WO2020007568A1 - Batteriemanagementsystem für eine hochvoltbatterie eines kraftfahrzeugs, hochvoltbatterie sowie kraftfahrzeug - Google Patents

Batteriemanagementsystem für eine hochvoltbatterie eines kraftfahrzeugs, hochvoltbatterie sowie kraftfahrzeug Download PDF

Info

Publication number
WO2020007568A1
WO2020007568A1 PCT/EP2019/064906 EP2019064906W WO2020007568A1 WO 2020007568 A1 WO2020007568 A1 WO 2020007568A1 EP 2019064906 W EP2019064906 W EP 2019064906W WO 2020007568 A1 WO2020007568 A1 WO 2020007568A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
motor vehicle
management system
housing
processor
Prior art date
Application number
PCT/EP2019/064906
Other languages
English (en)
French (fr)
Inventor
Florian Pritscher
Felix Laasch
Tobias Schmieg
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Priority to US16/978,851 priority Critical patent/US20200411914A1/en
Priority to CN201980020609.6A priority patent/CN111886751A/zh
Publication of WO2020007568A1 publication Critical patent/WO2020007568A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to a battery management system for a high-voltage battery of a motor vehicle for monitoring battery cells of the high-voltage battery, which can be arranged in a battery housing of the high-voltage battery and one on one
  • Circuit carrier arranged electronic circuit with a processor and with a communication interface for communicating with at least one
  • the invention also relates to a high-voltage battery and a motor vehicle.
  • the focus is particularly on high-voltage batteries or
  • High-voltage accumulators for electrically drivable motor vehicles for example electric or hybrid vehicles.
  • Such high-voltage batteries have a large number of battery cells, which are generally arranged in a cell network and are connected to form a battery module.
  • the battery cells can be lithium-ion cells, for example, and can be arranged in a battery housing of the high-voltage battery.
  • a thermal short-circuit, that is to say a self-reinforcing thermal process, of the battery cell can occur in the event of a cell-internal short circuit of one of the battery cells.
  • this object is achieved by a battery management system, a high-voltage battery and a motor vehicle with the features according to the respective independent patent claims.
  • Advantageous embodiments of the invention are the subject of the dependent claims, the description and the figure.
  • a battery management system for a high-voltage battery of a motor vehicle is used, among other things, for monitoring battery cells
  • the battery management system can be arranged in a battery housing of the high-voltage battery and has an electronic circuit with a processor and with one arranged on a circuit carrier
  • the electronic circuit additionally has at least one pressure sensor, which is designed to detect pressure signals in the battery housing and to transmit them to the processor.
  • the processor is designed to use the transmitted pressure signals to recognize thermal runaway of at least one battery cell of the Hochvott battery, at Detect thermal runaway to generate a signal and provide the signal to the communication interface for transmission to the facility.
  • the invention also relates to a high-voltage battery for a motor vehicle having a plurality of interconnected battery cells, a battery housing and a battery management system according to the invention, the battery cells and the battery management system being arranged in the battery housing.
  • the battery management system (BMS) or the battery control unit forms the central high-voltage battery electronics and includes the circuit carrier or the circuit board with the electronic circuit.
  • the BMS is located in the battery housing of the high-voltage battery.
  • the battery housing has, in particular, a housing base facing a roadway for the motor vehicle and a housing cover facing a passenger compartment of the motor vehicle.
  • the BMS is arranged in the region of the housing cover and thus at a distance from the housing base. The BMS can thus prevent damage, for example when passing over an obstacle close to the ground and / or through penetration into the battery housing
  • the electronic circuit has the communication interface via which the BMS is electrically connected to the motor vehicle or to its device.
  • the device can be, for example, a control device of the motor vehicle and / or a warning device for outputting warning signals.
  • the warning device for outputting warning signals.
  • the electronic circuit include, for example, a measurement interface, via which the battery management system is coupled to the battery cells of the high-voltage battery, for example by means of measurement lines.
  • the measurement interface via which the battery management system is coupled to the battery cells of the high-voltage battery, for example by means of measurement lines.
  • Test lines can transfer battery cell-specific data, for example sensor data from line-near sensors, to the BMS for evaluation by the processor of the BMS.
  • the BMS is designed to detect thermal breakdown of a battery cell in the high-voltage battery.
  • the at least one pressure sensor is additionally arranged on the circuit carrier. So the pressure sensor is in the
  • the pressure sensor can be designed as a particularly space-saving MEMS (microelectromechanical system) component.
  • the pressure sensor is designed to receive pressure signals in an interior of the battery housing to be recorded and transmitted to the processor also arranged on the circuit carrier.
  • the at least one pressure sensor is designed as an absolute pressure sensor.
  • the absolute pressure sensor measures the absolute pressure, i.e. the pressure in the
  • the circuit carrier with the absolute pressure sensor can thus be freely positioned in the battery housing.
  • the use of the absolute pressure sensor thus enables pressure detection, which is particularly error-prone and inexpensive.
  • the processor is designed to analyze the pressure signals and to recognize the thermal event on the basis of the pressure signals, since a thermal event of a battery cell is associated with a clear, rapidly spreading increase in pressure in the interior of the battery housing. This also applies if the battery housing has a pressure compensation element for atmospheric pressure compensation, for example a breathable membrane, and this membrane breaks when the battery row (s) pass thermally. This rise in pressure is now detected by means of the at least one pressure sensor.
  • the use of the pressure sensor has the advantage over the use of inert temperature sensors that the thermal event can be detected particularly quickly, even with only one pressure sensor in the interior of the battery housing.
  • the processor As soon as the processor has recognized the thermal event by evaluating the pressure signal, it generates the signal and makes it available to the communication interface for transmission to the device.
  • the device can, for example, be designed to initiate a predetermined measure in response to the pressure increase in the battery housing.
  • the processor is preferably designed to generate a warning signal for a vehicle occupant of the motor vehicle when the thermal runaway is recognized as the signal and the like
  • the warning device can be, for example
  • warning lamp and / or a loudspeaker so that an optical and / or an acoustic warning signal can be output to the vehicle occupants as the warning signal.
  • the warning signal can the vehicle occupants on the
  • the pressure sensor on the circuit carrier of the BMS results in the advantage that the pressure signal can be evaluated directly at the point of detection by the processor and can quickly be made available to the communication interface for transmission to the high-voltage battery-external device, for example the warning device.
  • the processor can be electrically connected to the at least one pressure sensor, for example via conductor tracks. The pressure signals therefore do not have to be transmitted to the processor via measuring lines which are laid through the battery housing. This means that the thermal event can be reliably recognized, even if the measuring lines are destroyed. Therefore, no fire protection measures have to be provided for the measuring lines, so that the high-voltage battery is particularly lightweight and inexpensive.
  • the processor is designed to use the pressure signals to determine a pressure change rate and to recognize the thermal runaway if a value of the pressure change rate exceeds a predetermined threshold value.
  • values of the pressure in the interior of the battery housing can be detected over a predetermined period of time and, for example, stored in a ring memory of the electronic circuit. Based on the largest and smallest pressure values that occur during the period, the
  • Pressure change rate can be determined by the processor and compared with the threshold value. If the threshold is exceeded, the thermal event is recognized.
  • the battery management system has a housing in which the circuit carrier is arranged, the housing having at least one pressure compensation element for pressure compensation between an interior of the housing of the battery management system and an interior of the battery housing.
  • the components of the electronic circuit can be protected by the housing.
  • the housing of the BMS has this
  • a motor vehicle according to the invention comprises a high-voltage battery according to the invention.
  • the motor vehicle is designed in particular as an electric or hybrid vehicle.
  • the motor vehicle preferably comprises a device in the form of a
  • Warning device for outputting a warning signal for a vehicle occupant of the motor vehicle upon detection of the thermal runaway.
  • the warning device can comprise, for example, a loudspeaker and / or a warning light.
  • the warning device can be electrically connected to the communication interface of the BMS, for example, via vehicle-side communication lines.
  • FIG. 1 shows a schematic illustration of an embodiment of a motor vehicle according to the invention.
  • the figure shows a schematic representation of a motor vehicle 1, which is in particular designed as an electrically drivable motor vehicle.
  • Motor vehicle 1 comprises a high-voltage battery 2 with a plurality of interconnected battery cells 3 and with a battery management system 4 or
  • Battery control unit for monitoring and regulating the battery cells 3.
  • Battery cells 3 and the battery management system 4 are arranged in a battery housing 5 of the high-voltage battery 2.
  • the battery management system 4 comprises an electronic circuit 6, which is arranged on a circuit carrier 7 or a circuit board of the battery management system 4.
  • the circuit carrier 7 with the electronic circuit 6 is arranged here in a housing 8 of the battery management system 4
  • the electronic circuit 6 here has a measuring interface 9, which is electrically connected to the battery cells 3 via measuring lines 10.
  • Measuring lines 10 can be transmitted from the battery cells 3 to a processor 11 of the electronic circuit 6. It can also be provided that the processor 11 transmits signals to the battery cells 3.
  • the battery cell-specific data can, for example, sensor data from cells close to the cell
  • Signals transmitted to battery cells 3 can be signals for cell balancing, for example.
  • the processor 11 is also arranged on the circuit carrier 7. Communication between the measurement interface 9 and the processor 11 can take place, for example, via conductor tracks 12.
  • the battery cell 3 may undergo thermal breakdown. As a result of the heat generated in this way in an interior 13 of the battery housing 5, all battery cells 3 can undergo thermal breakdown, which in turn can result in a fire in the high-voltage battery 2.
  • the thermal runaway of the battery cell (s) 3 should be recognized.
  • the thermal runaway can be based on those transmitted via the measuring lines 10
  • the battery management system 4 has at least one pressure sensor 14, which is a component of the electronic circuit 6 and therefore together with the
  • Processor 11 is also arranged on the circuit carrier 7.
  • the pressure sensor 14 is designed to detect pressure signals which indicate a pressure in the interior 13 of the circuit carrier 7.
  • the pressure sensor 14 is, in particular, an absolute pressure sensor, which can be designed, for example, as a MEMS component.
  • the housing 8 of the battery management system 4 is not designed to be gas-tight.
  • the housing 8 can have a pressure compensation element 15, which pressure compensation between the interior 13 of the
  • Pressure compensation element 15 can be a breathable membrane, for example.
  • the processor 11 is designed to recognize the thermal runaway on the basis of the Drock signals. For example, the processor 11 recognizes the thermal runaway when a pressure change rate determined on the basis of the pressure signal is one
  • predetermined threshold value exceeds.
  • the electronic circuit 6 also has a communication interface 17 here, which is connected to the motor vehicle 1, in particular to a device 18 of the
  • Motor vehicle 1 can communicate. As soon as the processor 11 has recognized the thermal runaway on the basis of the pressure signal transmitted by the pressure sensor 14, it can generate a signal, for example a warning signal, and the like
  • the vehicle occupants can use a warning signal, for example, to leave the vehicle
  • the warning device can, for example, have a warning lamp arranged in a passenger compartment and / or a loudspeaker. Provision can also be made for the device 18 to be a vehicle-side control unit which, when the signal generated by the processor 11 is received, itself generates a warning signal for a warning device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Die Erfindung betrifft ein Batteriemanagementsystem (4) für eine Hochvoltbatterie (2) eines Kraftfahrzeugs (1) zur Überwachung von Batteriezellen (3) der Hochvoltbatterie (2), welches in einem Batteriegehäuse (5) der Hochvoltbatterie (2) anordenbar ist und eine auf einem Schaltungsträger (7) angeordnete elektronische Schaltung (6) mit einem Prozessor (11) sowie mit einer Kommunikationsschnittstelle (17) zum Kommunizieren mit zumindest einer fahrzeugseitigen, hochvoltbatterieexternen Einrichtung (18) aufweist, wobei die elektronische Schaltung (6) zusätzlich zumindest einen Drucksensor (14) aufweist, »reicher dazu ausgelegt ist, Drucksignale in dem Batteriegehäuse (5) zu erfassen und an den Prozessor (11 ) zu übermitteln, und der Prozessor (11) dazu ausgelegt ist, anhand der übermittelten Drucksignale ein thermisches Durchgehen zumindest einer Batteriezelle (3) der Hochvoltbatterie (2) zu erkennen, bet Erkennung des thermischen Durchgehens ein Signal zu generieren und das Signal der Kommunikationsschnittstelle (17) zur Übermittlung an die Einrichtung (18) bereitzustellen. Die Erfindung betrifft außerdem eine Hochvoltbatterie (2) sowie ein Kraftfahrzeug (1).

Description

Batteriemanagementsystem für eine Hochvoltbatterie eines Kraftfahrzeugs, Hochvoltbatterie sowie Kraftfahrzeug
Die Erfindung betrifft ein Batteriemanagementsystem für eine Hochvoltbatterie eines Kraftfahrzeugs zur Überwachung von Batteriezellen der Hochvoltbatterie, welches in einem Batteriegehäuse der Hochvoltbatterie anordenbar ist und eine auf einem
Schaltungsträger angeordnete elektronische Schaltung mit einem Prozessor sowie mit einer Kommunikationsschnittstelle zum Kommunizieren mit zumindest einer
fahrzeugseitigen, hochvoltbatterieextemen Einrichtung aufweist. Die Erfindung betrifft außerdem eine Hochvoltbatterie sowie ein Kraftfahrzeug.
Vorliegend richtet sich das Interesse insbesondere auf Hochvoltbatterien bzw.
Hochvoltakkumulatoren für elektrisch antreibbare Kraftfahrzeuge, beispielsweise Elektro· oder Hybridfahrzeuge. Solche Hochvoltbatterien weisen eine Vielzahl von Batteriezellen auf, welche in der Regel in einem Zellverbund angeordnet und zu einem Batteriemodul verschaltet sind. Die Batteriezellen können beispielsweise Lithium-Ionen-Zellen sein und in einem Batteriegehäuse der Hochvoltbatterie angeordnet sein. Beispielsweise kann es bei einem zellintemen Kurzschluss einer der Batteriezellen zu einem thermischen Durchgehen, also zu einem sich selbst verstärkenden thermischen Prozess, der Batteriezelle kommen. Aufgrund der steigenden Energiedichte der Hochvoltbatterie bzw. des Hochvoltspeichers infolge einer höheren Packungsdichte der Batteriezellen wächst die Gefahr, dass benachbarte Batteriezellen aufgrund der hohen Wärmeentwicklung beim Kurzschluss einer Batteriezelle ebenfalls durchgehen. Im Falle des thermischen
Durchgehens mehrere Batteriezellen kann es im schlimmsten Fall zu einem Brand der Hochvoltbatterie kommen, wodurch Fahrzeuginsassen des Kraftfahrzeugs gefährdet werden könnten. Daher ist es wünschenswert, ein solches thermisches Durchgehen bzw. thermisches Ereignis zu detektieren, um die Fahrzeuginsassen warnen zu können.
Dabei ist es aus dem Stand der Technik bekannt, die Batteriezellen mit Sensoren, beispielsweise Temperatursensoren und Spannungssensoren, zu überwachen, welche über Messleitungen mit einem Batteriemanagementsystem der Hochvoltbatterie elektrisch verbunden sind. Zum Erkennen des thermischen Durchgehens können beispielsweise die Temperatur und die Spannung der Batteriezellen überwacht werden. Eine Erkennung des thermischen Durchgehens basierend auf den Sensorsignalen kann jedoch nur gewährleistet werden, wenn die Messleitungen durch das thermische Ereignis nicht beschädigt werden, bevor die Sensordaten einen Prozessor des
Batteriemanagementsystems erreichen. Aufgrund der sehr hohen Temperaturen nahe der infolge des thermischen Ereignisses entgasenden Batteriezelle (>1200°C) ist dies nur sehr schwer sicherzustellen, insbesondere wenn die Sensoren, Leitungen und
Spannungsabgriffe konzeptbedingt sehr nahe an Entgasungsöffnungen der Batteriezellen liegen. Um zu verhindern, dass diese Bauteile beschädigt werden, müssen diese durch spezielle Brandschutzmaßnahmen geschützt werden bzw. die Leitungen müssen aufwändig im Batteriegehäuse verlegt werden. Dies hat negative Auswirkungen auf Kosten und Gewicht der Hochvoltbatterie. Außerdem wird aufgrund der Trägheit der Sensoren und der Verarbeitung und Bewertung der Signale im Prozessor nach Auftreten des thermischen Ereignisses noch eine bestimmte Zeitdauer benötigt, bevor das thermische Ereignis erkannt wird und die Fahrzeuginsassen gewarnt werden.
Es ist Aufgabe der vorliegenden Erfindung, ein thermisches Durchgehen einer
Batteriezelle einer Hochvoltbatterie eines Kraftfahrzeugs auf besondere einfache und zuverlässige Weise erfassen zu können.
Diese Aufgabe wird erfmdungsgemäß durch ein Batteriemanagementsystem, eine Hochvoltbatterie sowie ein Kraftfahrzeug mit den Merkmalen gemäß den jeweiligen unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung sowie der Figur.
Ein erfindungsgemäßes Batteriemanagementsystem für eine Hochvoltbatterie eines Kraftfahrzeugs dient unter anderem zur Überwachung von Batteriezellen der
Hochvoltbatterie. Das Batteriemanagementsystem ist in einem Batteriegehäuse der Hochvoltbatterie anordenbar und weist eine auf einem Schaltungsträger angeordnete elektronische Schaltung mit einem Prozessor sowie mit einer
Kommunikatlonsschnittstelle zum Kommunizieren mit zumindest einer fahrzeugseitigen, hochvoltbatterieexternen Einrichtung auf. Darüber hinaus weist die elektronische Schaltung zusätzlich zumindest einen Drucksensor auf, welcher dazu ausgelegt ist, Drucksignale in dem Batteriegehäuse zu erfassen und an den Prozessor zu übermitteln. Der Prozessor ist dazu ausgelegt, anhand der übermittelten Drucksignale ein thermisches Durchgehen zumindest einer Batteriezelle der Hochvottbatterie zu erkennen, bei Erkennung des thermischen Durchgehens ein Signal zu generieren und das Signal der Kommunikationsschnittstelle zur Übermittlung an die Einrichtung bereitzustellen.
Die Erfindung betrifft außerdem eine Hochvoltbatterie für ein Kraftfahrzeug aufweisend eine Vielzahl von miteinander verschalteten Batteriezellen, ein Batteriegehäuse sowie ein erfindungsgemäßes Batteriemanagementsystem, wobei die Batteriezellen und das Batteriemanagementsystem in dem Batteriegehäuse angeordnet sind.
Das Batteriemanagementsystem (BMS) bzw. das Batteriesteuergerät bildet die zentrale Hochvoltbatterie-Elektronik aus und umfasst den Schaltungsträger bzw. die Platine mit der elektronischen Schaltung. Das BMS ist In dem Batteriegehäuse der Hochvoltbatterie angeordnet. Das Batteriegehäuse weist insbesondere einen einer Fahrbahn für das Kraftfahrzeug zugewandten Gehäuseboden sowie einen einer Fahrgastzelle des Kraftfahrzeugs zugewandten Gehäusedeckel auf. Insbesondere ist das BMS im Bereich des Gehäusedeckels und damit beabstandet zu dem Gehäuseboden angeordnet. Somit kann das BMS vor einer Beschädigung, beispielsweise bei einer Überfahrt über ein bodennahes Hindernis und/oder durch In das Batteriegehäuse eindringende
Flüssigkeiten, geschützt werden.
Die elektronische Schaltung weist die Kommunikationsschnittstelle auf, über welche das BMS mit dem Kraftfahrzeug bzw. mit dessen Einrichtung elektrisch verbunden ist. Die Einrichtung kann beispielsweise ein Steuergerät des Kraftfahrzeugs und/oder eine Wameinrichtung zum Ausgeben von Warnsignalen sein. Außerdem kann die
elektronische Schaltung beispielsweise eine Messschnittstelle umfassen, über welche das Batteriemanagementsystem mit den Batteriezellen der Hochvoltbatterie, beispielsweise mittels Messleitungen, gekoppelt ist. Außerdem kann die Messschnittstelle,
beispielsweise über Leiterbahnen, mit dem Prozessor kommunizieren. Über die
Messleitungen können batteriezellspezifische Daten, beispielsweise Sensordaten von zeilnahen Sensoren, zur Auswertung durch den Prozessor des BMS an das BMS übertragen werden.
Zusätzlich ist das BMS dazu ausgelegt, ein thermisches Durchgehen einer Batteriezelle der Hochvoltbatterie zu erkennen. Dazu ist auf dem Schaltungsträger zusätzlich der zumindest eine Drucksensor angeordnet. Der Drucksensor ist also in die
Hochvoltbatterie-Elektronik integriert. Der Drucksensor kann als ein besonders platzsparendes MEMS (mikroelektromechanisches System)-Bauteil ausgebildet sein. Der Drucksensor ist dazu ausgelegt, Drucksignale in einem Innenraum des Batteriegehäuses zu erfassen und an den ebenfalls auf dem Schaltungsträger angeordneten Prozessor zu übermitteln. Insbesondere ist der zumindest eine Drucksensor als ein Absolutdrucksensor ausgebildet. Der Absolutdrucksensor misst den Absolutdruck, also den Druck im
Vergleich zu einem Vakuum als Referenzpunkt. Durch die Messung des Absolutdrucks können Ungenauigkeiten des atmosphärischen Luftdrucks als Referenz eliminiert werden. Außerdem ist keine Durchführung durch das Batteriegehäuse nötig, um einen
Außendruck außerhalb des Batteriegehäuses als Referenz verwenden zu können. Der Schaltungsträger mit dem Absolutdrucksensor kann also frei in dem Batteriegehäuse positioniert werden. Die Verwendung des Absolutdrucksensors erlaubt somit eine besonders fehlerunanfällige und kostengünstige Druckerfassung.
Der Prozessor ist dazu ausgelegt, die Drucksignale zu analysieren und anhand der Drucksignale das thermische Ereignis zu erkennen, da ein thermisches Ereignis einer Batteriezelie mit einem deutlichen, sich schnell ausbreitenden Druckanstieg im Innenraum des Batteriegehäuses verbunden ist. Dies gilt auch, wenn das Batteriegehäuse ein Druckausgleichselement für den atmosphärischen Druckausgleich, beispielsweise eine atmungsaktive Membran, aufweist und diese Membran bei dem thermischen Durchgehen der Batteriezeile(n) reißt. Dieser Druckanstieg wird nun mittels des zumindest einen Drucksensors erfasst. Durch die Verwendung des Drucksensors ergibt sich gegenüber der Verwendung von trägen Temperatursensoren der Vorteil, dass das thermische Ereignis besonders schnell, auch mit nur einem Drucksensor in dem Innenraum des Batteriegehäuses, erfasst werden kann.
Sobald der Prozessor durch Auswerten des Drucksignals das thermische Ereignis erkannt hat, generiert er das Signal und stellt es der Kommunikationsschnittstelle zur Übermittlung an die Einrichtung bereit Die Einrichtung kann beispielsweise dazu ausgelegt sein, eine vorbestimmte Maßnahme als Reaktion auf den Druckanstieg im Batteriegehäuse einzuleiten. Vorzugsweise ist der Prozessor dazu ausgelegt, bei Erkennung des thermischen Durchgehens als das Signal ein Warnsignal für einen Fahrzeuginsassen des Kraftfahrzeugs zu generieren und der
Kommunikationsschnittsteile zur Übermittlung an die Einrichtung in Form von einer Wameinrichtung bereitzustellen. Die Warneinrichtung kann beispielsweise eine
Warnlampe und/oder einen Lautsprecher umfassen, sodass als das Warnsignal ein optisches und/oder ein akustisches Warnsignal an die Fahrzeuginsassen ausgegeben werden kann. Durch das Warnsignal können die Fahrzeuginsassen auf das
möglicherweise bevorstehende Abbrennen der Hochvoltbatterie hingewiesen werden und das Kraftfahrzeug rechtzeitig verlassen. Durch das Anordnen des Drucksensors auf dem Schaltungsträger des BMS ergibt sich der Vorteil, dass das Drucksignal direkt am Ort der Erfassung durch den Prozessor ausgewertet werden kann und schnell der Kommunikationsschnittstelle zur Übertragung an die hochvoltbatterieexteme Einrichtung, beispielsweise die Wameinrichtung, bereitgestellt werden kann. Dazu kann der Prozessor beispielsweise über Leiterbahnen mit dem zumindest einen Drucksensor elektrisch verbunden sein. Die Drucksignale müssen also nicht über Messleitungen, welche durch das Batteriegehäuse hindurch verlegt sind, zu dem Prozessor übermittelt werden. Somit kann das thermische Ereignis, selbst bei Zerstörung der Messleitungen, zuverlässig erkannt weiden. Daher müssen für die Messleitungen keine Brandschutzmaßnahmen bereitgestellt weiden, sodass die Hochvoltbatterie besonders gewichtsarm und kostengünstig ausgebildet ist.
Dabei kann vorgesehen sein, dass der Prozessor dazu ausgelegt ist, anhand der Drucksignale eine Druckänderungsrate zu bestimmten und das thermische Durchgehen zu erkennen, falls ein Wert der Druckänderungsrate einen vorbestimmten Schwellwert überschreitet. Anhand des Drucksignals können über eine vorbestimmte Zeitdauer Werte des Drucks in dem Innenraum des Batteriegehäuses erfasst werden und beispielsweise in einem Ringspeicher der elektronischen Schaltung abgespeichert werden. Anhand der während der zeitdauer auftretenden größten und kleinsten Druckwerte kann die
Druckänderungsrate durch den Prozessor bestimmt werden und mit dem Schwellwert verglichen werden. Bei Überschreitung des Schwellwertes wird das thermische Ereignis erkannt.
In einer Weiterbildung der Erfindung weist das Batteriemanagementsystem ein Gehäuse auf, in welchem der Schaltungsträger angeordnet ist, wobei das Gehäuse zumindest ein Druckausgleichselement für einen Druckausgleich zwischen einem Innenraum des Gehäuses des Batteriemanagementsystems und einem Innenraum des Batteriegehäuses aufweist. Durch das Gehäuse können die Komponenten bzw. Bauteile der elektronischen Schaltung geschützt werden. Um dennoch die Drucksignale in dem Innenraum des Batteriegehäuses erfassen zu können, weist das Gehäuse des BMS das
Druckausgleichselement, beispielsweise in Form von einer atmungsaktiven Membran, oder eine gezielte Undichtigkeit in dem Gehäuse auf. So kann gewährleistet werden, dass ein in dem Innenraum des Batteriegehäuses infolge des thermischen Durchgehens einer Batteriezelle stattfindender Druckanstieg auch in dem Innenraum des Gehäuses des BMS messbar ist. Ein erfindungsgemäßes Kraftfahrzeug umfasst eine erfindungsgemäße Hochvoltbatterie. Das Kraftfahrzeug ist insbesondere als ein Elektro- oder Hybridfahrzeug ausgebildet. Vorzugsweise umfasst das Kraftfahrzeug eine Einrichtung in Form von einer
Wameinrichtung zum Ausgeben eines Warnsignals für einen Fahrzeuginsassen des Kraftfahrzeugs bei Erkennung des thermischen Durchgehens. Die Wameinrichtung kann beispielsweise einen Lautsprecher und/oder eine Warnleuchte umfassen. Die
Wameinrichtung kann beispielsweise über fährzeugseitige Kommunikationsleitungen mit der Kommunikationsschnittstelle des BMS elektrisch verbunden sein.
Die mit Bezug auf das erfindungsgemäße Batteriemanagementsystem vorgestellten Ausführungsformen und deren Vorteile gelten entsprechend für die erfindungsgemäße Hochvoltbatterie sowie für das erfindungsgemäße Kraftfahrzeug.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, der Figur und der Figurenbeschreibung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in der Figur alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die Zeichnung näher erläutert.
Es zeigt die einzige Fig. eine schematische Darstellung einer Ausführungsform eines erfindungsgemäßen Kraftfahrzeugs.
Die Fig. zeigt eine schematische Darstellung eines Kraftfahrzeugs 1 , welches insbesondere als ein elektrisch antreibbares Kraftfahrzeug ausgebildet ist. Das
Kraftfahrzeug 1 umfasst eine Hochvoltbatterie 2 mit einer Vielzahl von miteinander verschalteten Batteriezellen 3 sowie mit einem Batteriemanagementsystem 4 bzw.
Batteriesteuergerät zur Überwachung und Regelung der Batteriezellen 3. Die
Batteriezellen 3 sowie das Batteriemanagementsystem 4 sind in einem Batteriegehäuse 5 der Hochvoltbatterie 2 angeordnet. Das Batteriemanagementsystem 4 umfasst eine elektronische Schaltung 6, welche auf einem Schaltungsträger 7 bzw. einer Platine des Batteriemanagementsystems 4 angeordnet ist. Der Schaltungsträger 7 mit der elektronischen Schaltung 6 ist hier in einem Gehäuse 8 des Batteriemanagementsystems 4 angeordnet Die elektronische Schaltung 6 weist hier eine Messschnittstelle 9 auf, welche über Messleitungen 10 mit den Batteriezellen 3 elektrisch verbunden ist. Über die
Messleitungen 10 können von den Batteriezellen 3 batteriezellspezifische Daten an einen Prozessor 11 der elektronischen Schaltung 6 übermittelt werden. Auch kann vorgesehen sein, dass von dem Prozessor 11 Signale an die Batteriezellen 3 übermittelt werden. Die batteriezellspezifische Daten können beispielsweise Sensordaten von zellnahen
Sensoren sein, welche der Prozessor 11 auswerten kann und anhand welcher das Batteriemanagementsystem 4 die Batteriezellen 3 überwachen kann. Die an die
Batteriezellen 3 übermittelten Signale können beispielsweise Signale für ein Zellbalancing sein. Der Prozessor 11 ist dabei ebenfalls auf dem Schaltungsträger 7 angeordnet. Die Kommunikation zwischen der Messschnittstelle 9 und dem Prozessor 11 kann beispielsweise über Leiterbahnen 12 erfolgen.
Bei einem zellinternen Kurzschluss einer der Batteriezellen 3 kann es zu einem thermischen Durchgehen der Batteriezelle 3 kommen. Infolge der dabei entstehenden Hitzeentwicklung in einem Innenraum 13 des Batteriegehäuses 5 kann es zu einem thermischen Durchgehen sämtlicher Batteriezellen 3 kommen, was wiederum einen Brand der Hochvoltbatterie 2 zur Folge haben kann. Um Fahrzeuginsassen des
Kraftfahrzeugs 1 vor dieser Zerstörung der Hochvoltbatterie 2 warnen zu können, soll das thermische Durchgehen der Batteriezelle(n) 3 erkannt werden. Beispielsweise kann das thermische Durchgehen anhand der über die Messleitungen 10 übermittelten
Sensordaten der Sensoren der Batteriezellen 3 erkannt werden. Allerdings kann es sein, dass die Messleitungen 10 durch ein aus der durchgehenden Batteriezelle 3
ausströmendes Gas durchtrennt werden, sodass die Sensordaten nicht mehr an den Prozessor 11 übertragen werden können.
Um das thermische Durchgehen dennoch zuverlässig erkennen zu können, weist das Batteriemanagementsystem 4 zumindest einen Drucksensor 14 auf, welcher eine Komponente der elektronischen Schaltung 6 ist und daher gemeinsam mit dem
Prozessor 11 ebenfalls auf dem Schaltungsträger 7 angeordnet ist. Der Drucksensor 14 ist dazu ausgelegt, Drucksignale, welche einen Druck in dem Innenraum 13 des
Batteriegehäuses 5 beschreiben, zu erfassen und, beispielsweise über eine Leiterbahn 12, an den Prozessor 11 zu übermitteln. Der Drucksensor 14 ist insbesondere ein Absolutdrucksensor, welcher beispielsweise als ein MEMS-Bauteil ausgebildet sein kann. Um die Drucksignale in dem Innenraum 13 des Batteriegehäuses 5 zuverlässig erfassen zu können, ist das Gehäuse 8 des Batteriemanagementsystems 4 nicht gasdicht ausgebildet. Beispielsweise kann das Gehäuse 8 ein Druckausgleichselement 15 aufweisen, welches einen Druckausgleich zwischen dem Innenraum 13 des
Batteriegehäuses 5 und einem Innenraum 16 des Gehäuses 8 zulässt. Das
Druckausgleichselement 15 kann beispielsweise eine atmungsaktive Membran sein. Der Prozessor 11 ist dazu ausgelegt, anhand der Drocksignale das thermische Durchgehen zu erkennen. Beispielsweise erkennt der Prozessor 11 das thermische Durchgehen dann, wenn eine anhand des Drucksignals bestimmte Druckänderungsrate einen
vorbestimmten Schwellwert überschreitet.
Die elektronische Schaltung 6 weist hier außerdem eine Kommunikationsschnittstelle 17 auf, welche mit dem Kraftfahrzeug 1 , insbesondere mit einer Einrichtung 18 des
Kraftfahrzeugs 1 , kommunizieren kann. Sobald der Prozessor 11 anhand des von dem Drucksensor 14 übermittelten Drucksignals das thermische Durchgehen erkannt hat, kann er ein Signal, beispielsweise ein Warnsignal, generieren und der
Kommunikationsschnittstelle 17 bereitstellen. Diese übermittelt das Warnsignal an die Einrichtung 18, welche beispielsweise als eine Wameinrichtung ausgebildet ist und welche daraufhin das Warnsignal an die Fahrzeuginsassen ausgibt. Durch das
Warnsignal können die Fahrzeuginsassen beispielsweise zum Verlassen des
Kraftfahrzeugs 1 aufgefordert werden. Die Wameinrichtung kann beispielsweise eine in einer Fahrgastzelle angeordnete Warnlampe und/oder einen Lautsprecher aufweisen. Auch kann vorgesehen sein, dass die Einrichtung 18 ein fahrzeugseitiges Steuergerät ist, welches bei Empfangen des von dem Prozessor 11 generierten Signals selbst ein Warnsignal für eine Wameinrichtung generiert.
Bezugszeichenliste
1 Kraftfahrzeug
2 Hochvoltbatterie
3 Batteriezelle
4 Batteriemanagementsystem
5 Batteriegehäuse
6 Elektronische Schaltung
7 Schaltungsträger
8 Gehäuse
9 Messschnittstelle
10 Messleitungen
11 Prozessor
12 Leiterbahn
13 Innenraum des Batteriegehäuses
14 Drucksensor
15 Druckausgleichselement
16 Innenraum des Schaltungsträgergehäuses
17 Kommunikationsschnittetelle
18 Einrichtung

Claims

Patentansprüche
1. Batteriemanagementsystem (4) für eine Hochvoltbatterie (2) eines Kraftfahrzeugs (1 ) zur Überwachung von Batteriezellen (3) der Hochvoitbatterie (2), welches in einem Batteriegehäuse (5) der Hochvoltbatterie (2) anordenbar ist und eine auf einem Schaltungsträger (7) angeordnete elektronische Schaltung (6) mit einem Prozessor (11) sowie mit einer Kommunikationsschnittstelle (17) zum Kommunizieren mit zumindest einer fahrzeugseitigen, hochvoltbatterieextemen Einrichtung (18) aufweist, dadurch gekennzeichnet, dass
die elektronische Schaltung (6) zusätzlich zumindest einen Drucksensor (14) aufweist, welcher dazu ausgelegt ist, Drucksignale in dem Batteriegehäuse (5) zu erlassen und an den Prozessor (11) zu übermitteln, und der Prozessor (11) dazu ausgelegt ist, anhand der übermittelten Drucksignale ein thermisches Durchgehen zumindest einer Batteriezelle (3) der Hochvoltbatterie (2) zu erkennen, bei Erkennung des thermischen Durchgehens ein Signal zu generieren und das Signal der
Kommunikationsschnittstelle (17) zur Übermittlung an die Einrichtung (18) bereitzustellen.
2. Batteriemanagementsystem (4) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
der zumindest eine Drucksensor (14) als ein Absolutdrucksensor ausgebildet ist.
3. Batteriemanagementsystem (4) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
der Prozessor (11) dazu ausgelegt ist, anhand der Drucksignale eine
Druckänderungsrate zu bestimmten und das thermische Durchgehen zu erkennen, falls ein Wert der Druckänderungsrate einen vorbestimmten Schwellwert
überschreitet.
4. Batteriemanagementsystem (4) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Prozessor (11) dazu ausgelegt ist, bei Erkennung des thermischen Durchgehens als das Signal ein Warnsignal für einen Fahrzeuginsassen des Kraftfahrzeugs (1) zu generieren und der Kommunikationsschnittstelle (17) zur Übermittlung an die Einrichtung (18) in Form von einer Warneinrichtung bereitzustellen.
5. Batteriemanagementsystem (4) nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das Batteriemanagementsystem (4) ein Gehäuse (8) aufweist, in welchem der Schaltungsträger (7) angeordnet ist, wobei das Gehäuse (8) zumindest ein
Druckausgleichselement (15) für einen Druckausgleich zwischen einem Innenraum (16) des Gehäuses (8) des Batteriemanagementsystems (4) und einem Innenraum (13) des Batteriegehäuses (5) aufweist.
6. Hochvoltbatterie (2) für ein Kraftfahrzeug (1) aufweisend eine Vielzahl von
miteinander verschalteten Batteriezellen (3), ein Batteriegehäuse (5) sowie ein Batteriemanagementsystem (4) nach einem der vorhergehenden Ansprüche, wobei die Batteriezellen (3) und das Batteriemanagementsystem (4) in dem Batteriegehäuse (5) angeordnet sind.
7. Kraftfahrzeug (1) mit einer Hochvoltbatterie (2) nach Anspruch 6.
8. Kraftfahrzeug (1) nach Anspruch 7,
dadurch gekennzeichnet, dass
das Kraftfahrzeug (1) eine Einrichtung (18) in Form von einer Warneinrichtung zum Ausgeben eines Warnsignals für einen Fahrzeuginsassen des Kraftfahrzeugs (1) bei Erkennung des thermischen Durchgehens aufweist.
PCT/EP2019/064906 2018-07-04 2019-06-06 Batteriemanagementsystem für eine hochvoltbatterie eines kraftfahrzeugs, hochvoltbatterie sowie kraftfahrzeug WO2020007568A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/978,851 US20200411914A1 (en) 2018-07-04 2019-06-06 Battery Management System for a High-Voltage Battery of a Motor Vehicle, High-Voltage Battery, and Motor Vehicle
CN201980020609.6A CN111886751A (zh) 2018-07-04 2019-06-06 用于机动车高压电池的电池管理系统、高压电池以及机动车

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018210975.3A DE102018210975B4 (de) 2018-07-04 2018-07-04 Batteriemanagementsystem für eine Hochvoltbatterie eines Kraftfahrzeugs, Hochvoltbatterie sowie Kraftfahrzeug
DE102018210975.3 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020007568A1 true WO2020007568A1 (de) 2020-01-09

Family

ID=66951896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/064906 WO2020007568A1 (de) 2018-07-04 2019-06-06 Batteriemanagementsystem für eine hochvoltbatterie eines kraftfahrzeugs, hochvoltbatterie sowie kraftfahrzeug

Country Status (4)

Country Link
US (1) US20200411914A1 (de)
CN (1) CN111886751A (de)
DE (1) DE102018210975B4 (de)
WO (1) WO2020007568A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771627A (zh) * 2020-06-05 2021-12-10 北京新能源汽车股份有限公司 一种动力电池包的气密性监测方法、装置及电动汽车
DE102021114090B4 (de) 2021-06-01 2023-01-26 Webasto SE Batterie und Batteriesteuerungsverfahren
DE102021121742A1 (de) 2021-08-23 2023-02-23 Webasto SE Batterie und Batteriesteuerungsverfahren
DE102021125062B4 (de) 2021-09-28 2024-01-11 Webasto SE Batterie und Batteriesteuerungsverfahren
DE102021125063B4 (de) 2021-09-28 2023-06-15 Webasto SE Batterie und Batteriesteuerungsverfahren
CN114240260B (zh) * 2022-02-17 2022-05-20 北京航空航天大学 一种基于数字孪生的新能源群体车辆热失控风险评估方法
DE102022120485A1 (de) * 2022-08-12 2024-02-15 Lisa Dräxlmaier GmbH Elektronische baugruppe für eine hochvoltbatterie eines kraftfahrzeugs und verfahren zum bestücken eines gehäuses einer hochvoltbatterie für ein kraftfahrzeug
DE102022003498A1 (de) 2022-09-22 2024-03-28 Mercedes-Benz Group AG Verfahren und Vorrichtung zum Erkennen eines thermischen Durchgehens einer elektrischen Batterie eines Kraftfahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110174084A1 (en) * 2010-01-15 2011-07-21 G4 Synergetics, Inc. Methods and systems for measuring state of charge
US20120105001A1 (en) * 2010-09-02 2012-05-03 Proterra Inc. Systems and methods for battery management
US20130033102A1 (en) * 2008-02-20 2013-02-07 Lonnie Calvin Goff Embedded battery management system and methods
CN206116475U (zh) * 2016-09-05 2017-04-19 信华精机有限公司 具有防水透气功能的电池管理系统外壳及电池管理装置
EP3333965A2 (de) * 2016-12-07 2018-06-13 Proterra Inc Thermisches managementsystem für ein elektrofahrzeug

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053113A1 (de) * 2006-11-10 2008-05-15 Robert Bosch Gmbh Druckausgleichelement für ein Gehäuse
ES2678411T3 (es) * 2006-11-10 2018-08-10 Lithium Balance A/S Sistema de gestión de baterías
JP4288625B2 (ja) * 2007-09-19 2009-07-01 トヨタ自動車株式会社 燃料電池システムおよび反応ガスの供給量制御方法
DE102011112632A1 (de) * 2011-09-05 2013-03-07 Audi Ag Batterie und Verfahren zum Fertigen einer Batterie
DE102012202103A1 (de) * 2012-02-13 2013-08-14 Robert Bosch Gmbh Druckausgleichselement mit einer Membran, Gehäuse, Batteriezellenmodul sowie Kraftfahrzeug
US9083064B2 (en) * 2012-03-29 2015-07-14 Tesla Motors, Inc. Battery pack pressure monitoring system for thermal event detection
DE102012009385B4 (de) * 2012-05-11 2022-08-11 Audi Ag Batterie für ein Fahrzeug sowie Verfahren zum Fertigen und Verwendung einer Batterie
DE102012022126A1 (de) * 2012-11-13 2013-09-05 Daimler Ag Überwachungseinheit und Verfahren zur Überwachung einer Batteriesicherheitseinrichtung
DE102013213909A1 (de) * 2013-07-16 2015-01-22 Robert Bosch Gmbh Vorrichtung zur Regulierung des Innendrucks in einem eine Batteriezelle umgebenden Gehäuse und Batteriegehäuse mit einer solchen Vorrichtung
US11128005B2 (en) * 2013-07-30 2021-09-21 Cps Technology Holdings Llc Lithium ion battery with lead acid form factor
US20150037662A1 (en) * 2013-07-30 2015-02-05 Johnson Controls Technology Company System and method for sealing a battery cell
DE102013218700A1 (de) * 2013-09-18 2015-03-19 Robert Bosch Gmbh Vorrichtung und Verfahren zur Entfeuchtung eines Batteriegehäuses sowie Batteriegehäuse, Batterietrennvorrichtung und Batteriesystem
CN203537462U (zh) * 2013-10-16 2014-04-09 中兴通讯股份有限公司 一种移动终端
DE102014204956A1 (de) * 2014-03-18 2015-09-24 Robert Bosch Gmbh Verfahren zur Erkennung von Anomalien in einer Batteriezelle und Kurzschlusssensorik
DE102014210231A1 (de) * 2014-05-28 2015-12-03 Robert Bosch Gmbh Druckausgleichselement mit einer Membran, Gehäuse, Batteriezellenmodul sowie Kraftfahrzeug
DE102015201533A1 (de) * 2015-01-29 2016-08-18 Robert Bosch Gmbh Gehäuse für einen Drucksensor, Drucksensor, Batteriezelle und Verfahren zum Herstellen eines Gehäuses für einen Drucksensor
DE102015219677A1 (de) * 2015-10-12 2017-04-13 Robert Bosch Gmbh Kommunikationssystem für ein Batteriemanagementsystem für eine Batterie
DE102015014610A1 (de) * 2015-11-12 2016-07-21 Daimler Ag Batterie
DE102016004648A1 (de) * 2016-04-16 2017-10-19 Daimler Ag Druckentlastungsvorrichtung für ein Batteriegehäuse, Batteriegehäuse mit der Druckentlastungsvorrichtung, Batterie sowie Verfahren zur Druckentlastung einer Batterie
DE102016206851B3 (de) * 2016-04-22 2017-10-26 Audi Ag Löschverfahren und Löscheinrichtung zum Einbringen wenigstens eines Löschmittels in eine Batterie
WO2017197585A1 (zh) * 2016-05-17 2017-11-23 深圳市思倍生电子科技有限公司 一种通过传感器模块实现电池形变检测的装置及方法
CN206012357U (zh) * 2016-05-25 2017-03-15 烟台创为新能源科技有限公司 一种基于pwm方式通信的电池热失控检测系统
DE102016115645B4 (de) * 2016-08-23 2022-08-25 Kirchhoff Automotive Deutschland Gmbh Batteriegehäuse
CN107871836A (zh) * 2017-12-21 2018-04-03 张家港清研再制造产业研究院有限公司 一种锂离子电池系统安全保护装置及保护方法
US11611126B2 (en) * 2018-04-25 2023-03-21 Borgwarner Akasol Gmbh Containment apparatus for battery cells
EP3840083B1 (de) * 2019-12-20 2022-01-26 Samsung SDI Co., Ltd. System zur detektion von thermischem durchgehen und batteriesystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130033102A1 (en) * 2008-02-20 2013-02-07 Lonnie Calvin Goff Embedded battery management system and methods
US20110174084A1 (en) * 2010-01-15 2011-07-21 G4 Synergetics, Inc. Methods and systems for measuring state of charge
US20120105001A1 (en) * 2010-09-02 2012-05-03 Proterra Inc. Systems and methods for battery management
CN206116475U (zh) * 2016-09-05 2017-04-19 信华精机有限公司 具有防水透气功能的电池管理系统外壳及电池管理装置
EP3333965A2 (de) * 2016-12-07 2018-06-13 Proterra Inc Thermisches managementsystem für ein elektrofahrzeug

Also Published As

Publication number Publication date
DE102018210975B4 (de) 2021-02-04
DE102018210975A1 (de) 2020-01-09
US20200411914A1 (en) 2020-12-31
CN111886751A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
DE102018210975B4 (de) Batteriemanagementsystem für eine Hochvoltbatterie eines Kraftfahrzeugs, Hochvoltbatterie sowie Kraftfahrzeug
DE102018129158A1 (de) Sicherheitsvorrichtung für eine Batterie
WO2019179709A1 (de) Hochvoltbatterie für ein kraftfahrzeug mit einer erfassungsvorrichtung zum erfassen einer beschädigung der hochvoltbatterie, verfahren zum erfassen einer beschädigung der hochvoltbatterie sowie kraftfahrzeug
EP2803110B1 (de) Batterieanordnung für ein kraftfahrzeug
WO2012163504A2 (de) Vorrichtung und verfahren zum automatischen entladen einer batterie eines fahrzeuges
WO2013072117A1 (de) Verfahren zum überwachen einer batterie
DE102014221272A1 (de) Überwachungseinrichtung für eine Batterie, eine Lithium-Ionen-Batterie sowie Verfahren zur Überwachung einer Batterie
DE102017211047A1 (de) Batteriepack und Verfahren zum Betreiben eines Batteriepacks
DE102012205553A1 (de) Batteriezelle für ein Fahrzeug mit einer Vorrichtung zur Abkopplung und/oder Überbrückung von Anschlüssen der Batteriezelle
DE102019204284A1 (de) Verfahren und Anordnung zur Zustandsbestimmung einer Batterievorrichtung
DE102017219025A1 (de) System zur Detektion von kritischen Betriebszuständen elektrischer Energiespeicher
DE102013015700A1 (de) Verfahren zum Herstellen einer Batteriezelle und Batteriezelle
DE102019206784B4 (de) Verfahren und Anordnung zur Zustandsbestimmung einer Batterievorrichtung
DE102012022126A1 (de) Überwachungseinheit und Verfahren zur Überwachung einer Batteriesicherheitseinrichtung
DE102017219028A1 (de) System zur Detektion von kritischen Betriebszuständen elektrischer Energiespeicher
DE102018209877A1 (de) Elektrochemische Energiespeichervorrichtung, System und Verfahren zur Überwachung einer elektrochemischen Energiespeichervorrichtung sowie Fahrzeug
DE102015015666A1 (de) Warnvorrichtung für ein Fahrzeug, insbesondere ein Hybridfahrzeug oder Elektrofahrzeug
DE102019208572B3 (de) Verfahren und Vorrichtung zur Überwachung einer Batterie
DE102014006807A1 (de) Batteriesystem mit Sensorvorrichtung
EP2803109B1 (de) Batterieanordnung für ein kraftfahrzeug
DE102016224541A1 (de) Sicherheitsverfahren und Sicherheitsvorrichtung
DE102018215655A1 (de) Hochvoltbatterie für ein Kraftfahrzeug mit einer Überwachungsvorrichtung zum Überwachen einer Dichtigkeit eines Batteriegehäuses sowie Kraftfahrzeug
WO2016113099A1 (de) Verfahren zur überwachung einer batterie sowie überwachungseinrichtung
DE102020110067A1 (de) Elektrischer Energiespeicher für ein zumindest teilweise elektrisch betriebenes Kraftfahrzeug mit einer Sensoreinrichtung, sowie Verfahren
DE102019110349A1 (de) Verfahren zum Bestimmen von mechanischen Defekten in einem Batteriesystem sowie Batteriesystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19731628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19731628

Country of ref document: EP

Kind code of ref document: A1