WO2020006851A1 - 数控机床主轴的"热误差-温度"环的应用方法 - Google Patents

数控机床主轴的"热误差-温度"环的应用方法 Download PDF

Info

Publication number
WO2020006851A1
WO2020006851A1 PCT/CN2018/103121 CN2018103121W WO2020006851A1 WO 2020006851 A1 WO2020006851 A1 WO 2020006851A1 CN 2018103121 W CN2018103121 W CN 2018103121W WO 2020006851 A1 WO2020006851 A1 WO 2020006851A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
error
temperature
spindle
radial
Prior art date
Application number
PCT/CN2018/103121
Other languages
English (en)
French (fr)
Inventor
刘阔
刘海波
李特
刘海宁
王永青
贾振元
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/471,478 priority Critical patent/US11009857B2/en
Publication of WO2020006851A1 publication Critical patent/WO2020006851A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49207Compensate thermal displacement using measured distance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49209Compensation by using temperature feelers on slide, base, workhead

Definitions

  • the invention belongs to the technical field of thermal error testing of numerically controlled machine tools, and specifically relates to an application method of a "thermal error-temperature" ring of a spindle of a numerically controlled machine tool.
  • thermal deformation and temperature data of the current spindle thermal error test method can be used, but there is no method for in-depth analysis of the thermal deformation mechanism and process of the spindle based on these data.
  • the purpose of the present invention is to overcome the shortcomings of the existing spindle thermal error mechanism analysis method, and to provide a "thermal error-temperature" ring of a CNC machine tool spindle and its application method. Compare thermal error levels.
  • the application method of the "thermal error-temperature" ring of the spindle of a CNC machine tool is to first test the radial thermal error of the spindle by using a check rod and two displacement sensors.
  • the radial thermal error of the spindle includes thermal drift error and thermal tilt error; using two temperatures at the same time
  • the sensor tests the temperature of the upper and lower surfaces of the headstock; then draws a "thermal error-temperature” ring based on the radial thermal drift error of the spindle and the temperature difference between the upper and lower surfaces of the headstock; and finally analyzes the radial direction of the main shaft based on the "thermal error-temperature" ring Thermal deformation mechanism to evaluate thermal error level;
  • test rod and two displacement sensors Use the test rod and two displacement sensors to test the radial thermal drift error of the main axis in the X and Y directions; choose one of the directions with larger radial thermal drift error, and use the test rod and two axially arranged along the main axis.
  • the thermal error of the displacement sensor is tested.
  • the displacement sensor near the nose of the main shaft is P 2 and the other is P 1.
  • the test direction of the displacement sensor is: as the radial thermal drift error increases, the test rod is far away from the displacement sensor;
  • the testing process of thermal error and temperature is that the spindle runs continuously at a certain speed for M hours, and then the spindle stops running and stands for N hours, that is, the total test time is M + N hours; while recording the radial thermal error of the spindle Data from two temperature sensors;
  • the beneficial effects of the present invention are: through the testing and analysis method provided by the present invention, the mechanism and process of the radial thermal deformation of the main shaft can be obtained; based on the deformation mechanism, the machine tool can be targeted to optimize the design, save design costs, and improve Design efficiency; Based on the thermal deformation mechanism and process, a thermal error compensation method based on the mechanism can be developed. Compared with the existing data-based thermal error compensation method, the mechanism-based thermal error compensation method is more accurate and more robust.
  • the present invention has the advantages that it provides a method for analyzing the thermal deformation of the main shaft based on the temperature and thermal error data, which can not only obtain the thermal deformation mechanism and law, but also evaluate and compare the thermal drift and thermal tilt level . This side is based on measured data, so the analysis results are closer to reality than simulation.
  • Figure 1 is a schematic diagram of the "thermal error-temperature" loop.
  • Figure 2 is a schematic diagram of the radial thermal error test of the main shaft.
  • Figure 3 shows the "thermal error-temperature" loop at different speeds.
  • a temperature sensor T 1 is arranged on the upper surface of the headstock, and a temperature sensor T 2 is arranged on the lower surface of the headstock.
  • the thermal drift error of the main shaft in the X and Y directions is tested using a check rod and two displacement sensors.
  • the test process is that the main shaft is continuously rotated at a speed of 2000 r / min for 1 hour.
  • the test results are: the thermal drift error in the X direction is 1.2 ⁇ m, and the thermal drift error in the Y direction is 8.2 ⁇ m. It can be determined that the radial error in the Y direction is the main factor.
  • the Lion's spindle error analyzer was used to test the radial thermal drift and thermal tilt error of the spindle in the Y direction.
  • the upper displacement sensor was P 1 and the lower one was P 2 .
  • the test value is positive when the rod is close to the displacement sensor and negative when it is far away.
  • the installation is shown in Figure 2.
  • Phase 1 The main shaft starts to rotate, T 1 heats up rapidly due to being close to the heat source such as the spindle motor, and T 2 is far away from these heat sources, and the temperature rise lags behind T 1 . Therefore, the temperature difference between T 1 and T 2 increases rapidly.
  • the main axis radial thermal error is mainly thermal inclination, and the inclination angle rapidly increases. Therefore, the probe is close to the displacement sensor, and the error is positive;
  • Phase 2 As the main shaft runs, the temperature difference between T 1 and T 2 gradually stabilizes, and the thermal tilt in the radial direction of the main shaft also stabilizes, and the thermal drift becomes larger. Therefore, the check rod gradually moves away from the displacement sensor, and the error becomes Negative value, and gradually change to a negative direction;
  • Phase 3 The spindle stops rotating and cools down at rest. Because the temperature value of T 1 is higher than T 2 , the temperature drop is faster than T 2 , which causes the temperature difference between T 1 and T 2 to decrease rapidly, which causes the radial thermal tilt of the spindle to decrease rapidly. Away from the displacement sensor, the error value still changes in the negative direction;
  • Stage 4 After a period of cooling, the temperatures of T 1 and T 2 tend to be the same, and both are decreasing, so the radial thermal tilt and thermal drift of the main shaft are decreasing, and the check rod is gradually approaching the displacement sensor. The value changes in the positive direction.

Abstract

一种数控机床主轴的"热误差‑温度"环的应用方法,属于数控机床热误差测试领域。针对没有基于实测的热误差和温度数据进行主轴热变形机理分析方法的现状,该方法首先使用检棒和两个位移传感器测试主轴径向热误差,热误差包括热漂移误差和热倾斜误差。同时使用两个温度传感器测试主轴箱上下两个表面的温度。之后以两个温度传感器数值之差为横坐标,以主轴径向热误差为纵坐标绘制出"热误差‑温度"环。最后基于该环分析主轴径向热变形机理,评价热误差水平。该方法提供了基于温度和热误差数据进行主轴热变形分析的方法,既可得出热变形机理和规律,又可以评估和对比热漂移和热倾斜水平。该方法基于实测数据,其分析的结果较仿真更接近实际。

Description

数控机床主轴的“热误差-温度”环的应用方法 技术领域
本发明属于数控机床热误差测试技术领域,具体为数控机床主轴的“热误差-温度”环的应用方法。
背景技术
自1933年瑞士通过对坐标镗床进行测量分析后发现机床热变形是影响定位精度的主要因素以来,学者对机床热误差机理和测试进行了大量研究。
2013年《天津大学学报》第9期发表文章《数控机床主轴热特性分析》,通过有限元和试验验证了热动态特性的变化规律。2015年《浙江大学学报(工学版)》第11期发表文章《高速主轴系统热特性分析与实验》,基于主轴三维有限元模型进行瞬态热-结构耦合分析,并考虑结合面的接触热传导,使仿真精度明显提高。2015年《煤矿机械》第1期发表文章《高速电主轴传热机理及温度测点优化分析》,从电机、轴承和环境三个方面对主轴传热机理进行了分析。2016年《电子科技大学学报》第6卷发表文章《重型卧式车床主轴系统热特性分析》,提出了基于有限元热-固耦合方法仿真计算了主轴达到热平衡后的热变形特性。
在专利《一种电主轴温度与热变形试验装置》,申请号:CN201510781183.X中提出了一种基于控制单元、温度检测单元、冷却单元以及热误差测试单元的主轴热变形试验装置,可用于主轴热特性研究。在专利《一种用于数控床主轴热变形分析的方法》,申请号:CN201510855597.2中,在主轴套筒侧壁安装了电加热线圈,有助于缩短主轴受热变形分析周期。
通过对研究现状的分析,目前研究成果存在以下不足:
(1)目前进行主轴热变形机理分析大多采用有限元方法进行仿真。该方法基于仿真结果,与实际存在一定差距。
(2)目前主轴热误差测试方法可以得出热变形和温度数据,但没有基于这些数据对主轴热变形机理和过程进行深入分析的方法。
技术问题
本发明的目的在于克服现有主轴热误差机理分析方法的不足,提供数控机床主轴的“热误差-温度”环及其应用方法,该方法基于试验数据既能分析热变形机理,又能评价和对比热误差水平。
技术解决方案
本发明的技术方案:
数控机床主轴的“热误差-温度”环的应用方法,首先使用检棒和两个位移传感器测试主轴径向热误差,主轴径向热误差包括热漂移误差和热倾斜误差;同时使用两个温度传感器测试主轴箱上下两个表面的温度;之后基于主轴径向热漂移误差和主轴箱上下表面温度差绘制出“热误差-温度”环;最后基于该“热误差-温度”环分析主轴径向热变形机理,评价热误差水平;
步骤如下:
(1)首先在主轴箱上下表面各布置一个温度传感器,其中靠近主轴电机表面的温度传感器为T 1,另一表面的温度传感器为T 2
(2)使用检棒和两个位移传感器测试主轴沿X方向和Y方向的径向热漂移误差;选择其中径向热漂移误差较大的一个方向,使用检棒和两个沿主轴轴向布置的位移传感器测试其热误差,其中靠近主轴鼻端的位移传感器为P 2,另一个为P 1,位移传感器的测试方向为:随着径向热漂移误差增大,检棒远离位移传感器;
(3)热误差和温度的测试过程为主轴先以一定转速持续运行M小时,之后主轴停止运行,静止N小时,即测试总时间为M+N小时;在测试主轴径向热误差的同时记录两个温度传感器的数据;
(4)设温度传感器T 1和T 2测试得到的两组温度数据为t 1和t 2,位移传感器P 1和P 2测试得到的两组位移数据为e 1和 e 2,T 1和T 2温度差△T的计算公式为:
Figure dest_path_image001
      (1)
以△T为横坐标,以e 1为纵坐标绘制的曲线近似为一个环形,即为“热误差-温度”环;
(5)基于“热误差-温度”环分析主轴径向热变形过程和机理,评价主轴径向热误差水平,评价方法如下:
a)“热误差-温度”环越大,说明主轴径向热倾斜和热漂移均越大;
b)“热误差-温度”环横向越扁,说明主轴径向热漂移越大,而热倾斜越小;
c)“热误差-温度”环纵向越扁,说明主轴径向热倾斜大越大,而热漂移越小。
有益效果
本发明的有益效果为:通过本发明提供的测试及分析方法,可以得出主轴径向热变形的机理和过程;基于该变形机理可对机床进行有针对性的优化设计,节约设计成本,提高设计效率;基于该热变形机理和过程可以开发出基于机理的热误差补偿方法。相比现有基于数据的热误差补偿方法,基于机理的热误差补偿方法精度更高,鲁棒性更强。
本发明与现有技术相比,其优点在于:提供了基于温度和热误差数据进行主轴热变形分析的方法,既可得出热变形机理和规律,又可以评估和对比热漂移和热倾斜水平。该方基于实测数据,因此分析的结果较仿真更接近实际。
附图说明
图1为“热误差-温度”环示意图。
图2为主轴径向热误差测试示意图。
图3为实测的不同转速下 “热误差-温度”环。
本发明的实施方式
为了使本发明的目的、技术方案和优点更加清晰明了,下面以某型立式加工中心为例,并结合附图对本发明的具体实施方式进行说明。
(1)首先在主轴箱上表面布置温度传感器T 1,在主轴箱下表面布置温度传感器T 2
(2)使用检棒和两个位移传感器测试主轴沿X方向和Y方向的热漂移误差,测试过程为主轴以2000r/min的转速持续旋转1小时。测试结果为:沿X方向热漂移误差为1.2μm,沿Y方向热漂移误差为8.2微米。由此可确定沿Y方向的径向误差为主要因素。令机床下电冷却3小时后,使用Lion主轴误差分析仪对主轴沿Y方向的径向热漂移和热倾斜误差进行测试,其中靠上的位移传感器为P 1,靠下的为P 2,检棒靠近位移传感器时测试数值为正值,远离为负值,安装如图2所示。
(3)为了对比不同转速下主轴热误差水平,分别以1000r/min、2000r/min和4000r/min的转速进行三次测试,每次测试主轴连续运转4小时,之后静止3小时。测试过程中以10s周期记录位移传感器和温度传感器数据。
(4)设温度传感器T 1和T 2测试得到的两组温度数据为t 1和t 2。位移传感器P 1和P 2测试得到的两组位移数据为e 1和 e 2。T 1和T 2温度差△T可根据式(1)计算得出。以△T为横坐标,以e 1为纵坐标绘制的曲线即为“热误差-温度”环,如图3所示。
(5)基于“热误差-温度”环,将主轴沿Y方向的径向热变形分为以下四个阶段:
a)阶段一:主轴开始转动,T 1因靠近主轴电机等热源而迅速升温,而T 2离这些热源较远,温度上升滞后于T 1。因此T 1与T 2的温度差迅速增大。此时主轴径向热误差以热倾斜为主,且倾角迅速变大,因此检棒靠近位移传感器,误差为正值;
b)阶段二:随着主轴运行,T 1和T 2的温度差逐渐稳定,主轴径向的热倾斜也随之稳定,而热漂移逐渐变大,因此检棒逐渐远离位移传感器,误差变为负值,且逐渐向负方向变化;
c)阶段三:主轴停止转动,静止降温。由于T 1的温度值高于T 2,因此降温比T 2迅速,这就造成T 1与T 2的温度差迅速变小,从而导致主轴径向热倾斜迅速变小,因此此时检棒仍远离位移传感器,误差值仍向负方向变化;
d)阶段四:经过一段时间的降温,T 1与T 2的温度趋于一致,且均在下降,因此主轴径向热倾斜和热漂移均在减小,检棒也逐渐靠近位移传感器,误差值向正方向变化。
(6)根据“热误差-温度”环得出以下结论:
a)主轴转速越高,“热误差-温度”环越大,说明主轴转速越高,其热倾斜和热漂移均越大。
b)“热误差-温度”环最后没有闭合,原因为降温时间不够,主轴未回到热平衡状态。

Claims (1)

  1. 一种数控机床主轴的“热误差-温度”环的应用方法,首先使用检棒和两个位移传感器测试主轴径向热误差,主轴径向热误差包括热漂移误差和热倾斜误差;同时使用两个温度传感器测试主轴箱上下两个表面的温度;之后基于主轴径向热漂移误差和主轴箱上下表面温度差绘制出“热误差-温度”环;最后基于该“热误差-温度”环分析主轴径向热变形机理,评价热误差水平;
    其特征在于,步骤如下:
    (1)首先在主轴箱上下表面各布置一个温度传感器,其中靠近主轴电机表面的温度传感器为T 1,另一表面的温度传感器为T 2
    (2)使用检棒和两个位移传感器测试主轴沿X方向和Y方向的径向热漂移误差;选择其中径向热漂移误差较大的一个方向,使用检棒和两个沿主轴轴向布置的位移传感器测试其热误差,其中靠近主轴鼻端的位移传感器为P 2,另一个为P 1,位移传感器的测试方向为:随着径向热漂移误差增大,检棒远离位移传感器;
    (3)热误差和温度的测试过程为主轴先以一定转速持续运行M小时,之后主轴停止运行,静止N小时,即测试总时间为M+N小时;在测试主轴径向热误差的同时记录两个温度传感器的数据;
    (4)设温度传感器T 1和T 2测试得到的两组温度数据为t 1和t 2,位移传感器P 1和P 2测试得到的两组位移数据为e 1和 e 2,T 1和T 2温度差△T的计算公式为:
    Figure dest_path_image001
          (1)
    以△T为横坐标,以e 1为纵坐标绘制的曲线近似为一个环形,即为“热误差-温度”环;
    (5)基于“热误差-温度”环分析主轴径向热变形过程和机理,评价主轴径向热误差水平,评价方法如下:
    a)“热误差-温度”环越大,说明主轴径向热倾斜和热漂移均越大;
    b)“热误差-温度”环横向越扁,说明主轴径向热漂移越大,而热倾斜越小;
    c)“热误差-温度”环纵向越扁,说明主轴径向热倾斜大越大,而热漂移越小。
PCT/CN2018/103121 2018-07-05 2018-08-30 数控机床主轴的"热误差-温度"环的应用方法 WO2020006851A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/471,478 US11009857B2 (en) 2018-07-05 2018-08-30 Application method of the thermal error-temperature loop in the spindle of a CNC machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810731810.2A CN108857574B (zh) 2018-07-05 2018-07-05 数控机床主轴的“热误差-温度”环的应用方法
CN201810731810.2 2018-07-05

Publications (1)

Publication Number Publication Date
WO2020006851A1 true WO2020006851A1 (zh) 2020-01-09

Family

ID=64299504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103121 WO2020006851A1 (zh) 2018-07-05 2018-08-30 数控机床主轴的"热误差-温度"环的应用方法

Country Status (3)

Country Link
US (1) US11009857B2 (zh)
CN (1) CN108857574B (zh)
WO (1) WO2020006851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147951A (zh) * 2020-09-28 2020-12-29 沈机(上海)智能系统研发设计有限公司 机加工设备热误差补偿方法及其装置、系统、介质、终端

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109623493B (zh) * 2019-01-31 2020-09-29 大连理工大学 一种判定主轴实时热变形姿态的方法
US11467066B2 (en) * 2019-01-31 2022-10-11 Dalian University Of Technology Method for determining the preload value of the screw based on thermal error and temperature rise weighting
CN109739182B (zh) * 2019-01-31 2020-06-16 大连理工大学 一种对冷却系统扰动不敏感的主轴热误差补偿方法
CN112926200B (zh) * 2021-02-23 2023-03-14 内蒙古工业大学 数控机床主轴热态信息挖掘分析方法、装置及电子设备
CN113126566B (zh) * 2021-06-18 2021-08-24 四川大学 一种数控机床主轴轴向热误差物理建模方法
CN113341878B (zh) * 2021-06-23 2023-04-18 重庆理工大学 五轴数控机床的热误差测量方法
CN114571284B (zh) * 2022-04-28 2023-12-22 江西佳时特精密机械有限责任公司 一种精密机床电主轴热伸长误差测试及主动控制方法
CN117572823B (zh) * 2024-01-17 2024-03-26 深圳市爱贝科精密工业股份有限公司 一种主轴热膨胀动态补偿方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221738A (ja) * 1998-02-05 1999-08-17 Okuma Corp 工作機械の熱変位推定方法
CN101972947A (zh) * 2010-09-26 2011-02-16 天津大学 模拟工况载荷条件下机床主轴热误差测试试验方法
CN103926874A (zh) * 2013-12-03 2014-07-16 江苏齐航数控机床有限责任公司 数控机床热误差补偿建模温度测点组合的选择优化方法
CN105759719A (zh) * 2016-04-20 2016-07-13 合肥工业大学 一种基于无偏估计拆分模型的数控机床热误差预测方法及系统
CN107942934A (zh) * 2017-11-06 2018-04-20 大连理工大学 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136464B2 (ja) * 1995-09-22 2001-02-19 オークマ株式会社 工作機械の熱変位補正方法
KR100290766B1 (ko) * 1998-07-13 2001-06-01 황해웅 컴퓨터수치제어공작기계의작업공간에존재하는오차측정구및그측정방법
JP4359573B2 (ja) * 2005-03-31 2009-11-04 オークマ株式会社 工作機械の熱変位補正方法
JP5397095B2 (ja) * 2009-08-28 2014-01-22 ブラザー工業株式会社 数値制御式工作機械の熱変位補正方法及びその熱変位補正装置
EP2711126B1 (en) * 2011-05-17 2018-01-17 JTEKT Corporation Thermal displacement correction device and thermal displacement correction method
CN103567815B (zh) * 2013-11-12 2016-04-27 沈阳机床(集团)设计研究院有限公司 基于铣削小孔的数控机床切削热误差测试和评价方法
CN104190958B (zh) * 2014-07-31 2016-08-03 浙江大学 一种温度自检测电主轴冷却装置
CN105058163B (zh) * 2015-05-11 2017-08-25 西安理工大学 磨齿机工作状态时热误差测量装置及测量方法
CN105607575B (zh) * 2016-01-27 2017-12-26 电子科技大学 基于fa‑lssvm的数控机床主轴热漂移建模方法
CN106736848B (zh) * 2016-12-13 2019-04-12 西安交通大学 数控车床热误差测量补偿系统及补偿方法
CN107065771B (zh) * 2017-05-05 2019-02-01 大连理工大学 半闭环进给轴的热膨胀误差建模及补偿方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11221738A (ja) * 1998-02-05 1999-08-17 Okuma Corp 工作機械の熱変位推定方法
CN101972947A (zh) * 2010-09-26 2011-02-16 天津大学 模拟工况载荷条件下机床主轴热误差测试试验方法
CN103926874A (zh) * 2013-12-03 2014-07-16 江苏齐航数控机床有限责任公司 数控机床热误差补偿建模温度测点组合的选择优化方法
CN105759719A (zh) * 2016-04-20 2016-07-13 合肥工业大学 一种基于无偏估计拆分模型的数控机床热误差预测方法及系统
CN107942934A (zh) * 2017-11-06 2018-04-20 大连理工大学 一种卧式数控车床的主轴径向热漂移误差建模及补偿方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112147951A (zh) * 2020-09-28 2020-12-29 沈机(上海)智能系统研发设计有限公司 机加工设备热误差补偿方法及其装置、系统、介质、终端

Also Published As

Publication number Publication date
CN108857574A (zh) 2018-11-23
US20200272134A1 (en) 2020-08-27
CN108857574B (zh) 2020-01-17
US11009857B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2020006851A1 (zh) 数控机床主轴的"热误差-温度"环的应用方法
Liu et al. Modeling and compensation for spindle's radial thermal drift error on a vertical machining center
Huang et al. Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning
CN101972947B (zh) 模拟工况载荷条件下机床主轴热误差测试试验方法
WO2020155230A1 (zh) 一种判定主轴实时热变形姿态的方法
CN109739182B (zh) 一种对冷却系统扰动不敏感的主轴热误差补偿方法
Lee et al. A study on the thermal characteristics and experiments of high-speed spindle for machine tools
CN108723894B (zh) 一种数控机床分离主轴末端热变形的测量系统及其方法
CN103231279B (zh) 一种数控机床切削状态下的机床主轴动态测试装置
Liu et al. Dynamic design for motorized spindles based on an integrated model
CN103801987A (zh) 数控机床主轴旋转热误差测量数据精度的提升方法
Yutian et al. Design and development of a five-axis machine tool with high accuracy, stiffness and efficiency for aero-engine casing manufacturing
Liu et al. Physically based modeling method for comprehensive thermally induced errors of CNC machining centers
CN105628534B (zh) 一种金刚石刀具预修有色金属摩擦副的高速摩擦测试方法
Liu et al. Comprehensive thermal growth compensation method of spindle and servo axis error on a vertical drilling center
Sun et al. Influence of unbalanced electromagnetic force and air supply pressure fluctuation in air bearing spindles on machining surface topography
CN105651635B (zh) 一种球形磨头预修黑色金属摩擦副的高速摩擦测试方法
CN103341788B (zh) 消除测量基准安装误差的超精密静压主轴动态特性在线检测方法
Fu et al. Influence of the heat deformation of ultra-precision fly cutting tools on KDP crystal surface microstructure
CN105628533B (zh) 一种cbn刀具预修黑色金属摩擦副的高速摩擦测试方法
CN108919746A (zh) 一种转摆台的热误差测试与分析方法
Matsubara et al. Contactless dynamic tests for analyzing effects of speed and temperature on the natural frequency of a machine tool spindle
Li et al. A research on comprehensive performance test system of high-speed motorized spindle
CN105699288B (zh) 一种球形磨头预修硬脆材料摩擦副的高速摩擦测试方法
Mu et al. Application of high-speed spindle in intelligent high-speed drilling and tapping center machine tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18925420

Country of ref document: EP

Kind code of ref document: A1