the lower tanks 111b, 121b, move to the lower tanks 111b, 121b, and further, the lower tanks 111b, 121b. It may have a structure in which the lower tanks 111b and 121b are discharged from the bottom to the outside.
  • the pyrolyzer 20 was designed as a volume for gasifying a predetermined amount of biomass, which was found in conventional moving beds, but only a small volume in the central part where the heat medium moves is gasified.
  • the problem that it cannot be used and a predetermined amount cannot be gasified and the problem that the preheated heat-bearing medium 30 in the preheater 10 does not move smoothly to the pyrolyzer 20 can be solved, and the volume can be effectively used evenly. , Efficient thermal decomposition of biomass can be achieved.
  • FIG. 3 shows a mode in which the partition wall used in the present embodiment is not provided. According to this mode, the heat-carrying medium 30 colored in black is bent so as to protrude downward, and heat is generated near the center. Although the carrier medium 30 is easy to fall, it was confirmed that the heat carrier medium 30 is hard to fall at the peripheral portion and a difference is formed in the circulated heat carrier medium 30.
  • the partition walls 115 and 125 are provided inside the housings 111 and 121, as shown in FIGS. 2, 4 and 5, the heat-carrying medium 30 colored in black is lowered while maintaining a horizontal state. The heat-carrying medium 30 could be moved downward without bias.
  • the shapes of the upper tanks 111a and 121a are not particularly limited as long as the heat-carrying medium 30 can be moved to the lower part, but are preferably cylindrical or square.
  • the shape of the floors of the lower tanks 111b and 121b is not particularly limited as long as the heat-supporting medium 30 can be discharged from the bottom of the lower tanks 111b and 121b, but an inverted conical shape and an inverted conical trapezoid are preferable.
  • the cross section of the lower end of the upper tanks 111a, 121a may be smaller than the cross section of the upper end of the lower tanks 111b, 121b.
  • the diameter of the lower end portions of the upper tanks 111a and 121a may be smaller than the diameter of the upper end portions of the lower tanks 111b and 121b.
  • the upper surface of the upper end portion of the lower tanks 111b, 121b and the lower surface of the lower end portion of the upper tanks 111a, 121a are continuously provided, and the uppermost portion of the lower tanks 111b, 121b is the maximum of the lower tanks 111b, 121b.
  • a top may be provided extending from the outer position to the lower ends of the upper tanks 111a, 121a.
  • upper outer tanks 111c and 121c and upper tanks 111a and 121a are provided in the outer peripheral tanks 111c and 121c, and the outer peripheral tanks 111c and 111c are provided.
  • the region below the upper tanks 111a and 121a of 121c may form the lower tanks 111b and 121b.
  • upper partition walls 115 and 125 extending in the in-plane direction and lower partition walls 115 and 125 extending in the vertical direction are provided in the lower tanks 111b and 121b. There is. In some cases, the effect of smoothly flowing the heat-carrying medium 30 can be expected by providing the partition walls 115 and 125 extending in the vertical direction.
  • the partition walls 115 and 125 may be provided below the lower ends of the upper tanks 111a and 121a, and the lower tanks 111b and 121b may be provided outside the peripheral edges of the partition walls 115 and 125.
  • the opening 23 is formed between the lower ends of the upper tanks 111a and 121a and the partition walls 115 and 125 in the vertical direction (see FIGS. 4 and 5). Further, a gap G is formed between the partition walls 115 and 125 and the lower tanks 111b and 121b in the in-plane direction.
  • the heat-carrying medium 30 once spreads out of the peripheral edge of the upper tanks 111a and 121a through the opening 23, and goes out of the peripheral edge in the in-plane direction of the upper tanks 111a and 121a through the gap G. It will move to the lower tanks 111b and 121b.
  • the partition walls 115 and 125 may be installed in the central portion of the lower tanks 111b and 121b.
  • the centers of the upper tanks 111a, 121a, the lower tanks 111b, 121b, and the partition walls 115, 125 in the in-plane direction may be aligned. According to such an aspect, it is advantageous in that the heat-carrying medium 30 can be uniformly flowed in the in-plane direction.
  • the shapes of the partition walls 115 and 125 are not particularly limited as long as they achieve the above object, but when the lower tanks 111b and 121b have an inverted conical shape or an inverted conical trapezoidal shape, the upper tanks 111a and 121a and the lower portions It is preferable that the partition walls 115 and 125 are installed under the partition walls 115 and 125 with the tanks 111b and 121b and are selected from the group consisting of a conical shape, an inverted conical shape and a coma shape.
  • the front surface (upper surface in the present embodiment) of the partition walls 115 and 125 is positioned at a higher position in the central region than the peripheral region, and an inclined surface is provided between the central region and the peripheral region. You may become like this.
  • conical see FIG. 6A
  • prefix conical bulkheads 115, 125 with vertices pointing upwards may be provided, according to this embodiment, to the lower tanks 111b, 121b of the heat carrier 30. Good discharge (see FIG. 6A).
  • the back surfaces of the partition walls 115 and 125 are positioned so that the central region is positioned lower than the peripheral region, and an inclined surface is provided between the central region and the peripheral region. May become.
  • septa 115, 125 having a conical shape with the apex facing downward (see FIG. 6B) or a prefix conical shape may be provided. According to this aspect, since the central portions of the partition walls 115 and 125 are thickened, the resistance to bending stress by the heat-supporting medium 30 becomes better (see FIG. 6B).
  • FIGS. 6A and 6B may be combined, and as an example, the coma-shaped partition walls 115 and 125 as shown in FIG. 6C may be adopted.
  • This aspect can comprise the performance of both the aspect shown in FIG. 6A and the aspect shown in FIG. 6B (see FIG. 6C).
  • the lower tanks 111b and 121b are pyramidal, they are pyramid-shaped or inverted pyramid-shaped bulkheads 115 and 125 installed under the partition walls 115 and 125 between the upper tanks 111a and 121a and the lower tanks 111b and 121b. Is preferable.
  • the heat-carrying medium 30 moves in the lower tanks 111b and 121b in the flow indicated by the arrows in FIGS. 6A to 6C, and the lower tanks 111b and 121b It is discharged to the outside.
  • the fixing member 130 of the above may be provided.
  • the gap between the fixing members 130 may be a gap G for the heat-carrying medium to pass through.
  • the main bodies 115a and 125a of the partition walls 115 and 125 may have a disk shape (see FIG. 12).
  • the main bodies 115a and 125a may be fixed to the housings 111 and 121 by a fixing member 130 provided between the main bodies 115a and 125a and the inner side walls of the housings 111 and 121. Further, as shown in FIGS. 7 and 8, the fixing members 130 provided on the back surfaces of the main bodies 115a and 125a may be fixed to the housings 111 and 121.
  • the embodiment of the present embodiment may be incorporated into a conventional biomass gasification device.
  • the pyrolyzer 20 has a biomass supply port and a non-oxidizing gas supply port and / or a steam blow port.
  • the pyrolysis gas reformer 40 has a steam inlet and a reformed gas outlet.
  • a pyrolysis gas introduction pipe 200 provided between the pyrolysis device 20 and the pyrolysis gas reformer 40, which introduces the pyrolysis gas generated in the pyrolysis device 20 into the pyrolysis gas reformer 40.
  • Each of the thermal decomposition device 20 and the thermal decomposition gas reformer 40 further includes an inlet and an outlet for a preheated heat-bearing medium, and the heat of the heat-bearing medium causes thermal decomposition of biomass and thermal decomposition of biomass.
  • the pyrolysis device 20 and the pyrolysis gas reformer 40 are provided in parallel with respect to the flow of the heat-bearing medium, and the pyrolysis gas introduction pipe 200 is provided with the pyrolysis device 20 and the pyrolysis gas reformer.
  • the pyrolysis gas introduction pipe 200 is provided and is provided substantially horizontally with respect to the direction of gravity.
  • the pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-supporting medium 30 in the upper tanks 111a, 121a is once the upper tank 111a.
  • 121a is discharged laterally from the lower part to the outside of the upper tanks 111a and 121a, then descends along the tank wall of the lower tanks 111b and 121b to move to the lower tanks 111b and 121b, and further to the lower tanks 111b and 121b. It is possible to provide a biomass gasification device having a structure in which the bottom tanks 111b and 121b are discharged to the outside.
  • the pyrolyzer 20 has a biomass supply port and a non-oxidizing gas supply port and / or a steam blow port.
  • the pyrolysis gas reformer 40 has a steam inlet and a reformed gas outlet.
  • a pyrolysis gas introduction pipe 200 provided between the pyrolysis device 20 and the pyrolysis gas reformer 40 is provided, and the pyrolysis gas generated in the pyrolysis device 20 is transferred to the pyrolysis gas reformer 40.
  • the pyrolyzer 20 further includes an inlet and an outlet for a heat-supporting medium that has been preheated, and uses the heat of the heat-supporting medium to carry out thermal decomposition of biomass.
  • the pyrolysis gas reformer 40 executes steam reforming of the pyrolysis gas generated by the thermal decomposition of biomass.
  • the pyrolysis gas reformer 40 further includes an air or oxygen inlet, and performs steam reforming by partially burning the pyrolysis gas generated by the thermal decomposition of biomass with the air or oxygen.
  • the pyrolysis gas introduction pipe 200 is provided on the side surface of the pyrolyzer 20 below the upper surface of the heat-carrying medium layer formed in the pyrolyzer 20.
  • the pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-supporting medium 30 in the upper tanks 111a, 121a is once the upper tank 111a.
  • 121a is discharged laterally from the lower part to the outside of the upper tanks 111a and 121a, then descends along the tank wall of the lower tanks 111b and 121b to move to the lower tanks 111b and 121b, and further to the lower tanks 111b and 121b. It is possible to provide a biomass gasification device having a structure in which the bottom tanks 111b and 121b are discharged to the outside.
  • the pyrolyzer 20 that heats the biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of a non-oxidizing gas and steam, and the gas generated in the pyrolyzing device 20.
  • a pyrolysis gas reformer 40 that reforms the heat in the presence of steam, and the preheated heat-supporting medium 30 is charged into the pyrolyzer 20 to bring the heat-supporting medium 30 into the pyrolyzer 20.
  • Pyrolysis of the biomass is carried out by the heat possessed, and then the pyrolysis gas generated by the pyrolysis of the biomass is introduced into the pyrolysis gas reformer 40 to carry out steam reforming of the pyrolysis gas.
  • a pyrolysis gas introduction tube provided on the side surface of the pyrolysis device 20 below the upper surface of the heat-supporting medium layer, in which the pyrolysis gas generated by the thermal decomposition of the biomass is formed in the pyrolysis device 20.
  • the pyrolysis gas reformer 40 is introduced into the pyrolysis gas reformer 40, and then the introduced pyrolysis gas is partially introduced into the pyrolysis gas reformer 40 by air or oxygen separately introduced into the pyrolysis gas reformer 40.
  • the method of gasifying biomass which is pyrolyzed and reformed by steam introduced at the same time as the above air or oxygen.
  • the heat-supporting medium 30 is contained in the upper tanks 111a, 121a in the pyrolyzer 20 having the upper tanks 111a, 121a and the bottom cone-shaped lower tanks 111b, 121b. After being discharged laterally from the lower part to the outside of the upper tanks 111a and 121a, it descends along the tank wall of the lower tanks 111b and 121b, moves to the lower tanks 111b and 121b, and further from the bottom of the lower tanks 111b and 121b. A method for gasifying biomass, which is discharged to the outside of the lower tanks 111b and 121b, is provided.
  • the heat-supporting medium 30, that is, the heat carrier, is preheated in the preheater 10 before being introduced into the pyrolyzer 20.
  • the heat-supporting medium 30 is preferably heated to 650 to 800 ° C, more preferably 700 to 750 ° C.
  • the biomass for example, high ash biomass
  • the amount of pyrolyzed gas generated decreases.
  • it exceeds the above upper limit (800 ° C.) it causes volatilization of phosphorus and potassium (potassium), and causes blockage and corrosion of pipes by diphosphorus pentoxide and potassium (potassium).
  • it is not expected that the effect will be significantly increased only by giving extra heat, and on the contrary, it will only lead to high cost. It also causes a decrease in the thermal efficiency of the equipment.
  • the heat-supporting medium 30 heated to a predetermined temperature in the preheater 10 is then introduced into the pyrolyzer 20.
  • the heat-carrying medium 30 is separately contacted with the biomass supplied to the pyrolyzer 20 from the biomass supply port 220.
  • the biomass is heated and thermally decomposed to generate a thermal decomposition gas.
  • the generated pyrolysis gas passes through the pyrolysis gas introduction pipe 200 and is introduced into the pyrolysis gas reformer 40. At this time, tar, soot, etc.
  • the tar, soot, and the like remaining after being gasified are discharged from the bottom of the pyrolyzer 20 while still adhering to the heat-bearing medium 30.
  • the pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a and 121a and bottom cone-shaped lower tanks 111b and 121b.
  • the heat-supporting medium 30 introduced from the preheater 10 into the pyrolyzer 20 first enters the upper tanks 111a and 121a of the pyrolyzer 20.
  • the heat-carrying medium 30 is once discharged laterally from the opening 23 at the bottom of the upper tanks 111a and 121a to the outside of the upper tanks 111a and 121a.
  • the heat-supporting medium 30 introduced into the lower tanks 111b and 121b descends along the tank wall of the lower tanks 111b and 121b, moves to the lower part of the lower tanks 111b and 121b, and further moves from the bottom of the lower tanks 111b and 121b to the lower tank. It is discharged to the outside of 111b and 121b.
  • the lower tanks 111b and 121b are provided with partition walls 115 and 125 installed in the central portion and which promote the movement of the heat-carrying medium 30 to the bottom of the lower tanks 111b and 121b.
  • the partition walls 115 and 125 prevent the heat-carrying medium 30 from moving along the heat-carrying medium 30 and staying inside the lower tanks 111b and 121b, thereby promoting the movement to the bottom of the lower tanks 111b and 121b. do.
  • the heat-supporting medium layer is formed in the pyrolyzer 20 and the thickness of the layer is formed.
  • the temperature can be controlled to an appropriate value, and the temperature of the pyrolyzer 20 can be controlled to the above-mentioned predetermined temperature.
  • the heat-bearing medium 30 is introduced only into the thermal cracker 20, and the heat is used to thermally decompose the biomass, while steam and oxygen or air are introduced into the thermal decomposition gas reformer 40.
  • the internal temperatures of the pyrolyzer 20 and the pyrolysis gas reformer 40 can be controlled individually. As a result, the reforming reaction in the pyrolysis gas reformer 40 can be carried out at an appropriate temperature, and the thermal decomposition of biomass in the pyrolysis device 20 can be carried out at an appropriate temperature.
  • the residence time of biomass in the pyrolyzer 20 is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, and even more preferably 15 to 35 minutes. If it is less than the above lower limit (5 minutes), heat is not uniformly transferred to the biomass and uniform pyrolysis is not performed, so that the amount of pyrolysis gas generated is reduced. On the other hand, even if the above upper limit (60 minutes) is exceeded, no significant increase in the effect is observed, and on the contrary, the equipment cost increases.
  • the residence time of biomass in the pyrolyzer 20 can be appropriately adjusted from the moving speed of the heat-carrying medium 30 and the amount of biomass supplied.
  • the residence time in each container that is, the residence time for biomass pyrolysis in the pyrolysis device 20, and the tar in the pyrolysis gas. It was impossible to individually control the residence time for decomposition of the pyrolysis and the residence time required for the reformation reaction between the pyrolysis gas and steam in the pyrolysis gas reformer 40.
  • heating only the thermal decomposition device 20 with the heat-bearing medium 30, and separately introducing steam and oxygen or air into the thermal decomposition gas reformer 40 heating is performed by partial oxidation of the thermal decomposition gas. Since the residence time in each of the thermal decomposition device 20 and the thermal decomposition gas reformer 40 can be controlled independently, the temperature inside each of the thermal decomposition device 20 and the thermal decomposition gas reformer 40 can be controlled independently. Can be controlled.
  • the heat-supporting medium 30 that has passed through the thermal decomposition device 20 contains the thermal decomposition residue (char) of the biomass, and a small amount of tar and soot and dust that have adhered to the heat-supporting medium 30 and remain without being pyrolyzed. Together, it is discharged from the bottom of the pyrolyzer 20.
  • the treatment of the discharged material including the discharged heat-supporting medium 30 is carried out by a conventionally known method such as separating the char in the discharge processing unit.
  • the heat-supporting medium 30 treated in this manner is returned to the preheater 10 again and supplied to the pyrolyzer 20.
  • the pyrolysis gas generated by thermally decomposing the biomass in the pyrolysis device 20 is introduced into the pyrolysis gas reformer 40 through the pyrolysis gas introduction pipe 200.
  • the pyrolysis gas introduced into the pyrolysis gas reformer 40 is partially oxidized by air or oxygen, whereby the inside of the pyrolysis gas reformer 40 is heated.
  • the pyrolysis gas reacts with steam, and the pyrolysis gas can be reformed into a hydrogen-rich gas.
  • biomass raw material used in the examples and the gasifier used for the thermal decomposition and gas reforming of the biomass raw material are as follows.
  • sewage sludge As a biomass raw material, sewage sludge was granulated and used. The maximum size of the sewage sludge after granulation was about 6 to 15 mm. The properties of the sewage sludge are shown in Table 1. Table 2 shows the composition of the ash obtained by burning the sewage sludge.
  • silicon dioxide, aluminum oxide, ferric oxide, magnesium oxide, calcium oxide, sodium oxide, potassium oxide, diphosphorus pentoxide and manganese oxide were measured in accordance with JIS M8815.
  • Mercury, chromium, cadmium, copper oxide, lead oxide, zinc oxide and nickel were measured in accordance with JIS Z 7302-5: 2002.
  • the gasifier basically includes a pyrolyzer 20, a pyrolyzed gas reformer 40, and a preheater 10 (see FIG. 1), and includes the pyrolyzer 20 and the pyrolyzed gas reformer 40. Is connected by a pyrolysis gas introduction pipe 200 that introduces the pyrolysis gas generated in the pyrolysis device 20 into the pyrolysis gas reformer 40.
  • one preheater 10 is provided above the thermal decomposition device 20, and the preheater 10 preheats the heat-bearing medium 30 supplied to the thermal decomposition device 20, and the heated heat.
  • the carrying medium 30 is supplied to the thermal decomposer 20, supplies heat necessary for thermal decomposition of biomass, is extracted from the bottom thereof, and is returned to the preheater 10 again.
  • the pyrolysis gas generated in the pyrolysis device 20 is introduced into the pyrolysis gas reformer 40 through the pyrolysis gas introduction pipe 200.
  • air or oxygen is separately introduced into the pyrolysis gas reformer 40 from the air or oxygen introduction pipes 261,262, whereby the pyrolysis gas is partially burned, and at the same time, steam is generated. It is introduced from the steam inlet 242, the pyrolysis gas is reformed by steam, and the reformed gas obtained thereby is taken out from the reformed gas discharge port 230. Further, for air or oxygen and steam, instead of the above-mentioned air or oxygen introduction pipe (261) and steam injection port 242, the air or oxygen introduction pipe 262 and steam injection provided in the heat decomposition gas introduction pipe 200 are provided. It can be introduced from the port 243, or can be introduced from all the air or oxygen introduction pipes 261,262 and the steam inlets 242 and 243.
  • the inner diameter of the straight body portion of the pyrolyzer 20 is about 550 mm, the height is about 1100 mm, and the internal volume is about 260 liters.
  • the inner diameter of the straight body portion of the pyrolysis gas reformer 40 is about 600 mm, the height is about 1200 mm, and the internal volume is about 340 liters.
  • the pyrolysis gas introduction pipe 200 is provided on the side of the pyrolyzer 20 on the side of the pyrolyzer 20 below the upper surface of the heat-bearing medium layer formed in the pyrolyzer 20. On the pyrolysis gas reformer 40 side, it is provided on the side surface near the bottom surface of the pyrolysis gas reformer 40. Further, the pyrolysis gas introduction pipe 200 is provided substantially horizontally with respect to the direction of gravity.
  • a pipe having a length of about 1000 mm and an inner diameter of about 80 mm is used, the inside thereof is covered with a heat insulating material, and the protruding portion is also formed of the heat insulating material.
  • a substantially spherical alumina ball having a diameter (maximum diameter) of 10 to 12 mm is used.
  • the heat-supporting medium 30 is pre-filled in the pyrolyzer 20 and the preheater 10 to a height of about 70% of each container, and then the heat-supporting medium 30 is charged in the preheater 10 at a temperature of about 700 ° C. Heat to. Next, the heat-supporting medium 30 is introduced from the top of the pyrolyzer 20 at an amount of 200 kilograms / hour, and an appropriate amount is extracted from the bottom of the pyrolyzer 20 to start circulation of the heat-supporting medium 30.
  • the gas phase temperature inside the pyrolyzer 20 and the temperature of the container itself gradually rise. While continuing the circulation of the heat-supporting medium 30, the temperature of the heat-supporting medium 30 inside the preheater 10 is gradually raised to 800 ° C. After the heat-bearing medium 30 reaches the temperature, the circulation is further continued to gradually raise the gas phase temperature inside the pyrolyzer 20 from the time when the gas phase temperature of the pyrolyzer 20 exceeds 550 ° C.
  • the biomass raw material, nitrogen gas and steam are introduced into the pyrolyzer 20 from the biomass supply port 220, the non-oxidizing gas supply port 250 and the steam inlet 241 respectively, and the temperature of the pyrolyzer 20 becomes 600 ° C. To control.
  • the heat-supporting medium 30 is deposited in layers in the pyrolyzer 20, and the accumulated amount is about 60% by volume of the internal volume of the pyrolyzer 20.
  • the amount of the heat-carrying medium 30 extracted from the pyrolyzer 20 was the same as the supply amount, and was 200 kg / hour in the pyrolyzer 20.
  • the temperature of the heat-supporting medium 30 at the time of extraction is 650 ° C. However.
  • the amount of the heat-carrying medium 30 extracted from the pyrolyzer 20 can be appropriately controlled according to the temperature condition.
  • the amount of sewage sludge as a biomass raw material is gradually increased from the biomass supply port 220 to the pyrolyzer 20 using a quantitative feeder, and finally about 22 kg / hour (drying standard). ) Is introduced continuously.
  • the temperature of the pyrolyzer 20 gradually decreases with the introduction of the biomass raw material, but at the same time, by introducing nitrogen gas and superheated steam into the pyrolyzer 20 while adjusting the supply amount thereof, the pyrolyzer 20 is introduced.
  • the temperature of 20 is maintained at 600 ° C. Further, the pressure in the pyrolyzer 20 is maintained at 101.3 kPa.
  • nitrogen gas is finally introduced at a fixed amount of 1000 liters / hour from the non-oxidizing gas supply port 250 provided in the upper part of the pyrolyzer 20.
  • superheated steam 160 ° C., 0.6 MPa
  • the residence time of the biomass raw material in the pyrolyzer 20 is about 1 hour.
  • the gas generated by the thermal decomposition in the pyrolyzer 20 can be obtained at 15 kilograms / hour.
  • char and ash are discharged from the pyrolysis residue (char) outlet 210 at a total of 6.5 kg / hour.
  • the pyrolysis gas obtained in the pyrolysis device 20 subsequently passes through the pyrolysis gas introduction pipe 200 from the lower side surface of the pyrolysis device 20 and is introduced into the pyrolysis gas reformer 40.
  • the temperature inside the pyrolysis gas reformer 40 becomes unstable, but the superheated steam introduced from the steam inlet 242 provided at the bottom of the pyrolysis gas reformer 40
  • the pyrolysis gas is partially combusted and the temperature inside the pyrolysis gas reformer 40 is adjusted to 1000 ° C. do.
  • the pyrolysis gas reformer 40 is held at a pressure of 101.3 kPa.
  • the superheated steam from the steam inlet 242 provided at the bottom of the pyrolysis gas reformer 40 is finally introduced at a fixed amount of 3.7 kg / hour.
  • Oxygen from the air or oxygen inlet (261) is finally introduced at a fixed amount of 2.3 m 3-normal / hour.
  • this amount of oxygen is appropriately increased or decreased depending on the degree of temperature rise inside the pyrolysis gas reformer 40.
  • the pyrolyzer 20 is held at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolyzed gas reformer 40 is held at a temperature of 950 ° C. and a pressure of 101.3 kPa.
  • the reformed gas having a temperature of 1000 ° C. is obtained from the reformed gas outlet 230 at an amount of 31 kg / hour.
  • the obtained reformed gas is collected in a rubber bag, and the gas composition is measured by gas chromatography. Table 3 shows the composition of the obtained reformed gas.
  • the operation can be carried out continuously for 3 days. During the operation period, good continuous operation can be maintained without troubles, especially troubles caused by tar. Further, during the operation period, the heat-supporting medium 30 does not become blocked by tar or the like in the pyrolysis gas introduction pipe 200, and the pyrolysis gas from the pyrolysis device 20 to the pyrolysis gas reformer 40 does not occur. Smooth introduction is maintained.
  • the amount of tar in the reformed gas taken out from the outlet of the pyrolysis gas reformer 40 is about 10 mg / m 3- normal.
  • the reformed gas can be obtained, and by realizing the stable continuous supply of the heat-carrying medium 30 in the gasifier, the pressure fluctuation of the pyrolyzer 20 is suppressed, and the separation ability in gas separation is lowered. It is possible to solve the problem and provide a gas with stable quality.
  • the heat-bearing medium 30 is once laterally discharged from the lower part of the cylindrical body to the outside of the upper tanks 111a and 121a in the pyrolyzer 20 and / or the preheater 10. , It descends along the tank wall of the lower tanks 111b, 121b, moves to the lower tanks 111b, 121b, and further discharges from the bottom of the lower tanks 111b, 121b to the outside of the lower tanks 111b, 121b. In, the heat-bearing medium 30 drops uniformly in the width direction, the volume can be effectively used evenly, and efficient thermal decomposition of biomass can be achieved.
  • the biomass gasifier of the present embodiment can generate a reformed gas containing a large amount of valuable gas such as hydrogen from biomass, preferably biomass having a relatively high ash content, and is contained in the biomass. not only can prevent clogging and corrosion of the piping caused by the volatilization of diphosphorus pentoxide and potassium (potassium) contained in the ash, resulting suppressing the occurrence of N 2 O, and the generation amount of tar and dust It is expected that it will be widely used as a gasifier for biomass, especially biomass with a relatively high ash content, because it can be reduced.
  • Preheater temporary hold
  • Pyrolyzer temporary hold
  • Heat-supporting medium 40 Pyrolysis gas reformer 111
  • Preheating housing 121 Pyrolysis housing (housing) 111a, 121a Upper tank 111b, 121b Lower tank 115,125 Partition wall 119,129 Discharge section 131,141 Pipe section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A biomass gasification device equipped with a temporary storage unit 10, 20 in which a heat carrier medium 30 is stored temporality and from which the heat carrier medium 30 is discharged. The temporary storage unit comprises a housing 111, 121 and a discharge unit 119, 129 for discharging the heat carrier medium. In the housing 111, 121, a partitioning wall 115, 125 is provided for forming a gap which the heat carrier medium can pass through between the partitioning wall 115, 125 and a side-part inner wall of the housing 111, 121 or, alternatively, a tubular part 131, 141 through which the heat carrier medium can pass is provided at a side-part inner wall of the housing 111, 121.

Description

バイオマスのガス化装置Biomass gasifier
 本発明は、熱担持媒体を用いる、バイオマスのガス化装置に関する。 The present invention relates to a biomass gasification device using a heat-supporting medium.
 高灰分バイオマスのガス化装置としては、例えば、灰分20重量%の下水汚泥を乾燥した後、空気吹き込み式の流動層式熱分解炉にて500~800℃で熱分解し、その熱分解ガスを空気と共に1000~1,250℃の高温で燃焼させ、その熱で水蒸気を発生させてタービン発電を行う方法(特開2002-322902号公報)、原料である高灰分バイオマスを、空気吹き込み式の循環流動加熱炉にて450~850℃の温度で熱分解し、熱分解残渣であるチャーをサイクロンで回収する一方、タールを含む熱分解ガスを、酸素の存在下に1000~1200℃で改質する方法(特開2004-51745号公報)、流動媒体の固着を防ぐために、同様の方法で熱分解してチャーを分離した後に、そのチャーを造粒して循環流動改質炉内に供給し、900~1000℃の温度で焼結することで造粒焼結体を製造する方法(特許4155507号公報)等を採用したものが開示されている。 As a gasifier for high ash biomass, for example, sewage sludge having an ash content of 20% by weight is dried and then pyrolyzed in an air-blown fluidized layer pyrolysis furnace at 500 to 800 ° C. to pyrolyze the pyrolysis gas. A method of generating turbine power by burning with air at a high temperature of 1000 to 1,250 ° C and generating steam with the heat (Japanese Patent Laid-Open No. 2002-322902), high ash biomass as a raw material is circulated by air blowing. Pyrolysis is carried out in a flow heating furnace at a temperature of 450 to 850 ° C., and char, which is a thermal decomposition residue, is recovered by a cyclone, while pyrolysis gas containing tar is reformed at 1000 to 1200 ° C. in the presence of oxygen. Method (Japanese Unexamined Patent Publication No. 2004-51745), in order to prevent sticking of the flow medium, the char is pyrolyzed by the same method to separate the char, and then the char is granulated and supplied into the circulating flow reforming furnace. A method of producing a granulated sintered body by sintering at a temperature of 900 to 1000 ° C. (Japanese Patent No. 4155507) or the like is disclosed.
 また、熱を運ぶための熱担持媒体と、この熱担持媒体を加熱するための予熱器と、熱分解ガスの水蒸気改質を行うための改質器と、木質バイオマス原料を熱分解するための熱分解器と、熱担持媒体とチャーとを分離するための分離機と、チャーを燃焼して熱風を生成する熱風炉とを備えており、上記予熱器、改質器及び熱分解器20を、上から順次縦型に配置した装置が知られている(特開2011-144329号公報)。 Further, a heat-carrying medium for carrying heat, a preheater for heating the heat-carrying medium, a reformer for steam reforming of the heat-decomposed gas, and a heat-decomposing wood biomass raw material. The preheater, the reformer, and the heat decomposer 20 are provided with a heat decomposer, a separator for separating the heat-bearing medium and the char, and a hot air furnace that burns the char to generate hot air. , Devices arranged vertically in order from the top are known (Japanese Patent Laid-Open No. 2011-144329).
 また、熱分解帯域における熱分解器と、反応帯域におけるガス改質器とを別個独立して備えることを基本として、それにより、直列接続型と並列接続型のいずれをも構成し得ることを特徴する装置も提案されている。熱担持媒体が、約1100℃の加熱帯域、950~1000℃の反応帯域、550~650℃の熱分解帯域および分離工程を通過し、引き続き加熱帯域に戻り、熱分解反応器を出た直後に、熱分解コークス及び熱担持媒体からなる混合物を分離して得た熱分解コークスを燃焼装置で燃焼して、これにより発生した顕熱を利用して加熱帯域内で熱担持媒体を加熱することにより、有機物質および物質混合物から高い発熱量を有する生成物ガスを製造する態様(特許4264525号公報)が知られている。 Further, it is characterized in that it is basically provided with a pyrolyzer in the pyrolysis zone and a gas reformer in the reaction zone separately and independently, so that both a series connection type and a parallel connection type can be configured. A device to do so has also been proposed. Immediately after the heat-bearing medium has passed through a heating zone of about 1100 ° C., a reaction zone of 950 to 1000 ° C., a thermal decomposition zone of 550 to 650 ° C., and a separation step, and then returns to the heating zone and exits the thermal decomposition reactor. , The heat-decomposed coke obtained by separating the mixture consisting of the heat-decomposed coke and the heat-bearing medium is burned in a combustion device, and the heat-bearing medium is heated in the heating zone by utilizing the apparent heat generated thereby. , An embodiment of producing a product gas having a high calorific value from an organic substance and a substance mixture (Japanese Patent No. 4264525) is known.
 さらに、熱分解器から熱分解ガス改質器に熱分解ガスを導入する熱分解ガス導入管が、熱分解器側において、熱分解器内に形成される予め加熱された熱担持媒体層の上面より下方の熱分解器の側面に設置されるガス化方法(特開2019-65160号公報)が知られている。 Further, a pyrolysis gas introduction tube for introducing the pyrolysis gas from the pyrolysis device to the pyrolysis gas reformer is formed on the pyrolysis device side on the upper surface of the preheated heat-bearing medium layer formed in the pyrolysis device. A gasification method (Japanese Patent Laid-Open No. 2019-65160) installed on the side surface of a lower pyrolyzer is known.
 しかしながら、従来の態様では、予熱器及び熱分解器に収容された熱担持媒体である球状のセラミックボールは殆ど動かず、滞留する事態が生じ得る。 However, in the conventional embodiment, the spherical ceramic balls, which are heat-supporting media housed in the preheater and the pyrolyzer, hardly move and may stay.
 本発明は、このような点を鑑みてなされたものであり、予熱器又は熱分解器等の一時保留部内に収容された熱担持媒体を円滑に移動させることができるバイオマスのガス化装置を提供する。 The present invention has been made in view of these points, and provides a biomass gasification device capable of smoothly moving a heat-carrying medium housed in a temporary holding portion such as a preheater or a pyrolyzer. do.
 本発明によるバイオマスのガス化装置は、
 熱担持媒体を一時的に収容し、排出する一時保留部を備えたバイオマスのガス化装置であって、
 前記一時保留部は、
  筐体と、
  前記筐体内に設けられた隔壁と、
  前記隔壁よりも下方に設けられ、前記熱担持媒体を排出するための排出部と、
 を有し、
 前記隔壁と前記筐体の側部内壁との間に熱担持媒体が通過するための間隙が設けられてもよいし、また前記筐体の側部内壁に熱担持媒体が通過するための管部が設けられてもよい。
The biomass gasifier according to the present invention
A biomass gasifier equipped with a temporary holding section for temporarily accommodating and discharging a heat-carrying medium.
The temporary holding part is
With the housing
The partition wall provided in the housing and
A discharge portion provided below the partition wall for discharging the heat-carrying medium, and a discharge portion.
Have,
A gap may be provided between the partition wall and the inner wall of the side portion of the housing for passing the heat-carrying medium, and the tube portion for passing the heat-carrying medium through the inner wall of the side portion of the housing. May be provided.
 本発明によるバイオマスのガス化装置において、
 前記一時保留部は熱担持単体を予め加熱する予熱器であり、
 前記排出部は予熱器排出部であり、
 前記予熱器排出部から排出された熱担持媒体は熱分解器に供給されてもよい。
In the biomass gasification device according to the present invention
The temporary holding portion is a preheater that preheats the heat-supporting simple substance.
The discharge part is a preheater discharge part, and is
The heat-supporting medium discharged from the preheater discharge unit may be supplied to the pyrolyzer.
 本発明によるバイオマスのガス化装置において、
 前記一時保留部は、予熱器で予め加熱された熱担持媒体の供給を受け、前記熱担持媒体の熱によりバイオマスの熱分解を実行する熱分解器であり、
 前記排出部は熱分解器排出部であり、
 前記熱分解器排出部から排出された熱担持媒体は、循環部を介して予熱器に供給されてもよい。
In the biomass gasification device according to the present invention
The temporary holding unit is a thermal cracker that receives a supply of a heat-supporting medium preheated by a preheater and executes thermal decomposition of biomass by the heat of the heat-supporting medium.
The discharge part is a pyrolyzer discharge part, and is
The heat-carrying medium discharged from the pyrolyzer discharge unit may be supplied to the preheater via the circulation unit.
 本発明によるバイオマスのガス化装置において、
 前記隔壁のおもて面は中央領域が周縁領域と比較して高い位置に位置付けられており、前記中央領域と前記周縁領域との間には傾斜面が設けられてもよい。
In the biomass gasification device according to the present invention
The front surface of the partition wall is positioned so that the central region is higher than the peripheral region, and an inclined surface may be provided between the central region and the peripheral region.
 本発明によるバイオマスのガス化装置において、
 前記隔壁の裏面は中央領域が周縁領域と比較して低い位置に位置付けられており、前記中央領域と前記周縁領域との間には傾斜面が設けられてもよい。
In the biomass gasification device according to the present invention
The back surface of the partition wall is positioned at a position where the central region is lower than the peripheral region, and an inclined surface may be provided between the central region and the peripheral region.
 本発明によるバイオマスのガス化装置において、
 前記隔壁の本体部と前記筐体の内部側壁との間に、前記本体部を前記筐体に対して固定するための複数の固定部材が設けられ、前記固定部材の間の間隙が、熱担持媒体が通過するための間隙になってもよい。
In the biomass gasification device according to the present invention
A plurality of fixing members for fixing the main body to the housing are provided between the main body of the partition and the inner side wall of the housing, and the gap between the fixing members is heat-supported. It may be a gap for the medium to pass through.
 本発明によるバイオマスのガス化装置において、
 前記隔壁の本体部は円板形状となり、
 前記本体部は前記筐体の内部側壁との間に設けられた固定部材、又は前記本体部の裏面に設けられた固定部材によって、前記筐体に対して固定されてもよい。
In the biomass gasification device according to the present invention
The main body of the partition has a disk shape.
The main body may be fixed to the housing by a fixing member provided between the inner side wall of the housing or a fixing member provided on the back surface of the main body.
 本発明によるバイオマスのガス化装置において、
 前記筐体は、上部槽と、前記上部槽の下方に設けられた下部槽とを有し、
 前記上部槽の下端部の横断面は、前記下部槽の上端部の横断面よりも小さくなり、
 前記上部槽の下端部よりも下方に隔壁が設けられ、
 前記隔壁と前記下部槽との間に間隙が形成されてもよい。
In the biomass gasification device according to the present invention
The housing has an upper tank and a lower tank provided below the upper tank.
The cross section of the lower end of the upper tank is smaller than the cross section of the upper end of the lower tank.
A partition wall is provided below the lower end of the upper tank.
A gap may be formed between the partition wall and the lower tank.
 本発明において、隔壁と筐体の側部内壁との間に熱担持媒体が通過するための間隙が設けられる態様、又は前筐体の側部内壁に熱担持媒体が通過するための管部が設けられる態様を採用した場合には、予熱器又は熱分解器等の一時保留部内に収容された熱担持媒体を円滑に移動させることができる。 In the present invention, there is an embodiment in which a gap for passing the heat-supporting medium is provided between the partition wall and the inner wall of the side portion of the housing, or a tube portion for passing the heat-supporting medium through the inner wall of the side portion of the front housing. When the provided embodiment is adopted, the heat-carrying medium housed in the temporary holding portion such as a preheater or a pyrolyzer can be smoothly moved.
図1は、バイオマスのガス化装置の一形態を示す概略図である。FIG. 1 is a schematic view showing one form of a biomass gasification device. 図2は、本実施の形態のバイオマスのガス化装置における、熱分解器における熱担持媒体の移動(移動前)を示す図である。FIG. 2 is a diagram showing the movement (before movement) of the heat-carrying medium in the pyrolyzer in the biomass gasifier of the present embodiment. 図3は、参考例のバイオマスのガス化装置における、熱分解器における熱担持媒体の移動(移動後)を示す図である。FIG. 3 is a diagram showing the movement (after movement) of the heat-carrying medium in the pyrolyzer in the biomass gasifier of the reference example. 図4は、本実施の形態のバイオマスのガス化装置における、熱分解器における熱担持媒体の移動(移動前)を示す図である。FIG. 4 is a diagram showing the movement (before movement) of the heat-carrying medium in the pyrolyzer in the biomass gasifier of the present embodiment. 図5は、本実施の形態のバイオマスのガス化装置における、熱分解器20における熱担持媒体の移動(移動後)を示す図である。FIG. 5 is a diagram showing the movement (after movement) of the heat-carrying medium in the pyrolyzer 20 in the biomass gasification device of the present embodiment. 図6は、本実施の形態のバイオマスのガス化装置における、下部槽内に設置された隔壁の実例を示す図である。FIG. 6 is a diagram showing an example of a partition wall installed in the lower tank in the biomass gasification device of the present embodiment. 図7は、本実施の形態のバイオマスのガス化装置における、予熱器の一態様を示す図である。FIG. 7 is a diagram showing one aspect of the preheater in the biomass gasification device of the present embodiment. 図8は、本実施の形態のバイオマスのガス化装置における、熱分解器の一態様を示す図である。FIG. 8 is a diagram showing one aspect of a pyrolyzer in the biomass gasification device of the present embodiment. 図9は、本実施の形態のバイオマスのガス化装置における、予熱器の別の態様を示す図である。FIG. 9 is a diagram showing another aspect of the preheater in the biomass gasifier of the present embodiment. 図10は、本実施の形態のバイオマスのガス化装置における、熱分解器の別の態様を示す図である。FIG. 10 is a diagram showing another aspect of the pyrolyzer in the biomass gasifier of the present embodiment. 図11は、バイオマスのガス化装置の別の形態を示す概略図である。FIG. 11 is a schematic view showing another form of the biomass gasifier. 図12は、隔壁の本体部と筐体の内部側壁との間に、複数の固定部材が設けられた態様を示した平面図である。FIG. 12 is a plan view showing a mode in which a plurality of fixing members are provided between the main body of the partition wall and the inner side wall of the housing.
 図1に示すように、本実施の形態のバイオマスのガス化装置は、熱担持媒体30を予め加熱する予熱器10と、予熱器10で予め加熱された熱担持媒体30の供給を受け、熱担持媒体30の持つ熱によりバイオマスの熱分解を実行する熱分解器(バイオマス熱分解器)20と、熱分解により発生した熱分解ガスを、空気又は酸素により部分燃焼してスチーム改質を実行する熱分解ガス改質器40と、様々な制御を行う制御装置100(図11参照)と、を有している。 As shown in FIG. 1, the biomass gasifier of the present embodiment receives heat from the preheater 10 that preheats the heat-bearing medium 30 and the heat-supporting medium 30 that has been preheated by the preheater 10. A thermal decomposition device (biomass thermal decomposition device) 20 that executes thermal decomposition of biomass by the heat of the supporting medium 30 and a thermal decomposition gas generated by the thermal decomposition are partially burned by air or oxygen to execute steam reforming. It has a thermal decomposition gas reformer 40 and a control device 100 (see FIG. 11) that performs various controls.
 熱担持媒体30(「ヒートキャリア」ともいう。)は、複数の粒状物及び/又は塊状物であり、好ましくは、金属及びセラミックより成る群から選ばれる一以上の材質から成る。金属としては、好ましくは、鉄、ステンレス鋼、ニッケル合金鋼、及び、チタン合金鋼より成る群から選ばれ、より好ましくは、ステンレス鋼が選ばれる。また、セラミックとしては、アルミナ、シリカ、シリコンカーバイド、タングステンカーバイド、ジルコニア及び窒化ケイ素より成る群から選ばれ、より好ましくは、アルミナが選ばれる。 The heat-supporting medium 30 (also referred to as "heat carrier") is a plurality of granules and / or lumps, preferably made of one or more materials selected from the group consisting of metals and ceramics. The metal is preferably selected from the group consisting of iron, stainless steel, nickel alloy steel, and titanium alloy steel, and more preferably stainless steel. The ceramic is selected from the group consisting of alumina, silica, silicon carbide, tungsten carbide, zirconia and silicon nitride, and more preferably alumina.
 熱担持媒体30の形状は、好ましくは球状(ボール)であるが、必ずしも真球である必要はなく、断面形状が楕円形又は長円形である球状物であってもよい。球状物の直径(最大径)は、好ましくは3~25mm、より好ましくは8~15mmである。上記上限(25mm)を超えては、熱分解器20内部での流動性、即ち、自由落下性を損なうことがあり、これにより、球状物が熱分解器20内部で静止して閉塞の原因となることがある。一方、上記下限(3mm)未満では、熱分解器20において、球状物に付着したタール及び煤塵等により球状物自体が固着することがあり、閉塞の原因となることがある。例えば、球状物の直径が3mm未満では、球状物に付着したタール及び煤塵等の影響により、球状物が、熱分解器20の内壁に付着して成長し、最悪の場合には、熱分解器20を閉塞させてしまうことが懸念される。また、タールが付着した球状物が、熱分解器20の底部のバルブから抜き出される際、3mm未満の球状物は軽く、そのうえタールが付着しているために自然落下せずにバルブ内部に固着して閉塞を助長することがある。 The shape of the heat-supporting medium 30 is preferably spherical (ball), but it does not necessarily have to be a true sphere, and it may be a spherical object having an elliptical or oval cross-sectional shape. The diameter (maximum diameter) of the spherical object is preferably 3 to 25 mm, more preferably 8 to 15 mm. Exceeding the above upper limit (25 mm) may impair the fluidity inside the pyrolyzer 20, that is, the free fall property, which causes the spherical object to stand still inside the pyrolyzer 20 and cause blockage. May become. On the other hand, if it is less than the above lower limit (3 mm), the spheroids themselves may stick to the spheroids due to tar and soot and dust adhering to the spheroids in the pyrolyzer 20, which may cause blockage. For example, if the diameter of the spherical object is less than 3 mm, the spherical object adheres to the inner wall of the pyrolyzer 20 and grows due to the influence of tar and dust adhering to the spherical object, and in the worst case, the pyrolyzer There is a concern that 20 will be blocked. Further, when the spherical object to which tar is attached is extracted from the valve at the bottom of the pyrolyzer 20, the spherical object having a thickness of less than 3 mm is light, and since the tar is attached, it does not fall naturally and sticks to the inside of the valve. May promote obstruction.
 本実施の形態のバイオマスとは、いわゆるバイオマス資源を言う。ここで、バイオマス資源とは、植物系バイオマス、例えば、林業から廃棄される間伐材、製材廃材、剪定枝、林地残材、未利用樹等、農業から廃棄される野菜残渣及び果樹残渣等の農作物、稲藁、麦藁及び籾殻等、その他海洋植物、建設系廃木材等;生物系バイオマス、例えば、家畜排せつ物及び下水汚泥に代表される生物系排せつ物;並びに塵芥等の生活雑排出物及び食品廃棄物等を言う。本実施の形態の装置は、好ましくは植物系バイオマス及び生物系バイオマスのガス化に適している。なかでも、灰分が、乾燥基準で、好ましくは5.0質量%以上、より好ましくは10.0~30.0質量%、更に好ましくは15.0~20.0質量%である高灰分バイオマス、とりわけ、下水汚泥及び家畜排せつ物のガス化に適している。 The biomass of this embodiment means a so-called biomass resource. Here, the biomass resource refers to plant-based biomass, for example, agricultural products such as thinned wood, sludge waste, pruned branches, forest land residue, unused trees, etc., which are discarded from agriculture, and vegetable residues and fruit tree residues, which are discarded from agriculture. , Rice straw, wheat straw, rice husks, etc., other marine plants, construction waste wood, etc .; biological biomass, for example, biological waste such as livestock excrement and sewage sludge; And so on. The apparatus of this embodiment is preferably suitable for gasification of plant-based biomass and biological-based biomass. Among them, high ash biomass having an ash content of preferably 5.0% by mass or more, more preferably 10.0 to 30.0% by mass, and further preferably 15.0 to 20.0% by mass on a drying basis. In particular, it is suitable for gasification of sewage sludge and livestock excrement.
 予熱器10で予め加熱された熱担持媒体30は、予熱器10からバルブを介して熱分解器20へ自由落下により供給される。熱分解器20内において、熱担持媒体30は、それ自身の熱により熱分解器20内に供給されたバイオマスの熱分解を引き起こす。熱分解器20内の熱担持媒体30は、熱分解器20からバルブを介して自由落下により排出され、好ましくは予熱器10へと再循環する。 The heat-supporting medium 30 preheated by the preheater 10 is supplied from the preheater 10 to the pyrolyzer 20 via a valve by free fall. In the pyrolyzer 20, the heat-supporting medium 30 causes thermal decomposition of the biomass supplied into the pyrolyzer 20 by its own heat. The heat-supporting medium 30 in the pyrolyzer 20 is discharged from the pyrolyzer 20 by free fall via a valve, and is preferably recirculated to the preheater 10.
 本実施の形態のバイオマスのガス化装置は、供給される熱担持媒体30を収容し、熱担持媒体30を排出する一時保留部10,20を有している。当該一時保留部10,20は、筐体111,121と、筐体111,121内に設けられ、おもて面を有する隔壁115,125と、隔壁115,125よりも下方に設けられ、熱担持媒体30を排出するための排出部119,129と、を有している。隔壁115,125と筐体111,121の側部内壁との間には熱担持媒体30が通過するための間隙Gが設けられてもよい(図7及び図8参照)。 The biomass gasifier of the present embodiment has temporary holding units 10 and 20 for accommodating the heat-supporting medium 30 to be supplied and discharging the heat-supporting medium 30. The temporary holding portions 10 and 20 are provided in the housings 111 and 121 and the housings 111 and 121, and are provided below the partition walls 115 and 125 having a front surface and the partition walls 115 and 125 to generate heat. It has discharge sections 119 and 129 for discharging the carrier medium 30. A gap G may be provided between the partition walls 115 and 125 and the side inner walls of the housings 111 and 121 for the heat-supporting medium 30 to pass through (see FIGS. 7 and 8).
 本実施の形態では、一例として、上記一時保留部が予熱器10及び熱分解器20を意味している。そして、予熱器10及び熱分解器20の各々の筐体111,121の内部に隔壁115,125が設けられてもよい。 In the present embodiment, as an example, the temporary holding portion means the preheater 10 and the pyrolyzer 20. Then, partition walls 115 and 125 may be provided inside the housings 111 and 121 of the preheater 10 and the pyrolyzer 20 respectively.
 より具体的には、図7に示すように、予熱器10は、予熱筐体111と、予熱筐体111内に設けられ、おもて面を有する予熱隔壁115と、予熱隔壁115よりも下方に設けられ、熱担持媒体30を排出するための予熱器排出部119と、を有してもよい。予熱器排出部119から排出された熱担持媒体30は下方に設けられている熱分解器20の内部に熱分解器20の頂面から供給されることになる。予熱筐体111の側部内壁と予熱隔壁115との間には間隙Gが設けられており、この間隙Gを介して熱担持媒体30が下方に向かって落下することになる。 More specifically, as shown in FIG. 7, the preheater 10 is provided in the preheating housing 111, the preheating housing 111, and has a front surface, and is below the preheating partition 115 and the preheating partition 115. It may have a preheater discharge unit 119 for discharging the heat-carrying medium 30. The heat-carrying medium 30 discharged from the preheater discharge unit 119 is supplied from the top surface of the pyrolyzer 20 to the inside of the pyrolyzer 20 provided below. A gap G is provided between the inner wall of the side portion of the preheating housing 111 and the preheating partition wall 115, and the heat-carrying medium 30 falls downward through the gap G.
 また、図8に示すように、熱分解器20は、熱分解筐体121と、熱分解筐体121内に設けられ、おもて面を有する熱分解隔壁125と、熱分解隔壁125よりも下方に設けられ、熱担持媒体30を排出するための熱分解器排出部129と、を有してもよい。熱分解筐体121の側部内壁と熱分解隔壁125との間には間隙Gが設けられており、この間隙Gを介して熱担持媒体30が下方に向かって落下することになる。 Further, as shown in FIG. 8, the pyrolyzer 20 is provided in the pyrolysis housing 121 and the pyrolysis housing 121 and has a front surface, and is more than the pyrolysis partition 125 and the pyrolysis partition 125. It may have a pyrolyzer discharge unit 129, which is provided below and discharges the heat-bearing medium 30. A gap G is provided between the inner wall of the side portion of the pyrolysis housing 121 and the pyrolysis partition wall 125, and the heat-carrying medium 30 falls downward through the gap G.
 熱分解器排出部29から排出された熱担持媒体30は、排出物処理部240及び循環部290を介して、上方に設けられている予熱器10に戻されることになる(図1参照)。 The heat-carrying medium 30 discharged from the pyrolyzer discharge unit 29 is returned to the preheater 10 provided above via the discharge treatment unit 240 and the circulation unit 290 (see FIG. 1).
 また、図7及び図8に示す態様とは異なり、筐体111,121の側部内壁に熱担持媒体30が通過するための管部131,141が設けられてもよい。 Further, unlike the embodiments shown in FIGS. 7 and 8, pipe portions 131 and 141 for passing the heat-carrying medium 30 may be provided on the inner wall of the side portions of the housings 111 and 121.
 より具体的には、図9に示すように、予熱筐体111の側部内壁に熱担持媒体30が通過するための予熱管部131が設けられ、この予熱管部131を通過することで、熱担持媒体30は下方に設けられている熱分解器20に上方から供給されるようにしてもよい。 More specifically, as shown in FIG. 9, a preheating tube portion 131 for passing the heat-carrying medium 30 is provided on the inner wall of the side portion of the preheating housing 111, and by passing through the preheating tube portion 131, The heat-carrying medium 30 may be supplied from above to the pyrolyzer 20 provided below.
 また、図10に示すように、熱分解筐体121の側部内壁に熱担持媒体30が通過するための熱分解管部141が設けられ、この熱分解管部141を通過することで、熱担持媒体30は下方に設けられている排出物処理部240に対して上方から排出されてもよい。 Further, as shown in FIG. 10, a thermal decomposition tube portion 141 for passing the heat carrying medium 30 is provided on the inner wall of the side portion of the thermal decomposition housing 121, and the heat is generated by passing through the thermal decomposition tube portion 141. The carrying medium 30 may be discharged from above with respect to the discharge processing unit 240 provided below.
 なお、図9及び図10に示すように、管部131,141が設けられる態様であっても、筐体111,121の内部に隔壁115,125が設けられるようにしてもよい。 Note that, as shown in FIGS. 9 and 10, even in the embodiment in which the pipe portions 131 and 141 are provided, the partition walls 115 and 125 may be provided inside the housings 111 and 121.
 熱分解器20及び/又は予熱器10が、上部槽111a,121aと底部コーン型の下部槽111b,121bとを有する移動床であり、上部槽111a,121a内の熱担持媒体30が一旦上部槽111a,121aの下部から上部槽111a,121aの外部に横方向へ排出された後、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bに移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出される構造を有してもよい。 The pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-carrying medium 30 in the upper tanks 111a, 121a is once the upper tank. After being discharged laterally from the lower part of 111a, 121a to the outside of the upper tanks 111a, 121a, it descends along the tank wall of the lower tanks 111b, 121b, moves to the lower tanks 111b, 121b, and further moves to the lower tanks 111b, 121b. It may have a structure in which the lower tanks 111b and 121b are discharged from the bottom of the tank to the outside.
 バイオマスのガス化装置における予熱器10の下方に位置する熱分解器20においては、上方(上部)、好ましくは頂部に、熱担持媒体30の導入口127が備えられ(図1参照)、熱分解器20の下方(下部)、好ましくは底部に、熱担持媒体30の排出口(この排出口が熱分解器排出部129を構成する。)が備えられる。熱担持媒体30の導入口127の上方及び熱分解器排出部129の下方には、例えば、配管の上下に1個ずつ合計2個のバルブを備えた、いわゆる2段式バルブ方式が設けられてもよい。 The pyrolyzer 20 located below the preheater 10 in the biomass gasifier is provided with an inlet 127 for the heat-bearing medium 30 (see FIG. 1) at the top (upper part), preferably at the top, for thermal decomposition. A discharge port for the heat-bearing medium 30 (this discharge port constitutes the pyrolyzer discharge section 129) is provided below (lower), preferably at the bottom, of the vessel 20. A so-called two-stage valve system is provided above the introduction port 127 of the heat-carrying medium 30 and below the pyrolyzer discharge unit 129, for example, having a total of two valves, one above and one below the pipe. May be good.
 より具体的には、図11に示すように、予熱器10と熱分解器20との間には、第1バルブ50が設けられてもよい。この第1バルブ50は、調整部と、調整部の下方に設けられた第1開閉部と、第1開閉部の下方に設けられた第2開閉部と、を有してもよい。そして、第2開閉部が閉状態の間に第1開閉部を開状態とし、第1開閉部が閉状態の間に第2開閉部を開状態とするように制御装置100が制御してもよい。第1開閉部及び第2開閉部の各々はダンパバルブであってもよい。以下では、第1開閉部が第1ダンパバルブ51aであり、第2開閉部が第2ダンパバルブ51bである態様を用いて説明する。また、第1バルブ50の調整部がスイングバルブ52である態様を用いて説明する。 More specifically, as shown in FIG. 11, a first valve 50 may be provided between the preheater 10 and the pyrolyzer 20. The first valve 50 may have an adjusting portion, a first opening / closing portion provided below the adjusting portion, and a second opening / closing portion provided below the first opening / closing portion. Then, even if the control device 100 controls so that the first opening / closing portion is opened while the second opening / closing portion is closed and the second opening / closing portion is opened while the first opening / closing portion is closed. good. Each of the first opening / closing part and the second opening / closing part may be a damper valve. Hereinafter, the embodiment in which the first opening / closing portion is the first damper valve 51a and the second opening / closing portion is the second damper valve 51b will be described. Further, the embodiment in which the adjusting portion of the first valve 50 is the swing valve 52 will be described.
 上下2個の第1ダンパバルブ51a及び第2ダンパバルブ51bを閉じておき、まず、上の第1ダンパバルブ51aを開いてヒートキャリアを配管内部に落下させ、第2ダンパバルブ51bと第1ダンパバルブ51aとの間にヒートキャリアを充填する。次いで、第1ダンパバルブ51aを閉じ、第2ダンパバルブ51bを開くことによって、第1ダンパバルブ51aと第2ダンパバルブ51bの間に充填されたヒートキャリアを熱分解器20へ導入し、又は、熱分解器20から抜き出す。このようなバルブ操作を繰り返すことによって、ヒートキャリアは熱分解器20にほぼ連続的に導入され、かつ、熱分解器20からほぼ連続的に抜出される。該導入及び抜出し方式は、一例であり、この方式に限定されるものではない。 The upper and lower first damper valves 51a and the second damper valve 51b are closed, and first, the upper first damper valve 51a is opened to drop the heat carrier into the pipe, and between the second damper valve 51b and the first damper valve 51a. Is filled with a heat carrier. Next, by closing the first damper valve 51a and opening the second damper valve 51b, the heat carrier filled between the first damper valve 51a and the second damper valve 51b is introduced into the pyrolyzer 20 or the pyrolyzer 20 is introduced. Extract from. By repeating such valve operation, the heat carrier is introduced into the pyrolyzer 20 substantially continuously and is withdrawn from the pyrolyzer 20 substantially continuously. The introduction / extraction method is an example, and the method is not limited to this method.
 本実施の形態では、熱分解器20と排出物処理装置240との間に第2バルブ90が設けられてもよい。第2バルブ90は、開閉部の一例である一対のダンパバルブ91a,91b及び調整部の一例であるスイングバルブ92を有してもよい。第1バルブ50と同様、第2バルブ90においても、スイングバルブ92、第1ダンパバルブ91a及び第2ダンパバルブ91bが上から順番に配置されてもよい。図1に示すように、排出物処理装置240にはフィルタFが設けられており、バイオマスのガスに含まれていた煤はフィルタFを介して下方に落下し、フィルタFを通過しない熱担持媒体30はエレベータ式、エスカレーター式等からなる循環部290によって循環され、予熱器10に投入されることになる。 In the present embodiment, the second valve 90 may be provided between the pyrolyzer 20 and the waste treatment device 240. The second valve 90 may have a pair of damper valves 91a and 91b which are an example of an opening / closing part and a swing valve 92 which is an example of an adjusting part. Similar to the first valve 50, in the second valve 90, the swing valve 92, the first damper valve 91a, and the second damper valve 91b may be arranged in order from the top. As shown in FIG. 1, the waste treatment device 240 is provided with a filter F, and the soot contained in the biomass gas falls downward through the filter F and does not pass through the filter F. 30 is circulated by a circulation unit 290 composed of an elevator type, an escalator type, etc., and is charged into the preheater 10.
 熱分解器20におけるバイオマスの熱分解に必要な熱の殆どは、上記の温度に予め加熱された熱担持媒体30の持つ熱により供給される。 Most of the heat required for the thermal decomposition of biomass in the thermal decomposition device 20 is supplied by the heat of the heat-bearing medium 30 that has been preheated to the above temperature.
 予熱器10は、熱分解器20の上部に好ましくは1器設けて、そこで全ての熱担持媒体30を所定の温度に加熱して、該温度に加熱された熱担持媒体30を、熱分解器20に供給することができる。 The preheater 10 is preferably provided on the upper part of the pyrolyzer 20, where all the heat-bearing media 30 are heated to a predetermined temperature, and the heat-bearing medium 30 heated to the temperature is brought into the pyrolyzer. Can be supplied to 20.
 熱分解器20及び/又は予熱器10が上部槽111a,121aと底部コーン型の下部槽111b,121bとを有する移動床であり、上部槽111a,121a内の熱担持媒体30が一旦上部槽111a,121aの下部から上部槽111a,121aの外部に横方向へ排出された後、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bに移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出される構造を有してもよい。 The pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-carrying medium 30 in the upper tanks 111a, 121a is once the upper tank 111a. , 121a, after being laterally discharged to the outside of the upper tanks 111a, 121a, descend along the tank walls of the lower tanks 111b, 121b, move to the lower tanks 111b, 121b, and further, the lower tanks 111b, 121b. It may have a structure in which the lower tanks 111b and 121b are discharged from the bottom to the outside.
 熱分解器20が上記特徴を有することにより、従来の移動床にあった、所定量のバイオマスをガス化する容積として設計したものの、熱媒体が移動する中央部のみの小さい容積分しかガス化に利用することができず、所定量をガス化できないという問題及び予熱器10における予め加熱した熱担持媒体30が熱分解器20に円滑に移動しないという問題を解決し、容積を満遍なく有効に利用でき、効率的なバイオマスの熱分解を達成することができる。 Due to the above characteristics, the pyrolyzer 20 was designed as a volume for gasifying a predetermined amount of biomass, which was found in conventional moving beds, but only a small volume in the central part where the heat medium moves is gasified. The problem that it cannot be used and a predetermined amount cannot be gasified and the problem that the preheated heat-bearing medium 30 in the preheater 10 does not move smoothly to the pyrolyzer 20 can be solved, and the volume can be effectively used evenly. , Efficient thermal decomposition of biomass can be achieved.
 より具体的には、本実施の形態にように熱担持媒体30を周縁方向に逃がすように移動させることで、均一な速度で面内において均一に熱担持媒体30を落下させることができた(図2、図4及び図5参照)。図3は、本実施の形態で用いられる隔壁を設けない態様であるが、この態様によれば、黒色に色付けされた熱担持媒体30が下方に突出するように曲がっており、中央付近では熱担持媒体30は落下しやすいものの、周縁部では熱担持媒体30が落下しにくく、循環される熱担持媒体30に差ができてしまうことを確認できた。他方、筐体111,121の内部に隔壁115,125を設ける場合には、図2、図4及び図5に示すように、黒色に色付けされた熱担持媒体30は水平状態を保ったまま下方へ移動しており、偏りなく熱担持媒体30を下方へと移動させることができた。 More specifically, by moving the heat-supporting medium 30 so as to escape in the peripheral direction as in the present embodiment, the heat-supporting medium 30 could be uniformly dropped in the plane at a uniform speed (). See FIGS. 2, 4 and 5). FIG. 3 shows a mode in which the partition wall used in the present embodiment is not provided. According to this mode, the heat-carrying medium 30 colored in black is bent so as to protrude downward, and heat is generated near the center. Although the carrier medium 30 is easy to fall, it was confirmed that the heat carrier medium 30 is hard to fall at the peripheral portion and a difference is formed in the circulated heat carrier medium 30. On the other hand, when the partition walls 115 and 125 are provided inside the housings 111 and 121, as shown in FIGS. 2, 4 and 5, the heat-carrying medium 30 colored in black is lowered while maintaining a horizontal state. The heat-carrying medium 30 could be moved downward without bias.
 上部槽111a,121aの形状は、熱担持媒体30が下部に移動可能であれば、特にその形状は限定されないが、円筒形及び角形が好ましい。 The shapes of the upper tanks 111a and 121a are not particularly limited as long as the heat-carrying medium 30 can be moved to the lower part, but are preferably cylindrical or square.
 下部槽111b,121b床の形状は、熱担持媒体30が下部槽111b,121bの底部から排出され得る形状であれば、特にその形状は限定されないが、逆円錐形及び逆円錐台形が好ましい。 The shape of the floors of the lower tanks 111b and 121b is not particularly limited as long as the heat-supporting medium 30 can be discharged from the bottom of the lower tanks 111b and 121b, but an inverted conical shape and an inverted conical trapezoid are preferable.
 上部槽111a,121aの下端部の横断面は、下部槽111b,121bの上端部の横断面よりも小さくなってもよい。横断面が円形状となる場合には、上部槽111a,121aの下端部の直径が、下部槽111b,121bの上端部の直径よりも小さくなってもよい。下部槽111b,121bの上端部の上面と、上部槽111a,121aの下端部の下面とは連続して設けられており、下部槽111b,121bの上端部には、下部槽111b,121bの最外方位置から上部槽111a,121aの下端部まで延在する頂部が設けられてもよい。 The cross section of the lower end of the upper tanks 111a, 121a may be smaller than the cross section of the upper end of the lower tanks 111b, 121b. When the cross section has a circular shape, the diameter of the lower end portions of the upper tanks 111a and 121a may be smaller than the diameter of the upper end portions of the lower tanks 111b and 121b. The upper surface of the upper end portion of the lower tanks 111b, 121b and the lower surface of the lower end portion of the upper tanks 111a, 121a are continuously provided, and the uppermost portion of the lower tanks 111b, 121b is the maximum of the lower tanks 111b, 121b. A top may be provided extending from the outer position to the lower ends of the upper tanks 111a, 121a.
 また、このような態様に限られることはなく、図4及び図5に示すように、外周槽111c,121cと、外周槽111c,121c内に上部槽111a,121aが設けられ、外周槽111c,121cの上部槽111a,121aよりも下方側の領域が下部槽111b,121bを構成するようにしてもよい。なお、図4及び図5では、下部槽111b,121b内で面内方向で延在する上方側の隔壁115,125と、上下方向で延在する下方側の隔壁115,125とが設けられている。場合によっては、上下方向で延在する隔壁115,125を設けることによっても、熱担持媒体30を円滑に流す効果を期待できる。 Further, the present invention is not limited to such an embodiment, and as shown in FIGS. 4 and 5, upper outer tanks 111c and 121c and upper tanks 111a and 121a are provided in the outer peripheral tanks 111c and 121c, and the outer peripheral tanks 111c and 111c are provided. The region below the upper tanks 111a and 121a of 121c may form the lower tanks 111b and 121b. In FIGS. 4 and 5, upper partition walls 115 and 125 extending in the in-plane direction and lower partition walls 115 and 125 extending in the vertical direction are provided in the lower tanks 111b and 121b. There is. In some cases, the effect of smoothly flowing the heat-carrying medium 30 can be expected by providing the partition walls 115 and 125 extending in the vertical direction.
 上部槽111a,121aの下端部よりも下方に隔壁115,125が設けられ、隔壁115,125の周縁外方には下部槽111b,121bが設けられるようにしてもよい。この態様によれば、上部槽111a,121aの下端部と隔壁115,125との上下方向における間に開口23が形成されることになる(図4及び図5参照)。また、隔壁115,125と下部槽111b,121bとの面内方向における間に間隙Gが形成されることになる。この場合には、開口23を通して熱担持媒体30は、一旦、上部槽111a,121aよりも周縁外方に広がり、上部槽111a,121aよりも面内方向における周縁外方において、間隙Gを介して下部槽111b,121bへ移動することになる。 The partition walls 115 and 125 may be provided below the lower ends of the upper tanks 111a and 121a, and the lower tanks 111b and 121b may be provided outside the peripheral edges of the partition walls 115 and 125. According to this aspect, the opening 23 is formed between the lower ends of the upper tanks 111a and 121a and the partition walls 115 and 125 in the vertical direction (see FIGS. 4 and 5). Further, a gap G is formed between the partition walls 115 and 125 and the lower tanks 111b and 121b in the in-plane direction. In this case, the heat-carrying medium 30 once spreads out of the peripheral edge of the upper tanks 111a and 121a through the opening 23, and goes out of the peripheral edge in the in-plane direction of the upper tanks 111a and 121a through the gap G. It will move to the lower tanks 111b and 121b.
 隔壁115,125は、下部槽111b,121b内の中央部分に設置されてもよい。上部槽111a,121a、下部槽111b,121b及び隔壁115,125の面内方向の中心は合致してもよい。このような態様によれば、面内方向に均一に熱担持媒体30を流すことができる点で有益である。 The partition walls 115 and 125 may be installed in the central portion of the lower tanks 111b and 121b. The centers of the upper tanks 111a, 121a, the lower tanks 111b, 121b, and the partition walls 115, 125 in the in-plane direction may be aligned. According to such an aspect, it is advantageous in that the heat-carrying medium 30 can be uniformly flowed in the in-plane direction.
 隔壁115,125は上記の目的を達成するものであれば、特に形状等に限定はないが、下部槽111b,121bが逆円錐形又は逆円錐台形であるときは、上部槽111a,121aと下部槽111b,121bとの隔壁115,125下に設置された、円錐形、逆円錐形、及びコマ形からなる群から選択されるいずれかの隔壁115,125であることが好ましい。 The shapes of the partition walls 115 and 125 are not particularly limited as long as they achieve the above object, but when the lower tanks 111b and 121b have an inverted conical shape or an inverted conical trapezoidal shape, the upper tanks 111a and 121a and the lower portions It is preferable that the partition walls 115 and 125 are installed under the partition walls 115 and 125 with the tanks 111b and 121b and are selected from the group consisting of a conical shape, an inverted conical shape and a coma shape.
 隔壁115,125のおもて面(本実施の形態では上面)は中央領域が周縁領域と比較して高い位置に位置付けられており、中央領域と周縁領域との間には傾斜面が設けられるようになってもよい。一例として、頂点が上方を向いた円錐形(図6A参照)又は接頭円錐形の隔壁115,125が設けられてもよく、この態様によれば、熱担持媒体30の下部槽111b,121bへの排出が良好となる(図6A参照)。 The front surface (upper surface in the present embodiment) of the partition walls 115 and 125 is positioned at a higher position in the central region than the peripheral region, and an inclined surface is provided between the central region and the peripheral region. You may become like this. As an example, conical (see FIG. 6A) or prefix conical bulkheads 115, 125 with vertices pointing upwards may be provided, according to this embodiment, to the lower tanks 111b, 121b of the heat carrier 30. Good discharge (see FIG. 6A).
 また、隔壁115,125の裏面(本実施の形態では下面)は中央領域が周縁領域と比較して低い位置に位置付けられており、中央領域と周縁領域との間には傾斜面が設けられるようになってもよい。一例として、頂点が下方を向いた円錐形(図6B参照)又は接頭円錐形の隔壁115,125が設けられてもよい。この態様によれば、隔壁115,125の中央部が分厚くなるため、熱担持媒体30による曲げ応力に対する耐性がより良好となる(図6B参照)。 Further, the back surfaces of the partition walls 115 and 125 (lower surface in the present embodiment) are positioned so that the central region is positioned lower than the peripheral region, and an inclined surface is provided between the central region and the peripheral region. May become. As an example, septa 115, 125 having a conical shape with the apex facing downward (see FIG. 6B) or a prefix conical shape may be provided. According to this aspect, since the central portions of the partition walls 115 and 125 are thickened, the resistance to bending stress by the heat-supporting medium 30 becomes better (see FIG. 6B).
 図6A及び図6Bの態様が組み合わされてもよく、一例としては、図6Cに示すようなコマ形の隔壁115,125が採用されてもよい。この態様は、図6Aで示した態様及び図6Bで示した態様の両者の性能を備えることができる(図6C参照)。 The aspects of FIGS. 6A and 6B may be combined, and as an example, the coma-shaped partition walls 115 and 125 as shown in FIG. 6C may be adopted. This aspect can comprise the performance of both the aspect shown in FIG. 6A and the aspect shown in FIG. 6B (see FIG. 6C).
 なお、下部槽111b,121bが角錐形であるときは、上部槽111a,121aと下部槽111b,121bとの隔壁115,125下に設置された角錐形又は逆角錐形の隔壁115,125であることが好ましい。 When the lower tanks 111b and 121b are pyramidal, they are pyramid-shaped or inverted pyramid-shaped bulkheads 115 and 125 installed under the partition walls 115 and 125 between the upper tanks 111a and 121a and the lower tanks 111b and 121b. Is preferable.
 円錐形、逆円錐形及びコマ形の隔壁115,125においては、図6A乃至図6Cにおいて矢印で示される流れで熱担持媒体30は下部槽111b,121b内を移動し、下部槽111b,121bの外部へ排出される。 In the conical, inverted conical, and coma-shaped partition walls 115 and 125, the heat-carrying medium 30 moves in the lower tanks 111b and 121b in the flow indicated by the arrows in FIGS. 6A to 6C, and the lower tanks 111b and 121b It is discharged to the outside.
 図12に示すように、隔壁115,125の本体部115a,125aと筐体111,121の内部側壁との間に、本体部115a,125aを筐体111,121に対して固定するための複数の固定部材130が設けられてもよい。そして、固定部材130の間の間隙が、熱担持媒体が通過するための間隙Gになってもよい。 As shown in FIG. 12, a plurality of main bodies 115a, 125a for fixing the main bodies 115a, 125a to the housings 111, 121 between the main bodies 115a, 125a of the partition walls 115, 125 and the internal side walls of the housings 111, 121. The fixing member 130 of the above may be provided. Then, the gap between the fixing members 130 may be a gap G for the heat-carrying medium to pass through.
 隔壁115,125の本体部115a,125aは円板形状となってもよい(図12参照)。本体部115a,125aは筐体111,121の内部側壁との間に設けられた固定部材130によって、筐体111,121に対して固定されてもよい。また、図7及び図8に示すように、本体部115a,125aの裏面に設けられた固定部材130によって、筐体111,121に対して固定されてもよい。 The main bodies 115a and 125a of the partition walls 115 and 125 may have a disk shape (see FIG. 12). The main bodies 115a and 125a may be fixed to the housings 111 and 121 by a fixing member 130 provided between the main bodies 115a and 125a and the inner side walls of the housings 111 and 121. Further, as shown in FIGS. 7 and 8, the fixing members 130 provided on the back surfaces of the main bodies 115a and 125a may be fixed to the housings 111 and 121.
 本実施の形態の態様を、従来のバイオマスのガス化装置に組み込んでもよい。 The embodiment of the present embodiment may be incorporated into a conventional biomass gasification device.
 熱分解器20が、バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を有し、
 熱分解ガス改質器40が、スチーム吹込み口及び改質ガス排出口を有し、
 熱分解器20において発生した熱分解ガスを熱分解ガス改質器40へと導入する、熱分解器20と上記熱分解ガス改質器40との間に備えられた、熱分解ガス導入管200を含み、
 熱分解器20及び熱分解ガス改質器40が、夫々更に、予め加熱された熱担持媒体の導入口及び排出口を備え、熱担持媒体の持つ熱により、バイオマスの熱分解及びバイオマスの熱分解により発生した熱分解ガスの改質を実行し、
 熱分解器20と熱分解ガス改質器40とが、熱担持媒体の流れに対して並列に備えられており、かつ、熱分解ガス導入管200が、熱分解器20及び熱分解ガス改質器40の両側において、熱分解器20及び熱分解ガス改質器40内に夫々形成される、熱担持媒体層の上面より下方の上記熱分解器20及び熱分解ガス改質器40の側面に備えられており、かつ、熱分解ガス導入管200が、重力方向に対して略水平に備え、
 熱分解器20及び/又は予熱器10が上部槽111a,121aと底部コーン型の下部槽111b,121bとを有する移動床であり、上部槽111a,121a内の熱担持媒体30が一旦上部槽111a,121aの下部から上部槽111a,121aの外部に横方向へ排出された後、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bに移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出される構造を有するバイオマスのガス化装置を提供することができる。
The pyrolyzer 20 has a biomass supply port and a non-oxidizing gas supply port and / or a steam blow port.
The pyrolysis gas reformer 40 has a steam inlet and a reformed gas outlet.
A pyrolysis gas introduction pipe 200 provided between the pyrolysis device 20 and the pyrolysis gas reformer 40, which introduces the pyrolysis gas generated in the pyrolysis device 20 into the pyrolysis gas reformer 40. Including
Each of the thermal decomposition device 20 and the thermal decomposition gas reformer 40 further includes an inlet and an outlet for a preheated heat-bearing medium, and the heat of the heat-bearing medium causes thermal decomposition of biomass and thermal decomposition of biomass. Performed reformation of the pyrolysis gas generated by
The pyrolysis device 20 and the pyrolysis gas reformer 40 are provided in parallel with respect to the flow of the heat-bearing medium, and the pyrolysis gas introduction pipe 200 is provided with the pyrolysis device 20 and the pyrolysis gas reformer. On both sides of the vessel 40, on the side surfaces of the pyrolyzer 20 and the pyrolysis gas reformer 40 below the upper surface of the pyrolysis medium layer, which are formed in the pyrolyzer 20 and the pyrolysis gas reformer 40, respectively. The pyrolysis gas introduction pipe 200 is provided and is provided substantially horizontally with respect to the direction of gravity.
The pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-supporting medium 30 in the upper tanks 111a, 121a is once the upper tank 111a. , 121a is discharged laterally from the lower part to the outside of the upper tanks 111a and 121a, then descends along the tank wall of the lower tanks 111b and 121b to move to the lower tanks 111b and 121b, and further to the lower tanks 111b and 121b. It is possible to provide a biomass gasification device having a structure in which the bottom tanks 111b and 121b are discharged to the outside.
 また、熱分解器20が、バイオマス供給口、並びに、非酸化性ガス供給口及び/又はスチーム吹込み口を有し、
 熱分解ガス改質器40がスチーム吹込み口及び改質ガス排出口を有し、
 熱分解器20と熱分解ガス改質器40との間に備えられた熱分解ガス導入管200とを備え、熱分解器20において発生した熱分解ガスを上記熱分解ガス改質器40へと導入し、
 熱分解器20が、更に、予め加熱された熱担持媒体の導入口及び排出口を備え、上記熱担持媒体の持つ熱により、バイオマスの熱分解を実行し、
 一方、熱分解ガス改質器40が、バイオマスの熱分解により発生した熱分解ガスのスチーム改質を実行し、
 熱分解ガス改質器40が、更に、空気又は酸素吹込み口を備え、該空気又は酸素により、バイオマスの熱分解により発生した熱分解ガスを部分燃焼することにより、スチーム改質を実行し、
 熱分解ガス導入管200が、熱分解器20内に形成される、熱担持媒体層の上面より下方の熱分解器20の側面に備えられ、
 熱分解器20及び/又は予熱器10が上部槽111a,121aと底部コーン型の下部槽111b,121bとを有する移動床であり、上部槽111a,121a内の熱担持媒体30が一旦上部槽111a,121aの下部から上部槽111a,121aの外部に横方向へ排出された後、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bに移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出される構造を有するバイオマスのガス化装置を提供することができる。
Further, the pyrolyzer 20 has a biomass supply port and a non-oxidizing gas supply port and / or a steam blow port.
The pyrolysis gas reformer 40 has a steam inlet and a reformed gas outlet.
A pyrolysis gas introduction pipe 200 provided between the pyrolysis device 20 and the pyrolysis gas reformer 40 is provided, and the pyrolysis gas generated in the pyrolysis device 20 is transferred to the pyrolysis gas reformer 40. Introduced,
The pyrolyzer 20 further includes an inlet and an outlet for a heat-supporting medium that has been preheated, and uses the heat of the heat-supporting medium to carry out thermal decomposition of biomass.
On the other hand, the pyrolysis gas reformer 40 executes steam reforming of the pyrolysis gas generated by the thermal decomposition of biomass.
The pyrolysis gas reformer 40 further includes an air or oxygen inlet, and performs steam reforming by partially burning the pyrolysis gas generated by the thermal decomposition of biomass with the air or oxygen.
The pyrolysis gas introduction pipe 200 is provided on the side surface of the pyrolyzer 20 below the upper surface of the heat-carrying medium layer formed in the pyrolyzer 20.
The pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a, 121a and bottom cone-shaped lower tanks 111b, 121b, and the heat-supporting medium 30 in the upper tanks 111a, 121a is once the upper tank 111a. , 121a is discharged laterally from the lower part to the outside of the upper tanks 111a and 121a, then descends along the tank wall of the lower tanks 111b and 121b to move to the lower tanks 111b and 121b, and further to the lower tanks 111b and 121b. It is possible to provide a biomass gasification device having a structure in which the bottom tanks 111b and 121b are discharged to the outside.
 本実施の形態の他の形態では、バイオマスを、非酸化性ガス雰囲気下又は非酸化性ガスとスチームとの混合ガス雰囲気下において加熱する熱分解器20と、上記熱分解器20において発生したガスを、スチームの存在下に改質する熱分解ガス改質器40とを備え、かつ、予め加熱された熱担持媒体30を、上記熱分解器20に投入させて、上記熱担持媒体30物の持つ熱により、バイオマスの熱分解を実行し、次いで、該バイオマスの熱分解により発生した熱分解ガスを、上記熱分解ガス改質器40に導入して、該熱分解ガスのスチーム改質を実行し、
 上記バイオマスの熱分解により発生した熱分解ガスが、上記熱分解器20内に形成される、上記熱担持媒体層の上面より下方の上記熱分解器20の側面に備えられた熱分解ガス導入管200を通って、上記熱分解ガス改質器40に導入され、次いで、該熱分解ガス改質器40に、別途、導入された空気又は酸素により、上記の導入された熱分解ガスが、部分酸化されると同時に、上記空気又は酸素と同時に導入されたスチームにより改質される、バイオマスのガス化方法において、
 熱分解器20及び/又は予熱器10において、上部槽111a,121aと底部コーン型の下部槽111b,121bとを有する熱分解器20内において、熱担持媒体30が、上部槽111a,121a内の下部から一旦上部槽111a,121aの外部に横方向へ排出された後、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bに移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出される、バイオマスのガス化方法が提供される。
In another embodiment of the present embodiment, the pyrolyzer 20 that heats the biomass in a non-oxidizing gas atmosphere or a mixed gas atmosphere of a non-oxidizing gas and steam, and the gas generated in the pyrolyzing device 20. Is provided with a pyrolysis gas reformer 40 that reforms the heat in the presence of steam, and the preheated heat-supporting medium 30 is charged into the pyrolyzer 20 to bring the heat-supporting medium 30 into the pyrolyzer 20. Pyrolysis of the biomass is carried out by the heat possessed, and then the pyrolysis gas generated by the pyrolysis of the biomass is introduced into the pyrolysis gas reformer 40 to carry out steam reforming of the pyrolysis gas. death,
A pyrolysis gas introduction tube provided on the side surface of the pyrolysis device 20 below the upper surface of the heat-supporting medium layer, in which the pyrolysis gas generated by the thermal decomposition of the biomass is formed in the pyrolysis device 20. Through 200, the pyrolysis gas reformer 40 is introduced into the pyrolysis gas reformer 40, and then the introduced pyrolysis gas is partially introduced into the pyrolysis gas reformer 40 by air or oxygen separately introduced into the pyrolysis gas reformer 40. In the method of gasifying biomass, which is pyrolyzed and reformed by steam introduced at the same time as the above air or oxygen.
In the pyrolyzer 20 and / or the preheater 10, the heat-supporting medium 30 is contained in the upper tanks 111a, 121a in the pyrolyzer 20 having the upper tanks 111a, 121a and the bottom cone-shaped lower tanks 111b, 121b. After being discharged laterally from the lower part to the outside of the upper tanks 111a and 121a, it descends along the tank wall of the lower tanks 111b and 121b, moves to the lower tanks 111b and 121b, and further from the bottom of the lower tanks 111b and 121b. A method for gasifying biomass, which is discharged to the outside of the lower tanks 111b and 121b, is provided.
 本実施の形態の態様の一例について説明する。 An example of the embodiment of the present embodiment will be described.
 熱担持媒体30、即ち、ヒートキャリアは、熱分解器20に導入される前に、予熱器10において予め加熱される。熱担持媒体30は、好ましくは650~800℃、より好ましくは700~750℃に加熱される。上記下限(650℃)未満では、熱分解器20においてバイオマス、例えば、高灰分バイオマスを十分に熱分解することができず、熱分解ガスの発生量が低下する。一方、上記上限(800℃)を超えては、リンやカリ(カリウム)の揮散を引き起こし、五酸化二リン及びカリ(カリウム)による配管の閉塞及び腐食を引き起こす原因になる。また、余分な熱を与えるばかりで著しい効果の増大は期待できず、却って、コスト高を招くばかりである。また、設備の熱効率低下の原因にもなる。 The heat-supporting medium 30, that is, the heat carrier, is preheated in the preheater 10 before being introduced into the pyrolyzer 20. The heat-supporting medium 30 is preferably heated to 650 to 800 ° C, more preferably 700 to 750 ° C. Below the above lower limit (650 ° C.), the biomass, for example, high ash biomass, cannot be sufficiently pyrolyzed in the pyrolyzer 20, and the amount of pyrolyzed gas generated decreases. On the other hand, if it exceeds the above upper limit (800 ° C.), it causes volatilization of phosphorus and potassium (potassium), and causes blockage and corrosion of pipes by diphosphorus pentoxide and potassium (potassium). In addition, it is not expected that the effect will be significantly increased only by giving extra heat, and on the contrary, it will only lead to high cost. It also causes a decrease in the thermal efficiency of the equipment.
 予熱器10において所定温度に加熱された熱担持媒体30は、次いで、熱分解器20に導入される。熱分解器20において、熱担持媒体30は、別途、バイオマス供給口220から熱分解器20に供給されたバイオマスと接触される。熱担持媒体30とバイオマスとの接触により、バイオマスが加熱されて熱分解し、熱分解ガスが生成する。生成した熱分解ガスは、熱分解ガス導入管200を通過して、熱分解ガス改質器40に導入される。この際、生成した熱分解ガスに含まれるタール及び煤塵等は、熱分解ガス導入管200内に保有される熱担持媒体30により捕捉され、タールの一部又は大部分は熱担持媒体30により加熱されてガス化され、残存したタール及び煤塵等は、熱担持媒体30に付着したまま、熱分解器20の底部から排出される。 The heat-supporting medium 30 heated to a predetermined temperature in the preheater 10 is then introduced into the pyrolyzer 20. In the pyrolyzer 20, the heat-carrying medium 30 is separately contacted with the biomass supplied to the pyrolyzer 20 from the biomass supply port 220. By the contact between the heat-supporting medium 30 and the biomass, the biomass is heated and thermally decomposed to generate a thermal decomposition gas. The generated pyrolysis gas passes through the pyrolysis gas introduction pipe 200 and is introduced into the pyrolysis gas reformer 40. At this time, tar, soot, etc. contained in the generated pyrolysis gas are captured by the heat-supporting medium 30 held in the pyrolysis gas introduction pipe 200, and a part or most of the tar is heated by the heat-supporting medium 30. The tar, soot, and the like remaining after being gasified are discharged from the bottom of the pyrolyzer 20 while still adhering to the heat-bearing medium 30.
 熱分解器20及び/又は予熱器10は、上部槽111a,121aと底部コーン型の下部槽111b,121bとを有する移動床である。予熱器10から熱分解器20に導入された熱担持媒体30は、まず熱分解器20の上部槽111a,121a内に入る。熱担持媒体30は一旦上部槽111a,121a下部の開口23から上部槽111a,121aの外部に横方向へ排出される。その後、上部槽111a,121aと下部槽111b,121bとの間にある隔壁115,125又は隔壁115,125の上にある熱担持媒体30を経て、下部槽111b,121bに導入される。 The pyrolyzer 20 and / or the preheater 10 is a moving floor having upper tanks 111a and 121a and bottom cone-shaped lower tanks 111b and 121b. The heat-supporting medium 30 introduced from the preheater 10 into the pyrolyzer 20 first enters the upper tanks 111a and 121a of the pyrolyzer 20. The heat-carrying medium 30 is once discharged laterally from the opening 23 at the bottom of the upper tanks 111a and 121a to the outside of the upper tanks 111a and 121a. After that, it is introduced into the lower tanks 111b, 121b via the partition walls 115, 125 between the upper tanks 111a, 121a and the lower tanks 111b, 121b or the heat-carrying medium 30 on the partition walls 115, 125.
 下部槽111b,121bに導入された熱担持媒体30は、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bの下部に移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出される。 The heat-supporting medium 30 introduced into the lower tanks 111b and 121b descends along the tank wall of the lower tanks 111b and 121b, moves to the lower part of the lower tanks 111b and 121b, and further moves from the bottom of the lower tanks 111b and 121b to the lower tank. It is discharged to the outside of 111b and 121b.
 下部槽111b,121b内には、中央部分に設置された隔壁115,125であって、熱担持媒体30の下部槽111b,121bの底部への移動を促す隔壁115,125が備えられている。この隔壁115,125により、熱担持媒体30が、熱担持媒体30が沿って移動し、下部槽111b,121bの内部に滞留することを防いで、下部槽111b,121bの底部への移動を促進する。 The lower tanks 111b and 121b are provided with partition walls 115 and 125 installed in the central portion and which promote the movement of the heat-carrying medium 30 to the bottom of the lower tanks 111b and 121b. The partition walls 115 and 125 prevent the heat-carrying medium 30 from moving along the heat-carrying medium 30 and staying inside the lower tanks 111b and 121b, thereby promoting the movement to the bottom of the lower tanks 111b and 121b. do.
 熱担持媒体30の熱分解器20への導入及び熱担持媒体30の熱分解器20からの抜出し速度を制御することにより、熱分解器20において熱担持媒体層を形成せしめると共に、その層の厚さを適切な値に制御し、かつ、熱分解器20の温度を上記所定温度に制御することができる。このように、熱分解器20のみに熱担持媒体30を導入して、その熱でバイオマスの熱分解をし、一方、熱分解ガス改質器40にはスチーム及び酸素又は空気を導入して、それにより改質をすることにより、熱分解器20と熱分解ガス改質器40との内部温度を個別にコントロールすることが可能になる。これにより、熱分解ガス改質器40における改質反応を適正温度で進行させることが可能になると共に、熱分解器20におけるバイオマスの熱分解を適正温度で実行させることが可能となる。 By controlling the introduction of the heat-supporting medium 30 into the pyrolyzer 20 and the extraction speed of the heat-supporting medium 30 from the pyrolyzer 20, the heat-supporting medium layer is formed in the pyrolyzer 20 and the thickness of the layer is formed. The temperature can be controlled to an appropriate value, and the temperature of the pyrolyzer 20 can be controlled to the above-mentioned predetermined temperature. In this way, the heat-bearing medium 30 is introduced only into the thermal cracker 20, and the heat is used to thermally decompose the biomass, while steam and oxygen or air are introduced into the thermal decomposition gas reformer 40. By reforming the heat, the internal temperatures of the pyrolyzer 20 and the pyrolysis gas reformer 40 can be controlled individually. As a result, the reforming reaction in the pyrolysis gas reformer 40 can be carried out at an appropriate temperature, and the thermal decomposition of biomass in the pyrolysis device 20 can be carried out at an appropriate temperature.
 熱分解器20におけるバイオマスの滞留時間は、好ましくは5~60分間、より好ましくは10~40分間、更に好ましくは15~35分間である。上記下限(5分間)未満では、バイオマスに均一に熱が伝わらず、均一な熱分解が行なわれないことから熱分解ガスの発生量が低減する。一方、上記上限(60分間)を超えても、著しい効果の増大は認められず、却って、設備コストの増加を招く。ここで、熱分解器20におけるバイオマスの滞留時間は、熱担持媒体30の移動速度とバイオマス供給量とから適切に調節され得る。 The residence time of biomass in the pyrolyzer 20 is preferably 5 to 60 minutes, more preferably 10 to 40 minutes, and even more preferably 15 to 35 minutes. If it is less than the above lower limit (5 minutes), heat is not uniformly transferred to the biomass and uniform pyrolysis is not performed, so that the amount of pyrolysis gas generated is reduced. On the other hand, even if the above upper limit (60 minutes) is exceeded, no significant increase in the effect is observed, and on the contrary, the equipment cost increases. Here, the residence time of biomass in the pyrolyzer 20 can be appropriately adjusted from the moving speed of the heat-carrying medium 30 and the amount of biomass supplied.
 熱分解ガス改質器40と熱分解器20とを、上下直列に接続すると、夫々の容器における滞留時間、即ち、熱分解器20におけるバイオマス熱分解のための滞留時間及び熱分解ガス中のタールの分解のための滞留時間、並びに、熱分解ガス改質器40における熱分解ガスとスチームとの改質反応に必要な滞留時間を、夫々個別にコントロールすることが不可能であった。熱分解器20にのみを熱担持媒体30にて加熱し、熱分解ガス改質器40は別途、スチームと酸素又は空気を導入して、熱分解ガスの部分酸化により加熱する方式にすることにより、熱分解器20及び熱分解ガス改質器40の各々における滞留時間を独立してコントロールすることができることから、熱分解器20及び熱分解ガス改質器40の各々の内部での温度を独立してコントロールすることができる。 When the pyrolysis gas reformer 40 and the pyrolysis device 20 are connected in series, the residence time in each container, that is, the residence time for biomass pyrolysis in the pyrolysis device 20, and the tar in the pyrolysis gas. It was impossible to individually control the residence time for decomposition of the pyrolysis and the residence time required for the reformation reaction between the pyrolysis gas and steam in the pyrolysis gas reformer 40. By heating only the thermal decomposition device 20 with the heat-bearing medium 30, and separately introducing steam and oxygen or air into the thermal decomposition gas reformer 40, heating is performed by partial oxidation of the thermal decomposition gas. Since the residence time in each of the thermal decomposition device 20 and the thermal decomposition gas reformer 40 can be controlled independently, the temperature inside each of the thermal decomposition device 20 and the thermal decomposition gas reformer 40 can be controlled independently. Can be controlled.
 上記のようにして、熱分解器20を通過した熱担持媒体30は、バイオマスの熱分解残渣(チャー)、及び、熱担持媒体30に付着した熱分解されないで残った微量のタール及び煤塵等と一緒に、熱分解器20の底部から排出される。排出された熱担持媒体30を含む排出物の処理は、排出物処理部においてチャーを分離する等の従来公知の方法によって実施される。このようにして処理された熱担持媒体30は、再度、予熱器10に戻されて熱分解器20に供給される。 As described above, the heat-supporting medium 30 that has passed through the thermal decomposition device 20 contains the thermal decomposition residue (char) of the biomass, and a small amount of tar and soot and dust that have adhered to the heat-supporting medium 30 and remain without being pyrolyzed. Together, it is discharged from the bottom of the pyrolyzer 20. The treatment of the discharged material including the discharged heat-supporting medium 30 is carried out by a conventionally known method such as separating the char in the discharge processing unit. The heat-supporting medium 30 treated in this manner is returned to the preheater 10 again and supplied to the pyrolyzer 20.
 熱分解ガス改質器40には、熱分解器20においてバイオマスを熱分解することにより生成した熱分解ガスが、熱分解ガス導入管200を通って導入される。熱分解ガス改質器40に導入された熱分解ガスは、空気又は酸素により部分酸化され、それにより、熱分解ガス改質器40内が加熱される。これにより、熱分解ガスとスチームとが反応して、熱分解ガスを水素に富むガスへと改質することができる。 The pyrolysis gas generated by thermally decomposing the biomass in the pyrolysis device 20 is introduced into the pyrolysis gas reformer 40 through the pyrolysis gas introduction pipe 200. The pyrolysis gas introduced into the pyrolysis gas reformer 40 is partially oxidized by air or oxygen, whereby the inside of the pyrolysis gas reformer 40 is heated. As a result, the pyrolysis gas reacts with steam, and the pyrolysis gas can be reformed into a hydrogen-rich gas.
 以下、本実施の形態を実施例により更に詳細に説明するが、本実施の形態はこれら実施例により限定されるものではない。 Hereinafter, the present embodiment will be described in more detail with reference to the examples, but the present embodiment is not limited to these examples.
 実施例において使用したバイオマス原料、並びに、該バイオマス原料の熱分解及びガス改質に使用したガス化装置は、下記の通りである。 The biomass raw material used in the examples and the gasifier used for the thermal decomposition and gas reforming of the biomass raw material are as follows.
 バイオマス原料としては、下水汚泥を造粒して使用した。造粒後の下水汚泥の大きさは、最大寸法が6~15mm程度のものであった。該下水汚泥の性状を表1に示す。また、該下水汚泥を燃焼して得られた灰の組成を表2に示す。 As a biomass raw material, sewage sludge was granulated and used. The maximum size of the sewage sludge after granulation was about 6 to 15 mm. The properties of the sewage sludge are shown in Table 1. Table 2 shows the composition of the ash obtained by burning the sewage sludge.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の各値に関して、水分、揮発分及び固定炭素は、JIS M8812に準拠し、灰分は、JIS Z 7302-4:2009に準拠し、かつ、高位発熱量は、JIS M8814に準拠して測定したものである。また、元素組成のうち、炭素(C)、水素(H)及び窒素(N)は、いずれもJIS Z 7302-8:2002に準拠し、硫黄(S)は、JIS Z 7302‐7:2002に準拠し、かつ、塩素(Cl)は、JIS Z 7302‐6:1999に準拠して測定したものである。また、酸素(O)は、100質量%から、C、H、N、S、Cl及び灰分の各質量%を差し引いて求めたものである。ここで、灰分、揮発分、固定炭素及び元素組成は、いずれも乾燥基準で算出したものである。また、水分は、バイオマス原料(下水汚泥)の受け入れ時のものである。 For each value in Table 1, moisture, volatile matter and fixed carbon are measured according to JIS M8812, ash content is measured according to JIS Z 7302-4: 2009, and high calorific value is measured according to JIS M8814. It was done. In addition, among the elemental compositions, carbon (C), hydrogen (H) and nitrogen (N) all conform to JIS Z 7302-8: 2002, and sulfur (S) conforms to JIS Z 7302-7: 2002. Compliant and chlorine (Cl) was measured in accordance with JIS Z 7302-6: 1999. Further, oxygen (O) was obtained by subtracting each mass% of C, H, N, S, Cl and ash content from 100 mass%. Here, the ash content, the volatile content, the fixed carbon, and the elemental composition are all calculated on a drying basis. Moisture is the one at the time of receiving the biomass raw material (sewage sludge).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
表2の各値に関して、二酸化ケイ素、酸化アルミニウム、酸化第二鉄、酸化マグネシウム、酸化カルシウム、酸化ナトリウム、酸化カリウム、五酸化二リン及び酸化マンガンは、JIS M8815に準拠して測定したものである。また、水銀、クロム、カドミウム、酸化銅、酸化鉛、酸化亜鉛及びニッケルは、JIS Z 7302‐5:2002に準拠して測定したものである。 Regarding each value in Table 2, silicon dioxide, aluminum oxide, ferric oxide, magnesium oxide, calcium oxide, sodium oxide, potassium oxide, diphosphorus pentoxide and manganese oxide were measured in accordance with JIS M8815. .. Mercury, chromium, cadmium, copper oxide, lead oxide, zinc oxide and nickel were measured in accordance with JIS Z 7302-5: 2002.
 ガス化装置は、基本的には、熱分解器20、熱分解ガス改質器40及び予熱器10を有するものであり(図1参照)、熱分解器20と熱分解ガス改質器40とは、熱分解器20において発生した熱分解ガスを、熱分解ガス改質器40へと導入する熱分解ガス導入管200により接続されている。 The gasifier basically includes a pyrolyzer 20, a pyrolyzed gas reformer 40, and a preheater 10 (see FIG. 1), and includes the pyrolyzer 20 and the pyrolyzed gas reformer 40. Is connected by a pyrolysis gas introduction pipe 200 that introduces the pyrolysis gas generated in the pyrolysis device 20 into the pyrolysis gas reformer 40.
 ここで、熱分解器20の上部に予熱器10が1器備えられており、該予熱器10は、熱分解器20に供給する熱担持媒体30を予め加熱するものであり、加熱された熱担持媒体30は、熱分解器20に供給されて、バイオマスの熱分解に必要な熱を供給した後、その底部から抜き出され、再び、予熱器10に戻される。一方、熱分解器20において発生した熱分解ガスは、熱分解ガス導入管200を通って、熱分解ガス改質器40へと導入される。 Here, one preheater 10 is provided above the thermal decomposition device 20, and the preheater 10 preheats the heat-bearing medium 30 supplied to the thermal decomposition device 20, and the heated heat. The carrying medium 30 is supplied to the thermal decomposer 20, supplies heat necessary for thermal decomposition of biomass, is extracted from the bottom thereof, and is returned to the preheater 10 again. On the other hand, the pyrolysis gas generated in the pyrolysis device 20 is introduced into the pyrolysis gas reformer 40 through the pyrolysis gas introduction pipe 200.
 ここで、熱分解ガス改質器40へは、別途、空気又は酸素が、空気又は酸素導入管261,262から導入されて、これにより、熱分解ガスが部分燃焼され、かつ、同時にスチームが、スチーム吹込み口242から導入されて、熱分解ガスがスチームにより改質され、これにより得られた改質ガスが、改質ガス排出口230から取り出される。また、空気又は酸素及びスチームは、上記の空気又は酸素導入管(261)及びスチーム吹込み口242に代えて、熱分解ガス導入管200に備えられた、空気又は酸素導入管262及びスチーム吹込み口243からに導入することもできるし、全ての空気又は酸素導入管261,262及びスチーム吹込み口242,243からに導入することもできる。 Here, air or oxygen is separately introduced into the pyrolysis gas reformer 40 from the air or oxygen introduction pipes 261,262, whereby the pyrolysis gas is partially burned, and at the same time, steam is generated. It is introduced from the steam inlet 242, the pyrolysis gas is reformed by steam, and the reformed gas obtained thereby is taken out from the reformed gas discharge port 230. Further, for air or oxygen and steam, instead of the above-mentioned air or oxygen introduction pipe (261) and steam injection port 242, the air or oxygen introduction pipe 262 and steam injection provided in the heat decomposition gas introduction pipe 200 are provided. It can be introduced from the port 243, or can be introduced from all the air or oxygen introduction pipes 261,262 and the steam inlets 242 and 243.
 熱分解器20の直胴部分の内径は約550mmであり、高さは約1100mmであり、内容積は約260リットルである。また、熱分解ガス改質器40の直胴部分の内径は約600mmであり、高さは約120 0mmであり、内容積は約340リットルである。 The inner diameter of the straight body portion of the pyrolyzer 20 is about 550 mm, the height is about 1100 mm, and the internal volume is about 260 liters. The inner diameter of the straight body portion of the pyrolysis gas reformer 40 is about 600 mm, the height is about 1200 mm, and the internal volume is about 340 liters.
 また、熱分解ガス導入管200は、熱分解器20側においては、熱分解器20内に形成される熱担持媒体層の上面より下方の熱分解器20の側面に備えられており、一方、熱分解ガス改質器40側においては、熱分解ガス改質器40の底面近傍の側面に備えられている。また、熱分解ガス導入管200は、重力方向に対して略水平に備えられている。該熱分解ガス導入管200としては、長さ約1000mm及び内径約80mmの配管が使用され、その内部は断熱材で被覆されて、かつ、上記突出部も該断熱材で形成されている。熱担持媒体30としては、直径(最大径)10~12mmの略球形のアルミナ製ボールを使用する。 Further, the pyrolysis gas introduction pipe 200 is provided on the side of the pyrolyzer 20 on the side of the pyrolyzer 20 below the upper surface of the heat-bearing medium layer formed in the pyrolyzer 20. On the pyrolysis gas reformer 40 side, it is provided on the side surface near the bottom surface of the pyrolysis gas reformer 40. Further, the pyrolysis gas introduction pipe 200 is provided substantially horizontally with respect to the direction of gravity. As the pyrolysis gas introduction pipe 200, a pipe having a length of about 1000 mm and an inner diameter of about 80 mm is used, the inside thereof is covered with a heat insulating material, and the protruding portion is also formed of the heat insulating material. As the heat-carrying medium 30, a substantially spherical alumina ball having a diameter (maximum diameter) of 10 to 12 mm is used.
 熱分解器20、並びに、予熱器10内部に、熱担持媒体30を予め夫々の容器の70%程度の高さまで充填し、次いで、該熱担持媒体30を、予熱器10において略700℃の温度に加熱する。次いで、該熱担持媒体30を、熱分解器20の頂部から200キログラム/時間の量で導入し、かつ、熱分解器20の底部から適量を抜出し、熱担持媒体30の循環を開始する。 The heat-supporting medium 30 is pre-filled in the pyrolyzer 20 and the preheater 10 to a height of about 70% of each container, and then the heat-supporting medium 30 is charged in the preheater 10 at a temperature of about 700 ° C. Heat to. Next, the heat-supporting medium 30 is introduced from the top of the pyrolyzer 20 at an amount of 200 kilograms / hour, and an appropriate amount is extracted from the bottom of the pyrolyzer 20 to start circulation of the heat-supporting medium 30.
 熱担持媒体30の循環により、熱分解器20内部の気相温度及び容器自体の温度が徐々に上昇する。このような熱担持媒体30の循環を継続しながら、同時に、予熱器10内部の熱担持媒体30温度を800℃まで徐々に昇温する。熱担持媒体30が該温度に達した後、更に、循環を継続して、熱分解器20内部の気相温度を徐々に上昇させ、熱分解器20の気相温度が550℃を超えるころから、バイオマス供給口220、非酸化性ガス供給口250及びスチーム吹込み口241から熱分解器20に、夫々、バイオマス原料、窒素ガス及びスチームを導入し、熱分解器20の温度が600℃になるようにコントロールする。 Due to the circulation of the heat-carrying medium 30, the gas phase temperature inside the pyrolyzer 20 and the temperature of the container itself gradually rise. While continuing the circulation of the heat-supporting medium 30, the temperature of the heat-supporting medium 30 inside the preheater 10 is gradually raised to 800 ° C. After the heat-bearing medium 30 reaches the temperature, the circulation is further continued to gradually raise the gas phase temperature inside the pyrolyzer 20 from the time when the gas phase temperature of the pyrolyzer 20 exceeds 550 ° C. , The biomass raw material, nitrogen gas and steam are introduced into the pyrolyzer 20 from the biomass supply port 220, the non-oxidizing gas supply port 250 and the steam inlet 241 respectively, and the temperature of the pyrolyzer 20 becomes 600 ° C. To control.
 このとき、熱担持媒体30は、熱分解器20において、層状に堆積しており、その堆積量は、熱分解器20の内容積の約60体積%である。熱分解器20からの熱担持媒体30の抜出し量は、いずれも供給量と同一であり、熱分解器20において200キログラム/時間であった。また、抜出し時の熱担持媒体30の温度は650℃である。但し。熱分解器20からの熱担持媒体30の抜出し量は、その温度状況に応じて適宜コントロールすることも可能である。 At this time, the heat-supporting medium 30 is deposited in layers in the pyrolyzer 20, and the accumulated amount is about 60% by volume of the internal volume of the pyrolyzer 20. The amount of the heat-carrying medium 30 extracted from the pyrolyzer 20 was the same as the supply amount, and was 200 kg / hour in the pyrolyzer 20. The temperature of the heat-supporting medium 30 at the time of extraction is 650 ° C. However. The amount of the heat-carrying medium 30 extracted from the pyrolyzer 20 can be appropriately controlled according to the temperature condition.
 上記の操作において、バイオマス原料としての下水汚泥を、定量フィーダーを使用して、バイオマス供給口220から熱分解器20に、徐々に供給量を増やしつつ、最終的に約22キログラム/時間(乾燥基準)になるように連続的に導入する。 In the above operation, the amount of sewage sludge as a biomass raw material is gradually increased from the biomass supply port 220 to the pyrolyzer 20 using a quantitative feeder, and finally about 22 kg / hour (drying standard). ) Is introduced continuously.
 熱分解器20の温度は、バイオマス原料の導入に伴って徐々に低下するが、同時に、窒素ガス及び過熱蒸気を、その供給量を調節しながら熱分解器20に導入することによって、熱分解器20の温度を600℃に保持する。また、熱分解器20内の圧力を101.3kPaに保持する。 The temperature of the pyrolyzer 20 gradually decreases with the introduction of the biomass raw material, but at the same time, by introducing nitrogen gas and superheated steam into the pyrolyzer 20 while adjusting the supply amount thereof, the pyrolyzer 20 is introduced. The temperature of 20 is maintained at 600 ° C. Further, the pressure in the pyrolyzer 20 is maintained at 101.3 kPa.
 ここで、窒素ガスは、熱分解器20の上部に設けられた非酸化性ガス供給口250から、最終的に1000リットル/時間の一定量で導入される。また、スチームとしては、過熱蒸気(160℃、0.6MPa)が使用され、熱分解器20の上部に設けられたスチーム吹込み口241から、最終的に1キログラム/時間の一定量で導入される。熱分解器20におけるバイオマス原料の滞留時間は、約1時間である。これにより、熱分解器20において熱分解により生じたガスが15 キログラム/時間で得られる。また、チャー及び灰が合計で6.5キログラム/時間で熱分解残渣(チャー)排出口210から排出される。 Here, nitrogen gas is finally introduced at a fixed amount of 1000 liters / hour from the non-oxidizing gas supply port 250 provided in the upper part of the pyrolyzer 20. In addition, superheated steam (160 ° C., 0.6 MPa) is used as steam, and is finally introduced at a fixed amount of 1 kilogram / hour from the steam inlet 241 provided on the upper part of the pyrolyzer 20. NS. The residence time of the biomass raw material in the pyrolyzer 20 is about 1 hour. As a result, the gas generated by the thermal decomposition in the pyrolyzer 20 can be obtained at 15 kilograms / hour. In addition, char and ash are discharged from the pyrolysis residue (char) outlet 210 at a total of 6.5 kg / hour.
 熱分解器20において得られた熱分解ガスは、続いて、熱分解器20の側面下部から熱分解ガス導入管200を通過して、熱分解ガス改質器40に導入される。 The pyrolysis gas obtained in the pyrolysis device 20 subsequently passes through the pyrolysis gas introduction pipe 200 from the lower side surface of the pyrolysis device 20 and is introduced into the pyrolysis gas reformer 40.
 熱分解ガスの導入当初は、熱分解ガス改質器40内の温度は不安定になるが、熱分解ガス改質器40の下部に設けられたスチーム吹込み口242から導入される過熱蒸気の量、及び、空気又は酸素導入管261から導入される酸素の量を調節することにより、熱分解ガスを部分燃焼させて、熱分解ガス改質器40内部の温度が1000℃ になるように調節する。この時、熱分解ガス改質器40は、圧力101.3kPaに保持されている。熱分解ガス改質器40の下部に設けられたスチーム吹込み口242からの過熱蒸気は、最終的に3.7キログラム/時間の一定量で導入される。空気又は酸素導入口(261)からの酸素は、最終的に2.3m-normal/時間の一定量で導入される。但し、この酸素量は熱分解ガス改質器40内部の温度上昇度合いによって、適宜増減させる。 At the beginning of the introduction of the pyrolysis gas, the temperature inside the pyrolysis gas reformer 40 becomes unstable, but the superheated steam introduced from the steam inlet 242 provided at the bottom of the pyrolysis gas reformer 40 By adjusting the amount and the amount of oxygen introduced from the air or oxygen introduction pipe 261, the pyrolysis gas is partially combusted and the temperature inside the pyrolysis gas reformer 40 is adjusted to 1000 ° C. do. At this time, the pyrolysis gas reformer 40 is held at a pressure of 101.3 kPa. The superheated steam from the steam inlet 242 provided at the bottom of the pyrolysis gas reformer 40 is finally introduced at a fixed amount of 3.7 kg / hour. Oxygen from the air or oxygen inlet (261) is finally introduced at a fixed amount of 2.3 m 3-normal / hour. However, this amount of oxygen is appropriately increased or decreased depending on the degree of temperature rise inside the pyrolysis gas reformer 40.
 上記操作により、熱分解器20が温度600℃及び圧力101.3kPaに保持され、かつ、熱分解ガス改質器40が温度950℃及び圧力101.3kPaに保持される。これにより、温度1000℃の改質ガスが31キログラム/時間の量で改質ガス排出口230から得られる。 By the above operation, the pyrolyzer 20 is held at a temperature of 600 ° C. and a pressure of 101.3 kPa, and the pyrolyzed gas reformer 40 is held at a temperature of 950 ° C. and a pressure of 101.3 kPa. As a result, the reformed gas having a temperature of 1000 ° C. is obtained from the reformed gas outlet 230 at an amount of 31 kg / hour.
 得られた改質ガスをゴム製バッグに捕集し、ガスクロマトグラフィーによりガス組成を測定する。表3には、得られた改質ガスの組成を示す。また、該操業を3日間連続して実施することができる。該操業期間中、トラブル、とりわけ、タールに起因するトラブルのない良好な連続運転を維持することができる。また、操業期間中、熱分解ガス導入管200内で熱担持媒体30がタール等により閉塞するというトラブルを生ずることもなく、熱分解器20 から熱分解ガス改質器40への熱分解ガスのスムーズな導入が維持される。また、熱分解ガス改質器40出口から取り出された改質ガス中のタール量は、約10mg/m-normalである。 The obtained reformed gas is collected in a rubber bag, and the gas composition is measured by gas chromatography. Table 3 shows the composition of the obtained reformed gas. In addition, the operation can be carried out continuously for 3 days. During the operation period, good continuous operation can be maintained without troubles, especially troubles caused by tar. Further, during the operation period, the heat-supporting medium 30 does not become blocked by tar or the like in the pyrolysis gas introduction pipe 200, and the pyrolysis gas from the pyrolysis device 20 to the pyrolysis gas reformer 40 does not occur. Smooth introduction is maintained. The amount of tar in the reformed gas taken out from the outlet of the pyrolysis gas reformer 40 is about 10 mg / m 3- normal.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように改質ガスを得ることができ、ガス化装置における熱担持媒体30の安定的な連続供給を実現することにより、熱分解器20の圧力変動を抑え、ガス分離における分離能の低下の問題を解決して、品質の安定したガスを提供することができる。 In this way, the reformed gas can be obtained, and by realizing the stable continuous supply of the heat-carrying medium 30 in the gasifier, the pressure fluctuation of the pyrolyzer 20 is suppressed, and the separation ability in gas separation is lowered. It is possible to solve the problem and provide a gas with stable quality.
 本実施の形態のバイオマスのガス化装置は、熱分解器20及び/又は予熱器10において熱担持媒体30が、一旦円筒胴の下部から上部槽111a,121aの外部に横方向へ排出された後、下部槽111b,121bの槽壁沿いに下降して下部槽111b,121bに移動し、さらに下部槽111b,121bの底部から下部槽111b,121bの外部へ排出する構造を有するため、円筒胴内において熱担持媒体30が幅方向に均一に降下し、容積を満遍なく有効に利用でき、効率的なバイオマスの熱分解を達成することができる。 In the biomass gasifier of the present embodiment, after the heat-bearing medium 30 is once laterally discharged from the lower part of the cylindrical body to the outside of the upper tanks 111a and 121a in the pyrolyzer 20 and / or the preheater 10. , It descends along the tank wall of the lower tanks 111b, 121b, moves to the lower tanks 111b, 121b, and further discharges from the bottom of the lower tanks 111b, 121b to the outside of the lower tanks 111b, 121b. In, the heat-bearing medium 30 drops uniformly in the width direction, the volume can be effectively used evenly, and efficient thermal decomposition of biomass can be achieved.
 本実施の形態のバイオマスのガス化装置は、バイオマス、好ましくは、比較的灰分含有量の高いバイオマスから、水素等の有価ガスを多く含む改質ガスを発生させることができ、かつ、バイオマス中の灰に含まれる五酸化二リン及びカリ(カリウム)の揮散によって引き起こされる配管の閉塞及び腐食を予防し得るばかりではなく、NOの発生を抑制し得、かつ、タール及び煤塵の発生量をも低減し得ることから、今後、バイオマス、とりわけ、比較的灰分含有量の高いバイオマスのガス化装置として、大いに利用されることが期待される。 The biomass gasifier of the present embodiment can generate a reformed gas containing a large amount of valuable gas such as hydrogen from biomass, preferably biomass having a relatively high ash content, and is contained in the biomass. not only can prevent clogging and corrosion of the piping caused by the volatilization of diphosphorus pentoxide and potassium (potassium) contained in the ash, resulting suppressing the occurrence of N 2 O, and the generation amount of tar and dust It is expected that it will be widely used as a gasifier for biomass, especially biomass with a relatively high ash content, because it can be reduced.
  10 予熱器(一時保留部)
  20 熱分解器(一時保留部)
  30 熱担持媒体
  40 熱分解ガス改質器
  111 予熱筐体(筐体)
  121 熱分解筐体(筐体)
  111a,121a 上部槽
  111b,121b 下部槽
  115,125 隔壁
  119,129 排出部
  131,141 管部

 
10 Preheater (temporary hold)
20 Pyrolyzer (temporary hold)
30 Heat-supporting medium 40 Pyrolysis gas reformer 111 Preheating housing (housing)
121 Pyrolysis housing (housing)
111a, 121a Upper tank 111b, 121b Lower tank 115,125 Partition wall 119,129 Discharge section 131,141 Pipe section

Claims (8)

  1.  熱担持媒体を一時的に収容し、排出する一時保留部を備えたバイオマスのガス化装置であって、
     前記一時保留部は、筐体と、前記熱担持媒体を排出するための排出部と、を有し、
     前記筐体内に、前記筐体の側部内壁との間に熱担持媒体が通過するための間隙を形成する隔壁が設けられる、又は前記筐体の側部内壁に熱担持媒体が通過するための管部が設けられる、バイオマスのガス化装置。
    A biomass gasifier equipped with a temporary holding section for temporarily accommodating and discharging a heat-carrying medium.
    The temporary holding portion includes a housing and a discharging portion for discharging the heat-carrying medium.
    A partition wall is provided in the housing to form a gap for the heat-carrying medium to pass between the side inner wall of the housing, or the heat-carrying medium passes through the side inner wall of the housing. A biomass gasifier equipped with a pipe.
  2.  前記一時保留部は熱担持単体を予め加熱する予熱器であり、
     前記排出部は予熱器排出部であり、
     前記予熱器排出部から排出された熱担持媒体は熱分解器に供給される、請求項1に記載のバイオマスのガス化装置。
    The temporary holding portion is a preheater that preheats the heat-supporting simple substance.
    The discharge part is a preheater discharge part, and is
    The biomass gasification device according to claim 1, wherein the heat-carrying medium discharged from the preheater discharge unit is supplied to the pyrolyzer.
  3.  前記一時保留部は、予熱器で予め加熱された熱担持媒体の供給を受け、前記熱担持媒体の熱によりバイオマスの熱分解を実行する熱分解器であり、
     前記排出部は熱分解器排出部であり、
     前記熱分解器排出部から排出された熱担持媒体は、循環部を介して予熱器に供給される、請求項1に記載のバイオマスのガス化装置。
    The temporary holding unit is a thermal cracker that receives a supply of a heat-supporting medium preheated by a preheater and executes thermal decomposition of biomass by the heat of the heat-supporting medium.
    The discharge part is a pyrolyzer discharge part, and is
    The biomass gasification device according to claim 1, wherein the heat-carrying medium discharged from the pyrolyzer discharge unit is supplied to the preheater via the circulation unit.
  4.  前記隔壁のおもて面は中央領域が周縁領域と比較して高い位置に位置付けられており、前記中央領域と前記周縁領域との間には傾斜面が設けられる、請求項1乃至3のいずれか1項に記載のバイオマスのガス化装置。 Any of claims 1 to 3, wherein the front surface of the partition wall has a central region positioned higher than the peripheral region, and an inclined surface is provided between the central region and the peripheral region. The biomass gasification apparatus according to item 1.
  5.  前記隔壁の裏面は中央領域が周縁領域と比較して低い位置に位置付けられており、前記中央領域と前記周縁領域との間には傾斜面が設けられる、請求項1乃至4のいずれか1項に記載のバイオマスのガス化装置。 The back surface of the partition wall is any one of claims 1 to 4, wherein the central region is positioned lower than the peripheral region, and an inclined surface is provided between the central region and the peripheral region. Biomass gasifier according to.
  6.  前記隔壁の本体部と前記筐体の内部側壁との間に、前記本体部を前記筐体に対して固定するための複数の固定部材が設けられ、前記固定部材の間の間隙が、熱担持媒体が通過するための間隙になる、請求項1乃至5のいずれか1項に記載のバイオマスのガス化装置。 A plurality of fixing members for fixing the main body to the housing are provided between the main body of the partition and the inner side wall of the housing, and the gap between the fixing members is heat-supported. The biomass gasification apparatus according to any one of claims 1 to 5, which serves as a gap for the medium to pass through.
  7.  前記隔壁の本体部は円板形状となり、
     前記本体部は前記筐体の内部側壁との間に設けられた固定部材、又は前記本体部の裏面に設けられた固定部材によって、前記筐体に対して固定される、請求項1乃至6のいずれか1項に記載のバイオマスのガス化装置。
    The main body of the partition has a disk shape.
    The first to sixth aspects of the present invention, wherein the main body is fixed to the housing by a fixing member provided between the inner side wall of the housing or a fixing member provided on the back surface of the main body. The biomass gasification apparatus according to any one of the following items.
  8.  前記筐体は、上部槽と、前記上部槽の下方に設けられた下部槽とを有し、
     前記上部槽の下端部の横断面は、前記下部槽の上端部の横断面よりも小さくなり、
     前記上部槽の下端部よりも下方に隔壁が設けられ、
     前記隔壁と前記下部槽との間に間隙が形成される、請求項1乃至7のいずれか1項に記載のバイオマスのガス化装置。

     
    The housing has an upper tank and a lower tank provided below the upper tank.
    The cross section of the lower end of the upper tank is smaller than the cross section of the upper end of the lower tank.
    A partition wall is provided below the lower end of the upper tank.
    The biomass gasification device according to any one of claims 1 to 7, wherein a gap is formed between the partition wall and the lower tank.

PCT/JP2021/017236 2020-04-30 2021-04-30 Biomass gasification device WO2021221165A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/922,347 US20230174877A1 (en) 2020-04-30 2021-04-30 Biomass gasification device
JP2022518154A JPWO2021221165A1 (en) 2020-04-30 2021-04-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020080397 2020-04-30
JP2020-080397 2020-04-30

Publications (1)

Publication Number Publication Date
WO2021221165A1 true WO2021221165A1 (en) 2021-11-04

Family

ID=78332042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017236 WO2021221165A1 (en) 2020-04-30 2021-04-30 Biomass gasification device

Country Status (3)

Country Link
US (1) US20230174877A1 (en)
JP (1) JPWO2021221165A1 (en)
WO (1) WO2021221165A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500256A (en) * 1978-03-02 1981-03-05
US20120073198A1 (en) * 2009-05-28 2012-03-29 Prerak Goel Process for generating energy from organic materials and/or biomass
WO2013172301A1 (en) * 2012-05-18 2013-11-21 株式会社ジャパンブルーエナジー Biomass gasifier device
WO2019065851A1 (en) * 2017-09-29 2019-04-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2020008622A1 (en) * 2018-07-06 2020-01-09 株式会社 翼エンジニアリングサービス Method for producing hydrogen using biomass as raw material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56500256A (en) * 1978-03-02 1981-03-05
US20120073198A1 (en) * 2009-05-28 2012-03-29 Prerak Goel Process for generating energy from organic materials and/or biomass
WO2013172301A1 (en) * 2012-05-18 2013-11-21 株式会社ジャパンブルーエナジー Biomass gasifier device
WO2019065851A1 (en) * 2017-09-29 2019-04-04 株式会社ジャパンブルーエナジー Biomass gasification device
WO2020008622A1 (en) * 2018-07-06 2020-01-09 株式会社 翼エンジニアリングサービス Method for producing hydrogen using biomass as raw material

Also Published As

Publication number Publication date
JPWO2021221165A1 (en) 2021-11-04
US20230174877A1 (en) 2023-06-08

Similar Documents

Publication Publication Date Title
AU2002220288B2 (en) Process and gas generator for generating fuel gas
AU2013261467B2 (en) Biomass gasifier device
US4533438A (en) Method of pyrolyzing brown coal
JP6899102B2 (en) Biomass gasifier
AU2002220288A1 (en) Process and gas generator for generating fuel gas
CN102159684A (en) Method for converting biomass into synthesis gas using a pressurized multi-stage progressively expanding fluidized bed gasifier followed by an oxyblown autothermal reformer to reduce methane and tars
WO2007081296A1 (en) Downdraft/updraft gasifier for syngas production from solid waste
CN109963927B (en) Method and device for gasifying biomass
RU2477755C2 (en) Method and device for preparation of reducing agent to be used during metal production, metal production process and metal production unit using above described device
Mašek et al. Biochar production and feedstock
JP6412261B2 (en) Biomass gasifier
JP2011144330A (en) Gasification system of ligneous biomass and method therefor
WO2021221165A1 (en) Biomass gasification device
WO2021221163A1 (en) Biomass gasification device
JP2011144329A (en) Gasification system of ligneous biomass and method therefor
WO2021221164A1 (en) Biomass gasification device
JP4589226B2 (en) Method for producing fuel carbide and fuel gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022518154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21796414

Country of ref document: EP

Kind code of ref document: A1