WO2020006659A1 - 电机的初始机械角度的获取方法及系统 - Google Patents

电机的初始机械角度的获取方法及系统 Download PDF

Info

Publication number
WO2020006659A1
WO2020006659A1 PCT/CN2018/094012 CN2018094012W WO2020006659A1 WO 2020006659 A1 WO2020006659 A1 WO 2020006659A1 CN 2018094012 W CN2018094012 W CN 2018094012W WO 2020006659 A1 WO2020006659 A1 WO 2020006659A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
angle
initial
electrical
mechanical
Prior art date
Application number
PCT/CN2018/094012
Other languages
English (en)
French (fr)
Inventor
龙彪
范庆鹤
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to EP18925594.6A priority Critical patent/EP3813248A4/en
Priority to PCT/CN2018/094012 priority patent/WO2020006659A1/zh
Priority to CN201880016928.5A priority patent/CN110463020A/zh
Publication of WO2020006659A1 publication Critical patent/WO2020006659A1/zh
Priority to US17/119,283 priority patent/US20210099112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/10Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using light effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/03Determination of the rotor position, e.g. initial rotor position, during standstill or low speed operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/05Determination of the rotor position by using two different methods and/or motor models

Definitions

  • the present disclosure relates to the field of motor control, and in particular, to a method and system for obtaining an initial mechanical angle of a motor.
  • the motor usually uses a linear Hall sensor to detect the electrical angle of the motor rotor, and the mechanical angle of the motor rotor is obtained from the electrical angle.
  • the mechanical angle of the motor rotor cannot be determined by the electrical angle alone.
  • the PTZ motor In the control of the PTZ motor, it usually cooperates with the PTZ mechanical limit structure to achieve the purpose of obtaining the mechanical angle when the motor is powered on.
  • the PTZ usually performs forward and reverse rotation impact limit after the motor is powered on at startup. In order to determine the initial mechanical angle of the gimbal through the known limit position, then enter the attitude control.
  • this method of hitting the limit to obtain the mechanical angle of the motor rotor has the following problems:
  • the present disclosure provides a method and system for obtaining an initial mechanical angle of a motor, which does not require the motor to hit a limit when it is powered on, and can accurately determine the mechanical angle of the motor rotor, thereby achieving rapid motor Starting, can reduce the loss of the motor at the same time.
  • An embodiment of the present disclosure provides a method for obtaining an initial mechanical angle of a motor, including: determining a mechanical state of the motor; determining an initial electrical angle of the motor according to the mechanical state; and determining the initial electrical angle according to the initial electrical angle The initial mechanical angle of the motor.
  • An embodiment of the present disclosure also provides a system for acquiring an initial mechanical angle of a motor, including: a first sensor for determining a mechanical state of the motor; and a controller connected to the first sensor for using the mechanical state, Acquiring an initial electrical angle of the motor; and determining an initial mechanical angle of the motor according to the initial electrical angle.
  • An embodiment of the present disclosure also provides a motor, including a system for acquiring an initial mechanical angle of the motor.
  • An embodiment of the present disclosure also provides a pan / tilt head, including an initial mechanical angle obtaining system of the motor.
  • the embodiments of the present disclosure have at least the following beneficial effects: by setting a magnetic encoder / potentiometer or a photoelectric code disc on the motor, determining the mechanical angle or the range of the mechanical position of the motor at power-on, thereby Determine the electrical cycle of the motor to get the unique initial electrical angle of the motor and the initial mechanical angle.
  • the embodiments of the present disclosure can more accurately determine the mechanical angle of the motor rotor, realize the rapid start of the motor, and prevent the loss of the motor.
  • FIG. 1 is a flowchart of a method for obtaining an initial mechanical angle of a motor according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of the sub-steps of step S102.
  • FIG. 3 is a flowchart of the sub-steps of step S1022.
  • FIG. 4 is a schematic diagram of a mapping and reduction relationship between an electrical angle and a mechanical angle.
  • FIG. 5 is a schematic diagram of a mapping and restoration relationship between a modified electrical angle and a mechanical angle.
  • FIG. 6 is a schematic diagram of a photoelectric code disc according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a process of discretizing an analog voltage signal into a digital voltage signal.
  • FIG. 8 is a schematic diagram of a result of discretizing an analog voltage signal into a digital voltage signal.
  • FIG. 9 is a schematic diagram for determining the electrical angle EA i and the electrical cycle i of the calibration of the mechanical position range.
  • FIG. 10 is a schematic diagram of determining the electrical cycle i after correction.
  • FIG. 11 is a schematic diagram of a three-axis head according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a method for acquiring an initial mechanical angle of a motor, which includes: determining a mechanical state of the motor; determining an initial electrical angle of the motor according to the mechanical state; and determining an initial electrical angle based on the initial electrical angle.
  • the initial mechanical angle of the motor is described.
  • FIG. 1 is a flowchart of a method for obtaining an initial mechanical angle of a motor according to an embodiment of the present disclosure. As shown in FIG. 1, the method includes steps S101 to S103.
  • step S101 the mechanical state of the motor is determined.
  • the mechanical state of the motor there are two ways to determine the mechanical state of the motor: determining the mechanical angle of the motor when it is powered on through a magnetic encoder, or determining the mechanical position range of the motor when it is powered on by using a photoelectric encoder. That is, the mechanical state of the motor may include the mechanical angle or the range of the mechanical position when the motor is powered on.
  • the first method is to obtain the initial machine through a motor provided with a magnetic encoder. Angle, the second scheme obtains its initial mechanical angle through a motor provided with a photoelectric code disc.
  • step S102 an initial electrical angle of the motor is determined according to the mechanical state.
  • the electrical cycle of the motor is determined according to the mechanical state of the motor, that is, the mechanical angle or the range of the mechanical position, and then combined with the electrical angle when the motor is powered on or the electrical angle calibrated when the motor is in the mechanical position range. Determine the initial electrical angle of the motor.
  • step S103 an initial mechanical angle of the motor is determined according to the initial electrical angle.
  • the initial mechanical angle initial electrical angle / N.
  • the initial mechanical angle is more accurate.
  • the above two schemes do not need the motor to hit the limit, which realizes the rapid start of the motor and can prevent the loss of the motor.
  • the magnetic encoder can be replaced with a potentiometer, that is, the initial mechanical angle of the motor is determined by measuring the mechanical angle of the motor at power-on through the voltage change of the potentiometer set on the motor. I won't repeat them here.
  • the first embodiment of the present disclosure is mainly used to describe the first solution of the obtaining method, and the specific implementation thereof will be described in detail below with reference to FIGS. 1 to 5.
  • step S101 a magnetic encoder provided on the motor is used to determine the mechanical angle of the motor when it is powered on.
  • step S102 an initial electrical angle of the motor is determined according to the mechanical angle.
  • step S102 includes sub-steps S1021 to S1022.
  • step S1021 the electrical angle of the motor when it is powered on is obtained through a Hall sensor provided on the motor.
  • step S1022 the initial electrical angle is determined based on the mechanical angle and the electrical angle.
  • one electrical cycle of the motor corresponds to N electrical cycles.
  • the electrical cycle of the motor at this time needs to be determined.
  • step S1022 includes the following sub-steps:
  • S10221 Determine an electrical cycle in which the motor is located according to the mechanical angle.
  • motors have a finite position.
  • the zeroth electrical angle EA 0 of the motor at the initial limit position is obtained by a Hall sensor, and the zeroth mechanical angle MA 0 is obtained by a magnetic encoder. Then, the Hall sensor is used. Obtain the Nth electrical angle EA N when the motor is at the end limit position, and obtain the Nth mechanical angle MA N through the magnetic encoder.
  • the magnetic encoder also needs to obtain the first mechanical angle MA 1 to the N-1th mechanical angle MA N-1 when the electrical angle of the motor is 0 in each of the N electrical cycles, so as to obtain the zeroth mechanical Angle to Nth mechanical angle (MA 0 to MA N ).
  • the motor When the mechanical angle MA satisfies MA i ⁇ MA ⁇ MA i + 1 , the motor is in an electrical cycle i, 0 ⁇ i ⁇ N-1.
  • N 4, 0 ⁇ i ⁇ 3
  • mapping relationship between the electrical angle and the mechanical angle is as follows:
  • the MA and the recorded MA 1 , MA 2 , and MA 3 may not be strictly aligned, and judgment should be considered at the critical point of the recorded data, as shown in the figure. 5.
  • the preset threshold range can be 180 ° or other angles, and the specific value can be adjusted according to the actual needs of the user.
  • the electrical angle satisfies MA 1 ⁇ MA ⁇ MA 2.
  • the mapping relationship between the electrical angle and the mechanical angle it can be known that the motor is in the electrical cycle 1.
  • the electrical angle When the angle is close to 0 °, it can be determined that the motor is actually in electrical cycle 2.
  • the initial electrical angle value after the correction the electrical angle of the motor at power-on + 360 ° ⁇ the electrical cycle after the correction.
  • the initial electrical angle value before the correction the electrical angle of the motor at power-on + 360 ° ⁇ 1
  • the initial electrical angle value after the correction the electrical angle at the power-on of the motor + 360 ° ⁇ 2.
  • step S103 an initial mechanical angle of the motor is determined according to the initial electrical angle after the correction.
  • the initial mechanical angle the initial electrical angle after correction / N.
  • the second embodiment of the present disclosure is mainly used to explain the second solution of the obtaining method.
  • the specific implementation manners will be described in detail below with reference to FIGS. 1, 6 to 10.
  • a black-white symmetrical photo-electric code disc is installed below the rotor housing of the motor, and the photo-code disc includes a light area and a dark area.
  • the optoelectronic code disc When the optoelectronic code disc is working, light is transmitted on the optoelectronic code disc.
  • the optoelectronic code disc rotates with the rotor.
  • the light passing through the bright area passes through the slit and is received by the photosensitive element.
  • the arrangement of the photosensitive element corresponds to the code channel one by one. Therefore, the photoelectric code disc outputs different analog voltage signals, samples this analog voltage signal, and discretizes it into a digital voltage signal.
  • the former is "1" and the latter is " 0 ". In this way, a signal edge (falling edge or rising edge) of a signal transition is obtained.
  • the position range of the corresponding motor when the digital voltage signal output by the photoelectric code disc is on both sides of the signal edge is the mechanical position range.
  • the photoelectric code disc may also include a high reflectivity region and a low reflectivity region, and the transmitting and receiving module or photosensitive element of the photoelectric sensor is installed on the same side of the photoelectric code disc.
  • the optoelectronic code disc When the optoelectronic code disc is operating, the light incident on the high reflectance area and the incident on the low reflectance area will cause the photosensitive element to output different analog voltage signals.
  • the processing method is similar to the foregoing embodiment, and is not repeated here.
  • the range of rotation of the motor is limited. For example, there is a mechanical limit on the external structure driven by the motor, so that the motor can only rotate within a limited range, but not 360 °. Within this range of rotation, there is a boundary between the light and dark areas of the optoelectronic code disc. In this way, it can be determined that there is only one edge signal output by the photoelectric code disc in the rotatable range of the motor, so that the mechanical position of the corresponding motor when the edge signal appears is a position determined in the rotatable range.
  • discretizing an analog voltage signal into a digital voltage signal includes the following steps:
  • Vmax and Vmin determine the hysteresis interval [Vmax- (Vmax-Vmin) / 4, Vmin + (Vmax-Vmin) / 4].
  • the voltage greater than the hysteresis interval (that is, a voltage greater than Vmin + (Vmax-Vmin) / 4) is recorded as a high level 1, and the voltage lower than the hysteresis interval (that is, less than Vmax- (Vmax-Vmin) / 4) Voltage) is recorded as low level 0, then the analog voltage signal can be discretized into analog digital voltage signal.
  • step S101 a mechanical position range when the motor is powered on is determined.
  • Step S101 specifically includes S1011 and S1012.
  • step S1011 after the motor is powered on, the motor is controlled to rotate in one direction. This direction can be clockwise or counterclockwise.
  • the motor when the signal edge of the digital voltage signal is a rising edge, if the digital voltage signal when the motor is powered on is 0, the motor rotates clockwise, and if the digital voltage signal when the motor is powered on is 1 , The motor reverses counterclockwise; when the signal edge of the digital voltage signal is a falling edge, if the digital voltage signal when the motor is powered on is 0, the motor reverses counterclockwise, if the digital voltage signal when the motor is powered on When it is 1, the motor rotates clockwise.
  • the rotation direction of the motor here is related to the black-and-white boundary of the photoelectric code disc and the rotation range of the motor. In other embodiments, the motor can be rotated in the opposite direction to the previous embodiment in the same situation. , Will not repeat them here.
  • step S1012 when the occurrence of the signal edge is detected, it is determined that the motor is in the mechanical position range.
  • step S102 is required to determine the initial electrical angle of the motor according to the mechanical position range.
  • the initial electrical angle of the motor can be determined by acquiring the electrical angle EA i and the electrical cycle i of the mechanical position range calibration through a Hall sensor provided on the motor, where 0 ⁇ i ⁇ N-1 .
  • the actual electrical angle EA measured by the Hall sensor when the motor rotates to the mechanical position range It may not be strictly aligned with EA i , and the effect of offset between real-time data and recorded data should be considered. Therefore, it is necessary to exclude the deviation of the electrical cycle and perform the correction of the electrical cycle: if
  • a may be 180 °, or may be other values, and it may be adjusted according to actual requirements.
  • 190 °> 180 °, then the motor should actually be in electrical cycle 2.
  • step S103 an initial mechanical angle of the motor is determined according to the initial electrical angle after the correction.
  • the initial mechanical angle the initial electrical angle after correction / N.
  • the method for obtaining the initial mechanical angle of the present disclosure determines the electrical position of the motor according to the mechanical state of the motor (the mechanical angle of the motor when it is powered on or the mechanical position range of the motor when it is powered on) Period, the unique initial electrical angle of the motor can be obtained, so as to determine the unique initial mechanical angle of the motor.
  • the electrical cycle can be modified to obtain a more accurate initial mechanical angle.
  • Another embodiment of the present disclosure provides a system for acquiring an initial mechanical angle of a motor, including a first sensor for determining a mechanical state of the motor, and a controller connected to the first sensor for determining the mechanical state according to the mechanical state, Acquiring an initial electrical angle of the motor; and determining an initial mechanical angle of the motor according to the initial electrical angle.
  • the initial mechanical angle the initial electrical angle / N.
  • the electrical angle of the motor when it is powered on is obtained through a second sensor (such as a Hall sensor) connected to the controller.
  • a second sensor such as a Hall sensor
  • the mechanical state may be a mechanical angle of the motor when it is powered on or a mechanical position range of the motor when it is powered on, and thus the specific implementation of the acquisition system may be divided into two schemes.
  • the first sensor in the first solution may be a magnetic encoder or a potentiometer, which is used to determine the mechanical angle of the motor when it is powered on;
  • the first sensor in the second solution may be a photoelectric encoder, which is used to determine the Mechanical position range during power up.
  • the third embodiment of the present disclosure is mainly used to describe the first solution of the acquisition device.
  • the specific implementation manners will be described in detail below with reference to FIGS. 4 and 5.
  • the controller determines the initial mechanical angle of the motor according to the mechanical angle obtained by the first sensor when the motor is powered on and the electrical angle obtained by the second sensor when the motor is powered on.
  • the first sensor may be a magnetic encoder or a potentiometer.
  • the magnetic encoder is used as an example to describe the specific implementation of the potentiometer, that is, the motor obtained by measuring the voltage change of the potentiometer provided on the motor.
  • the mechanical angle at power-on, thereby determining the initial electrical angle of the motor, the specific implementations of the two are similar, and are not repeated here.
  • controller determines an electrical cycle in which the motor is located according to the mechanical angle; and determines an initial electrical angle of the motor according to the electrical cycle and the electrical angle.
  • the magnetic encoder In the process of the controller determining the electrical cycle, the magnetic encoder first obtains the zeroth mechanical angle MA 0 when the motor is in the initial limit position and the Nth mechanical angle MA N when the motor is in the end limit position; it is set on the motor
  • the second sensor (such as a Hall sensor) obtains the zeroth electrical angle EA 0 when the motor is at the initial limit position and the Nth electrical angle EA N when the motor is at the end limit position.
  • the magnetic encoder After determining the zeroth electrical angle and the Nth electrical angle, the magnetic encoder also needs to obtain the first mechanical angle MA 1 to the N-1th mechanical machine when the electrical angle of the motor is 0 in each of the N electrical cycles. Angle MA N-1 to obtain the zeroth mechanical angle to the Nth mechanical angle (MA 0 to MA N ).
  • the controller obtains the electrical cycle i where the motor is located according to the mechanical angle and MA 0 ⁇ MA N , where 0 ⁇ i ⁇ N-1.
  • N 4, 0 ⁇ i ⁇ 3
  • mapping relationship between the electrical angle and the mechanical angle is as follows:
  • the controller also needs to modify the electrical cycle:
  • the controller determines the mechanical angle and the angle of a mechanical angle MA 0 - MA N of any difference is within a preset threshold range, when the mechanical angle and the angle MA 0 - MA N a mechanical angle of any difference in a preset Threshold range,
  • the preset threshold range can be 180 ° or other angles, and the specific value can be adjusted according to the actual needs of the user.
  • the electrical angle satisfies MA 1 ⁇ MA ⁇ MA 2.
  • the mapping relationship between the electrical angle and the mechanical angle it can be known that the motor is in the electrical cycle 1.
  • the electrical angle When the angle is close to 0 °, it can be determined that the motor is actually in electrical cycle 2.
  • the initial electrical angle value the electrical angle of the motor at power-on + 360 ° ⁇ the modified electrical cycle.
  • the initial electrical angle value before the correction the electrical angle of the motor at power-on + 360 ° ⁇ 1
  • the initial electrical angle value after the correction the electrical angle at the power-on of the motor + 360 ° ⁇ 2.
  • the initial mechanical angle after the correction the initial electrical angle / N.
  • the fourth embodiment of the present disclosure is mainly used to explain the second solution of the obtaining device.
  • the specific implementation manners will be described in detail below with reference to FIGS. 6 to 10.
  • the first sensor outputs an analog voltage signal of the motor; the controller obtains the analog voltage signal of the first sensor, converts the analog voltage signal into a digital voltage signal, and the signal edge of the digital voltage signal corresponds to The position range is calibrated to the mechanical position range.
  • the first sensor may be a photoelectric code disc.
  • a black and white symmetrical photoelectric code disc is installed below the rotor housing of the motor, and the photoelectric code disc includes a bright area and a dark area.
  • the photoelectric code disc outputs different analog voltage signals, and the controller samples the analog voltage signal and discretizes it into a digital voltage signal, so as to obtain a signal edge (falling edge or rising edge) of the signal transition. And, the position range corresponding to the signal edge is marked as the mechanical position range.
  • the controller obtains the maximum voltage Vmax and the minimum voltage Vmin in the analog voltage signal
  • Vmax- (Vmax-Vmin) / 4, Vmin + (Vmax-Vmin) / 4] a hysteresis interval [Vmax- (Vmax-Vmin) / 4, Vmin + (Vmax-Vmin) / 4] is determined.
  • the voltage greater than the hysteresis interval (that is, a voltage greater than Vmin + (Vmax-Vmin) / 4) is recorded as a high level 1. Voltage) is recorded as low level 0, then the analog voltage signal can be discretized into analog digital voltage signal.
  • the controller After determining the mechanical position range, the controller needs to control the motor to rotate in one direction. This direction can be clockwise or counterclockwise. Until the controller detects the occurrence of the signal edge, it can determine that the motor is in the mechanical position range.
  • the electrical angle EA i and the electrical cycle i (0 ⁇ i ⁇ N-1) calibrated by the mechanical position range obtained by the Hall sensor are determined by the controller.
  • the initial electrical angle of the motor EA i + 360 ° ⁇ i.
  • the actual electrical angle EA measured by the Hall sensor when the motor rotates to the mechanical position range It may not be strictly aligned with EA i , and the effect of offset between real-time data and recorded data should be considered. Therefore, it is necessary to exclude the deviation of the electrical cycle and perform the correction of the electrical cycle: if
  • a may be 180 °, or may be other values, and it may be adjusted according to actual requirements.
  • 190 °> 180 °, then the motor should actually be in electrical cycle 2.
  • the electrical cycle of the motor can be determined according to the mechanical state of the motor, that is, the mechanical angle of the motor when it is powered on or the mechanical position range when the motor is powered on. This determines the unique initial mechanical angle of the motor.
  • the electrical cycle can be modified to obtain a more accurate initial mechanical angle.
  • Still another embodiment of the present disclosure further provides a motor, including the foregoing system for acquiring an initial mechanical angle of the motor, wherein the system for acquiring an initial mechanical angle of the motor includes: a first sensor for determining a mechanical state of the motor; A controller connected to the first sensor, configured to obtain an initial electrical angle of the motor according to the mechanical state; and determine an initial mechanical angle of the motor according to the initial electrical angle.
  • Yet another embodiment of the present disclosure further provides a pan / tilt head, including the foregoing system for acquiring an initial mechanical angle of a motor, wherein the system for acquiring an initial mechanical angle of the motor includes a first sensor for determining a mechanical state of the motor A controller connected to the first sensor for acquiring an initial electrical angle of the motor according to the mechanical state; and determining an initial mechanical angle of the motor according to the initial electrical angle.
  • the pan / tilt head in the embodiment of the present disclosure may be a three-axis pan / tilt head, or other types of pan / tilt heads, without limitation.
  • the roll axis motor 101, yaw axis motor 102, and pitch axis motor 103 are all provided with the aforementioned initial mechanical angle acquisition system of the motor, so that it can be set on the motor
  • a magnetic encoder / potentiometer, or a photoelectric code disc determines the mechanical angle or mechanical position range of the motor at power-on, thereby determining the electrical cycle of the motor, and thus obtaining the unique initial electrical angle of the motor, thereby obtaining the initial mechanical angle.
  • the three-axis head can more accurately determine the mechanical angle of the motor rotor, realize the rapid start of the motor, and prevent the loss of the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种电机的初始机械角度的获取方法,包括:确定电机的机械状态;根据所述机械状态,确定所述电机的初始电气角度;根据所述初始电气角度,确定所述电机的初始机械角度。

Description

电机的初始机械角度的获取方法及系统 技术领域
本公开涉及电机控制领域,尤其涉及一种电机的初始机械角度的获取方法及系统。
背景技术
电机通常使用线性霍尔传感器检测电机转子的电气角度,并由电气角度得到电机转子的机械角度。对于多对极电机,其一个机械周期内对应多个电气周期,因此仅通过电气角度无法确定电机转子的机械角度。在云台的电机控制中,通常会配合云台的机械限位结构来达到获取电机上电时机械角度的目的,具体地,云台通常在启动时电机上电后进行正反转动撞击限位,以通过已知的限位位置来确定云台的初始的机械角度,再进入姿态控制。但是这种撞限位得到电机转子机械角度的方法,会存在以下问题:
1、云台启动缓慢,用户体验差;
2、撞限位过程中容易被阻碍物阻挡,导致启动失败,可靠性差;
3、对机械限位结构存在疲劳损坏风险,增大限位角度偏差。
公开内容
有鉴于此,本公开提供了一种电机的初始机械角度的获取方法及系统,不需电机在上电启动的时候转动撞限位,能够精确地确定电机转子的机械角度,从而实现电机的快速启动,同时能够减少电机的损耗。
本公开实施例提供了一种电机的初始机械角度的获取方法,包括:确定电机的机械状态;根据所述机械状态,确定所述电机的初始电气角度;根据所述初始电气角度,确定所述电机的初始机械角度。
本公开实施例还提供了一种电机的初始机械角度的获取系统,包括:第一传感器,用于确定电机的机械状态;控制器,连接所述第一传感器,用于根据所述机械状态,获取所述电机的初始电气角度;以及根据所述初始电气角度确定所述电机的初始机械角度。
本公开实施例还提供了一种电机,包括上述电机的初始机械角度的获取系统。
本公开实施例还提供了一种云台,包括上述电机的初始机械角度的获 取系统。
从上述技术方案可以看出,本公开实施例至少具有以下有益效果:通过在电机上设置磁编码器/电位器、或者光电码盘,确定电机在上电时的机械角度或者机械位置范围,从而确定电机的电气周期,以此得到电机的唯一的初始电气角度,从而得到初始机械角度。相较于现有技术的转动撞限位,本公开实施例能够较为精确地确定电机转子的机械角度,实现电机的快速启动,同时能够防止电机的损耗。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例的电机的初始机械角度的获取方法的流程图。
图2为步骤S102的子步骤的流程图。
图3为步骤S1022的子步骤的流程图。
图4为电气角度和机械角度的映射还原关系示意图。
图5为修正后的电气角度和机械角度的映射还原关系示意图。
图6为本公开实施例的光电码盘的示意图。
图7为将模拟电压信号离散化成数字电压信号的过程示意图。
图8为将模拟电压信号离散化成数字电压信号的结果示意图。
图9为确定机械位置范围标定的电气角度EA i和电气周期i的示意图。
图10为修正后的确定电气周期i的示意图。
图11为本公开实施例的三轴云台的示意图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。在使用类似于“A、B或C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B或C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有B和C、和/或具有A、B、C的系统等)。本领域技术人员还应理解,实质上任意表示两个或更多可选项目的转折连词和/或短语,无论是在说明书、权利要求书还是附图中,都应被理解为给出了包括这些项目之一、这些项目任一方、或两个项目的可能性。例如,短语“A或B”应当被理解为包括“A”或“B”、或“A和B”的可能性。
本公开一实施例提供了一种电机的初始机械角度的获取方法,包括:确定电机的机械状态;根据所述机械状态,确定所述电机的初始电气角度;根据所述初始电气角度,确定所述电机的初始机械角度。
图1为本公开实施例的电机的初始机械角度的获取方法的流程图,如图1所示,该方法包括步骤S101~S103。
在步骤S101中,确定电机的机械状态。
在本公开实施例中,确定电机的机械状态有两种方式:通过磁编码器确定电机在上电时的机械角度,或者通过光电码盘确定电机上电时的机械位置范围。也就是说,电机的机械状态可以包括电机上电时的机械角度或者机械位置范围,本公开实施例的获取方法有两种方案:第一种方案通过设置有磁编码器的电机获取其初始机械角度,第二种方案通过设置有光电码盘的电机获取其初始机械角度。
需要说明的是,在第一种方案中,由于通过轴侧放置的磁编码器得到 的电机在上电时的机械角度线性度差、精确度低,需要做线性化校准,因此,只将其作为判断电机所处电气周期的标准,最后得到精确度较高的初始机械角度。
在步骤S102中,根据所述机械状态,确定所述电机的初始电气角度。
更具体地,根据电机的机械状态即机械角度或者机械位置范围,确定电机所处的电气周期,再分别结合电机上电时的电气角度或者电机处于该机械位置范围时标定的电气角度,即可确定电机的初始电气角度。
在步骤S103中,根据所述初始电气角度,确定所述电机的初始机械角度。
假设该电机的极对数为N,N≥1,则初始机械角度=初始电气角度/N,相较于磁编码器测量得到的电机在上电时的机械角度,该初始机械角度更精确,且以上两种方案无需电机转动撞限位,实现了电机的快速启动,同时能够防止电机的损耗。
还需说明的是,可以用电位器替换磁编码器,即通过设置于电机上的电位器的电压的变化,测量得到的电机在上电时的机械角度,从而确定电机的初始机械角度,此处不再赘述。
本公开第一实施例主要用于说明获取方法的第一种方案,以下将结合图1至图5详细介绍其具体实施方式。
在步骤S101中,通过设置在电机上的磁编码器确定电机在上电时的机械角度。
在步骤S102中,根据所述机械角度确定所述电机的初始电气角度。
更具体地,如图2所示,步骤S102包括子步骤S1021~S1022。
在步骤S1021中,通过设置在电机上的霍尔传感器获取所述电机在上电时的电气角度。
在步骤S1022中,根据所述机械角度和所述电气角度,确定所述初始电气角度。
由于本公开实施例的电机的极对数为N,因此电机的一个机械周期内对应N个电气周期,为了得到该电机唯一的初始电气角度,需要确定该电机此时所处的电气周期。
更具体地,如图3所示,步骤S1022包括以下子步骤:
S10221、根据所述机械角度,确定所述电机所处的电气周期。
首先,一般来说,电机都有限位位置,通过霍尔传感器获取电机在初始限位位置时的第零电气角度EA 0,通过磁编码器获取第零机械角度MA 0;接着,通过霍尔传感器获取电机在结束限位位置时的第N电气角度EA N,通过磁编码器获取第N机械角度MA N
此外,磁编码器还需要获取电机在N个电气周期的每个电气周期中电气角度为0时对应的第一机械角度MA 1至第N-1机械角度MA N-1,从而得到第零机械角度~第N机械角度(MA 0~MA N)。
接着,再根据电机在上电时的机械角度MA与MA 0~MA N的关系,判断电机所处的电气周期:
当所述机械角度MA满足MA i≤MA≤MA i+1,则电机处于电气周期i,0≤i≤N-1。
如图4所示,在本公开实施例中,N为4,0≤i≤3,电气角度和机械角度的映射还原关系如下:
如果电气角度为MA 0<MA<MA 1,则电机处于电气周期0;
如果电气角度为MA 1<MA<MA 2,则电机处于电气周期1;
如果电气角度为MA 2<MA<MA 3,则电机处于电气周期2;
如果电气角度为MA 3<MA<MA 4,则电机处于电气周期3。
在本公开的一些实施例中,由于实际应用实时数据和记录数据存在偏差,MA和记录的MA 1,MA 2,MA 3可能不严格对齐,应考虑在记录数据的临界点做判断,如图5。
因此,为了使得初始机械角度更精确,还可以包括以下判断步骤进行电气周期的修正:
判断所述机械角度与MA 0~MA N中任一机械角度的角度差是否在预设阈值范围,当所述机械角度与MA 0~MA N中任一机械角度的角度差在预设阈值范围时,
若所述电气角度接近0°,则确定所述电机处于电气周期i+1;
若所述电气角度接近360°,则确定所述电机处于电气周期i。
一般来说,该预设阈值范围可以为180°,也可以为其他角度,其具体数值可以根据用户的实际需求调整。
举例来说,所述电气角度满足MA 1<MA<MA 2,根据电气角度和机械角度的映射还原关系,可知电机处于电气周期1;为了使得初始机械角度更精确,经过判断步骤修正之后,电气角度接近0°,则可以确定该电机实际上处于电气周期2。
S10222、根据所述电气周期和所述电气角度,确定所述初始电气角度。
此时,修正之后的初始电气角度值=电机在上电时的电气角度+360°×修正后的电气周期。
与之前的举例说明相对应,修正之前的初始电气角度值=电机在上电时的电气角度+360°×1,修正之后的初始电气角度值=电机在上电时的电气角度+360°×2。
在步骤S103中,根据所述修正之后的初始电气角度,确定所述电机的初始机械角度。
此时,初始机械角度=修正之后的初始电气角度/N。
本公开第二实施例主要用于说明获取方法的第二种方案,以下将结合图1、图6至图10详细介绍其具体实施方式。
如图6所示,在本实施方式中,在电机的转子壳体下方安装有一个黑白对称的光电码盘,光电码盘包括一个亮区和一个暗区。当光电码盘工作时,光透射在光电码盘上,光电码盘随转子一同旋转,透过亮区的光通过狭缝后由光敏元件接受,光敏元件的排列与码道一一对应,由此,光电码盘输出不同的模拟电压信号,采样这个模拟电压信号,然后将其离散化成数字电压信号,对于亮区和暗区的光敏元件输出的信号,前者为“1”,后者为“0”。这样就得到一个信号跳变的信号边沿(下降沿或者上升沿)。并且,光电码盘输出数字电压信号处在该信号边沿两侧时分别对应的电机的位置范围为所述机械位置范围。
在另一些实施方式中,光电码盘也可以包括一个高反射率区和一个低反射率区,光电传感器的发射和接收模块或光敏元件安装在光电码盘的同一侧。当光电码盘工作时,光入射在高反射率区上和入射在低反射率区上会使得光敏元件输出不同的模拟电压信号,其处理方式与前述实施方式类似,此处不再赘述。
在一些实施方式中,电机的转动有范围限制。例如,电机带动的外部 结构存在机械限位,因而导致电机只能在有限的范围内转动,而不能360°转动。在这个转动范围内,对应包括有光电码盘的亮区和暗区的一个交界。这样,可以确定在电机可转动范围内光电码盘输出的边沿信号只有一个,从而使得该边沿信号出现时对应的电机的机械位置为可转动范围内确定的一个位置。
更具体地,请参照图7和图8,将模拟电压信号离散化成数字电压信号,包括以下步骤:
获取模拟电压信号中的电压最大Vmax和电压最小Vmin;
根据Vmax和Vmin,确定滞回区间[Vmax-(Vmax-Vmin)/4,Vmin+(Vmax-Vmin)/4]。
将大于该滞回区间的电压(即大于Vmin+(Vmax-Vmin)/4的电压)记为高电平1,将小于该滞回区间的电压(即小于Vmax-(Vmax-Vmin)/4的电压)记为低电平0,即可将模拟电压信号离散成模数字电压信号。
如图1所示,在步骤S101中,确定电机上电时的机械位置范围。
步骤S101具体包括S1011和S1012。
在步骤S1011中,电机上电后,控制电机朝一个方向转动。该方向可以为顺时针方向,也可以为逆时针方向。
在一些实施方式中,当所述数字电压信号的信号边沿为上升沿时,若电机上电时的数字电压信号为0,则电机顺时针正转,若电机上电时的数字电压信号为1,则电机逆时针反转;当所述数字电压信号的信号边沿为下降沿时,若电机上电时的数字电压信号为0,则电机逆时针反转,若电机上电时的数字电压信号为1时,则电机顺时针正转。可以理解的是,此处电机的转动方向与光电码盘的黑白交界和电机的转动范围相关,在另一些实施方式中,在同样的情况下电机可以以和前述实施方式中的相反的方向转动,此处不再赘述。
在步骤S1012中,当检测到所述信号边沿出现时,确定电机处于所述机械位置范围。
在确定电机上电时的机械位置范围之后,还需进行步骤S102、根据所述机械位置范围确定电机的初始电气角度。
如图9所示,通过设置在电机上的霍尔传感器获取所述机械位置范围 标定的电气角度EA i和电气周期i,即可确定电机的初始电气角度,其中,0≤i≤N-1。
在本公开的一些实施例中,如图10所示,由于在实际应用中,实时数据和记录数据存在偏差,电机转动至所述机械位置范围时,通过霍尔传感器测量得到的实际电气角度EA和EA i可能不会严格对齐,应考虑当实时数据和记录数据发生偏移的影响。因此还需排除电气周期的偏移,进行电气周期的修正:若|EA-EA i|≤a,则所述电机位于电气周期i,其中,a为一预定临界角度;若|EA-EA i|>a,则所述电机位于电气周期i-1。其中需要说明的是,当电气周期为0-1即-1时,则表示当前电气周期为3。
根据本公开的一些实施例,a可以为180°,也可以为其他数值,根据实际需求进行调整即可。
根据修正后的电气周期和电气角度EA i,可以得到较为准确的修正后的初始电气角度=机械位置范围标定的电气角度EA i+360°×修正后的电气周期。举例来说,通过霍尔传感器获取所述机械位置范围标定的电气角度EA i=30°、电气周期i=3,则此时未经修正的初始电气角度=EA i+360°×3=1110°。然而实际上,将EA i与实际电气角度EA=220°进行比较,可得|EA-EA i|=190°>180°,则此时电机实际应位于电气周期2。此时,初始电气角度=EA i+360°×2=750°。可见,若不进行修正,则初始电气角度的误差较大。
在步骤S103中,根据所述修正之后的初始电气角度,确定所述电机的初始机械角度。
与第一种方案类似,初始机械角度=修正之后的初始电气角度/N。
由以上两个实施例可知,通过本公开的初始机械角度的获取方法,根据电机的机械状态(电机在上电时的机械角度或者电机上电时的机械位置范围),确定电机所处的电气周期,即可得到电机的唯一的初始电气角度,从而确定电机唯一的初始机械角度。此外,还可以通过对电气周期进行修正,以获取更精确的初始机械角度。
本公开另一实施例提供了一种电机的初始机械角度的获取系统,包括第一传感器,用于确定电机的机械状态;控制器,连接所述第一传感器,用于根据所述机械状态,获取所述电机的初始电气角度;以及根据所述初 始电气角度确定所述电机的初始机械角度。
假设所述电机的极对数为N,则初始机械角度=初始电气角度/N。
一般来说,通过与所述控制器连接的第二传感器(例如霍尔传感器)获取所述电机在上电时的电气角度。
根据不同的第一传感器,所述机械状态可以为电机在上电时的机械角度或者电机上电时的机械位置范围,由此可以将获取系统的具体的实施方式分为两种方案。第一种方案中的第一传感器可以为磁编码器或者电位器,用于确定电机在上电时的机械角度;第二种方案中的第一传感器可以为光电码盘,用于确定电机上电时的机械位置范围。
本公开第三实施例主要用于说明获取装置的第一种方案,以下将结合图4和图5详细介绍其具体实施方式。
在本实施例中,控制器根据第一传感器获取的电机在上电时的机械角度和第二传感器获取的电机在上电时的电气角度初始电气角度,确定所述电机的初始机械角度。其中,第一传感器可以为磁编码器或者电位器,以下将以磁编码器为例进行说明,对于电位器的具体实施,即通过设置于电机上的电位器的电压的变化,测量得到的电机在上电时的机械角度,从而确定电机的初始电气角度,二者的具体实施方式类似,此处不再赘述。
进一步地,控制器根据所述机械角度确定所述电机所处的电气周期;再根据所述电气周期和所述电气角度,确定所述电机的初始电气角度。
在控制器确定电气周期的过程中,磁编码器首先获取电机在初始限位位置时的第零机械角度MA 0,以及电机在结束限位位置时的第N机械角度MA N;设置在电机上的第二传感器(例如霍尔传感器)获取电机在初始限位位置时的第零电气角度EA 0和电机在结束限位位置时的第N电气角度EA N。在确定第零电气角度和第N电气角度之后,磁编码器还需要获取电机在N个电气周期的每个电气周期中电气角度为0时对应的第一机械角度MA 1至第N-1机械角度MA N-1,以得到第零机械角度~第N机械角度(MA 0~MA N)。
最后,控制器根据所述机械角度和MA 0~MA N,获取电机所处的电气周期i,其中,0≤i≤N-1。
如图4所示,在本公开实施例中,N为4,0≤i≤3,电气角度和机械 角度的映射还原关系如下:
如果电气角度为MA 0<MA<MA 1,则电机处于电气周期0;
如果电气角度为MA 1<MA<MA 2,则电机处于电气周期1;
如果电气角度为MA 2<MA<MA 3,则电机处于电气周期2;
如果电气角度为MA 3<MA<MA 4,则电机处于电气周期3。
在本公开的一些实施例中,由于实际应用实时数据和记录数据存在偏差,MA和记录的MA 1,MA 2,MA 3不可能严格对齐,应考虑在记录数据的临界点做判断,如图5。
因此,为了使得初始机械角度更精确,控制器还需对电气周期进行修正:
控制器判断所述机械角度与MA 0~MA N中任一机械角度的角度差是否在预设阈值范围,当所述机械角度与MA 0~MA N中任一机械角度的角度差在预设阈值范围时,
若所述电气角度接近0°,则确定所述电机处于电气周期i+1;
若所述电气角度接近360°,则确定所述电机处于电气周期i。
一般来说,该预设阈值范围可以为180°,也可以为其他角度,其具体数值可以根据用户的实际需求调整。
举例来说,所述电气角度满足MA 1<MA<MA 2,根据电气角度和机械角度的映射还原关系,可知电机处于电气周期1;为了使得初始机械角度更精确,经过判断步骤修正之后,电气角度接近0°,则可以确定该电机实际上处于电气周期2。
得到修正后的电气周期之后,初始电气角度值=电机在上电时的电气角度+360°×修正后的电气周期。
与之前的举例说明相对应,修正之前的初始电气角度值=电机在上电时的电气角度+360°×1,修正之后的初始电气角度值=电机在上电时的电气角度+360°×2。
相应地,修正之后的初始机械角度=初始电气角度/N。
本公开第四实施例主要用于说明获取装置的第二种方案,以下将结合图6至图10详细介绍其具体实施方式。
在本实施例中,第一传感器输出电机的模拟电压信号;控制器获取所 述第一传感器的模拟电压信号,将所述模拟电压信号转换成数字电压信号,将数字电压信号的信号边沿对应的位置范围标定为所述机械位置范围。
在实施例4中,第一传感器可以为光电码盘,如图6所示,在电机的转子壳体下方安装有一个黑白对称的光电码盘,光电码盘包括一个亮区和一个暗区。
由此,光电码盘输出不同的模拟电压信号,控制器采样这个模拟电压信号,然后将其离散化成数字电压信号,这样就得到一个信号跳变的信号边沿(下降沿或者上升沿)。并且,将该信号边沿对应的位置范围标定为所述机械位置范围。
请参照图7和图8,控制器将模拟电压信号离散化成数字电压信号的详细过程为:
控制器获取模拟电压信号中的电压最大Vmax和电压最小Vmin;
根据Vmax和Vmin,确定滞回区间[Vmax一(Vmax-Vmin)/4,Vmin+(Vmax-Vmin)/4]。
将大于该滞回区间的电压(即大于Vmin+(Vmax-Vmin)/4的电压)记为高电平1,将小于该滞回区间的电压(即小于Vmax一(Vmax-Vmin)/4的电压)记为低电平0,即可将模拟电压信号离散成模数字电压信号。
在确定该机械位置范围之后,控制器需要控制电机朝一个方向转动。该方向可以为顺时针方向,也可以为逆时针方向。直至控制器检测到所述信号边沿出现时,能够确定电机处于所述机械位置范围。
当所述数字电压信号的信号边沿为上升沿时,若电机上电时的数字电压信号为0,则电机顺时针正转,若电机上电时的数字电压信号为1,则电机逆时针反转;当所述数字电压信号的信号边沿为下降沿时,若电机上电时的数字电压信号为0,则电机逆时针反转,若电机上电时的数字电压信号为1时,则电机顺时针正转。
如图9所示,当电机处于所述机械位置范围时,通过霍尔传感器获取的机械位置范围标定的电气角度EA i和电气周期i(0≤i≤N-1),控制器由此确定电机的初始电气角度=EA i+360°×i。
在本公开的一些实施例中,如图10所示,由于在实际应用中,实时数据和记录数据存在偏差,电机转动至所述机械位置范围时,通过霍尔传 感器测量得到的实际电气角度EA和EA i可能不会严格对齐,应考虑当实时数据和记录数据发生偏移的影响。因此还需排除电气周期的偏移,进行电气周期的修正:若|EA-EA i|≤a,则所述电机位于电气周期i,其中,a为一预定临界角度;若|EA-EA i|>a,则所述电机位于电气周期i-1,其中需要说明的是,当电气周期为0-1即-1时,则表示当前电气周期为3。
根据本公开的一些实施例,a可以为180°,也可以为其他数值,根据实际需求进行调整即可。
根据修正后的电气周期和电气角度EA i,可以得到较为准确的修正后的初始电气角度=机械位置范围标定的电气角度EA i+360°×修正后的电气周期。举例来说,通过霍尔传感器获取所述机械位置范围标定的电气角度EA i=30°、电气周期i=3,则此时未经修正的初始电气角度=EA i+360°×3=1110°。然而实际上,将EA i与实际电气角度EA=220°进行比较,可得|EA-EA i|=190°>180°,则此时电机实际应位于电气周期2。此时,初始电气角度=EA i+360°×2=750°。可见,若不进行修正,则初始电气角度的误差较大。
根据所述修正之后的初始电气角度,确定所述电机的初始机械角度=修正之后的初始电气角度/N。
由此,通过本公开的电机的初始机械角度的获取系统,根据电机的机械状态,即电机在上电时的机械角度或者电机上电时的机械位置范围,可以确定电机所处的电气周期,从而确定电机唯一的初始机械角度。此外,还可以通过对电气周期进行修正,以获取更精确的初始机械角度。
本公开再一实施例还提供了一种电机,包括前述的电机的初始机械角度的获取系统,其中,该电机的初始机械角度的获取系统包括:第一传感器,用于确定电机的机械状态;控制器,连接所述第一传感器,用于根据所述机械状态,获取所述电机的初始电气角度;以及根据所述初始电气角度确定所述电机的初始机械角度。
本公开又一实施例还提供了一种云台,包括前述的电机的初始机械角度的获取系统,其中,该电机的初始机械角度的获取系统包括:第一传感器,用于确定电机的机械状态;控制器,连接所述第一传感器,用于根据所述机械状态,获取所述电机的初始电气角度;以及根据所述初始电气角 度确定所述电机的初始机械角度。
本公开实施例的云台可以为三轴云台,也可以为其他形式的云台,不作限制。以图11中的三轴云台为例,横滚轴电机101、偏航轴电机102和俯仰轴电机103都设置有前述的电机的初始机械角度的获取系统,以此能够通过在电机上设置磁编码器/电位器、或者光电码盘,确定电机在上电时的机械角度或者机械位置范围,从而确定电机的电气周期,以此得到电机的唯一的初始电气角度,从而得到初始机械角度。相较于现有技术的转动撞限位,该三轴云台能够较为精确地确定电机转子的机械角度,实现电机的快速启动,同时能够防止电机的损耗。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本公开实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (38)

  1. 一种电机的初始机械角度的获取方法,其特征在于,包括:
    确定电机的机械状态;
    根据所述机械状态,确定所述电机的初始电气角度;
    根据所述初始电气角度,确定所述电机的初始机械角度。
  2. 根据权利要求1所述的电机的初始机械角度的获取方法,其特征在于,所述确定所述电机的初始机械角度,包括:
    根据所述初始电气角度和所述电机的极对数N,获取所述初始机械角度,其中,N≥1。
  3. 根据权利要求1或2所述的电机的初始机械角度的获取方法,其特征在于,确定所述电机的机械状态包括确定所述电机在上电时的机械角度。
  4. 根据权利要求3所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    获取所述电机在上电时的电气角度;
    根据所述机械角度和所述电气角度,确定所述初始电气角度。
  5. 根据权利要求4所述的电机的初始机械角度的获取方法,其特征在于,所述确定所述电机的初始电气角度还包括:
    根据所述机械角度,确定所述电机所处的电气周期;
    根据所述电气周期和所述电气角度,确定所述初始电气角度。
  6. 根据权利要求5所述的电机的初始机械角度的获取方法,其特征在于,所述确定所述电机所处的电气周期包括:
    获取电机在初始限位位置时的第零电气角度EA 0和第零机械角度MA 0,以及获取电机在结束限位位置时的第N电气角度EA N和第N机械角度MA N
    确定电机在N个电气周期的每个电气周期中电气角度为0时对应的第一机械角度MA 1至第N-1机械角度MA N-1
    根据所述机械角度与MA 0~MA N,获取电机所处的电气周期i,其中,0≤i≤N-1。
  7. 根据权利要求6所述的电机的初始机械角度的获取方法,其特征 在于,所述确定所述电机所处的电气周期还包括:
    当所述机械角度与MA 0~MA N中任一机械角度的角度差在预设阈值范围时,
    若所述电气角度接近0°,则确定所述电机处于电气周期i+1;
    若所述电气角度接近360°,则确定所述电机处于电气周期i。
  8. 根据权利要求6所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    通过霍尔传感器获取EA 0、EA 1和所述电气角度。
  9. 根据权利要求6所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    通过磁编码器获取MA 0~MA N以及所述机械角度。
  10. 根据权利要求6所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    通过电位器获取MA 0~MA N以及所述机械角度。
  11. 根据权利要求1或2所述的电机的初始机械角度的获取方法,其特征在于,确定所述电机的机械状态包括确定所述电机上电时的机械位置范围。
  12. 根据权利要求11所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    获取光电码盘的模拟电压信号;
    将所述模拟电压信号转换成数字电压信号;
    将数字电压信号的信号边沿对应的位置范围标定为所述机械位置范围。
  13. 根据权利要求12所述的电机的初始机械角度的获取方法,其特征在于,所述光电码盘包括一个亮区和一个暗区。
  14. 根据权利要求12所述的电机的初始机械角度的获取方法,其特征在于,所述确定电机上电时的机械位置范围包括:
    电机上电后,控制电机朝一个方向转动;
    当检测到所述信号边沿出现时,确定电机处于所述机械位置范围。
  15. 根据权利要求12所述的电机的初始机械角度的获取方法,其特征 在于,确定所述电机的初始电气角度包括:
    获取所述机械位置范围标定的电气角度EA i和电气周期i,其中,0≤i≤N-1,由所述电气角度EA i和电气周期i得到所述初始电气角度。
  16. 根据权利要求15所述的电机的初始机械角度的获取方法,其特征在于,所述确定所述电机的初始电气角度还包括:
    电机转动至所述机械位置范围时,测量的实际电气角度为EA,
    若|EA-EA i|≤a,则所述电机位于电气周期i,其中,a为一预定临界角度;
    若|EA-EA i|>a,则所述电机位于电气周期i-1。
  17. 根据权利要求12所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    获取模拟电压信号中的电压最大Vmax和电压最小Vmin;
    根据Vmax和Vmin,确定滞回区间;
    将大于该滞回区间的电压记为高电平1,将小于该滞回区间的电压记为低电平0。
  18. 根据权利要求16所述的电机的初始机械角度的获取方法,其特征在于,所述获取方法还包括:
    通过霍尔传感器测量所述实际电气角度EA和所述机械位置范围标定的电气角度EA i
  19. 一种电机的初始机械角度的获取系统,包括:
    第一传感器,用于确定电机的机械状态;
    控制器,连接所述第一传感器,用于根据所述机械状态,获取所述电机的初始电气角度;以及根据所述初始电气角度确定所述电机的初始机械角度。
  20. 根据权利要求19所述的电机的初始机械角度的获取系统,其特征在于,根据所述电机的初始电气角度和所述电机的极对数N,获取所述电机的初始机械角度,其中,N≥1。
  21. 根据权利要求19或20所述的电机的初始机械角度的获取系统,其特征在于,还包括:第二传感器,与所述控制器连接,用于获取所述电机在上电时的电气角度。
  22. 根据权利要求21所述的电机的初始机械角度的获取系统,其特征在于,其中,所述电机的机械状态包括所述电机在上电时的机械角度。
  23. 根据权利要求22所述的电机的初始机械角度的获取系统,其特征在于,其中,所述控制器用于根据所述机械角度和所述电气角度,确定所述电机的初始电气角度。
  24. 根据权利要求23所述的电机的初始机械角度的获取系统,其特征在于,所述控制器还用于:
    根据所述机械角度确定所述电机所处的电气周期;
    根据所述电气周期和所述电气角度,确定所述电机的初始电气角度。
  25. 根据权利要求24所述的电机的初始机械角度的获取系统,其特征在于,所述第一传感器用于获取电机在初始限位位置时的第零机械角度MA 0,以及电机在结束限位位置时的第N机械角度MA N
    所述第二传感器用于获取电机在初始限位位置时的第零电气角度EA 0和电机在结束限位位置时的第N电气角度EA N
    所述第一传感器用于获取电机在N个电气周期的每个电气周期中电气角度为0时对应的第一机械角度MA 1至第N-1机械角度MA N-1
    所述控制器根据所述机械角度与MA 0~MA N,获取电机所处的电气周期i,其中,0≤i≤N-1。
  26. 根据权利要求25所述的电机的初始机械角度的获取系统,其特征在于,所述控制器还用于:
    当所述机械角度与MA 0~MA N中任一机械角度的角度差在一预设阈值范围时,
    若所述电气角度接近0°,则确定所述电机处于电气周期i+1;
    若电气角度接近360°,则确定所述电机处于电气周期i。
  27. 根据权利要求25所述的电机的初始机械角度的获取系统,其特征在于,所述第二传感器为霍尔传感器,用于获取EA 0、EA 1和所述电气角度。
  28. 根据权利要求25所述的电机的初始机械角度的获取系统,其特征在于,所述第一传感器为磁编码器,用于获取MA 0~MA N以及所述机械角度。
  29. 根据权利要求25所述的电机的初始机械角度的获取系统,其特征在于,所述第一传感器为电位器,用于获取MA 0~MA N以及所述机械角度。
  30. 根据权利要求21所述的电机的初始机械角度的获取系统,其特征在于,所述电机的机械状态包括所述电机上电时的机械位置范围。
  31. 根据权利要求30所述的电机的初始机械角度的获取系统,其特征在于,
    所述第一传感器用于输出模拟电压信号;
    所述控制器用于获取所述第一传感器的模拟电压信号;将所述模拟电压信号转换成数字电压信号;将数字电压信号的信号边沿对应的位置范围标定为所述机械位置范围;在电机上电后,控制电机朝一个方向转动;当检测到所述信号边沿出现时,确定电机处于所述机械位置范围;
    所述第二传感器用于获取所述机械位置范围标定的电气角度EA i和电气周期i,其中,0≤i≤N-1;
    所述控制器还用于根据所述电气角度EA i和电气周期i得到所述初始电气角度。
  32. 根据权利要求31所述的电机的初始机械角度的获取系统,其特征在于,所述第一传感器包括一个亮区和一个暗区。
  33. 根据权利要求32所述的电机的初始机械角度的获取系统,其特征在于,
    所述第二传感器用于当电机转动至所述机械位置范围时,测量实际电气角度EA,
    所述控制器用于:
    当|EA-EA i|≤a,则确定所述电机位于电气周期i,其中,a为一预定临界角度;
    当|EA-EA i|>a,则确定所述电机位于电气周期i-1。
  34. 根据权利要求33所述的电机的初始机械角度的获取系统,其特征在于,所述控制器还用于:
    获取模拟电压信号中的电压最大Vmax和电压最小Vmin;
    根据Vmax和Vmin,确定滞回区间;
    将大于该滞回区间的电压记为高电平1,将小于该滞回区间的电压记为低电平0。
  35. 根据权利要求30所述的电机的初始机械角度的获取系统,其特征在于,所述第一传感器为光电码盘。
  36. 根据权利要求30所述的电机的初始机械角度的获取系统,其特征在于,所述第二传感器为霍尔传感器。
  37. 一种电机,包括如权利要求19至36中任一所述电机的初始机械角度的获取系统。
  38. 一种云台,包括如权利要求19至36中任一所述电机的初始机械角度的获取系统。
PCT/CN2018/094012 2018-07-02 2018-07-02 电机的初始机械角度的获取方法及系统 WO2020006659A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18925594.6A EP3813248A4 (en) 2018-07-02 2018-07-02 METHOD AND SYSTEM FOR DETERMINING THE MECHANICAL STARTING ANGLE OF AN ELECTRIC MOTOR
PCT/CN2018/094012 WO2020006659A1 (zh) 2018-07-02 2018-07-02 电机的初始机械角度的获取方法及系统
CN201880016928.5A CN110463020A (zh) 2018-07-02 2018-07-02 电机的初始机械角度的获取方法及系统
US17/119,283 US20210099112A1 (en) 2018-07-02 2020-12-11 Method and system for obtaining initial mechanical angle of electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094012 WO2020006659A1 (zh) 2018-07-02 2018-07-02 电机的初始机械角度的获取方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/119,283 Continuation US20210099112A1 (en) 2018-07-02 2020-12-11 Method and system for obtaining initial mechanical angle of electric motor

Publications (1)

Publication Number Publication Date
WO2020006659A1 true WO2020006659A1 (zh) 2020-01-09

Family

ID=68471955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094012 WO2020006659A1 (zh) 2018-07-02 2018-07-02 电机的初始机械角度的获取方法及系统

Country Status (4)

Country Link
US (1) US20210099112A1 (zh)
EP (1) EP3813248A4 (zh)
CN (1) CN110463020A (zh)
WO (1) WO2020006659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229169A1 (fr) 2020-05-14 2021-11-18 Electricfil Automotive Procédé et dispositif de mesure de la position angulaire mécanique d'un rotor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111212229B (zh) * 2020-01-14 2022-05-27 上海摩象网络科技有限公司 快速拍摄模式执行方法、装置、设备及计算机存储介质
CN112033278B (zh) * 2020-09-01 2022-04-12 中国航空工业集团公司北京航空精密机械研究所 一种多圈有限转角转台的初始角检测装置及检测方法
CN112271963B (zh) * 2020-10-23 2023-01-31 苏州汇川技术有限公司 工业设备及无编码器控制方法、变频器、控制器和介质
CN114585881A (zh) * 2020-10-29 2022-06-03 深圳市大疆创新科技有限公司 云台的控制方法、云台、设备和存储介质
CN112532122B (zh) * 2020-11-06 2022-12-20 北京精密机电控制设备研究所 一种使用编码器的机电伺服作动器零位设置装置
WO2023070461A1 (zh) * 2021-10-28 2023-05-04 深圳市大疆创新科技有限公司 云台控制方法、装置、云台及计算机存储介质
CN113848998B (zh) * 2021-11-30 2022-03-29 普宙科技(深圳)有限公司 一种微型云台位置角度自检方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938628A (zh) * 2011-09-06 2013-02-20 北京理工大学 一种永磁同步电机转子初始位置定位的方法
CN105553347A (zh) * 2014-10-22 2016-05-04 罗伯特·博世有限公司 用于基于电的旋转角求出转子的机械的旋转角的方法
CN107592041A (zh) * 2016-07-07 2018-01-16 现代摩比斯株式会社 用于同步mdps电机和电机位置传感器的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279687C (zh) * 2004-05-18 2006-10-11 桂林星辰电力电子有限公司 交流永磁同步电机控制系统首次上电时转子的定位方法
US8217601B2 (en) * 2009-07-29 2012-07-10 Parker-Hannifin Corporation Robust rotational position alignment using a relative position encoder
JP2014013163A (ja) * 2012-07-04 2014-01-23 Yaskawa Electric Corp エンコーダ及びモータ
JP6052971B2 (ja) * 2012-09-13 2016-12-27 株式会社アイエイアイ 同期電動機制御装置及び同期電動機制御方法
CN104901511B (zh) * 2015-06-04 2018-03-09 哈尔滨工业大学 一种横向磁通高速超导电机系统
WO2017143500A1 (en) * 2016-02-22 2017-08-31 Sz Dji Osmo Technology Co., Ltd. Motor positional sensing
CN106681369B (zh) * 2016-12-01 2019-10-08 广州亿航智能技术有限公司 一种云台姿态控制方法及系统
CN106679710B (zh) * 2017-02-08 2020-03-10 亿航智能设备(广州)有限公司 一种磁编码器校准方法及系统
CN106849810A (zh) * 2017-03-31 2017-06-13 深圳市伟创电气有限公司 交流永磁同步电机转子的初始位置检测方法及装置
CN107203223B (zh) * 2017-06-16 2020-04-10 中国科学院长春光学精密机械与物理研究所 驱动控制系统及具有该控制系统的稳定云台

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102938628A (zh) * 2011-09-06 2013-02-20 北京理工大学 一种永磁同步电机转子初始位置定位的方法
CN105553347A (zh) * 2014-10-22 2016-05-04 罗伯特·博世有限公司 用于基于电的旋转角求出转子的机械的旋转角的方法
CN107592041A (zh) * 2016-07-07 2018-01-16 现代摩比斯株式会社 用于同步mdps电机和电机位置传感器的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813248A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229169A1 (fr) 2020-05-14 2021-11-18 Electricfil Automotive Procédé et dispositif de mesure de la position angulaire mécanique d'un rotor
FR3110230A1 (fr) * 2020-05-14 2021-11-19 Electricfil Automotive Procédé et dispositif de mesure de la position angulaire mécanique d’un rotor

Also Published As

Publication number Publication date
EP3813248A1 (en) 2021-04-28
EP3813248A4 (en) 2021-06-16
US20210099112A1 (en) 2021-04-01
CN110463020A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2020006659A1 (zh) 电机的初始机械角度的获取方法及系统
US6826499B2 (en) Method and apparatus for calibrating and initializing an electronically commutated motor
US8350505B2 (en) Method for ascertaining a correction value for the angle of the rotor of an electrically commuted reversible synchronous motor
JP2010016331A (ja) 太陽追尾装置およびその追尾方法
US20120068694A1 (en) Method of detecting absolute rotational position
CN104300847A (zh) 转动检测设备及其校正方法、马达控制设备和从动设备
JP2005533240A (ja) エンコーダの自己校正装置および方法
TW200404348A (en) Wafer pre-alignment apparatus and method
CN109000689A (zh) 一种绝对式光电轴角编码器的数据处理方法、系统
CN108801127B (zh) 基于单霍尔传感器的太阳翼帆板转动精度标定方法
US10989573B2 (en) Method and device for correcting angle sensor
US10274944B2 (en) Motor control system, control method, encoder, and motor controller
US6919928B1 (en) Position determining device
JP2006284419A (ja) エンコーダ信号調整装置およびエンコーダシステム
US11973449B2 (en) Motor system and motor control method
US20220187429A1 (en) Optical ranging device
US7443118B2 (en) Method and device for triggering an electric motor
JP2000321628A (ja) パンチルトカメラ装置
KR101661654B1 (ko) 편광 필터를 포함한 카메라 모듈
CN109357639B (zh) 一种光电角度传感装置及使用其测量多圈角度的方法
JP2018200193A (ja) モータ制御システム及びレゾルバ/デジタル変換器の異常検出方法
CN118525187A (zh) 校准方法及装置
JP2000213959A (ja) 位置検出装置
CN112328082A (zh) 滑移终端以及滑移终端位移检测的校对方法
KR20230101307A (ko) 모터 구동 회로의 pwm 신호 오차 보상 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018925594

Country of ref document: EP

Effective date: 20210119