WO2020004330A1 - 電動アクチュエータ - Google Patents

電動アクチュエータ Download PDF

Info

Publication number
WO2020004330A1
WO2020004330A1 PCT/JP2019/024962 JP2019024962W WO2020004330A1 WO 2020004330 A1 WO2020004330 A1 WO 2020004330A1 JP 2019024962 W JP2019024962 W JP 2019024962W WO 2020004330 A1 WO2020004330 A1 WO 2020004330A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
case
shielding plate
magnetic
electric actuator
Prior art date
Application number
PCT/JP2019/024962
Other languages
English (en)
French (fr)
Inventor
慎介 平野
池田 良則
辰徳 清水
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CA3103765A priority Critical patent/CA3103765A1/en
Priority to US16/972,730 priority patent/US11791695B2/en
Publication of WO2020004330A1 publication Critical patent/WO2020004330A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/2015Means specially adapted for stopping actuators in the end position; Position sensing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • F16H25/2204Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members with balls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2031Actuator casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H2025/2062Arrangements for driving the actuator
    • F16H2025/2081Parallel arrangement of drive motor to screw axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02034Gearboxes combined or connected with electric machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02082Gearboxes for particular applications for application in vehicles other than propelling, e.g. adjustment of parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/24Detecting rotary movement using magnetic means not otherwise provided for in this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/50Grounding or electrostatically shielding a position sensor or encoder

Definitions

  • the present invention relates to an electric actuator.
  • an extendable boot can be provided around the actuator head, for example, in order to prevent entry of foreign matter from the outside air.
  • this type of boot is usually formed of resin or the like, an advantage of being able to accurately detect the position information of the actuator head even if the boot is interposed is a detection device including a magnet and a magnetic sensor. is there.
  • the actuator includes a motor and a motion conversion mechanism that converts a rotational motion generated by driving the motor into a predetermined motion.
  • the motion conversion mechanism is an electric actuator having a movable unit that performs a predetermined motion.
  • a magnet as a sensor target is provided on the movable part, a magnetic sensor for detecting position information of the magnet is provided around the magnet, and a magnetic shielding plate is provided between the motor and the magnetic sensor. And that the outer surface of the motor and the inner surface of the magnetic shielding plate face each other with a predetermined gap therebetween.
  • the magnet as the sensor target is provided on the movable portion
  • the magnetic sensor is provided around the magnet
  • the magnetic shielding plate is provided between the drive motor of the electric actuator and the magnetic sensor. It was arranged.
  • the magnetic shielding plate By arranging the magnetic shielding plate in this way, the magnetism generated by the motor is cut off in front of the magnetic sensor, so that the magnetic sensor should originally detect the magnetic field (magnetic field generated from the magnet as the sensor target). Can be accurately detected, and the position information of the movable portion can be detected without malfunction.
  • the outer surface of the motor and the inner surface of the magnetic shield plate face each other via a predetermined gap.
  • the magnitude (magnetic flux density) of the magnetic field generated from the magnetic material decreases as the distance from the magnetic material increases. More specifically, the magnitude of the magnetic field is inversely proportional to the square of the distance from the magnetic body. For this reason, the space that can be opened around the motor is limited, and even if only a small gap can be provided between the motor and the magnetic shielding plate (for example, about 1 mm to several mm, Also, as compared with the case where the magnetic shielding plate is arranged in close contact with the motor, the magnetic shielding effect can be greatly increased. Therefore, even in an arrangement environment in which the components are close to each other, it is possible to effectively reduce the influence of the magnetic field generated from the motor on the magnetic sensor.
  • the magnetic shielding plate may have a cylindrical shape.
  • the magnetic shielding plate can be a kind of yoke and constitute a magnetic circuit closed with the motor, it is possible to prevent a magnetic field generated in the motor from leaking outside the motor as much as possible. . Therefore, the influence of the magnetic field on the magnetic sensor can be reliably eliminated, and more accurate position detection can be achieved.
  • the electric actuator according to the present invention may further include a rotational motion transmitting unit that transmits the rotational motion to the motion converting mechanism, wherein the first case accommodating the motor and the second case accommodating the rotational motion transmitting unit are mutually reciprocal.
  • the magnetic shielding plate may be fixed to the inner periphery of the first case, and one axial end of the motor may be fixed to the second case.
  • the magnetic shield plate is fixed to the inner periphery of the first case in which the motor is housed, and one end in the axial direction of the motor is fixed to the first case and the second case in which the rotational motion transmitting unit is housed.
  • the positional relationship in which a predetermined gap is provided between the outer surface of the motor and the inner surface of the magnetic shielding plate facing each other can be easily maintained.
  • the above configuration is effective when the distance between the components is reduced to reduce the size of the electric actuator.
  • the first case accommodating the motor and the third case accommodating the magnetic sensor are integrally formed, and a part of the first case in which the magnetic shielding plate is fixed to the inner periphery. May face the internal space of the third case in which the magnetic sensor is housed.
  • the first case and the third case are configured such that a part of the first case in which the magnetic shielding plate is fixed to the inner periphery faces the internal space of the third case in which the magnetic sensor is housed. Therefore, while minimizing the size of the electric actuator by shortening the distance between the motor and the magnetic sensor as much as possible, the effect of the magnetic field from the motor on the magnetic sensor can be eliminated by the magnetic shielding plate arranged between them. It becomes possible.
  • the first case may be a resin injection-molded product having a magnetic shielding plate as an insert.
  • the attachment of the magnetic shield plate to the first case can be omitted.
  • the magnetic shielding plate can be integrated with being embedded in the inner periphery of the first case, it is suitable for arranging the magnetic shielding plate and the motor in a limited space via the gap.
  • the magnetic shielding plate may have a slit extending in the axial direction.
  • the slit may be provided at a position offset in the circumferential direction from a position between the motor and the magnetic sensor facing each other.
  • the magnetic shielding plate when manufacturing the magnetic shielding plate separately from the first case in which the motor is housed, by providing an axial slit in the cylindrical magnetic shielding plate, the magnetic shielding plate is reduced in diameter to the first case. After being introduced into the inner circumference of the first case, it can be easily fitted to the inner circumference of the first case by the diameter expanding operation.
  • the first case when the first case is integrally formed of resin using the magnetic shielding plate as an insert, by arranging the circumferential position of the slit in accordance with the relatively thin portion, the flow of the molten resin in the thin portion is increased. Can be improved. Thereby, the moldability of the first case can be improved.
  • the slit by disposing the slit at a position circumferentially offset from the position where the motor and the magnetic sensor face each other, the magnetic field generated by the motor causes the magnetic sensor to pass through the slit. A situation that leaks to the side can be prevented as much as possible. Therefore, even if the slits are provided, there is no fear of affecting the magnetic shut-off effect of the entire motor.
  • FIG. 2 is a longitudinal sectional view of a section taken along line AA of FIG. It is a perspective view of each component which comprises the support structure of a motor.
  • FIG. 2 is a vertical cross-sectional view of a cross section taken along line BB of FIG.
  • FIG. 3 is a cross-sectional view of a cross section taken along line CC of FIG.
  • FIG. 3 is a perspective view of a magnetic shield plate shown in FIG. 2. It is a cross section of an electric actuator concerning a second embodiment of the present invention.
  • FIG. 1 is a side view of the electric actuator 1 according to the first embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view of the electric actuator 1 shown in FIG.
  • the electric actuator 1 according to the present embodiment includes a motor unit 2 having a motor 5, a rotational motion transmitting unit 3 that transmits the rotational motion of the motor 5, and a rotational motion of the motor 5 that is linear. It mainly comprises a motion conversion mechanism 4 for converting.
  • the motor unit 2 includes the motor 5, a pair of bus bars 7 as conductive members for supplying power to the motor 5, and a motor case 6 that houses the motor 5 and the bus bar 7.
  • This motor case 6 corresponds to a first case according to the present invention.
  • the motor 5 includes a motor rotor and a motor stator that face each other in the radial direction, and a motor housing that houses the motor rotor and the motor stator.
  • an inexpensive (with brush) DC motor may be used, or another motor such as a brushless motor may be used.
  • the motor case 6 includes a cylindrical main body 61 that accommodates most of the motor 5, a lid-like cap 62 fixed to one end (the left end in FIG. 2) of the main body 61. It is composed of Each bus bar 7 is formed by bending a metal plate member into a predetermined shape, and is held by a resin holder 71, respectively. In addition, each bus bar 7 is, for example, fitted with a holder 71 at a rear end 5c of the motor 5 (an end opposite to the side from which the rotating shaft 5a protrudes). (See FIG. 3) by welding.
  • the cap portion 62 is provided with a cylindrical connector portion 62a that protrudes in the axial direction, and the inner peripheral side of the connector portion 62a has a distal end portion of each bus bar 7 (the side opposite to the side connected to the motor terminal 5d). End). The other end of the power line extending from the power supply (not shown) is connected to the end of the bus bar 7, so that power can be supplied from the power supply to the motor 5.
  • the magnetic shielding structure of the motor case 6 and the motor 5 will be described later.
  • the rotational motion transmitting unit 3 includes a drive gear 8 on the drive side and a driven gear 9 on the driven side that meshes with the drive gear 8.
  • the drive gear 8 and the driven gear 9 are housed in a gear case 10.
  • the gear case 10 corresponds to a second case according to the present invention.
  • the drive gear 8 is a small-diameter gear having a smaller number of teeth than the driven gear 9, and is attached to the rotating shaft 5 a of the motor 5 so as to rotate integrally with the rotating shaft 5 a.
  • the driven gear 9 is a large-diameter gear having a larger number of teeth than the drive gear 8, and rotates integrally with the nut 17, which will be described later, forming the motion conversion mechanism 4. Attached to.
  • the drive gear 8 is rotatably supported by two bearings 11 and 12 at both ends in the axial direction.
  • bearings 11, 12 one (left side in FIG. 2) bearing 11 is held by being fitted into a cylindrical bearing holding member 13 fixed to the end of the motor 5, and the other (FIG. 2).
  • the bearing 12 (right side of FIG. 2) is held by being fitted into the gear case 10.
  • the driven gear 9 is rotatably supported together with the nut 17 by double-row bearings 14 provided on the outer peripheral surface of the nut 17.
  • the double-row bearings 14 are housed in a cylindrical sleeve 15 provided in the gear case 10, and movement in the axial direction is restricted by a retaining ring 16 mounted on the inner peripheral surface of the sleeve 15.
  • the double-row bearing 14 it is preferable to use a double-row angular ball bearing capable of supporting an axial load in both directions in addition to a radial load so as to stably and surely support the nut 17.
  • a speed reducing mechanism unit (not shown) is provided separately from the rotary motion transmitting unit 3 with the motor unit 2 and the rotary motion transmitting unit. 3, the rotation of the motor 5 may be transmitted to the rotational motion transmitting unit 3 in a decelerated state.
  • the drive gear 8 and the driven gear 9 may be constituted by gears having the same number of teeth, and the rotational motion from the motor 5 may be transmitted without being reduced.
  • the motion conversion mechanism section 4 is configured by a ball screw mechanism having a nut 17 as a rotating member, a screw shaft 18 as a direct acting member, and a number of balls 19.
  • the screw shaft 18 corresponds to the movable part according to the present invention.
  • Helical grooves are formed on the inner peripheral surface of the nut 17 and the outer peripheral surface of the screw shaft 18, respectively, and a ball 19 is rotatably accommodated between these spiral grooves.
  • the nut 17 is provided with a circulation member (not shown), and the circulation member causes the ball 19 to circulate along the spiral groove.
  • the screw shaft 18 is inserted through the inner periphery of the nut 17 and is arranged in parallel with the rotation shaft 5 a of the motor 5.
  • a connection hole 18a is provided at the front end (left end in FIG. 2) of the screw shaft 18.
  • a fastener such as a bolt
  • the screw shaft 18 and the operation target are illustrated.
  • the corresponding part of the device that is not connected is connected.
  • the front end of the screw shaft 18 having the connection hole 18a corresponds to the actuator head of the electric actuator 1.
  • the rear end of the screw shaft 18 (the end opposite to the end on the operation target side) is covered with a screw shaft case 20.
  • the screw shaft case 20 is fixed to the gear case 10 on the side opposite to the side where the motor case 6 is fixed to the gear case 10.
  • a rotation preventing pin 21 is provided as a rotation restricting member for restricting the rotation of the screw shaft 18.
  • the detent pin 21 is attached to the screw shaft 18 in a direction orthogonal or intersecting with the axial direction.
  • Guide rollers 22 are rotatably attached to both ends of the rotation preventing pins 21 projecting from the rear end of the screw shaft 18 in the radial direction.
  • Each guide roller 22 is inserted into a pair of guide grooves 20 a provided in the screw shaft case 20 and extending in the axial direction. As the guide roller 22 moves in the axial direction along the guide groove 20a, the screw shaft 18 moves forward or backward in the axial direction without rotating in the circumferential direction.
  • ⁇ Circle around (1) ⁇ around the screw shaft 18 are provided a boot 23 for preventing foreign substances from entering the electric actuator 1 and a boot cover 25 for protecting the boot 23.
  • a boot 23 and a boot cover 25 are provided around the screw shaft 18 on the front end side of the nut 17.
  • the boot 23 includes a small-diameter end 23a, a large-diameter end 23b, and a bellows portion 23c that extends and contracts in the axial direction by connecting the small-diameter end 23a and the large-diameter end 23b.
  • the small-diameter end 23a is fixed to the outer peripheral surface of the screw shaft 18, and the large-diameter end 23b is fixed to the outer peripheral surface of a tubular boot mounting member 24 attached to the boot cover 25.
  • the boot cover 25 is disposed so as to cover the outside of the boot 23, and is integrally formed with the main body 61 of the motor case 6.
  • the ventilation filter 26 is provided in the screw shaft case 20 in order to prevent the bellows portion 23c from being damaged due to the internal pressure fluctuation of the boot 23.
  • the ventilation filter 26 communicates with the internal space of the boot 23 through the inside of the electric actuator 1, and when the boot 23 expands and contracts, air flows in or out through the ventilation filter 26, thereby suppressing deformation of the bellows portion 23 c.
  • a position detecting device 30 for detecting the position of the screw shaft 18 is mounted on the electric actuator 1 as shown in FIG.
  • This position detection device has a permanent magnet 31 provided as a sensor target provided on the screw shaft 18, and a magnetic sensor 32 provided around the permanent magnet 31 and detecting the position of the permanent magnet 31.
  • the magnetic sensor 32 is housed in the sensor case 28, and the sensor case 28 is disposed at a position adjacent to the main body 61 of the motor case 6.
  • This sensor case 28 corresponds to a third case according to the present invention.
  • the motor case 6 is opened toward the outside of the motor case 6 in the vicinity of a portion where the motor 5 is housed (the main body 61) and the connection portion between the boot cover 25.
  • the sensor case 28 is provided, and the sensor case 28 is formed integrally with the main body 61 of the motor case 6.
  • a sensor base 33 to which two magnetic sensors 32 are attached is attached to the sensor case 28. As a result, the magnetic sensor 32 faces the permanent magnet 31 via the boot cover 25.
  • the magnetic sensor 32 has a radius of the screw shaft 18 such that the detection surface 32a of the magnetic sensor 32 faces the permanent magnet 31 when viewed from the direction (stroke direction of the screw shaft 18) shown in FIG. It is arranged outside in the direction.
  • the magnetic sensor 32 is covered with the boot cover 25, the sensor case 28, the part 61 b of the main body 61 of the motor case 6, and the sensor base 33.
  • the main body 61 and the sensor case 28 are provided such that a part 61b of the main body 61 faces the internal space of the sensor case 28 in which the magnetic sensor 32 is housed.
  • the magnetic sensor 32 and the sensor base 33 may be attached to the sensor case 28 via a predetermined attachment portion, or may be attached by sealing the opening of the sensor case 28 with a resin or the like.
  • the magnetic sensor 32 When viewed in the stroke direction of the screw shaft 18 (permanent magnet 31), the magnetic sensor 32 is disposed at an axially intermediate position of the boot cover 25, though not shown. In this case, in terms of the positional relationship with the permanent magnet 31, the magnetic sensor 32 is arranged so that the magnetic sensor 32 is positioned in the axial movement range of the permanent magnet 31 attached to the screw shaft 18. Is good.
  • the magnetic sensor 32 detects a change in the magnetic field (for example, the direction and strength of the magnetic flux density) of the permanent magnet 31 that moves with the screw shaft 18. By doing so, the axial position of the permanent magnet 31 and thus the axial position of the screw shaft 18 are detected.
  • any type can be used, and among them, a magnetic sensor such as a Hall IC or a linear Hall IC that can detect the direction and magnitude of the magnetic field using the Hall effect can be suitably used. is there.
  • the sensor base 33, the sensor case 28, the main body 61 of the motor case 6, and the boot cover 25 that cover the periphery of the magnetic sensor 32 are all preferably made of a non-magnetic material, for example, resin.
  • a magnetic shielding plate 34 is provided between the motor 5 and the magnetic sensor 32 (see FIG. 5).
  • the magnetic shielding plate 34 has a cylindrical shape (see FIG. 6), and is fixed to the inner periphery of the main body 61 of the motor case 6.
  • a predetermined radius is provided between the outer peripheral surface 5e of the motor 5 and the inner peripheral surface 34a of the magnetic shielding plate 34.
  • the direction gap 35 is maintained.
  • the outer peripheral surface 5e of the motor 5 and the inner peripheral surface 34a of the magnetic shielding plate 34 face each other via the radial gap 35.
  • the radial gap 35 is filled with, for example, air as a nonmagnetic material.
  • the magnetic shielding plate 34 has a slit 34b extending in the axial direction (see FIG. 6), and the slit 34b is positioned between the motor 5 and the magnetic sensor 32 facing each other (for example, in FIG. 5). (Position indicated by P1) in the circumferential direction (for example, a position indicated by P2 in FIG. 5). As a result, a part 61 b of the main body 61 of the motor case 6 and the magnetic shielding plate 34 are interposed between the motor 5 and the magnetic sensor 32.
  • the material of the magnetic shielding plate 34 may be a magnetic material, but from the viewpoint of minimizing the leakage of magnetic flux to the outside of the motor 5, a material having a high magnetic permeability such as pure iron or low carbon steel (for example, a yoke of the motor 5). Is preferable.
  • the magnetic shielding plate 34 when the magnetic shielding plate 34 has a cylindrical shape and has the slit 34b extending in the axial direction, the magnetic shielding plate 34 is attached to the motor case 6 as follows, for example. That is, although not shown, the magnetic shielding plate 34 is reduced in diameter from the gear case 10 side (the slits 34b are packed in the circumferential direction) on the inner periphery of the main body 61 of the motor case 6 before the motor 5 is housed. State). The outer diameter 34c of the magnetic shield 34 is brought into close contact with the inner circumference 61a of the main body 61 by removing the reduced diameter state of the magnetic shield 34 and expanding the diameter. 6 is fixedly fitted to the main body 61.
  • the motor 5 that forms the radial gap 35 between the motor 5 and the magnetic shield plate 34 is fixed to the gear case 10. More specifically, as shown in FIG. 3, a plate-like stay 40 as a support member is fixed to two end faces of the motor 5 on the side where the rotating shaft 5 a protrudes. A hole 40a is provided in the center of the stay 40. With the rotary shaft 5a of the motor 5 inserted through the hole 40a, two bolts 41 are inserted into a bolt insertion hole 40b provided in the stay 40. The stay 40 is fixed to the end face of the motor 5 by screwing into the screw hole 5b provided on the end face of the motor 5 through the through hole.
  • the stay 40 is provided with a bolt insertion hole 40c through which another two bolts 42 are inserted, and the bolt 42 is inserted through these bolt insertion holes 40c, and as shown in FIG.
  • the stay 40 is fixed to the gear case 10 by screwing it into the screw hole 10 a provided in the gear case 10. Thereby, one end in the axial direction of the motor 5 (the end on the side where the rotating shaft 5a protrudes) is fixed to the gear case 10 via the stay 40.
  • the permanent magnet 31 as the sensor target is disposed on the screw shaft 18 as the movable part, and the magnetic sensor 32 is disposed around the permanent magnet 31.
  • a magnetic shielding plate 34 was provided between the motor 5 and the magnetic sensor 32.
  • the outer peripheral surface 5e of the motor 5 and the inner peripheral surface 34a of the magnetic shielding plate 34 face each other with a predetermined radial gap 35 therebetween.
  • the magnitude of the magnetic field outside the motor 5 is inversely proportional to the square of the distance from the magnetic body in the motor 5. Therefore, the space that can be opened around the motor 5 is limited, and even if the radial gap 35 between the motor 5 and the magnetic shielding plate 34 is a small size (for example, about 1 mm to several mm, Also, as compared with the case where the magnetic shielding plate 34 is arranged in close contact with the motor 5, the effect of shielding the magnetism can be greatly enhanced.
  • the motor case 6 that houses the motor 5 and the gear case 10 that houses the rotational motion transmission unit 3 are fixed to each other, and the magnetic shielding plate 34 is attached to the main body of the motor case 6.
  • the motor 5 is fixed to the inner periphery of the shaft 61 and one end in the axial direction of the motor 5 is fixed to the gear case 10 via the stay 40.
  • the magnetic shielding plate 34 is fixed to the inner periphery of the main body 61 of the motor case 6 in which the motor 5 is housed, and one end of the motor 5 in the axial direction is fixed to the motor case 6 and the rotational motion transmitting unit is fixed. 3 is fixed to the gear case 10 in which the motor 3 is accommodated, so that a predetermined radial gap 35 is provided between the outer peripheral surface 5e of the motor 5 and the inner peripheral surface 34a of the magnetic shielding plate 34 facing each other. Relationships can be easily maintained. That is, if the motor 5 is directly fixed to the main body 61 of the motor case 6, a fixed portion is necessarily provided between the motor 5 and the main body 61.
  • FIG. 7 shows a cross-sectional view of an electric actuator 101 according to one example (a second embodiment of the present invention).
  • the electric actuator 101 is different from the electric actuator 1 according to the first embodiment (see FIG. 2) in that the electric actuator 101 includes a motor case 106 in which a magnetic shielding plate 134 is integrated with a main body 161.
  • the electric actuator 101 includes a motor case 106 in which a magnetic shielding plate 134 is integrated with a main body 161.
  • the main body 161 of the motor case 106 is formed by injection-molding a resin using the magnetic shielding plate 134 as an insert, and the inner peripheral surface 134a of the magnetic shielding plate 134 is The magnetic shielding plate 134 is embedded in the main body 161 so as to be located on the same cylindrical surface.
  • the magnetic shielding plate 134 has a larger diameter than the magnetic shielding plate 34 according to the first embodiment, and as a result, is formed between the inner peripheral surface 134a of the magnetic shielding plate 134 and the outer peripheral surface 5e of the motor 5.
  • the size of the radial gap 135 is larger than the radial gap 35 according to the first embodiment.
  • the slit 134b of the cylindrical magnetic shielding plate 134 is circumferentially offset from a position (position indicated by P1 in FIG. 7) between the motor 5 and the magnetic sensor 32 facing each other. And at a relatively thin portion P3 (here, a connection portion between the main body 161 and the boot cover 25) of the motor case 106.
  • the main body 161 of the motor case 106 is an injection-molded resin product having the magnetic shielding plate 134 as an insert. Installation can be omitted. Further, according to this configuration, since the magnetic shielding plate 134 can be embedded in the main body 161, a metal cylindrical plate having a larger diameter than the magnetic shielding plate 34 according to the first embodiment is applied as the magnetic shielding plate 134. can do. Accordingly, the radial gap 135 between the motor 5 and the magnetic shielding plate 134 can be made larger than in the first embodiment without increasing the outer diameter of the motor case 106 (the main body 161). The magnetism generated by the motor 5 can be more reliably cut off, and the position detection accuracy can be further improved.
  • a slit 134b is provided in the cylindrical magnetic shielding plate 134 so that the slit 134b is disposed in a relatively thin portion P3 of the main body 161 of the motor case 106.
  • the motor case 106 including the main body 161 is formed as thin as possible to reduce the size of the electric actuator 101. Therefore, when the main body 161 is molded with the magnetic shielding plate 134 embedded therein, the flow of the molten resin deteriorates in a portion P3 where the thickness of the main body 161 is relatively small, such as a connection portion with the boot cover 25, for example. This may adversely affect the moldability.
  • the circumferential position of the slit 134b of the magnetic shielding plate 134 is made to match the portion P3 of the main body 161 having a relatively small thickness. Of the main body 161 can be improved.
  • the magnetic shielding plates 34 and 134 have a cylindrical shape, but the shapes of the magnetic shielding plates 34 and 134 are not limited thereto. That is, as long as the magnetic shielding plate is provided between the motor 5 and the magnetic sensor 32, a magnetic shielding plate having an arbitrary shape can be adopted.
  • the motion conversion mechanism 4 is not limited to the ball screw mechanism, but may be a sliding screw device. However, from the viewpoint of reducing the rotational torque and reducing the size of the motor 5, the ball screw mechanism is more preferable. Further, in the above-described embodiment, the configuration using the double-row angular ball bearing is exemplified as the bearing 14 for supporting the motion conversion mechanism 4, but the present invention is not limited to this, and a pair of single-row angular ball bearings is combined. May be used. Further, the bearing 14 is not limited to an angular contact ball bearing, and for example, another double-row bearing using a deep groove ball bearing or the like can be applied.
  • a speed reduction mechanism (not shown) may be provided to reduce the rotational movement from the motor 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Transmission Devices (AREA)

Abstract

電動アクチュエータ1は、モータ5と、モータ5の駆動により生じた回転運動を所定の運動に変換する運動変換機構部4とを備える。所定の運動を行う可動部にセンサターゲットとしての磁石31が配設されると共に、磁石31の周囲に、磁石31の位置情報を検出する磁気センサ32が配設される。モータ5と磁気センサ32との間に磁気遮蔽板34が配設されており、かつモータ5の外面5eと磁気遮蔽板34の内面34aとが、所定の隙間35を介して対向している。

Description

電動アクチュエータ
 本発明は、電動アクチュエータに関する。
 近年、車両等の省力化、低燃費化を目的とした電動化が進んでおり、例えば、自動車の自動変速機やブレーキ、ステアリング等の操作をモータなど電動機の力で行うシステムが開発され、市場に投入されている。このような用途に使用されるアクチュエータとして、電動機の駆動により生じた回転運動を直線方向の運動に変換するボールねじ機構を用いた電動アクチュエータが知られている(例えば、特許文献1を参照)。
 また、この種のアクチュエータにおいては、上述した直線運動を出力する操作部(すなわちアクチュエータヘッド)のストローク量又はストローク方向の位置を制御することが重要となる。そこで、上記ストローク量又はストローク方向の位置を検出するための手段として、例えばアクチュエータヘッドにセンサターゲットとしての磁石が設けられると共に、当該ヘッドの周囲に、磁石の直線運動方向の位置を非接触に検出可能な磁気センサが設けられた電動アクチュエータが提案されている(例えば、特許文献2を参照)。
特許第5243018号公報 特開2017-184478号公報
 このように、磁石と磁気センサとで、アクチュエータヘッドの位置情報を検出する方式を採ることによって、例えば外気からの異物の侵入を防ぐために、アクチュエータヘッドの周囲に伸縮可能なブーツを設けることができる。この種のブーツは通常樹脂等で形成されることから、磁石と磁気センサとからなる検出装置であれば、ブーツが介在した状態であっても、アクチュエータヘッドの位置情報を正確に検出できる利点がある。
 一方で、アクチュエータヘッドの位置検出に磁石と磁気センサとを使用した場合、モータから発生する磁場の影響を考慮する必要がある。すなわち、磁気センサを使用する場合、その周囲にセンサターゲット(磁石)以外の強磁性体があると、当該強磁性体から発生する磁場の影響を受けて、本来検出すべきセンサターゲットからの磁場を正確に検出できないおそれが生じる。そのため、この種の強磁性体を配設する場合には、磁気センサの周囲から当該強磁性体を離して配置する必要がある。ところが、電動アクチュエータの小型化のためには関連する構成要素を相互に接近させて配置する必要があるため、電動アクチュエータの小型化とアクチュエータヘッドの高精度な位置制御とを両立するためには、磁気センサの周囲にセンサターゲット以外の強磁性体を配置可能な構成を新たに構築する必要が生じる。
 以上の事情に鑑み、本発明では、電動アクチュエータの小型化を図りつつも、アクチュエータヘッドの位置を高精度に制御可能とすることを、解決すべき技術課題とする。
 前記課題の解決は、本発明に係る電動アクチュエータによって達成される。すなわちこのアクチュエータは、モータと、モータの駆動により生じた回転運動を所定の運動に変換する運動変換機構部とを備え、運動変換機構部は、所定の運動を行う可動部を有する電動アクチュエータにおいて、可動部にセンサターゲットとしての磁石が配設されると共に、磁石の周囲に、磁石の位置情報を検出する磁気センサが配設され、モータと磁気センサとの間に磁気遮蔽板が配設されており、かつモータの外面と磁気遮蔽板の内面とが、所定の隙間を介して対向している点をもって特徴付けられる。
 このように、本発明では、可動部にセンサターゲットとしての磁石を配設し、磁石の周囲に磁気センサを配設すると共に、電動アクチュエータの駆動用モータと磁気センサとの間に磁気遮蔽板を配設した。このように磁気遮蔽板を配設することで、モータを発生源とする磁気が磁気センサの手前で遮断されるので、磁気センサが本来検出すべき磁場(センサターゲットとしての磁石から生じた磁場)を正確に検出して、誤作動なく可動部の位置情報を検出することが可能となる。また、本発明では、モータの外面と磁気遮蔽板の内面とが、所定の隙間を介して対向するようにした。クーロンの法則より、磁性体から遠ざかるほど、当該磁性体から発生した磁場の大きさ(磁束密度)は小さくなる。詳述すると、磁場の大きさは、磁性体からの距離の二乗に反比例する。そのため、たとえモータの周囲に空けることのできるスペースが限られており、モータと磁気遮蔽板との間にわずかな隙間しか設けることができない場合であっても(例えば1mm~数mm程度であっても)、磁気遮蔽板をモータに密着させて配置する場合と比べれば、磁気の遮断効果を大幅に高めることができる。よって、各構成要素が相互に接近した配置環境下においても、モータから発生した磁場が磁気センサに及ぼす影響を効果的に低減することが可能となる。
 また、本発明に係る電動アクチュエータにおいて、磁気遮蔽板は、円筒形状をなすものであってもよい。
 このように磁気遮蔽板を構成することで、モータがその全周にわたって磁気遮蔽板によって覆われた状態となる。この場合、磁気遮蔽板は一種のヨークとして、モータと共に閉じられた磁気回路を構成することができるので、モータ内で生じた磁場がモータの外部に漏れる事態を可及的に防止することができる。従って、磁気センサに及ぼす磁場の影響を確実に排除して、より高精度な位置検出を図ることが可能となる。
 また、本発明に係る電動アクチュエータにおいて、回転運動を運動変換機構部に伝達する回転運動伝達部をさらに備え、モータを収容する第一ケースと、回転運動伝達部を収容する第二ケースとが相互に固定され、磁気遮蔽板は第一ケースの内周に固定され、モータの軸方向一端は第二ケースに固定されていてもよい。
 このように、磁気遮蔽板を、モータが収容される第一ケースの内周に固定し、モータの軸方向一端を、第一ケースと相互に固定され回転運動伝達部が収容される第二ケースに固定した構成をとることによって、互いに対向するモータの外面と磁気遮蔽板の内面との間に所定の隙間が設けられた位置関係を容易に保持することができる。特に上記構成は、各構成要素間の距離を縮めて電動アクチュエータの小型化を図る場合に有効である。
 また、本発明に係る電動アクチュエータにおいて、モータを収容する第一ケースと、磁気センサを収容する第三ケースとは一体に形成され、磁気遮蔽板が内周に固定される第一ケースの一部は、磁気センサが収容される第三ケースの内部空間に面していてもよい。
 このように、磁気遮蔽板が内周に固定される第一ケースの一部が、磁気センサが収容される第三ケースの内部空間に面するように第一ケース及び第三ケースを構成することで、モータと磁気センサとの距離をできる限り縮めて電動アクチュエータの小型化を図りつつも、その間に配設された磁気遮蔽板により、磁気センサに及ぼすモータからの磁場の影響を排除することが可能となる。
 また、本発明に係る電動アクチュエータにおいて、第一ケースは、磁気遮蔽板をインサートとする樹脂の射出成形品であってもよい。
 上記構成の第一ケースであれば、磁気遮蔽板の第一ケースへの取付けを省略できる。また、磁気遮蔽板を第一ケースの内周に埋め込んだ状態で一体化できるので、限られたスペース内に磁気遮蔽板とモータとを上記隙間を介して配置するのに好適である。
 また、磁気遮蔽板が円筒形状をなす場合、本発明に係る電動アクチュエータにおいて、磁気遮蔽板は軸方向に伸びるスリットを有するものであってもよい。また、この場合、スリットは、モータと磁気センサとが対向している間の位置から円周方向にオフセットした位置に配設されていてもよい。
 例えば磁気遮蔽板を、モータが収容される第一ケースと別体に作製する場合、円筒形状をなす磁気遮蔽板に軸方向のスリットを設けることで、縮径状態で磁気遮蔽板を第一ケースの内周に導入した後、拡径動作により第一ケースの内周面に容易に嵌め合わせることができる。あるいは、例えば磁気遮蔽板をインサートとして第一ケースを樹脂で一体成形する場合、スリットの円周方向位置を相対的に薄肉となる部分に合わせて配置することで、当該薄肉部における溶融樹脂の流れを改善することができる。これにより第一ケースの成形性を向上させることが可能となる。また、上記何れの場合においても、スリットを、モータと磁気センサとが対向している間の位置から円周方向にオフセットした位置に配設することで、モータから生じた磁場がスリットを通じて磁気センサ側へ漏れ出す事態を可及的に防止できる。そのため、スリットを設けてもモータ全体としての磁気遮断効果に影響を与える心配はない。
 以上のように、本発明によれば、電動アクチュエータの小型化を図りつつも、アクチュエータヘッドの位置を高精度に制御することが可能となる。
本発明の第一実施形態に係る電動アクチュエータの側面図である。 図1のA-A線に沿った断面を矢印Aの向きから見た縦断面図である。 モータの支持構造を構成する各部品の斜視図である。 図1のB-B線に沿った断面を矢印Bの向きから見た縦断面図である。 図2のC-C線に沿った断面を矢印Cの向きから見た横断面図である。 図2に示す磁気遮蔽板の斜視図である。 本発明の第二実施形態に係る電動アクチュエータの横断面図である。
 以下、添付の図面に基づき、本発明について説明する。なお、本発明を説明するための各図面において、同一の機能もしくは形状を有する部材や構成部品等の構成要素については、判別が可能な限り同一符号を付すことにより一度説明した後ではその説明を省略する。
 図1は、本発明の第一実施形態に係る電動アクチュエータ1の側面図、図2は、図1に示す電動アクチュエータ1の縦断面図をそれぞれ示している。図2に示すように、本実施形態に係る電動アクチュエータ1は、モータ5を有するモータ部2と、モータ5の回転運動を伝達する回転運動伝達部3と、モータ5の回転運動を直線運動に変換する運動変換機構部4とを主に備える。
 モータ部2は、モータ5と、モータ5に電力供給するための導電部材としての一対のバスバー7と、モータ5やバスバー7を収容するモータケース6とを備えている。このモータケース6が本発明に係る第一ケースに相当する。モータ5は、何れも図示は省略するが、半径方向に対向するモータロータ及びモータステータと、これらモータロータ及びモータステータを収容するモータハウジングとを有する。なお、モータ5としては、安価な(ブラシ付き)DCモータを用いてもよく、ブラシレスモータ等の他のモータを用いてもよい。
 モータケース6は、本実施形態では、モータ5の大部分を収容する円筒状の本体部61と、本体部61の一端部(図2の左端部)に固定された蓋状のキャップ部62とで構成されている。各バスバー7は、金属製の板部材を所定形状に曲げ加工して形成されており、それぞれ樹脂製のホルダ部71によって保持されている。また、各バスバー7は、ホルダ部71がモータ5の後端部5c(回転軸5aが突出する側と反対側の端部)に例えば嵌合固定された状態で、モータ5のモータ端子5d(図3を参照)に対して溶接により接続されている。キャップ部62には軸方向に突出する筒状のコネクタ部62aが設けられており、コネクタ部62aの内周側には各バスバー7の先端部(モータ端子5dに接続される側とは反対側の端部)が配置されている。このバスバー7の先端部に対し、図示しない動力電源から伸びる動力線の相手側端子が接続されることで、動力電源からモータ5へ電力が供給可能な状態となる。モータケース6及びモータ5の磁気遮断構造については、後述する。
 回転運動伝達部3は、駆動側のドライブギヤ8と、これと噛み合う被駆動側のドリブンギヤ9とで構成されている。ドライブギヤ8及びドリブンギヤ9は、ギヤケース10内に収容されている。このギヤケース10が本発明に係る第二ケースに相当する。本実施形態では、ドライブギヤ8は、ドリブンギヤ9よりも歯数の少ない小径のギヤであり、モータ5の回転軸5aに対して当該回転軸5aと一体的に回転するように取り付けられている。これに対して、ドリブンギヤ9は、ドライブギヤ8よりも歯数の多い大径のギヤであり、運動変換機構部4を構成する後述のナット17に対して当該ナット17と一体的に回転するように取り付けられている。
 また、ドライブギヤ8は、その軸方向の両端部において二つの軸受11,12によって回転可能に支持されている。これら二つの軸受11,12のうち、一方(図2の左側)の軸受11は、モータ5の端部に固定された筒状の軸受保持部材13内に嵌め込まれることによって保持され、他方(図2の右側)の軸受12は、ギヤケース10内に嵌め込まれることによって保持されている。ドリブンギヤ9は、ナット17の外周面に設けられた複列の軸受14によってナット17と共に回転可能に支持されている。複列の軸受14は、ギヤケース10に設けられた筒状のスリーブ15内に収容され、スリーブ15の内周面に装着された止め輪16によって軸方向への移動が規制されている。複列の軸受14としては、ナット17を安定的かつ確実に支持することができるように、ラジアル荷重に加えて、両方向のアキシャル荷重を支持可能な複列アンギュラ玉軸受を用いることが好ましい。
 上記構成の回転運動伝達部3を備える場合、モータ5が駆動を開始し、モータ5の回転軸5aが回転すると、回転軸5aと一体的にドライブギヤ8が回転し、これに連動してドリブンギヤ9が回転する。このとき、モータ5からの回転運動は、歯数の少ないドライブギヤ8から歯数の多いドリブンギヤ9へ伝達されるので、減速されて回転トルクが増加する。このように、ドライブギヤ8とドリブンギヤ9間での減速により回転トルクを増加させて出力することで、小型のモータを用いても十分な出力が得られるようになる。なお、上記実施形態では、回転運動伝達部3が減速機能を兼備する場合を例示したが、例えば回転運動伝達部3とは別に減速機構部(図示は省略)をモータ部2と回転運動伝達部3との間に設けて、モータ5の回転を減速した状態で回転運動伝達部3に伝達するようにしてもよい。あるいは、上記減速が必要ない場合、ドライブギヤ8とドリブンギヤ9とを同じ歯数のギヤで構成し、モータ5からの回転運動を減速せずに伝達するようにしてもよい。
 運動変換機構部4は、回転部材としてのナット17と、直動部材としてのねじ軸18と、多数のボール19とを有するボールねじ機構で構成される。この場合、ねじ軸18が本発明に係る可動部に相当する。ナット17の内周面とねじ軸18の外周面には、それぞれ螺旋状溝が形成されており、これらの螺旋状溝の間にボール19が転動可能に収容されている。また、ナット17には図示しない循環部材が設けられており、この循環部材によってボール19が螺旋状溝に沿って循環するように構成されている。
 ねじ軸18は、ナット17の内周に挿通され、モータ5の回転軸5aと平行に配置されている。ねじ軸18の前端部(図2の左端部)には、連結孔18aが設けられており、この連結孔18aにボルト等の締結具を挿入することで、ねじ軸18と操作対象である図示しない機器の対応部位とが連結される。この場合、連結孔18aを有するねじ軸18の前端部が電動アクチュエータ1のアクチュエータヘッドに相当する。そして、モータ5の回転運動がドライブギヤ8及びドリブンギヤ9を介してナット17に伝達されると、ナット17が回転することで、ねじ軸18が軸方向の一方(前進方向又は後退方向)へ移動する。反対に、モータ5が逆回転した場合は、ドライブギヤ8及びドリブンギヤ9を介して回転運動がナット17に伝達されて、ねじ軸18が軸方向の他方へ移動する。このように、モータ5の正逆回転によって、ねじ軸18が前進又は後退することで、ねじ軸18の前端部に連結された操作対象が操作される。
 ねじ軸18の後端部(操作対象側の端部とは反対側の端部)は、ねじ軸ケース20で覆われている。ねじ軸ケース20は、ギヤケース10に対してモータケース6が固定される側とは反対側でギヤケース10に固定されている。
 また、ねじ軸18の後端部には、ねじ軸18の回転を規制する回転規制部材としての回り止めピン21が設けられている。回り止めピン21は、ねじ軸18に対してその軸方向と直交又は交差する方向に取り付けられている。ねじ軸18の後端部から外径方向に突出する回り止めピン21の両端部には、それぞれガイドローラ22が回転可能に取り付けられている。各ガイドローラ22は、ねじ軸ケース20に設けられた軸方向に伸びる一対のガイド溝20a内に挿入されている。ガイドローラ22がガイド溝20aに沿って軸方向へ移動することで、ねじ軸18は周方向に回転することなく軸方向に前進又は後退する。 
 また、ねじ軸18の周囲には、電動アクチュエータ1内に異物が侵入するのを防止するブーツ23と、ブーツ23を保護するためのブーツカバー25とが設けられている。本実施形態では、ねじ軸18の周囲のうちナット17よりも前端部側に、ブーツ23と、ブーツカバー25とが設けられている。ブーツ23は、小径端部23aと、大径端部23bと、小径端部23aと大径端部23bとを繋いで軸方向に伸縮する蛇腹部23cとで構成されている。小径端部23aはねじ軸18の外周面に固定され、大径端部23bはブーツカバー25に取り付けられた筒状のブーツ装着部材24の外周面に固定されている。ブーツカバー25は、ブーツ23の外側を覆うように配置され、モータケース6の本体部61と一体成形されている。
 ねじ軸18の直線運動に伴ってブーツ23が伸縮すると、ブーツ23内部の圧力が変動するため、特にねじ軸18の軸方向移動量が多い場合に内圧変動により蛇腹部23cが過大に変形して、蛇腹部23cの耐久性が低下するおそれがある。そこで、本実施形態では、ブーツ23の内圧変動による蛇腹部23cの破損を防ぐために、ねじ軸ケース20に通気フィルタ26を設けている。通気フィルタ26は、電動アクチュエータ1内を通ってブーツ23の内部空間と連通しており、ブーツ23が伸縮すると、通気フィルタ26を通してエアが流入又は流出することで、蛇腹部23cの変形が抑制される。
 電動アクチュエータ1には、図5に示すように、ねじ軸18の位置を検出するための位置検出装置30が搭載される。この位置検出装置は、ねじ軸18に設けられるセンサターゲットとしての永久磁石31と、永久磁石31の周囲に設けられ、永久磁石31の位置を検出する磁気センサ32とを有する。
 ここで、磁気センサ32は、センサケース28に収容されており、センサケース28は、モータケース6の本体部61に隣接した位置に配設されている。このセンサケース28が本発明に係る第三ケースに相当する。本実施形態では、図5に示すように、モータケース6のうちモータ5が収容される部分(本体部61)とブーツカバー25との連結部近傍に、モータケース6の外側に向けて開口したセンサケース28が設けられており、かつセンサケース28がモータケース6の本体部61と一体に形成されている。そして、このセンサケース28に、二個の磁気センサ32を取り付けたセンサベース33が取付けられている。これにより、磁気センサ32は、ブーツカバー25を介して永久磁石31と対向した状態となる。正確には、磁気センサ32の検知面32aが、図5に示す向き(ねじ軸18のストローク方向)から見て、永久磁石31と向かい合う状態となるように、磁気センサ32がねじ軸18の半径方向外側に配設されている。この場合、磁気センサ32は、ブーツカバー25と、センサケース28と、モータケース6の本体部61の一部61b、及びセンサベース33とで覆われた状態となる。言い換えると、磁気センサ32が収容されるセンサケース28の内部空間に本体部61の一部61bが面するように、本体部61とセンサケース28とが設けられている。なお、磁気センサ32及びセンサベース33は所定の取付け部を介してセンサケース28に取付けてもよく、あるいは樹脂等でセンサケース28の開口部を封止することで取付けてもよい。
 また、ねじ軸18(永久磁石31)のストローク方向で見た場合、図示は省略するが、磁気センサ32は、ブーツカバー25の軸方向中間位置に配設されている。この場合、永久磁石31との位置関係でいえば、ねじ軸18に取り付けられる永久磁石31の軸方向移動範囲内に磁気センサ32が軸方向で位置するように、磁気センサ32を配設するのがよい。
 上記構成の位置検出装置30を備えた場合、ねじ軸18が前進又は後退すると、これに伴って移動する永久磁石31の磁場(例えば磁束密度の向き及び強さ)の変化を磁気センサ32が検出することによって、永久磁石31の軸方向位置、ひいてはねじ軸18の軸方向位置が検出される。
 なお、磁気センサ32としては、任意のタイプが使用でき、その中でもホールIC、リニアホールICなどホール効果を利用して磁場の向き及び大きさを検出可能なタイプの磁気センサが好適に使用可能である。
 また、磁気センサ32の周囲を覆うセンサベース33、センサケース28、モータケース6の本体部61、及びブーツカバー25は何れも非磁性材料で形成されるのがよく、例えば樹脂で形成される。
 モータ5と磁気センサ32との間には、磁気遮蔽板34が配設されている(図5を参照)。本実施形態では、磁気遮蔽板34は円筒形状をなし(図6を参照)、モータケース6の本体部61の内周に固定されている。
 また、磁気遮蔽板34がモータケース6(本体部61)の内周に固定された状態で、モータ5の外周面5eと磁気遮蔽板34の内周面34aとの間には、所定の半径方向隙間35が維持されている。言い換えると、モータ5の外周面5eと磁気遮蔽板34の内周面34aとが、半径方向隙間35を介して対向している。この半径方向隙間35は、例えば非磁性体としての空気で満たされている。
 また、この磁気遮蔽板34は、軸方向に伸びるスリット34bを有しており(図6を参照)、このスリット34bが、モータ5と磁気センサ32とが対向する間の位置(例えば図5中のP1で示す位置)から円周方向にオフセットした位置(例えば図5中のP2で示す位置)に配設されている。これにより、モータ5と磁気センサ32との間には、モータケース6の本体部61の一部61bと磁気遮蔽板34とが介在した状態となる。
 磁気遮蔽板34の材質としては磁性材料であればよいが、モータ5外部への磁束の漏れを極力防止する観点からは、純鉄、低炭素鋼など透磁率の高い材料(例えばモータ5のヨークを形成する材料)で形成するのが好ましい。
 上述のように、磁気遮蔽板34が円筒形状をなし、かつ軸方向に伸びるスリット34bを有する場合、磁気遮蔽板34のモータケース6への取付けは例えば以下のようにして行われる。すなわち、図示は省略するが、モータ5を収容する前の状態のモータケース6の本体部61の内周に、磁気遮蔽板34をギヤケース10側から縮径した状態(スリット34bを周方向に詰めた状態)で導入する。そして、磁気遮蔽板34の縮径状態を解消して拡径させることで、磁気遮蔽板34の外周面34cが本体部61の内周面61aに密着し、これにより磁気遮蔽板34がモータケース6の本体部61に嵌合固定される。
 また、磁気遮蔽板34との間に半径方向隙間35を形成するモータ5は、本実施形態ではギヤケース10に固定される。詳述すると、図3に示すように、モータ5の回転軸5aが突出する側の端面には、支持部材としての板状のステー40が二本のボルト41によって固定される。ステー40の中央部には孔部40aが設けられており、この孔部40aにモータ5の回転軸5aを挿通させた状態で、二本のボルト41をステー40に設けられたボルト挿通孔40bを通してモータ5の端面に設けられたねじ孔5bにねじ込むことにより、ステー40がモータ5の端面に対して固定される。また、ステー40には別の二本のボルト42を挿通させるボルト挿通孔40cが設けられており、これらのボルト挿通孔40cにボルト42を挿通させ、図4に示すように、各ボルト42をギヤケース10に設けられたねじ孔10aにねじ込むことで、ステー40がギヤケース10に対して固定される。これにより、モータ5の軸方向一端(回転軸5aが突出する側の端部)はステー40を介してギヤケース10に固定される。
 以上に述べたように、本発明に係る電動アクチュエータ1では、可動部としてのねじ軸18にセンサターゲットとしての永久磁石31を配設し、永久磁石31の周囲に磁気センサ32を配設すると共に(ともに図5を参照)、モータ5と磁気センサ32との間に磁気遮蔽板34を配設した。このように磁気遮蔽板34を配設することで、モータ5を発生源とする磁気が磁気センサ32の手前で遮断されるので、磁気センサ32が本来検出すべき磁場(センサターゲットとしての永久磁石31から生じた磁場)を正確に検出して、誤作動なくねじ軸18の位置情報を検出することが可能となる。また、本発明では、モータ5の外周面5eと磁気遮蔽板34の内周面34aとが、所定の半径方向隙間35を介して対向するようにした。クーロンの法則より、モータ5の外側における磁場の大きさは、モータ5内の磁性体からの距離の二乗に反比例する。そのため、モータ5の周囲に空けることのできるスペースが限られており、モータ5と磁気遮蔽板34との半径方向隙間35がわずかな大きさであっても(例えば1mm~数mm程度であっても)、磁気遮蔽板34をモータ5に密着させて配置する場合と比べれば、磁気の遮断効果を大幅に高めることができる。よって、本実施形態のように、電動アクチュエータ1の各構成要素が相互に接近した配置環境下においても、モータ5から発生した磁場が磁気センサ32に及ぼす影響を効果的に低減することが可能となる。以上より、本発明によれば、電動アクチュエータ1の小型化を図りつつも、モータ5で発生する磁場の影響を排除して、アクチュエータヘッドとしてのねじ軸18の位置を高精度に制御することが可能となる。
 また、本実施形態に係る電動アクチュエータ1では、モータ5を収容するモータケース6と、回転運動伝達部3を収容するギヤケース10とが相互に固定され、磁気遮蔽板34はモータケース6の本体部61の内周に固定され、モータ5の軸方向一端がステー40を介してギヤケース10に固定されるようにした。
 このように、磁気遮蔽板34を、モータ5が収容されるモータケース6の本体部61の内周に固定し、モータ5の軸方向一端を、モータケース6と相互に固定され回転運動伝達部3が収容されるギヤケース10に固定する構成をとることによって、互いに対向するモータ5の外周面5eと磁気遮蔽板34の内周面34aとの間に所定の半径方向隙間35が設けられた位置関係を容易に保持することができる。すなわち、モータ5を直接にモータケース6の本体部61に固定しようとすると、どうしてもモータ5と本体部61との間に固定部分を設けることになるが、本構成のように、モータ5の軸方向一端を本体部61に隣接するギヤケース10に固定するようにすれば、モータ5の外周に固定のための何らの構成をも配置せずに済む。よって、本構成によれば、モータ5と磁気遮蔽板34とをそれぞれ電動アクチュエータ1の各ケース(モータケース6、ギヤケース10)に固定しつつも、半径方向で互いに対向するモータ5の外周面5eと磁気遮蔽板34の内周面34aとの間に所定の半径方向隙間35を容易に形成することが可能となる。
 以上、本発明の第一実施形態を説明したが、本発明は上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採ることが可能である。
 例えば第一実施形態では、磁気遮蔽板34をモータケース6と別体に作製した後、モータケース6の本体部61内周に磁気遮蔽板34を導入し嵌合固定する場合を例示したが、もちろんこれ以外の形態をとることも可能である。図7は、その一例(本発明の第二実施形態)に係る電動アクチュエータ101の横断面図を示している。図7に示すように、この電動アクチュエータ101は、磁気遮蔽板134を本体部161と一体化してなるモータケース106を備える点において、第一実施形態に係る電動アクチュエータ1(図2を参照)と相違している。
 詳述すると、このモータケース106の本体部161は、磁気遮蔽板134をインサートとして樹脂で射出成形してなるもので、磁気遮蔽板134の内周面134aが本体部161の内周面161aと同一円筒面上に位置するよう、磁気遮蔽板134を本体部161に埋設した状態にある。この場合、磁気遮蔽板134は、第一実施形態に係る磁気遮蔽板34よりも大径であり、結果として、磁気遮蔽板134の内周面134aとモータ5の外周面5eとの間に形成される半径方向隙間135の大きさは、第一実施形態に係る半径方向隙間35よりも大きくなる。
 また、本実施形態では、円筒形状をなす磁気遮蔽板134のスリット134bが、モータ5と磁気センサ32とが対向する間の位置(図7中のP1で示す位置)から円周方向にオフセットした位置で、かつモータケース106のうち相対的に薄肉となる部分P3(ここでは本体部161とブーツカバー25との連結部)に配設されている。
 このように、本実施形態に係る電動アクチュエータ101では、モータケース106の本体部161を、磁気遮蔽板134をインサートとする樹脂の射出成形品としたので、磁気遮蔽板134の本体部161への取付けを省略できる。また、本構成によれば、本体部161に磁気遮蔽板134を埋設することができるので、磁気遮蔽板134として、第一実施形態に係る磁気遮蔽板34よりも大径な金属円筒板を適用することができる。これにより、モータケース106(本体部161)の外径寸法を増大することなく、モータ5と磁気遮蔽板134との間の半径方向隙間135を第一実施形態よりも拡大することができるので、モータ5で発生した磁気をより確実に遮断して、更なる位置検出精度の向上を図ることが可能となる。
 また、本実施形態では、円筒形状をなす磁気遮蔽板134にスリット134bを設け、このスリット134bが、モータケース106の本体部161のうち相対的に薄肉となる部分P3に配設されるようにした。本体部161を含めモータケース106は電動アクチュエータ101の小型化のために極力薄肉に形成される。そのため、磁気遮蔽板134を埋設した状態で本体部161を成形した場合、例えばブーツカバー25との連結部など、本体部161の肉厚が相対的に小さい部分P3では溶融樹脂の流れが悪化し、成形性に悪影響を及ぼすおそれが生じる。この点、本実施形態では、磁気遮蔽板134のスリット134bの円周方向位置が、本体部161のうち肉厚が相対的に小さい部分P3と一致するようにしたので、薄肉部P3における溶融樹脂の流れを改善して、本体部161の成形性を向上させることが可能となる。
 なお、上記実施形態では、磁気遮蔽板34,134として円筒形状をなすものを例示したが、磁気遮蔽板34,134の形状はこれに限定されない。すなわち、モータ5と磁気センサ32との間に配設される限りにおいて、任意の形状をなす磁気遮蔽板を採用することが可能である。
 運動変換機構部4は、ボールねじ機構に限らず、滑りねじ装置であってもよい。ただし、回転トルクを低減して、モータ5を小型化する観点からすれば、ボールねじ機構の方が好適である。また、上述の実施形態では、運動変換機構部4を支持する軸受14として、複列のアンギュラ玉軸受を使用した構成を例示したが、これに限らず、一対の単列のアンギュラ玉軸受を組み合せて使用してもよい。また、軸受14には、アンギュラ玉軸受に限らず、例えば、深溝玉軸受等を用いた他の複列軸受を適用することも可能である。
 また、以上の説明では、ドライブギヤ8とドリブンギヤ9とのギヤ比を変えることで、回転運動伝達部3が減速機構としての機能を兼ねるようにした場合を例示したが、例えばドライブギヤ8とドリブンギヤ9とは別に、減速機構(図示は省略)を設けて、モータ5からの回転運動を減速するようにしてもよい。
 また、本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、請求の範囲によって示され、さらに請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。

Claims (6)

  1.  モータと、前記モータの駆動により生じた回転運動を所定の運動に変換する運動変換機構部とを備え、前記運動変換機構部は、前記所定の運動を行う可動部を有する電動アクチュエータにおいて、
     前記可動部にセンサターゲットとしての磁石が配設されると共に、前記磁石の周囲に、前記磁石の位置情報を検出する磁気センサが配設され、
     前記モータと前記磁気センサとの間に磁気遮蔽板が配設されており、かつ
     前記モータの外面と前記磁気遮蔽板の内面とが、所定の隙間を介して対向していることを特徴とする電動アクチュエータ。
  2.  前記磁気遮蔽板は円筒形状をなす請求項1に記載の電動アクチュエータ。
  3.  前記磁気遮蔽板は軸方向に伸びるスリットを有し、
     前記スリットは、前記モータと前記磁気センサとが対向する間の位置から円周方向にオフセットした位置に配設されている請求項2に記載の電動アクチュエータ。
  4.  前記回転運動を前記モータから前記運動変換機構部に伝達する回転運動伝達部をさらに備え、
     前記モータを収容する第一ケースと、前記回転運動伝達部を収容する第二ケースとが相互に固定され、
     前記磁気遮蔽板は前記第一ケースの内周に固定され、前記モータの軸方向一端は前記第二ケースに固定されている請求項1~3の何れか一項に記載の電動アクチュエータ。
  5.  前記モータを収容する第一ケースと、前記磁気センサを収容する第三ケースとが一体に形成され、
     前記磁気遮蔽板が内周に固定される前記第一ケースの一部は、前記磁気センサが収容される前記第三ケースの内部空間に面している請求項1~4の何れか一項に記載の電動アクチュエータ。
  6.  前記第一ケースは、前記磁気遮蔽板をインサートとする樹脂の射出成形品である請求項4又は5に記載の電動アクチュエータ。
PCT/JP2019/024962 2018-06-29 2019-06-24 電動アクチュエータ WO2020004330A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3103765A CA3103765A1 (en) 2018-06-29 2019-06-24 Electric actuator
US16/972,730 US11791695B2 (en) 2018-06-29 2019-06-24 Electric actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018124566A JP7199168B2 (ja) 2018-06-29 2018-06-29 電動アクチュエータ
JP2018-124566 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020004330A1 true WO2020004330A1 (ja) 2020-01-02

Family

ID=68987032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024962 WO2020004330A1 (ja) 2018-06-29 2019-06-24 電動アクチュエータ

Country Status (4)

Country Link
US (1) US11791695B2 (ja)
JP (1) JP7199168B2 (ja)
CA (1) CA3103765A1 (ja)
WO (1) WO2020004330A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199168B2 (ja) * 2018-06-29 2023-01-05 Ntn株式会社 電動アクチュエータ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184481A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 電動アクチュエータ
JP2017184478A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 電動アクチュエータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243018U (ja) 1975-09-20 1977-03-26
JP5243018B2 (ja) 2007-12-27 2013-07-24 Ntn株式会社 電動リニアアクチュエータ
WO2017170290A1 (ja) 2016-03-30 2017-10-05 Ntn株式会社 電動アクチュエータ
CN108781021B (zh) 2016-03-30 2021-03-26 Ntn株式会社 电动致动器
JP7199168B2 (ja) * 2018-06-29 2023-01-05 Ntn株式会社 電動アクチュエータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017184481A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 電動アクチュエータ
JP2017184478A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 電動アクチュエータ

Also Published As

Publication number Publication date
US20210257886A1 (en) 2021-08-19
US11791695B2 (en) 2023-10-17
JP7199168B2 (ja) 2023-01-05
JP2020005446A (ja) 2020-01-09
CA3103765A1 (en) 2020-01-02

Similar Documents

Publication Publication Date Title
US11152840B2 (en) Electric actuator
US7649290B2 (en) Bearing bush and compound movement using the same
US10465767B2 (en) Actuator
JP2011114921A (ja) 電動アクチュエータ
US11204081B2 (en) Screw shaft, feed screw mechanism, and electric actuator
US9574611B2 (en) Roller bearing having sensor, motor, and actuator
JP6713314B2 (ja) 電動アクチュエータ
JP2009025222A (ja) 回転角度検出装置
CN110920744B (zh) 车辆搭载设备的促动器
WO2020004330A1 (ja) 電動アクチュエータ
CN109689474B (zh) 转向装置
JP2018105434A (ja) 電動アクチュエータ
JP2020003033A (ja) 電動アクチュエータ
JP6752603B2 (ja) 電動アクチュエータ
JP2018044636A (ja) 電動アクチュエータ
JP2014217240A (ja) モータ装置
JP2023043476A (ja) 電動アクチュエータ
WO2024176941A1 (ja) 回転センサ付軸受
WO2023167247A1 (ja) 軸受装置
US11804751B2 (en) Electric actuator including a holder that holds a conductive member and an elastic member that is interposed and held between the holder and a case
WO2023047916A1 (ja) 電動アクチュエータ
JP2022053024A (ja) 電動アクチュエータ
JP2006143095A (ja) パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3103765

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19826581

Country of ref document: EP

Kind code of ref document: A1