WO2020007208A1 - 一种液压循环系统 - Google Patents

一种液压循环系统 Download PDF

Info

Publication number
WO2020007208A1
WO2020007208A1 PCT/CN2019/092379 CN2019092379W WO2020007208A1 WO 2020007208 A1 WO2020007208 A1 WO 2020007208A1 CN 2019092379 W CN2019092379 W CN 2019092379W WO 2020007208 A1 WO2020007208 A1 WO 2020007208A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
auxiliary
hydraulic
oil pressure
actuator
Prior art date
Application number
PCT/CN2019/092379
Other languages
English (en)
French (fr)
Inventor
尹财富
Original Assignee
尹财富
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 尹财富 filed Critical 尹财富
Publication of WO2020007208A1 publication Critical patent/WO2020007208A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/16Special measures for feedback, e.g. by a follow-up device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/087Control strategy, e.g. with block diagram
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps

Definitions

  • the invention belongs to the technical field related to hydraulic equipment, and particularly relates to a hydraulic circulation system.
  • the hydraulic driving device specifically includes an oil tank, a circulation pipeline, a valve table for pumping the oil tank into the circulation pipeline, and an actuator provided on the circulation pipeline.
  • the actuator may be an oil cylinder or a hydraulic motor, and the valve table It specifically includes an oil pump that pumps the oil in the oil tank into the circulation pipeline in the form of high oil pressure, so that the actuator uses the oil pressure to push the piston inside it to move back and forth, and finally realizes the external effect, according to the needs of use You can set multiple actuators on the circulation pipeline.
  • the circulation pipeline is generally composed of an oil pipe and an oil pipe joint. Specifically, multiple oil pipes can be connected through an oil pipe joint. According to the requirements of use, the length of the circulation pipe on the hydraulic drive device can be set to be very long. This requires a strong sealing performance of the circulating pipeline. Because the oil flowing in the circulation pipeline has high oil pressure performance, when the hydraulic drive device is in use, the connection between the oil pipe joint and the oil pipe in the circulation pipeline, or the oil pipe itself, once it leaks, it will cause the The oil will be leaked out quickly. This will make the hydraulic drive device lose the function of hydraulic driving of the actuator, on the other hand, it will also cause pollution of the external environment due to oil leakage. Usage requirements.
  • a hydraulic circulation system includes a fuel tank, a valve table, a circulation pipeline, and an actuator for power output provided on the circulation pipeline, and the valve platform is used to pump oil in the fuel tank to the The circulating pipeline, and the oil in the circulating pipeline has a certain oil pressure to drive the piston on the actuator to move back and forth on the actuator; it is characterized in that the valve table is provided with a directional valve And a directional valve can be used to control the oil in the circulation pipeline; an oil pressure detection mechanism is provided on the actuator, and the oil pressure detection mechanism is used for both sides of the driving piston on the actuator to move back and forth Oil pressure is detected separately; the hydraulic circulation system further includes a controller for receiving a feedback signal of the oil pressure detection mechanism, and correspondingly controlling the reversing valve to cut off the circulation pipeline according to the feedback signal Control of internal oil circuit.
  • the controller includes a receiving module, a judging module, and a control module.
  • the receiving module is configured to receive a signal sent by the oil pressure detection mechanism in real time
  • the judging module is configured to judge the oil. Whether the signal sent by the pressure detection mechanism meets the standard of oil pressure leakage of the circulation pipeline, the control module controls the switching valve to cut off the oil circuit in the circulation pipeline according to the judgment result.
  • the oil pressure detecting mechanism includes two connecting pipes provided on both sides of the actuator and communicating with the actuator, wherein each of the connecting pipes is provided with a hydraulic pressure gauge,
  • the two hydraulic pressure gauges are respectively signal-connected with the controller to send the oil pressure signals measured by them to the controller.
  • the oil pressure detection mechanism includes two conduits provided on both sides of the actuator and communicating with the actuator, and two touch switches for signal connection with the controller, respectively.
  • a contact component is provided between the two conduits, and the contact component can touch one of the touch switches or contact with both of the touch switches.
  • the contact assembly includes a piston rod whose both ends partially extend into two of the catheters, and a limit position fixed on the piston rod and provided between the two touch switches.
  • a rod, the limit rod is vertically disposed on a portion of the piston rod provided outside the two catheters, and can be in contact with the two catheters respectively.
  • two ends of the catheters are set as closed ends at ends facing away from the actuator, and two auxiliary ducts are respectively connected to an auxiliary duct, which are respectively defined as a first auxiliary duct and a second auxiliary duct.
  • the first auxiliary duct is opposite to the second auxiliary duct, and both ends of the piston rod respectively extend into the first auxiliary duct and the second auxiliary duct, and are opposite to the first auxiliary duct and the first auxiliary duct.
  • Two auxiliary catheters are slidingly connected.
  • the piston rods are sleeved with sealing rings at the ends of the two sides that extend into the first auxiliary pipe and the second auxiliary pipe, respectively. seal.
  • a first aperture gasket is fixedly connected to the first auxiliary duct, and the first aperture gasket and the end of the piston rod projecting into the first auxiliary duct are used for A first spring is used for connection; a second opening washer is fixedly connected to the second auxiliary duct, and the end of the second opening washer and the piston rod which protrudes into the second auxiliary duct is replaced by a first Two springs are connected.
  • a hydraulic gauge is respectively provided on the first auxiliary conduit and the second auxiliary conduit.
  • the directional valve is an electromagnetic directional valve.
  • the present invention has the following advantages over the prior art:
  • the hydraulic circulation system provided by the present invention has reasonable structural settings, so that when the hydraulic circulation system is in use, the oil pressure detection mechanism can be used to monitor the oil pressure in the circulation pipeline in real time, and the measured oil pressure signal is fed back to the control.
  • the controller uses the controller to control the switching oil circuit of the reversing valve, so that when the hydraulic circulation system works, once the circulation pipeline leaks, the reversing valve can be used to timely The oil is cut off, thereby realizing the automatic plugging of the hydraulic circulation system in a timely manner, so that the corresponding problems caused by the leakage of the circulation pipeline are solved, and the requirements for the use of the hydraulic circulation system by the enterprise are met.
  • FIG. 1 is a schematic structural diagram of a hydraulic circulation system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a hydraulic circulation system provided by a second embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an oil pressure detection mechanism in a second embodiment of the present invention.
  • FIG. 4 is a block diagram of a controller in the present invention.
  • 10 fuel tank; 20, valve table; 21, reversing valve; 30, circulation pipeline; 40, actuator; 41, piston; 51, conduit; 52, touch switch; 53, touch component; 54, Hydraulic gauges; 60; controllers; 61; receiving modules; 62; judgment modules; 63; control modules; 501; connecting pipes; 502; hydraulic pressure gauges; 511; first auxiliary conduit; 512; second auxiliary conduit; First opening gasket; 514, first spring; 515, second opening gasket; 516, second spring; 531, piston rod; 532, limit rod; 533, sealing ring.
  • the hydraulic circulation system claimed in the present invention includes an oil tank 10, a valve table 20, a circulation pipeline 30, and an actuator 40 provided on the circulation pipeline 30 for power output.
  • the hydraulic circulation system of the invention further includes an oil pressure detection mechanism and a controller 60, so that when the hydraulic circulation system is working, once the circulation pipeline 30 leaks, the oil supply channel of the circulation pipeline 30 can be cut off in time to achieve The purpose of plugging.
  • valve table 20 is used for pumping oil in the oil tank 10 into the circulation pipeline 30 and provides power for circulating the oil in the circulation pipeline 30. Specifically, the valve table 20 pumps the oil pumped into the circulation pipeline 30 with a certain oil pressure, thereby realizing the driving of the piston 41 on the actuator 40 to move back and forth on the actuator 40, that is, The concrete external work of the implementing agency 40 is based on oil pressure as the power source.
  • the valve table 20 of this embodiment is specifically disposed on the oil tank 10, and the valve table 20 includes an oil pump (not shown) to provide oil extraction in the oil tank 10 so that the Oil has high oil pressure.
  • the valve table 20 of this embodiment further includes a directional valve 21 for reversing the oil pumped by the oil pump to the circulation line 30 and cut-off control. This is because the two ends of the circulation line 30 are respectively connected to the valve table 20 connected.
  • the valve table 20 of this embodiment may further include a check valve and a throttle valve to correspondingly implement their respective functions.
  • the directional valve 21 is an electromagnetic directional valve.
  • each of the circulation pipelines 30 may be provided with multiple actuators 40, and the oil in the oil tank 10 may be oil pump It can be withdrawn and can be connected to one of the circulation lines 30 correspondingly through the directional control valve 21 under parallel pipeline transportation.
  • the oil pressure detection mechanism is applied in the hydraulic circulation system, and specifically is used to detect the oil pressure on both sides of the driving piston 41 on the actuator 40 to move back and forth, that is, the oil pressure in this embodiment.
  • the detection mechanism is used to detect the oil pressure on the inlet side and the oil pressure on the outlet side of the actuator 40 separately.
  • the detected oil pressure signal is fed back to the controller 60.
  • the oil pressure detecting mechanism includes two connecting pipes 501 provided on both sides of the actuator 40 and communicating with the actuator 40, wherein each of the connecting pipes 501 is provided with One hydraulic pressure gauge 502 and two hydraulic pressure gauges 502 are respectively signal-connected with the controller 60 to send the oil pressure signals measured to the controller 60. That is, the above-mentioned oil pressure detecting mechanism communicates with the connecting pipe 501 outwards at the positions of the points to be measured of the actuator 40, and realizes the oil pressure of the points to be measured through the hydraulic pressure gauge 502.
  • the oil pressure detection mechanism includes two conduits 51 provided on both sides of the actuator 40 and communicating with the actuator 40, and each of them is signal-connected to the controller 60.
  • the touch switch 52 is used for signal connection with the controller 60, and can send a signal generated when the touch component 53 touches the touch switch 52 to the controller 60, so that the controller 60 can It is necessary to adjust the control of the directional valve 21 correspondingly.
  • the contact assembly 53 includes a piston rod 531 whose two ends partially extend into the two conduits 51, and is fixed to the piston rod 531 and is disposed between two contact switches 52.
  • the limiting rod 532 is vertically arranged on a portion of the piston rod 531 provided on the outer side of the two conduits 51 and can be in contact with the two conduits 51 respectively.
  • the piston rod 531 is subject to different pressure differences between the two conduits 51, and can move back and forth between the two conduits 51, thereby driving the limit rod 532 fixed on the piston rod 531 to move back and forth to The touch switch 52 is touched.
  • two ends of the conduits 51 are set as closed ends at the ends facing away from the actuator 40, and the two conduits are respectively connected with an auxiliary conduit, which are respectively defined as a first auxiliary conduit 511 and a second auxiliary conduit 512.
  • the first auxiliary pipe 511 is opposite to the second auxiliary pipe 512, and both ends of the piston rod 531 extend into the first auxiliary pipe 511 and the second auxiliary pipe 512, respectively, and are opposite to the first auxiliary pipe 511.
  • An auxiliary tube 511 and a second auxiliary tube 512 are slidably connected. That is, the piston rod 531 can move back and forth between the first auxiliary duct 511 and the second auxiliary duct 512.
  • the piston rod 531 is respectively sleeved with a sealing ring 533 at both end portions of the piston rod 531 extending into the first auxiliary conduit 511 and the second auxiliary conduit 512 to seal the first auxiliary conduit 511 and the second auxiliary conduit 512. Sealing is performed so that the oil pressure in the first auxiliary pipe 511 and the oil pressure in the second auxiliary pipe 512 exert a force on the piston rod 531 to push the piston rod 531 to move.
  • a first opening washer 513 is fixedly connected to the first auxiliary pipe 511, and the first opening washer 513 and the piston rod 531 extend into an end of the first auxiliary pipe 511.
  • a first spring 514 is used for connection;
  • a second opening washer 515 is fixedly connected to the second auxiliary pipe 512, and the second opening washer 515 and the piston rod 531 extend to the second auxiliary One end in the catheter 512 is connected by a second spring 516.
  • first spring 514 the first opening washer 513, the second spring 516, and the second opening washer 515 ensures the two ends of the piston rod 531. It is always limited to the first auxiliary pipe 511 and the second auxiliary pipe 512, so as to ensure the connection between the piston rod 531 and the first auxiliary pipe 511 and the second auxiliary pipe 512.
  • a hydraulic gauge 54 is provided on the first auxiliary pipe 511 and the second auxiliary pipe 512, respectively, so as to visualize the oil pressure of the first auxiliary pipe 511 and the second auxiliary pipe 512. To read.
  • the controller 60 is used in the hydraulic circulation system to receive a feedback signal from the oil pressure detection mechanism, and correspondingly control the reversing valve 21 to cut off the circulation pipeline 30 according to two oil pressure signals. Control of internal oil circuit.
  • the controller 60 in this embodiment includes a receiving module 61, a determining module 62, and a control module 63.
  • the receiving module 61 is configured to receive a signal sent by the oil pressure detecting mechanism in real time.
  • the determining module 62 is used to determine whether the signal sent by the oil pressure detection mechanism meets the oil leakage standard in the circulating pipeline 30, and the control module 63 cuts off the oil valve in the circulating pipeline 30 according to the judgment result control.
  • the signal sent by the oil pressure detection mechanism to the controller 60 is the oil pressure signal of two branches on the circulation pipeline 30, and when the two oil pressure signals are between When the difference is large, the judging module 62 of the controller 60 judges that the oil in the circulation pipeline 30 has leaked. Accordingly, the control module 63 controls the directional valve 21 to cut off the circulation pipeline 30. Oil road.
  • the signal sent by the oil pressure detection mechanism to the controller 60 is a signal generated by the two touch switches 52 due to the restricted position lever 532, and the controller 60 receives either one. When the signal sent by the switch 52 is touched, the judging module 62 of the controller 60 judges that the oil in the circulation pipeline 30 has leaked. Accordingly, the control module 63 controls the switching valve 21 to cut off the circulation pipeline. 30 oil circuit.
  • the hydraulic circulation system provided by the present invention has reasonable structural settings, so that when the hydraulic circulation system is in use, the oil pressure detection mechanism can be used to monitor the oil pressure in the circulation pipeline in real time, and the measured oil pressure signal Feedback to the controller to use the controller to control the switching oil circuit of the reversing valve, so that when the hydraulic circulation system is working, once the circulation pipeline leaks, the reversing valve can be used to timely The oil in the road is cut off, thereby realizing the automatic plugging of the hydraulic circulation system in a timely manner, so that the corresponding problems caused by the leakage of the circulation pipeline are solved, and the requirements for the use of the hydraulic circulation system by the enterprise are met.

Abstract

一种液压循环系统,包括油箱(10),阀台(20),循环管路(30),及执行机构(40),阀台(20)用于将油箱(10)内的油抽送至循环管路(30)内;阀台(20)上设置有换向阀(21),并可用换向阀(21)对循环管路(30)内的油进行控制;执行机构(40)上设置有油压检测机构,油压检测机构用于对执行机构上驱动活塞(41)进行来回移动的两侧油压分别进行检测;液压循环系统还包括控制器(60),控制器(60)用于接收油压检测机构的反馈信号,并根据反馈信号来对应控制换向阀(21)切断循环管路(30)内油路的控制。在工作时,一旦循环管路(30)发生泄漏,可用换向阀(21)及时地对循环管路(30)内的油进行切断,以此实现液压循环系统及时自动堵漏,解决因循环管路(30)发生泄漏而引发的相应问题。

Description

一种液压循环系统 技术领域
本发明属于液压设备相关的技术领域,具体是涉及一种液压循环系统。
背景技术
可以理解,大型的制备车间中,常常需要使用到液压驱动装置,以根据使用的需求来提供相应的动力输出。
液压驱动装置具体包括油箱,循环管路,以及用于将油箱抽送至循环管路内的阀台,以及设于循环管路上的执行机构,其中执行机构可以具体为油缸或者液压马达,而阀台内具体包括油泵,以将油箱内的油以高油压的形式抽送至循环管路内,使得执行机构利用油压来推动其内的活塞进行来回移动,最后实现对外的作用,根据使用的需求,可以在循环管路上设置多个执行机构。
其中,循环管路一般是由油管及油管接头构成,具体可用多根油管通过油管接头的方式进行连接而成,其根据使用的需求,液压驱动装置上的循环管路的长度可以设置为很长,这要求循环管路需要有较强的密封性能。因为循环管路内流动的油具有高油压的性能,使得液压驱动装置在使用时,循环管路中的油管接头与油管之间的连接处,或者油管自身一旦发生泄漏,会使得该油箱内的油会被快速的漏完,这样一方面会使得该液压驱动装置失去对执行机构液压驱动的功能,另一方面也会因油的泄漏而产生外部环境的污染,不能很好地满足企业的使用需求。
发明内容
基于此,有必要针对现有技术中存在的技术问题,提供一种液压循环系统。
具体地:一种液压循环系统,包括油箱,阀台,循环管路,及设于所述循环管路上用于动力输出的执行机构,所述阀台用于将油箱内的油抽送至所述循环管路内,且所述循环管路内的油具有一定油压,以驱动所述执行机构上的活塞在执行机构上进行来回移动;其特征在于:所述阀台上设置有换向阀,并可 用换向阀对循环管路内的油进行控制;所述执行机构上设置有油压检测机构,所述油压检测机构用于对所述执行机构上驱动活塞进行来回移动的两侧油压分别进行检测;所述液压循环系统还包括控制器,所述控制器用于接收所述油压检测机构的反馈信号,并根据反馈信号来对应控制所述换向阀切断所述循环管路内油路的控制。
作为本发明的优选方案,所述控制器包括接收模块、判断模块和控制模块,所述接收模块用于实时接收所述油压检测机构所发送的信号,所述判断模块用于判断所述油压检测机构所发送的信号是否符合所述循环管路油压泄漏的标准,所述控制模块根据判断结果对换向阀进行切断所述循环管路内油路的控制。
作为本发明的优选方案,所述油压检测机构包括设于所述执行机构两侧并与所述执行机构连通的两根连接管,其中每根连接管上分别设置有一个液控压力表,两个所述液控压力表分别与控制器进行信号连接,以将其所测得的油压信号发送给控制器。
作为本发明的优选方案,所述油压检测机构包括设于所述执行机构两侧并与所述执行机构连通的两根导管,以及分别与所述控制器进行信号连接的两个碰触开关;两根所述导管之间设置有碰触组件,所述碰触组件能够碰触其中一个碰触开关或者与两个碰触开关均不发生碰触。
作为本发明的优选方案,所述碰触组件包括两端部分伸入至两根所述导管的活塞杆,以及固接在所述活塞杆上并设于两个碰触开关之间的限位杆,所述限位杆垂直地设置在所述活塞杆设于两根导管外侧的部分上,且能够与两根导管分别发生碰触。
作为本发明的优选方案,两根所述导管在背离所述执行机构的一端设置为封闭端,两根所述导管上分别连接有一辅助导管,分别定义为第一辅助导管和第二辅助导管,所述第一辅助导管与所述第二辅助导管相对设置,且所述活塞 杆的两端分别伸入至第一辅助导管和第二辅助导管内,并相对于所述第一辅助导管及第二辅助导管滑动连接。
作为本发明的优选方案,所述活塞杆在伸入至所述第一辅助导管及第二辅助导管的两侧端部分别套接有一密封圈,以对第一辅助导管及第二辅助导管进行密封。
作为本发明的优选方案,所述第一辅助导管内固接有第一开孔垫片,所述第一开孔垫片与所述活塞杆伸入至所述第一辅助导管内的一端用第一弹簧进行连接;所述第二辅助导管内固接有第二开孔垫片,所述第二开孔垫片与所述活塞杆伸入至所述第二辅助导管内的一端用第二弹簧进行连接。
作为本发明的优选方案,所述第一辅助导管与所述第二辅助导管上分别设置有一液压表。
作为本发明的优选方案,所述换向阀为电磁换向阀。
由于上述技术方案的运用,本发明与现有技术相比具有下列优点:
本发明所提供的液压循环系统通过合理的结构设置,使得该液压循环系统在使用时,可用油压检测机构对循环管路内油压进行实时监测,并将所测的油压信号反馈给控制器,以用控制器来实现对换向阀的切换油路的控制,这样就实现了该液压循环系统在工作时,一旦循环管路发生泄漏,可用换向阀及时地对循环管路内的油进行切断,以此实现了该液压循环系统及时堵漏的自动化,这样就解决了因循环管路发生泄漏而引发的相应问题,满足企业对于液压循环系统的使用需求。
附图说明
图1为本发明第一实施例所提供的液压循环系统的结构示意图。
图2为本发明第二实施例所提供的液压循环系统的结构示意图。
图3为本发明第二实施例中油压检测机构的结构示意图。
图4为本发明中控制器的模块框图。
其中,10、油箱;20、阀台;21、换向阀;30、循环管路;40、执行机构;41、活塞;51、导管;52、碰触开关;53、碰触组件;54、液压表;60、控制器;61、接收模块;62、判断模块;63、控制模块;501、连接管;502、液控压力表;511、第一辅助导管;512、第二辅助导管;513、第一开孔垫片;514、第一弹簧;515、第二开孔垫片;516、第二弹簧;531、活塞杆;532、限位杆;533、密封圈。
具体实施方式
下面结合附图及具体实施例对本发明作进一步的详细说明。
请参阅图1-图4,本发明请求保护的液压循环系统,包括油箱10,阀台20,循环管路30,及设于所述循环管路30上用于动力输出的执行机构40,本发明的液压循环系统还包括油压检测机构和控制器60,使得该液压循环系统在工作时,一旦循环管路30发生泄漏时,可及时地对循环管路30的供油路进行切断,达到堵漏的目的。
其中,所述阀台20是用于将油箱10内的油抽送至循环管路30内,并提供油在循环管路30内循环流动的动力。具体地,所述阀台20将抽送至循环管路30内的油是具有一定的油压,进而实现对执行机构40上的活塞41在执行机构40上进行来回移动的驱动,也就是说,执行机构40具体的对外工作,是以油压作为动力源的。
本实施例的阀台20具体是设置在所述油箱10上的,且所述阀台20包含有油泵(图未示),以提供抽取油箱10内的油,以使循环管路30内的油具有高油压。且本实施例的阀台20还包括由换向阀21,以对油泵抽送至循环管路30的油进行换向,以及切断控制,这是因为循环管路30的两端分别与阀台20连接的。当然了根据使用的需求,本实施例的阀台20还可包括单向阀、节流阀,以对应实现各自的功能。其中,所述换向阀21为电磁换向阀。
可以理解,液压循环系统在具体使用的过程中,可设置有多个循环管路30,其中每个循环管路30上也可以设置多个执行机构40,并可由一个油泵将油箱 10内的油抽出,且可在并联的管路输送之下通过换向阀21对应地与其中一个循环管路30相连接。
所述油压检测机构应用在该液压循环系统中,具体是用于对所述执行机构40上驱动活塞41进行来回移动的两侧油压分别进行检测,也就是说,本实施例的油压检测机构是用于对执行机构40的进口端油压,与出口端油压分别进行检测的。并将其所检测得到的油压信号反馈给控制器60。
本发明的第一实施例中,所述油压检测机构包括设于所述执行机构40两侧并与所述执行机构40连通的两根连接管501,其中每根连接管501上分别设置有一个液控压力表502,两个液控压力表502分别与控制器60进行信号连接,以将其所测得的油压信号发送给控制器60。亦即,上述的油压检测机构通过在执行机构40待测点的位置分别向外连通连接管501,并通过液控压力表502来实现对待测点的油压。
本发明的第二实施例中,所述油压检测机构包括设于所述执行机构40两侧并与所述执行机构40连通的两根导管51,以及分别与所述控制器60进行信号连接的两个碰触开关52;两根所述导管51之间设置有碰触组件53,所述碰触组件53能够碰触其中一个碰触开关52或者与两个碰触开关52均不发生碰触。
可以理解,在本实施例中,当碰触组件53与两个触碰开关52的其中一个触碰开关52发生触碰时,意味着执行机构40上待测位置处的两个油压不一致,碰触两个不同的碰触开关52意味着执行机构40上待测位置处的两个油压的高低方向不同,相应地,代表着循环管路30的其中一个管路发生了泄漏;而当碰触组件53不与两个碰触开关52发生碰触,意味着执行机构40上待测位置处的两个油压相等。
所述碰触开关52是用于与控制器60进行信号连接,且可将当碰触组件53碰触到碰触开关52时所产生的信号发送给控制器60,以便控制器60根据使用的需求来对应调节对换向阀21的控制。
在本实施例中,所述碰触组件53包括两端部分伸入至两根所述导管51的活塞杆531,以及固接在所述活塞杆531上并设于两个碰触开关52之间的限位杆532,所述限位杆532垂直地设置在所述活塞杆531设于两根导管51外侧的 部分上,且能够与两根导管51分别发生碰触。也就是说,活塞杆531受两根导管51不同的压差作用,可在两根导管51之间发生来回移动,进而带动固定在活塞杆531上的限位杆532进行来回移动,以对碰触开关52发生碰触。
具体地,两根所述导管51在背离所述执行机构40的一端设置为封闭端,两根所述导管上分别连接有一辅助导管,分别定义为第一辅助导管511和第二辅助导管512,所述第一辅助导管511与所述第二辅助导管512相对设置,且所述活塞杆531的两端分别伸入至第一辅助导管511和第二辅助导管512内,并相对于所述第一辅助导管511及第二辅助导管512滑动连接。也就是说,活塞杆531可在第一辅助导管511与第二辅助导管512之间来回移动。
其中,所述活塞杆531在伸入至所述第一辅助导管511及第二辅助导管512的两侧端部分别套接有一密封圈533,以对第一辅助导管511及第二辅助导管512进行密封,以便第一辅助导管511内的油压,及第二辅助导管512内的油压对活塞杆531发生推动活塞杆531移动的作用力。
进一步地,所述第一辅助导管511内固接有第一开孔垫片513,所述第一开孔垫片513与所述活塞杆531伸入至所述第一辅助导管511内的一端用第一弹簧514进行连接;所述第二辅助导管512内固接有第二开孔垫片515,所述第二开孔垫片515与所述活塞杆531伸入至所述第二辅助导管512内的一端用第二弹簧516进行连接。以对活塞杆531在第一辅助导管511及第二辅助导管512内的移动距离进行限位,防止限位杆532随着活塞杆531的移动,过量地与碰触开关52发生碰触,而对碰触开关52造成损坏,当然了,通过上述第一弹簧514、第一开孔垫片513,第二弹簧516与第二开孔垫片515的结构设置,确保了活塞杆531的两端始终限位在第一辅助导管511与第二辅助导管512,以此确保了活塞杆531与第一辅助导管511及第二辅助导管512之间的连接密封。
作为本实施例的优选方案,本实施例在第一辅助导管511与所述第二辅助导管512上分别设置有一液压表54,以对第一辅助导管511及第二辅助导管512 的油压直观地读取。
所述控制器60应用在该液压循环系统中,是用于接收所述油压检测机构的反馈信号,并根据两个油压信号来对应控制所述换向阀21切断所述循环管路30内油路的控制。
根据使用的需求,本实施例的控制器60具备包括接收模块61、判断模块62和控制模块63,所述接收模块61用于实时接收所述油压检测机构所发送的信号,所述判断模块62用于判断所述油压检测机构所发送的信号是否符合循环管路30内油泄漏的标准,所述控制模块63根据判断结果对换向阀21进行切断所述循环管路30内油路的控制。
可以理解,在本发明的第一实施例中,所述油压检测机构发送给控制器60的信号为循环管路30上两个支路的油压信号,且当两个油压信号之间的差值较大时,所述控制器60的判断模块62就判断该循环管路30内的油发生了泄漏,相应地,控制模块63就控制换向阀21切断所述循环管路30内的油路。而在本发明的第二实施例中,所述油压检测机构发送给控制器60的信号为两个触碰开关52因受限位杆532而分别产生的信号,控制器60接收到任意一个触碰开关52所发送的信号,所述控制器60的判断模块62就判断该循环管路30内的油发生了泄漏,相应地,控制模块63就控制换向阀21切断所述循环管路30内的油路。
综上,本发明所提供的液压循环系统通过合理的结构设置,使得该液压循环系统在使用时,可用油压检测机构对循环管路内油压进行实时监测,并将所测的油压信号反馈给控制器,以用控制器来实现对换向阀的切换油路的控制,这样就实现了该液压循环系统在工作时,一旦循环管路发生泄漏,可用换向阀及时地对循环管路内的油进行切断,以此实现了该液压循环系统及时堵漏的自动化,这样就解决了因循环管路发生泄漏而引发的相应问题,满足企业对于液压循环系统的使用需求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技 术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种液压循环系统,包括油箱,阀台,循环管路,及设于所述循环管路上用于动力输出的执行机构,所述阀台用于将油箱内的油抽送至所述循环管路内,且所述循环管路内的油具有一定油压,以驱动所述执行机构上的活塞在执行机构上进行来回移动;其特征在于:所述阀台上设置有换向阀,并可用换向阀对循环管路内的油进行控制;所述执行机构上设置有油压检测机构,所述油压检测机构用于对所述执行机构上驱动活塞进行来回移动的两侧油压分别进行检测;所述液压循环系统还包括控制器,所述控制器用于接收所述油压检测机构的反馈信号,并根据反馈信号来对应控制所述换向阀切断所述循环管路内油路的控制。
  2. 根据权利要求1所述的液压循环系统,其特征在于:所述控制器包括接收模块、判断模块和控制模块,所述接收模块用于实时接收所述油压检测机构所发送的信号,所述判断模块用于判断所述油压检测机构所发送的信号是否符合所述循环管路油压泄漏的标准,所述控制模块根据判断结果对换向阀进行切断所述循环管路内油路的控制。
  3. 根据权利要求1所述的液压循环系统,其特征在于:所述油压检测机构包括设于所述执行机构两侧并与所述执行机构连通的两根连接管,其中每根连接管上分别设置有一个液控压力表,两个所述液控压力表分别与控制器进行信号连接,以将其所测得的油压信号发送给控制器。
  4. 根据权利要求1所述的液压循环系统,其特征在于:所述油压检测机构包括设于所述执行机构两侧并与所述执行机构连通的两根导管,以及分别与所述控制器进行信号连接的两个碰触开关;两根所述导管之间设置有碰触组件,所述碰触组件能够碰触其中一个碰触开关或者与两个碰触开关均不发生碰触。
  5. 根据权利要求4所述的液压循环系统,其特征在于:所述碰触组件包括两端部分伸入至两根所述导管的活塞杆,以及固接在所述活塞杆上并设于两个碰触开关之间的限位杆,所述限位杆垂直地设置在所述活塞杆设于两根导管外 侧的部分上,且能够与两根导管分别发生碰触。
  6. 根据权利要求5所述的液压循环系统,其特征在于:两根所述导管在背离所述执行机构的一端设置为封闭端,两根所述导管上分别连接有一辅助导管,分别定义为第一辅助导管和第二辅助导管,所述第一辅助导管与所述第二辅助导管相对设置,且所述活塞杆的两端分别伸入至第一辅助导管和第二辅助导管内,并相对于所述第一辅助导管及第二辅助导管滑动连接。
  7. 根据权利要求6所述的液压循环系统,其特征在于:所述活塞杆在伸入至所述第一辅助导管及第二辅助导管的两侧端部分别套接有一密封圈,以对第一辅助导管及第二辅助导管进行密封。
  8. 根据权利要求7所述的液压循环系统,其特征在于:所述第一辅助导管内固接有第一开孔垫片,所述第一开孔垫片与所述活塞杆伸入至所述第一辅助导管内的一端用第一弹簧进行连接;所述第二辅助导管内固接有第二开孔垫片,所述第二开孔垫片与所述活塞杆伸入至所述第二辅助导管内的一端用第二弹簧进行连接。
  9. 根据权利要求8所述的液压循环系统,其特征在于:所述第一辅助导管与所述第二辅助导管上分别设置有一液压表。
  10. 根据权利要求1所述的液压循环系统,其特征在于:所述换向阀为电磁换向阀。
PCT/CN2019/092379 2018-07-02 2019-06-21 一种液压循环系统 WO2020007208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810705436.9A CN108730245A (zh) 2018-07-02 2018-07-02 一种液压循环系统
CN201810705436.9 2018-07-02

Publications (1)

Publication Number Publication Date
WO2020007208A1 true WO2020007208A1 (zh) 2020-01-09

Family

ID=63925572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092379 WO2020007208A1 (zh) 2018-07-02 2019-06-21 一种液压循环系统

Country Status (2)

Country Link
CN (1) CN108730245A (zh)
WO (1) WO2020007208A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108730245A (zh) * 2018-07-02 2018-11-02 尹财富 一种液压循环系统
CN111298508B (zh) * 2019-12-12 2021-11-09 宁夏宝众帮化工有限公司 一种自清洁式石油抽吸过滤设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026506B4 (de) * 2005-06-09 2007-09-20 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Verfahren und Vorrichtung zum Steuern des Gleichlaufs von druckbeaufschlagbaren Kolben-Zylinder-Einheiten beim Anlegen einer Anpresswalze
KR20080067890A (ko) * 2007-01-17 2008-07-22 송상훈 유압기의 서보 유압펌프와 이를 이용한 건설기계동력시스템
CN102865271A (zh) * 2012-09-28 2013-01-09 天津鼎成高新技术产业有限公司 一种液压阀内泄漏的检测方法及其装置
CN203906449U (zh) * 2014-06-05 2014-10-29 中芯国际集成电路制造(北京)有限公司 一种气缸泄露监控系统
CN104564910A (zh) * 2014-11-18 2015-04-29 中铁隧道集团有限公司 一种隧道掘进机液压部件综合检测设备
CN104728214A (zh) * 2015-02-13 2015-06-24 哈尔滨工业大学 一种基于plc控制的集成式液压站
CN105697460A (zh) * 2016-04-25 2016-06-22 中冶赛迪工程技术股份有限公司 一种高精度液压缸内泄漏检测装置
CN108730245A (zh) * 2018-07-02 2018-11-02 尹财富 一种液压循环系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2928802C2 (de) * 1979-07-17 1985-05-30 Wabco Westinghouse Fahrzeugbremsen GmbH, 3000 Hannover Druckmittelbetätigter Differenzdruckschalter
DE3412821A1 (de) * 1984-04-05 1985-10-17 Manfred 2000 Hamburg Berweger Differenzdruckschalter fuer 2-komponenten-spritzanlagen
GB2239076A (en) * 1989-12-14 1991-06-19 Lawrence Patrick Lonergan Building services water supply programmable isolation and malfunction indication system
DE102009051406A1 (de) * 2009-10-30 2011-05-05 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Vorrichtung zur sensortechnischen Ermittlung einer Druckdifferenz in einer druckluftdurchströmten Arbeitsleitung
JP6250515B2 (ja) * 2014-10-07 2017-12-20 日立建機株式会社 建設機械の油圧制御装置
CN204758201U (zh) * 2015-07-10 2015-11-11 贵州大学 一种单光纤束差压传感器的探头结构
CN105679598B (zh) * 2016-03-17 2017-08-22 江苏中兴药业有限公司 一种复合式气体压差开关及其配电联动控制方法
CN205744648U (zh) * 2016-06-24 2016-11-30 浙江利勃海尔中车交通系统有限公司 一种摆式列车上附设安全保护模式的集成液压控制系统
CN107091259B (zh) * 2017-06-29 2018-12-25 长沙学院 液压缸定位制动过程中的卸压式防抖控制装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026506B4 (de) * 2005-06-09 2007-09-20 Lindauer Dornier Gesellschaft Mit Beschränkter Haftung Verfahren und Vorrichtung zum Steuern des Gleichlaufs von druckbeaufschlagbaren Kolben-Zylinder-Einheiten beim Anlegen einer Anpresswalze
KR20080067890A (ko) * 2007-01-17 2008-07-22 송상훈 유압기의 서보 유압펌프와 이를 이용한 건설기계동력시스템
CN102865271A (zh) * 2012-09-28 2013-01-09 天津鼎成高新技术产业有限公司 一种液压阀内泄漏的检测方法及其装置
CN203906449U (zh) * 2014-06-05 2014-10-29 中芯国际集成电路制造(北京)有限公司 一种气缸泄露监控系统
CN104564910A (zh) * 2014-11-18 2015-04-29 中铁隧道集团有限公司 一种隧道掘进机液压部件综合检测设备
CN104728214A (zh) * 2015-02-13 2015-06-24 哈尔滨工业大学 一种基于plc控制的集成式液压站
CN105697460A (zh) * 2016-04-25 2016-06-22 中冶赛迪工程技术股份有限公司 一种高精度液压缸内泄漏检测装置
CN108730245A (zh) * 2018-07-02 2018-11-02 尹财富 一种液压循环系统

Also Published As

Publication number Publication date
CN108730245A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2020007208A1 (zh) 一种液压循环系统
CN104314893A (zh) 一种液压伺服控制试验台系统
CN107725536A (zh) 一种液压油缸加载测试液压系统
CN104697722A (zh) 管路气密性检测装置
CN103217261B (zh) 一种液压管路泄漏的在线检测方法
CN203216669U (zh) 一种压力校验装置
CN202002780U (zh) 一种连接管件高压密封测试装置
CN102606559A (zh) 液压故障检测仪
KR200482017Y1 (ko) 배관의 밸브 장착상태 점검장치
CN102829920A (zh) 一种管件密封测漏装置
CN105874216A (zh) 流体压系统
CN103644426B (zh) 一种全密封磁性控制管道阀门
CN202149102U (zh) 新型液压阀试验台装置
CN206189520U (zh) 一种水泵自动切换装置
CN205744691U (zh) 一种液压泵液位测量监控装置
CN206017967U (zh) 一种油田管道泄漏自动化断输装置
CN203069333U (zh) 一种冷却器漏水在线检测装置
CN203869828U (zh) 液压操纵阀试验台
CN202451517U (zh) 液压故障检测仪
CN202432013U (zh) 商用车柴油机制动系统三通组合件
CN104062112A (zh) 一种多功能检测台
CN203365246U (zh) 油压耐受性检测装置
CN216278717U (zh) 防内漏窜动的静压造型线小车系统
CN206309677U (zh) 一种大流量伺服阀
KR20150109095A (ko) 파이프라인의 누수검사장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831235

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19831235

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19831235

Country of ref document: EP

Kind code of ref document: A1