WO2020004292A1 - Tank structure of heat exchanger - Google Patents

Tank structure of heat exchanger Download PDF

Info

Publication number
WO2020004292A1
WO2020004292A1 PCT/JP2019/024854 JP2019024854W WO2020004292A1 WO 2020004292 A1 WO2020004292 A1 WO 2020004292A1 JP 2019024854 W JP2019024854 W JP 2019024854W WO 2020004292 A1 WO2020004292 A1 WO 2020004292A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
header
flat
tank
intermediate plate
Prior art date
Application number
PCT/JP2019/024854
Other languages
French (fr)
Japanese (ja)
Inventor
純也 池田
Original Assignee
株式会社ティラド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ティラド filed Critical 株式会社ティラド
Priority to JP2020527493A priority Critical patent/JPWO2020004292A1/en
Publication of WO2020004292A1 publication Critical patent/WO2020004292A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the present invention relates to a heat exchanger tank structure suitable for cooling high-pressure oil or gas.
  • the conventional oil cooler has a header tank main body and a header plate, and a number of flat tubes are inserted through the header plate.
  • an oil cooler that guides high-pressure oil to such a header tank, supplies it to each flat tube, guides cooling air to the outer surface side of the flat tube, and exchanges heat with the oil.
  • high-pressure oil is introduced into the header tank, a bending moment is generated mainly in the width direction of the header tank at the connection between the header plate and the header tank body due to the internal pressure.
  • bending stress also occurs at the base of the flat tube at the joint between the flat tube and the header plate, and the tube may be cracked.
  • a high pressure resistant header tank described in Patent Document 1 has been proposed.
  • This has an inner plate having a tube connection hole, a middle plate having a plurality of slits, and an outer plate closing one surface of the middle plate, and these are stacked to form a header tank. More specifically, this header tank has a number of tube connection holes in the inner plate, and the middle plate has a number of slits orthogonal to the connection holes. Then, the outer plate closes one surface of the middle plate, and they are laminated, and the high-pressure refrigerant flows through the flat tube and the slit in the inner plate. According to the patent document, it is described that this header tank is low-cost and suitable for miniaturization.
  • an object of the present invention is to provide a heat exchanger tank structure having a small flow resistance and a high pressure resistance.
  • the present invention according to claim 1 includes a header plate 2 in which a large number of tube insertion holes 2a are arranged in parallel, A first intermediate plate 3 having a heat medium flow path opened in the thickness direction by the thickness thereof, An end plate 4 that covers the outside of the first intermediate plate 3, A large number of tubes 14 whose ends are inserted into the respective tube insertion holes 2a of the header plate 2, The first intermediate plate 3 and the end plate 4 are formed in a flat plate shape, The header plate 2, the first intermediate plate 3, and the end plate 4 are integrally brazed and joined in the thickness direction, and a gap between the ends of the large number of tubes 14 and the header plate 2 is formed.
  • the header plate 2, the first intermediate plate 3, and the end plate 4 are formed in a flat rectangular shape in which the outer peripheries of the header plate 2, the end plate 4 and the end plate 4 are substantially aligned.
  • the first intermediate plate 3 has a flat frame-shaped opening hole 3a, and the entire width Wa of the opening hole 3a of the first intermediate plate 3 is smaller than the total width Wh of the tube insertion hole 2a of the header plate 2.
  • the heat exchanger tank structure according to claim 1 wherein:
  • the present invention according to claim 3 has a planar intermediate second plate 6 interposed between the header plate 2 and the first intermediate plate 3, In the second intermediate plate 6, a number of slits 7 are opened in the thickness direction to form a flow path, 3.
  • a flat tube insertion hole 2a is formed in the header plate 2 at a constant pitch in a longitudinal direction of the header plate 2
  • An elongated slit 7 is formed in the second intermediate plate 6 in the longitudinal direction of the second intermediate plate 6 at the same pitch as the tube insertion hole 2a.
  • a plurality of tube insertion holes 2a are arranged apart from each other in the width direction of the header plate 2,
  • the tank structure of the heat exchanger according to claim 3 or 4 wherein the entire length Wb of the slit 7 is formed longer than the entire width Wh of the tube insertion hole 2a.
  • a heat medium entrance / exit 4 a is opened in a plane of the end plate 4, 2.
  • the invention according to claim 7 is a header plate having a large number of tube insertion holes 2a arranged in parallel, A large number of tubes 14 whose ends are inserted into the respective tube insertion holes 2a of the header plate 2, A tank body 23a made of a flat extruded material having a flat top surface 19 and a pair of side edges 20 raised from the edge and having a cross section formed in a groove shape, and a longitudinal direction of the tank body 23a.
  • This is a tank structure of the heat exchanger in which the plate thickness of the flat tank 23 is formed larger than the plate thickness of the header plate 2.
  • the header plate 2 and the flat tank 23 are formed in a flat rectangular shape in which the outer peripheries are substantially aligned,
  • an intermediate plate 25 is interposed between the flat tank 23 and the header plate 2, and the elongated slit 7 has the same pitch as the tube insertion hole 2 a in the longitudinal direction of the intermediate plate 25. Drilled in 9.
  • Tank structure
  • the thickness of the first intermediate plate 3 having the heat medium flow path opened in the thickness direction by the thickness thereof is formed to be larger than the thickness of the header plate 2.
  • the thick first intermediate plate 3 serves as a reinforcing material for the header plate 2, and deformation (bending) of the header plate 2 is suppressed. Therefore, the stress at the base of the tube 14 due to the bending of the header plate 2 is reduced.
  • the total width Wa of the planar frame-shaped opening 3a of the first intermediate plate 3 is smaller than the total width Wh of the tube insertion hole 2a of the header plate 2 (total width Wh> total width Wa).
  • a second intermediate plate 6 is interposed between the header plate 2 and the first intermediate plate 3, a number of slits 7 are opened in the thickness direction, and each plate is connected in the thickness direction. It was brazed and joined together. The flow path of the heat medium in the tank is formed by the large number of slits 7 of the second intermediate plate 6.
  • the flattened tube insertion holes 2a and the slits 7 are formed in the header plate 2 and the second intermediate plate 6 at the same pitch at regular intervals in the longitudinal direction of each plate. Are formed parallel to the width direction of each plate, so that the flow of the heat medium between the header plate 2 and the first intermediate plate 3 is further smoothed, and the flow resistance is reduced.
  • the entire length Wb of the slit 7 is formed longer than the entire width Wh of the tube insertion hole 2a.
  • the flow path between the header plate 2 and the first intermediate plate 3 becomes wider, so that the flow of the heat medium therebetween becomes smoother and the flow resistance is reduced.
  • the entrance and exit 4a of the heat medium are formed in the end plate 4, the end of the pipe 8 is inserted into the entrance and exit 4a, and the end face of the pipe 8 is in the plane of the first intermediate plate 3. It is seated and fixed. Thereby, the positioning of the pipe 8 is facilitated, and the fixing of the pipe 8 is strengthened.
  • the invention according to claim 7 has a tank main body 23a made of an extruded material having a groove-shaped cross section, and a flat tank 23 made up of a pair of end covers 22 closing both ends thereof.
  • the flat tank 23 is formed to be thicker than the header plate 2. With the flat tank 23, a sufficient flow path of the heat medium is secured, the flow resistance is reduced, and the flat tank 23 serves as a reinforcing material for the header plate 2, so that the deformation (bending) of the header plate 2 is suppressed. Thus, the stress at the base of the tube 14 due to the bending of the header plate 2 is reduced.
  • the flat tank 23 is made of a flat extruded material having a cross section formed in a groove shape, it can be manufactured with a small amount of processing of the extruded material, and is easy to manufacture and has high pressure resistance.
  • the entire width Wc between the inner walls of the pair of side edges 20 of the flat tank 23 is formed smaller (Wh> Wc) than the entire width Wh of the tube insertion hole 2a of the header plate 2. .
  • the rigidity of the flat tank 23 is improved and the reinforcing effect is enhanced, so that the deformation (bending) of the header plate 2 is further suppressed, and the stress at the root of the tube 14 due to the bending of the header plate 2 is further reduced. Is done.
  • the intermediate plate 25 is interposed between the flat tank 23 and the header plate 2, and the elongated slit 7 is formed at the same pitch as the tube insertion hole 2 a in the longitudinal direction of the intermediate plate 25.
  • the long axis of the tube insertion hole 2a and the opening of the elongated slit 7 is formed in parallel with the width direction of the intermediate plate 25. Thereby, the flow of the heat medium between the header plate 2 and the flat tank 23 is smoothed, and the flow resistance is reduced.
  • FIG. 1 is an exploded perspective view of the tank structure of the heat exchanger according to the first embodiment of the present invention.
  • FIG. 2 is a perspective view of an essential part showing the assembled state, in which one side is omitted.
  • FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a front view (A) and a side view (B) of a heat exchanger having the tank structure of the present invention.
  • FIG. 6 is a plan view (A), a side view (B), and a schematic CC sectional view (C) of the header plate 2 used in the tank structure.
  • FIG. 7 is a plan view of the first intermediate plate 3 used in the tank structure of the present invention.
  • FIG. 8 is a plan view of a second intermediate plate 6 used in the tank structure.
  • FIG. 9 is a plan view of an end plate 4 used in the tank structure.
  • FIG. 10 is an exploded perspective view of the tank structure of the heat exchanger according to the second embodiment of the present invention.
  • FIG. 11 is a plan view (A), a front view (B), and a side view (C) of the flat tank of the embodiment.
  • FIG. 12 is a vertical sectional view of a main part of the embodiment.
  • the heat exchanger tank structure is suitable for large work machines used at mining sites and construction sites, or heat exchangers of large vehicles, and the internal pressure of the heat exchanger tank is relatively high. It is the most suitable structure.
  • the heat exchanger according to the first embodiment includes a plurality of fins 15 and tubes 14 alternately arranged in parallel to form a core 16, and a pair of tanks at upper and lower ends of the core 16. Are arranged.
  • the tank is composed of a laminate of the end plate 4, the first intermediate plate 3, and the header plate 2. It is preferable to interpose a second intermediate plate 6 between the first intermediate plate 3 and the header plate 2.
  • the end plate 4, the first intermediate plate 3, and the second intermediate plate 6 are formed of flat rectangular plates, and their outer circumferences are substantially aligned.
  • a large number of tube insertion holes 2a are formed in the header plate 2 at regular intervals in parallel in the longitudinal direction.
  • the long axis of the tube insertion hole 2 a is formed parallel to the width direction of the header plate 2.
  • four rows of tube insertion holes 2a are arranged in the header plate 2 as shown in FIGS. The number of columns can be increased or decreased as needed.
  • FIG. 6 (C) it is preferable to form a burring portion 2b at the edge of the tube insertion hole 2a.
  • the burring portion 2b is formed from the surface of the header plate 2 to the tube 14 (FIG. 1).
  • the burring portion 2b can be formed by means such as press molding. By protruding the burring portion 2b toward the tube 14 and gradually reducing the thickness of the hole edge portion from the root to the tip end as shown in FIG. 6C, a crack is not generated in the tube insertion hole 2a. , Resulting in a structure with high pressure resistance.
  • FIGS. 1 and 4 a large number of slits 7 are formed in the second intermediate plate 6 at the same pitch as the tube insertion holes 2a in parallel in the longitudinal direction. .
  • the pitch of the slits 7 matches the pitch of the tube insertion holes 2a of the header plate 2.
  • the long axis of the slit 7 is formed parallel to the width direction of the second intermediate plate 6. It is preferable that the entire length Wb of the slit 7 is formed larger than the entire width Wh of the tube insertion hole 2a (FIG. 3).
  • FIGS. 1 and 8 when the second intermediate plate 6 has end openings 6 a at both ends in the longitudinal direction, the flow of the heat medium at that position can be made smooth. .
  • only one row of the slits 7 shown in FIGS. 1, 4, and 8 is formed, two or more rows may be provided.
  • the thickness of the second intermediate plate 6 can be equal to or greater than the thickness of the header plate 2.
  • the plate thickness of the first intermediate plate 3 is formed larger than the plate thickness of the header plate 2.
  • the first intermediate plate 3 is entirely formed in a frame shape, and an opening hole 3a is opened along the longitudinal direction.
  • two opening holes 3a are arranged in parallel in the width direction, and a partition 3b extending in the longitudinal direction can be formed therebetween.
  • the partition part 3b By this partition part 3b, the brazing area between the first intermediate plate 3 and the second intermediate plate 6 is increased, and the joining strength is improved.
  • the formation of the partition 3b is optional. It is preferable that the entire width Wa of the opening 3a be smaller than the entire width Wh of the tube insertion hole 2a (FIG. 3).
  • the end plate 4 is arranged on the first intermediate plate 3.
  • An entrance 4a is formed in an intermediate portion of the end plate 4 in the longitudinal direction.
  • the outer periphery of the end plate 4, the first intermediate plate 3, the second intermediate plate 6, and the header plate 2 are aligned with each other, and holes 13 that are aligned with each other are formed in at least four corners and intermediate portions thereof.
  • the rivets 12 are inserted into the holes 13 in the stacked state of the plates, the ends thereof are caulked, and the plates are temporarily fixed.
  • a core 16 is formed by the tubes 14 and the fins 15, and both ends of each tube 14 are inserted into each tube insertion hole 2 a of the header plate 2. As shown in FIG. 3, the distal end of each tube is inserted so as not to protrude from each slit 7 of the second intermediate plate 6.
  • the end of the pipe 8 shown in FIGS. 1 to 3 is inserted into the entrance 4a of the end plate 4, and the opening end face of the pipe 8 is seated on the plane of the first intermediate plate 3 as shown in FIG. . Further, a plurality of brackets 11 are arranged on the end plate 4.
  • Each component assembled in this way has at least one outer surface of each component coated or coated with a brazing material. Then, these assemblies are inserted into a high-temperature furnace, and the whole is brazed and fixed together.
  • the burring portion 2b of each tube insertion hole 2a is formed on the tube 14 side, the distal end of the tube 14 is inserted therein, and the tube 14 and the burring portion 2b are opened with the opening edge of the tube 14 expanded. Can be brazed together.
  • FIGS. 10 to 12 show a second embodiment of the present invention.
  • This example is different from the above-described embodiment in that, instead of the first intermediate plate 3 and the end plate 4 of the above-described embodiment, a tank main body 23a made of an extruded aluminum material and a side lid 22 closing both sides thereof are provided. The flat tank 23 is used.
  • the flat tank 23 has a flat top surface 19, and a tank body 23a made of an extruded material having a groove-like cross section having a pair of side edges 20 that are lowered from the edge thereof. It comprises a pair of side lids 22 closing both ends.
  • the side edge 20 of the tank body 23a is formed in an L-shape in cross section, and has a flange portion whose tip projects outward.
  • An entrance 21 for pipe attachment can be formed on the top surface 19 of the tank body 23a.
  • An intermediate rib 24 extending in the longitudinal direction can be formed at an intermediate position in the width direction inside the top surface 19 of the tank body 23a.
  • the outer peripheries of the end surfaces of the pair of side edges 20 of the flat tank 23 are aligned with the outer perimeter of the header plate 2.
  • the entire width Wc between the inner walls of the pair of side edges 20 of the flat tank 23 (see FIG. 10) is formed so as to be smaller than the entire width Wh of the tube insertion hole 2a of the header plate 2 (Wh> Wc).
  • the end face of the side edge 20 of the flat tank 23 and the header plate 2 are integrally brazed and joined in the thickness direction. At this time, as shown in FIG. 12, it is preferable to braze and join them via an intermediate plate 25 therebetween.
  • the intermediate plate 25 is provided with elongated slits 7 arranged in parallel at the same pitch in the longitudinal direction (FIG. 10).
  • This intermediate plate 25 corresponds to the second intermediate plate 6 of the first embodiment (the formation of the end opening 6a is optional).
  • the long axis of the flat tube insertion hole 2 a and the long axis of the opening of the elongated slit 7 are formed parallel to the width direction of the intermediate plate 25.
  • the slit 7 is formed so that the entire length Wb thereof is longer than the entire width Wh of the tube insertion hole 2a (Wb> Wh).
  • Such a flat tank 23 can be manufactured with a small processing of a tank body 23a made of extruded material and a pair of end covers 22, and the flat tank 23 secures a sufficient flow path of the heat medium, and a flow resistance. Is reduced. Furthermore, since the flat tank 23 serves as a reinforcing material for the header plate 2 and the deformation (bending) of the header plate 2 is suppressed, the stress at the root of the tube 14 due to the bending of the header plate 2 is reduced.
  • the present invention can be applied to a heat exchanger such as an oil cooler or an air cooler through which a heat medium having a high internal pressure flows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention comprises a header plate (2) in which tube insertion holes (2a) are aligned in a row, a first intermediate plate (3) in which a flow path for a heat medium is formed in the thickness direction, and an end plate (4) that is fitted to the outer side of the first intermediate plate (3). The header plate (2), the first intermediate plate (3), and the end plate (4) are integrally brazed in the thickness direction, and brazing is also performed between the header plate (2) and a tube (14). The thickness of the first intermediate plate (3) is formed greater than the thickness of the header plate (2).

Description

熱交換器のタンク構造Heat exchanger tank structure
 この発明は、高圧のオイル又はガス等の冷却に適した熱交換器のタンク構造に関する。 The present invention relates to a heat exchanger tank structure suitable for cooling high-pressure oil or gas.
 従来型オイルクーラは、ヘッダタンク本体とヘッダプレートとを有し、ヘッダプレートに多数の偏平チューブを挿通するものである。
 このようなヘッダタンクに高圧のオイルを導き、各偏平チューブにそれを供給して、偏平チューブの外面側に冷却風を導き、オイルとの間に熱交換を行うオイルクーラが知られている。高圧のオイルがヘッダタンクに導かれると、その内圧によりヘッダプレートとヘッダタンク本体との接続部において、主としてヘッダタンクの幅方向に曲げモーメントが生じる。それに伴い、偏平チューブとヘッダプレートとの接合部における偏平チューブの付根部にも曲げ応力が生じ、チューブに亀裂が生じることがある。
 その対策として、下記特許文献1に記載の高耐圧のヘッダタンクが提案されている。
 これはチューブ接続穴を有する内板と、複数のスリットを有する中板と、中板の一方の面を塞ぐ外板を有し、それらが積層されてヘッダタンクを形成するものである。より詳しくは、このヘッダタンクは、内板に多数のチューブ接続穴を有し、中板はその接続穴に直交する多数のスリットを有する。そして外板が中板の一方の面を塞ぎ、それらが積層され、内部に高圧の冷媒を偏平チューブ、内板のスリットを介して流通させるものである。
 特許文献によれば、このヘッダタンクは、低コストで小型化に適したものとなると記載されている。
The conventional oil cooler has a header tank main body and a header plate, and a number of flat tubes are inserted through the header plate.
There is known an oil cooler that guides high-pressure oil to such a header tank, supplies it to each flat tube, guides cooling air to the outer surface side of the flat tube, and exchanges heat with the oil. When high-pressure oil is introduced into the header tank, a bending moment is generated mainly in the width direction of the header tank at the connection between the header plate and the header tank body due to the internal pressure. Along with this, bending stress also occurs at the base of the flat tube at the joint between the flat tube and the header plate, and the tube may be cracked.
As a countermeasure, a high pressure resistant header tank described in Patent Document 1 has been proposed.
This has an inner plate having a tube connection hole, a middle plate having a plurality of slits, and an outer plate closing one surface of the middle plate, and these are stacked to form a header tank. More specifically, this header tank has a number of tube connection holes in the inner plate, and the middle plate has a number of slits orthogonal to the connection holes. Then, the outer plate closes one surface of the middle plate, and they are laminated, and the high-pressure refrigerant flows through the flat tube and the slit in the inner plate.
According to the patent document, it is described that this header tank is low-cost and suitable for miniaturization.
特開2005−188787号公報JP 2005-188787 A
 上記特許文献1に記載されたヘッダタンクは、タンク内の流通抵抗が大きく、また、それに高圧の熱媒体を供給すると、結果として偏平チューブと内板との付根部の耐圧性に問題が生じるおそれがある。
 そこで、本発明は流通抵抗が小さく、且つ耐圧性が高い熱交換器のタンク構造を提供することを課題とする。
The header tank described in Patent Literature 1 has a large flow resistance in the tank, and if a high-pressure heat medium is supplied to the tank, as a result, a problem may occur in the pressure resistance of the root portion between the flat tube and the inner plate. There is.
Therefore, an object of the present invention is to provide a heat exchanger tank structure having a small flow resistance and a high pressure resistance.
 請求項1に記載の本発明は、多数のチューブ挿通孔2aが並列されたヘッダプレート2と、
 厚み方向に熱媒体の流路をその板厚分、開口した第1中間板3と、
 前記第1中間板3の外側を被蔽する端板4と、
 前記ヘッダプレート2の各チューブ挿通孔2aに端部が挿通される多数のチューブ14と、を有し、
 前記第1中間板3と前記端板4とが平板状に形成されており、
 前記ヘッダプレート2と、前記第1中間板3と、前記端板4とが厚み方向に一体的にろう付接合されると共に、前記多数のチューブ14の端部と前記ヘッダプレート2との間がろう付接合されており、
 前記第1中間板3の板厚が、ヘッダプレート2の板厚より厚く形成されている熱交換器のタンク構造である。
 請求項2に記載の本発明は、前記ヘッダプレート2、第1中間板3及び端板4の外周が略整合する平面方形に形成されており、
 前記第1中間板3には平面枠状の開口孔部3aを有し、その第1中間板3の開口孔部3aの全幅Waが、ヘッダプレート2のチューブ挿通孔2aの全幅Whよりも小である請求項1に記載の熱交換器のタンク構造である。
 請求項3に記載の本発明は、前記ヘッダプレート2と第1中間板3との間に介装される平面方形の第2中間板6を有し、
 前記第2中間板6に、多数のスリット7が厚み方向に開口されて流路が形成されており、
 前記ヘッダプレート2と、前記第1中間板3と、前記第2中間板6と、前記端板4とが厚み方向に一体的にろう付接合されている請求項1または請求項2に記載の熱交換器のタンク構造である。
 請求項4に記載の本発明は、前記ヘッダプレート2に、偏平なチューブ挿通孔2aがそのヘッダプレート2の長手方向に定間隔のピッチで穿設されており、
 前記第2中間板6に、細長いスリット7がその第2中間板6の長手方向に前記チューブ挿通孔2aと同一のピッチで穿設されており、
 前記偏平なチューブ挿通孔2a及び前記細長いスリット7の開口の長軸が、各板の幅方向に平行に位置して形成された請求項3に記載の熱交換器のタンク構造である。
 請求項5に記載の本発明は、前記ヘッダプレート2の幅方向に離間して、複数のチューブ挿通孔2aが配置され、
 前記スリット7の全長Wbが、前記チューブ挿通孔2aの全幅Whより長く形成された請求項3または請求項4に記載の熱交換器のタンク構造である。
 請求項6に記載の本発明は、前記端板4の平面に熱媒体の出入口4aが開口されており、
 前記出入口4aに熱媒体用のパイプ8の端部が挿通されており、そのパイプ8の端面が前記第1中間板3の平面に着座して固定される請求項1に記載の熱交換器のタンク構造である。
 請求項7に記載の発明は、多数のチューブ挿通孔2aが並列されたヘッダプレート2と、
 前記ヘッダプレート2の各チューブ挿通孔2aに端部が挿通される多数のチューブ14と、
 平坦な頂面19および、その縁部から立ち下げられた一対の側縁20とからなる横断面が溝状に形成された偏平な押出材からなるタンク本体23aと、そのタンク本体23aの長手方向の両端を閉塞する側蓋22とを有する偏平タンク23と、
 を有し、
 偏平タンク23の前記一対の側縁20の端面と前記ヘッダプレート2とが厚み方向に一体的にろう付接合されており、
 前記偏平タンク23の板厚が、ヘッダプレート2の板厚より厚く形成されている熱交換器のタンク構造である。
 請求項8に記載の発明は、前記ヘッダプレート2、偏平タンク23の外周が略整合する平面方形に形成されており、
 前記偏平タンク23の一対の側縁20の内壁間の全幅Wcが、ヘッダプレート2のチューブ挿通孔2aの全幅Whよりも小である請求項7に記載の熱交換器のタンク構造である。
 請求項9に記載の発明は、偏平タンク23とヘッダプレート2との間に、中間板25が介装され、細長いスリット7がその中間板25の長手方向に前記チューブ挿通孔2aと同一のピッチで穿設されており、
 偏平な前記チューブ挿通孔2a及び細長い前記スリット7の開口の長軸が、中間板25の幅方向に平行に位置して形成された請求項7又は請求項8のいずれかに記載の熱交換器のタンク構造である。
The present invention according to claim 1 includes a header plate 2 in which a large number of tube insertion holes 2a are arranged in parallel,
A first intermediate plate 3 having a heat medium flow path opened in the thickness direction by the thickness thereof,
An end plate 4 that covers the outside of the first intermediate plate 3,
A large number of tubes 14 whose ends are inserted into the respective tube insertion holes 2a of the header plate 2,
The first intermediate plate 3 and the end plate 4 are formed in a flat plate shape,
The header plate 2, the first intermediate plate 3, and the end plate 4 are integrally brazed and joined in the thickness direction, and a gap between the ends of the large number of tubes 14 and the header plate 2 is formed. Brazed and joined
This is a tank structure of the heat exchanger in which the thickness of the first intermediate plate 3 is larger than the thickness of the header plate 2.
According to the present invention, the header plate 2, the first intermediate plate 3, and the end plate 4 are formed in a flat rectangular shape in which the outer peripheries of the header plate 2, the end plate 4 and the end plate 4 are substantially aligned.
The first intermediate plate 3 has a flat frame-shaped opening hole 3a, and the entire width Wa of the opening hole 3a of the first intermediate plate 3 is smaller than the total width Wh of the tube insertion hole 2a of the header plate 2. The heat exchanger tank structure according to claim 1, wherein:
The present invention according to claim 3 has a planar intermediate second plate 6 interposed between the header plate 2 and the first intermediate plate 3,
In the second intermediate plate 6, a number of slits 7 are opened in the thickness direction to form a flow path,
3. The header plate according to claim 1, wherein the header plate, the first intermediate plate, the second intermediate plate, and the end plate are integrally brazed and joined in a thickness direction. It is a tank structure of a heat exchanger.
According to the present invention, a flat tube insertion hole 2a is formed in the header plate 2 at a constant pitch in a longitudinal direction of the header plate 2,
An elongated slit 7 is formed in the second intermediate plate 6 in the longitudinal direction of the second intermediate plate 6 at the same pitch as the tube insertion hole 2a.
The heat exchanger tank structure according to claim 3, wherein the long axes of the flat tube insertion holes 2a and the openings of the elongated slits 7 are formed in parallel with the width direction of each plate.
In the present invention according to claim 5, a plurality of tube insertion holes 2a are arranged apart from each other in the width direction of the header plate 2,
The tank structure of the heat exchanger according to claim 3 or 4, wherein the entire length Wb of the slit 7 is formed longer than the entire width Wh of the tube insertion hole 2a.
According to the present invention as set forth in claim 6, a heat medium entrance / exit 4 a is opened in a plane of the end plate 4,
2. The heat exchanger according to claim 1, wherein an end of a heat medium pipe 8 is inserted through the entrance 4 a, and an end face of the pipe 8 is seated and fixed on a plane of the first intermediate plate 3. It has a tank structure.
The invention according to claim 7 is a header plate having a large number of tube insertion holes 2a arranged in parallel,
A large number of tubes 14 whose ends are inserted into the respective tube insertion holes 2a of the header plate 2,
A tank body 23a made of a flat extruded material having a flat top surface 19 and a pair of side edges 20 raised from the edge and having a cross section formed in a groove shape, and a longitudinal direction of the tank body 23a. A flat tank 23 having a side lid 22 for closing both ends of the flat tank 23,
Has,
The end surfaces of the pair of side edges 20 of the flat tank 23 and the header plate 2 are integrally brazed and joined in the thickness direction,
This is a tank structure of the heat exchanger in which the plate thickness of the flat tank 23 is formed larger than the plate thickness of the header plate 2.
In the invention according to claim 8, the header plate 2 and the flat tank 23 are formed in a flat rectangular shape in which the outer peripheries are substantially aligned,
The heat exchanger tank structure according to claim 7, wherein the total width Wc between the inner walls of the pair of side edges 20 of the flat tank 23 is smaller than the total width Wh of the tube insertion holes 2a of the header plate 2.
According to the ninth aspect of the present invention, an intermediate plate 25 is interposed between the flat tank 23 and the header plate 2, and the elongated slit 7 has the same pitch as the tube insertion hole 2 a in the longitudinal direction of the intermediate plate 25. Drilled in
9. The heat exchanger according to claim 7, wherein a long axis of the flat tube insertion hole 2 a and an opening of the elongated slit 7 are formed parallel to a width direction of the intermediate plate 25. Tank structure.
 請求項1に記載の発明は、厚み方向に熱媒体の流路をその板厚分、開口した第1中間板3の板厚が、ヘッダプレート2の板厚より厚く形成されたものである。
 それにより、熱媒体の十分な流路が確保され、流通抵抗が低減されるとともに、厚肉の第1中間板3がヘッダプレート2の補強材となり、ヘッダプレート2の変形(曲り)が抑制されるので、ヘッダプレート2の曲りに起因するチューブ14の付根部の応力が低減される。
 請求項2に記載の発明は、第1中間板3の平面枠状の開口孔部3aの全幅Waが、ヘッダプレート2のチューブ挿通孔2aの全幅Whよりも小(全幅Wh>全幅Wa)としたものである。それにより、第1中間板3の剛性が向上し補強効果が高まるので、ヘッダプレート2の変形(曲り)がよりいっそう抑制され、ヘッダプレート2の曲りに起因するチューブ14の付根部の応力がよりいっそう低減される。
 請求項3に記載の発明は、ヘッダプレート2と第1中間板3との間に、第2中間板6を介装し、それに多数のスリット7を厚み方向に開口し、各板を厚み方向に一体的にろう付接合したものである。その第2中間板6の多数のスリット7により、タンク内の熱媒体の流路を形成したものである。それにより、ヘッダプレート2と第1中間板3との間の熱媒体の流通が円滑となり、流通抵抗が低減される。
 請求項4に記載の発明は、ヘッダプレート2と第2中間板6に、偏平なチューブ挿通孔2aおよびスリット7を、各板の長手方向に定間隔の同一ピッチで、それらの開口の長軸が、各板の幅方向に平行に位置して形成されているので、ヘッダプレート2と第1中間板3との間の熱媒体の流通がさらに円滑となり、流通抵抗が低減される。
 請求項5に記載の発明は、スリット7の全長Wbが、前記チューブ挿通孔2aの全幅Whより長く形成されたものである。
 それにより、ヘッダプレート2と第1中間板3との流路がより広くなるので、その間の熱媒体の流通がより円滑となり、流通抵抗が低減される。
 請求項6に記載の発明は、端板4に熱媒体の出入口4aが形成され、その出入口4aにパイプ8の端部が挿通され、そのパイプ8の端面が前記第1中間板3の平面に着座して固定されたものである。それにより、パイプ8の位置決めが容易となるとともに、パイプ8の固定が強固となる。
 請求項7に記載の発明は、横断面が溝状の押出材からなるタンク本体23aと、その両端を閉塞する一対の端蓋22からなる偏平タンク23を有する。そして、偏平タンク23の厚みが、ヘッダプレート2の板厚より厚く形成されているものである。この偏平タンク23により、熱媒体の十分な流路が確保され、流通抵抗が低減されるとともに、偏平タンク23がヘッダプレート2の補強材となり、ヘッダプレート2の変形(曲り)が抑制されるので、ヘッダプレート2の曲りに起因するチューブ14の付根部の応力が低減される。しかも、偏平タンク23は横断面が溝状に形成された偏平な押出材からなるため、押出材の僅かの加工で製作でき、製造が容易で耐圧性の高いものとなる。
 請求項8に記載の発明は、偏平タンク23の一対の側縁20の内壁間の全幅Wcが、ヘッダプレート2のチューブ挿通孔2aの全幅Whよりも小(Wh>Wc)に形成されている。それにより、偏平タンク23の剛性が向上し補強効果が高まるので、ヘッダプレート2の変形(曲り)がよりいっそう抑制され、ヘッダプレート2の曲りに起因するチューブ14の付根部の応力がよりいっそう低減される。
 請求項9に記載の発明は、偏平タンク23とヘッダプレート2との間に、中間板25が介装され、その細長いスリット7が、中間板25の長手方向にチューブ挿通孔2aと同一のピッチで穿設され、チューブ挿通孔2a及び細長い前記スリット7の開口の長軸が、中間板25の幅方向に平行に位置して形成されたものである。それにより、ヘッダプレート2と偏平タンク23との間の熱媒体の流通が円滑となり、流通抵抗が低減される。
According to the first aspect of the present invention, the thickness of the first intermediate plate 3 having the heat medium flow path opened in the thickness direction by the thickness thereof is formed to be larger than the thickness of the header plate 2.
Thereby, a sufficient flow path of the heat medium is secured, the flow resistance is reduced, and the thick first intermediate plate 3 serves as a reinforcing material for the header plate 2, and deformation (bending) of the header plate 2 is suppressed. Therefore, the stress at the base of the tube 14 due to the bending of the header plate 2 is reduced.
According to the second aspect of the present invention, the total width Wa of the planar frame-shaped opening 3a of the first intermediate plate 3 is smaller than the total width Wh of the tube insertion hole 2a of the header plate 2 (total width Wh> total width Wa). It was done. Thereby, since the rigidity of the first intermediate plate 3 is improved and the reinforcing effect is enhanced, the deformation (bending) of the header plate 2 is further suppressed, and the stress at the root of the tube 14 due to the bending of the header plate 2 is further reduced. It is further reduced.
According to a third aspect of the present invention, a second intermediate plate 6 is interposed between the header plate 2 and the first intermediate plate 3, a number of slits 7 are opened in the thickness direction, and each plate is connected in the thickness direction. It was brazed and joined together. The flow path of the heat medium in the tank is formed by the large number of slits 7 of the second intermediate plate 6. Thereby, the flow of the heat medium between the header plate 2 and the first intermediate plate 3 becomes smooth, and the flow resistance is reduced.
The flattened tube insertion holes 2a and the slits 7 are formed in the header plate 2 and the second intermediate plate 6 at the same pitch at regular intervals in the longitudinal direction of each plate. Are formed parallel to the width direction of each plate, so that the flow of the heat medium between the header plate 2 and the first intermediate plate 3 is further smoothed, and the flow resistance is reduced.
In the invention described in claim 5, the entire length Wb of the slit 7 is formed longer than the entire width Wh of the tube insertion hole 2a.
Thereby, the flow path between the header plate 2 and the first intermediate plate 3 becomes wider, so that the flow of the heat medium therebetween becomes smoother and the flow resistance is reduced.
According to the sixth aspect of the present invention, the entrance and exit 4a of the heat medium are formed in the end plate 4, the end of the pipe 8 is inserted into the entrance and exit 4a, and the end face of the pipe 8 is in the plane of the first intermediate plate 3. It is seated and fixed. Thereby, the positioning of the pipe 8 is facilitated, and the fixing of the pipe 8 is strengthened.
The invention according to claim 7 has a tank main body 23a made of an extruded material having a groove-shaped cross section, and a flat tank 23 made up of a pair of end covers 22 closing both ends thereof. The flat tank 23 is formed to be thicker than the header plate 2. With the flat tank 23, a sufficient flow path of the heat medium is secured, the flow resistance is reduced, and the flat tank 23 serves as a reinforcing material for the header plate 2, so that the deformation (bending) of the header plate 2 is suppressed. Thus, the stress at the base of the tube 14 due to the bending of the header plate 2 is reduced. In addition, since the flat tank 23 is made of a flat extruded material having a cross section formed in a groove shape, it can be manufactured with a small amount of processing of the extruded material, and is easy to manufacture and has high pressure resistance.
In the invention described in claim 8, the entire width Wc between the inner walls of the pair of side edges 20 of the flat tank 23 is formed smaller (Wh> Wc) than the entire width Wh of the tube insertion hole 2a of the header plate 2. . Thereby, the rigidity of the flat tank 23 is improved and the reinforcing effect is enhanced, so that the deformation (bending) of the header plate 2 is further suppressed, and the stress at the root of the tube 14 due to the bending of the header plate 2 is further reduced. Is done.
According to the ninth aspect of the present invention, the intermediate plate 25 is interposed between the flat tank 23 and the header plate 2, and the elongated slit 7 is formed at the same pitch as the tube insertion hole 2 a in the longitudinal direction of the intermediate plate 25. The long axis of the tube insertion hole 2a and the opening of the elongated slit 7 is formed in parallel with the width direction of the intermediate plate 25. Thereby, the flow of the heat medium between the header plate 2 and the flat tank 23 is smoothed, and the flow resistance is reduced.
 図1は本発明の第1の実施形態の熱交換器のタンク構造の分解斜視図。
 図2は同組立て状態を示す要部斜視図であって、その一方側を省略したもの。
 図3は図2のIII−III矢視断面図。
 図4は図3のIV−IV矢視断面図。
 図5は本発明のタンク構造を有する熱交換器の正面図(A)、側面図(B)。
 図6は同タンク構造に用いられるヘッダプレート2の平面図(A)、側面図(B)、(A)のC−C断面略図(C)。
 図7は本発明のタンク構造に用いられる第1中間板3の平面図。
 図8は同タンク構造に用いられる第2中間板6の平面図。
 図9は同タンク構造に用いられる端板4の平面図。
 図10は本発明の第2の実施形態の熱交換器のタンク構造の分解斜視図。
 図11は同実施形態の偏平タンクの平面図(A)、正面図(B)、側面図(C)。
 図12は同実施形態の要部縦断面図。
FIG. 1 is an exploded perspective view of the tank structure of the heat exchanger according to the first embodiment of the present invention.
FIG. 2 is a perspective view of an essential part showing the assembled state, in which one side is omitted.
FIG. 3 is a sectional view taken along the line III-III in FIG. 2.
FIG. 4 is a sectional view taken along the line IV-IV in FIG.
FIG. 5 is a front view (A) and a side view (B) of a heat exchanger having the tank structure of the present invention.
FIG. 6 is a plan view (A), a side view (B), and a schematic CC sectional view (C) of the header plate 2 used in the tank structure.
FIG. 7 is a plan view of the first intermediate plate 3 used in the tank structure of the present invention.
FIG. 8 is a plan view of a second intermediate plate 6 used in the tank structure.
FIG. 9 is a plan view of an end plate 4 used in the tank structure.
FIG. 10 is an exploded perspective view of the tank structure of the heat exchanger according to the second embodiment of the present invention.
FIG. 11 is a plan view (A), a front view (B), and a side view (C) of the flat tank of the embodiment.
FIG. 12 is a vertical sectional view of a main part of the embodiment.
 次に、図面に基づいて本発明の実施の形態につき説明する。
 この熱交換器のタンク構造は、鉱山現場や建築現場等で使用する大型の作業機械、若しくは、大型自動車の熱交換器に適しており、その熱交換器のタンクの内圧が比較的高くなるものに最適の構造である。
 第1の実施形態の熱交換器は、図1~図5に示す如く、多数のフィン15とチューブ14とが交互に並列されてコア16を形成し、そのコア16の上下両端に一対のタンクが配置されるものである。そのタンクは、端板4と第1中間板3とヘッダプレート2との積層体からなる。第1中間板3とヘッダプレート2との間には、第2中間板6を介装することが好ましい。
 端板4と第1中間板3と第2中間板6は、平面方形の平板からなると共に、その外周が略整合する。
 図1及び図6に示す如く、ヘッダプレート2には、その長手方向に並列して多数のチューブ挿通孔2aが定間隔のピッチで穿設される。そして、そのチューブ挿通孔2aの長軸はヘッダプレート2の幅方向に平行に形成されている。この例では、図1,図6(A)に示す如く、ヘッダプレート2にチューブ挿通孔2aが4列配置されている。その列数は、必要に応じ増減できる。
 図6(C)に示す如く、チューブ挿通孔2aの孔縁部には、バーリング加工部2bを形成することが好ましい。このバーリング加工部2bは、ヘッダプレート2の表面側からチューブ14(図1)側に形成されている。このバーリング加工部2bは、プレス成形等の手段により形成することができる。
 バーリング加工部2bをチューブ14側に突出させ、図6(C)のように、その根本から先端に向けて孔縁部の厚みを次第に薄くすることにより、チューブ挿通孔2aに亀裂を生じさせず、耐圧性の高い構造となる。
 次に、この例では、図1,図4に示す如く、第2中間板6には、その長手方向に並列して多数のスリット7が、チューブ挿通孔2aと同一ピッチで穿設されている。すなわち、スリット7のピッチがヘッダプレート2のチューブ挿通孔2aのピッチに整合する。スリット7の長軸は第2中間板6の幅方向に平行に形成されている。スリット7の全長Wbは、チューブ挿通孔2aの全幅Whよりも大に形成することが好ましい(図3)。第2中間板6には、図1及び図8に示す如く、その長手方向の両端部において、端部開口6aを形成しておくと、その位置の熱媒体の流通を円滑にすることができる。図1、図4、図8に示すスリット7は、1列のみ穿設されているが、2列以上とすることもできる。
 第2中間板6の板厚は、ヘッダプレート2の板厚以上とすることができる。
 次に、図3,図4に示す如く、第1中間板3の板厚はヘッダプレート2の板厚よりも厚く形成されている。
 第1中間板3は全体が枠状に形成されており、開口孔部3aが長手方向に沿って開口している。図1に示すように、2つの開口孔部3aを幅方向に並列して配置して、その間に長手方向に伸びる仕切部3bを形成することができる。この仕切部3bにより、第1中間板3と第2中間板6とのろう付面積が大きくなり、接合強度が向上する。なお、仕切部3bの形成は任意である。
 開口孔部3aの全幅Waは、チューブ挿通孔2aの全幅Whよりも小さく形成しておくことが好ましい(図3)。
 次に、第1中間板3上には端板4が配置される。
 端板4の長手方向の中間部分には、出入口4aが穿設される。そして、端板4と第1中間板3と第2中間板6とヘッダプレート2との外周が整合すると共に、少なくともそれらの四隅及び中間部に、互いに整合する孔13が穿設されている。そして、各板の積層状態において各孔13にリベット12が挿通され、その端部がカシメられて、各板どうしが仮止め固定される。
 そして、チューブ14とフィン15とでコア16を形成し、各チューブ14の両端部は、ヘッダプレート2の各チューブ挿通孔2aに挿通される。各チューブの先端は、図3に示す如く、第2中間板6の各スリット7からは突出しない程度に挿通される。
 また、端板4の出入口4aには、図1~図3に示す、パイプ8の端部が挿通され、図3に示す如く、第1中間板3の平面にパイプ8の開口端面が着座する。さらには、複数のブラケット11が端板4上に配置される。
 このように組み立てられた各部品は、少なくとも各部品の一方側の外表面にろう材が被覆又は塗布されている。そしてそれら組立て体は高温の炉内に挿入され、全体が一体にろう付固定される。
 なお、各チューブ挿通孔2aのバーリング加工部2bをチューブ14側に形成し、チューブ14の先端部をそこに挿入し、チューブ14の開口縁を拡開した状態で、チューブ14とバーリング加工部2bとの間を一体にろう付することができる。
 また、熱交換器の下端部には、図5に示すように、一対の支持ピン17を接合しておくことができる。支持ピン17の先端は、図示しない建設機械等のエンジンルーム内の支持台に保持される。
 次に、図10~図12は本発明の第2の実施形態である。
 この例が前記実施例と異なる点は、前記実施例の第1中間板3と端板4の代わりに、アルミニウムの押出材からなるタンク本体23aと、その両側を閉塞する側蓋22とからなる偏平タンク23を用いたものである。即ち、この例では偏平タンク23が、平坦な頂面19と、その縁部から立下げられた一対の側縁20を有する横断面が溝状に形成された押出材からなるタンク本体23aと、その両端を閉塞する一対の側蓋22とからなる。タンク本体23aの側縁20は横断面がL字状に形成されており、その先端が外側に突出している鍔部を有する。
 タンク本体23aの頂面19には、パイプ取付用の出入口21を形成することができる。そして、タンク本体23aの頂面19の内側の幅方向の中間位置には、長手方向に伸びる中間リブ24を形成しておくことができる。それにより、偏平タンク23の強度が高まり、さらに耐圧性の高い熱交換器となる。また、パイプ8の端面が中間リブ24に着座されることにより、パイプ8の位置決めが容易になるとともに、パイプ8の固定が強固となる。
 押出材からなるタンク本体23aの長手方向の両端には、押出材の横断面に整合する側蓋22が配置される。このとき、タンク本体23aの頂面19の内面側に半押し状にプレス形成された位置決め部26を設け、側蓋22をそれに当接することができる。その端蓋22とタンク本体23aと、中間板25との間は、各部品のろう付の後に、溶接により接続することができる。同様に、パイプ取付用出入口21とパイプ8との間も溶接により接続できる。
 偏平タンク23の板厚は、ヘッダプレート2の板厚より厚く形成されている。偏平タンク23の一対の側縁20の端面の外周は、前記ヘッダプレート2の外周と整合している。この時、偏平タンク23の一対の側縁20の内壁間の全幅Wc(図10参照)は、ヘッダプレート2のチューブ挿通孔2aの全幅Whよりも小(Wh>Wc)になるように形成されている。
 そして、偏平タンク23の側縁20の端面と、前記ヘッダプレート2とが、厚み方向に一体的にろう付接合される。この時、図12の如く、それらの間に中間板25を介して、ろう付接合することが好ましい。
 この中間板25には、その長手方向に向かって同一のピッチで並列する細長いスリット7が穿設されている(図10)。この中間板25は、第1の実施形態の第2中間板6に相当するものである(端部開口6aの形成は任意である)。そして、偏平なチューブ挿通孔2aと細長いスリット7の開口の長軸が、中間板25の幅方向に平行に位置して形成されている。そして、そのスリット7の全長Wbが、チューブ挿通孔2aの全幅Whより長く(Wb>Wh)なるように形成されている。
 このような偏平タンク23は、押出材からなるタンク本体23aの少ない加工と一対の端蓋22とで、製作できると共に、その偏平タンク23により、熱媒体の十分な流路が確保され、流通抵抗が低減される。さらには、偏平タンク23がヘッダプレート2の補強材となり、ヘッダプレート2の変形(曲り)が抑制されるので、ヘッダプレート2の曲りに起因するチューブ14の付根部の応力が低減される。
Next, an embodiment of the present invention will be described with reference to the drawings.
This heat exchanger tank structure is suitable for large work machines used at mining sites and construction sites, or heat exchangers of large vehicles, and the internal pressure of the heat exchanger tank is relatively high. It is the most suitable structure.
As shown in FIGS. 1 to 5, the heat exchanger according to the first embodiment includes a plurality of fins 15 and tubes 14 alternately arranged in parallel to form a core 16, and a pair of tanks at upper and lower ends of the core 16. Are arranged. The tank is composed of a laminate of the end plate 4, the first intermediate plate 3, and the header plate 2. It is preferable to interpose a second intermediate plate 6 between the first intermediate plate 3 and the header plate 2.
The end plate 4, the first intermediate plate 3, and the second intermediate plate 6 are formed of flat rectangular plates, and their outer circumferences are substantially aligned.
As shown in FIGS. 1 and 6, a large number of tube insertion holes 2a are formed in the header plate 2 at regular intervals in parallel in the longitudinal direction. The long axis of the tube insertion hole 2 a is formed parallel to the width direction of the header plate 2. In this example, four rows of tube insertion holes 2a are arranged in the header plate 2 as shown in FIGS. The number of columns can be increased or decreased as needed.
As shown in FIG. 6 (C), it is preferable to form a burring portion 2b at the edge of the tube insertion hole 2a. The burring portion 2b is formed from the surface of the header plate 2 to the tube 14 (FIG. 1). The burring portion 2b can be formed by means such as press molding.
By protruding the burring portion 2b toward the tube 14 and gradually reducing the thickness of the hole edge portion from the root to the tip end as shown in FIG. 6C, a crack is not generated in the tube insertion hole 2a. , Resulting in a structure with high pressure resistance.
Next, in this example, as shown in FIGS. 1 and 4, a large number of slits 7 are formed in the second intermediate plate 6 at the same pitch as the tube insertion holes 2a in parallel in the longitudinal direction. . That is, the pitch of the slits 7 matches the pitch of the tube insertion holes 2a of the header plate 2. The long axis of the slit 7 is formed parallel to the width direction of the second intermediate plate 6. It is preferable that the entire length Wb of the slit 7 is formed larger than the entire width Wh of the tube insertion hole 2a (FIG. 3). As shown in FIGS. 1 and 8, when the second intermediate plate 6 has end openings 6 a at both ends in the longitudinal direction, the flow of the heat medium at that position can be made smooth. . Although only one row of the slits 7 shown in FIGS. 1, 4, and 8 is formed, two or more rows may be provided.
The thickness of the second intermediate plate 6 can be equal to or greater than the thickness of the header plate 2.
Next, as shown in FIGS. 3 and 4, the plate thickness of the first intermediate plate 3 is formed larger than the plate thickness of the header plate 2.
The first intermediate plate 3 is entirely formed in a frame shape, and an opening hole 3a is opened along the longitudinal direction. As shown in FIG. 1, two opening holes 3a are arranged in parallel in the width direction, and a partition 3b extending in the longitudinal direction can be formed therebetween. By this partition part 3b, the brazing area between the first intermediate plate 3 and the second intermediate plate 6 is increased, and the joining strength is improved. The formation of the partition 3b is optional.
It is preferable that the entire width Wa of the opening 3a be smaller than the entire width Wh of the tube insertion hole 2a (FIG. 3).
Next, the end plate 4 is arranged on the first intermediate plate 3.
An entrance 4a is formed in an intermediate portion of the end plate 4 in the longitudinal direction. The outer periphery of the end plate 4, the first intermediate plate 3, the second intermediate plate 6, and the header plate 2 are aligned with each other, and holes 13 that are aligned with each other are formed in at least four corners and intermediate portions thereof. Then, the rivets 12 are inserted into the holes 13 in the stacked state of the plates, the ends thereof are caulked, and the plates are temporarily fixed.
A core 16 is formed by the tubes 14 and the fins 15, and both ends of each tube 14 are inserted into each tube insertion hole 2 a of the header plate 2. As shown in FIG. 3, the distal end of each tube is inserted so as not to protrude from each slit 7 of the second intermediate plate 6.
The end of the pipe 8 shown in FIGS. 1 to 3 is inserted into the entrance 4a of the end plate 4, and the opening end face of the pipe 8 is seated on the plane of the first intermediate plate 3 as shown in FIG. . Further, a plurality of brackets 11 are arranged on the end plate 4.
Each component assembled in this way has at least one outer surface of each component coated or coated with a brazing material. Then, these assemblies are inserted into a high-temperature furnace, and the whole is brazed and fixed together.
The burring portion 2b of each tube insertion hole 2a is formed on the tube 14 side, the distal end of the tube 14 is inserted therein, and the tube 14 and the burring portion 2b are opened with the opening edge of the tube 14 expanded. Can be brazed together.
As shown in FIG. 5, a pair of support pins 17 can be joined to the lower end of the heat exchanger. The tip of the support pin 17 is held on a support table in an engine room of a construction machine or the like (not shown).
Next, FIGS. 10 to 12 show a second embodiment of the present invention.
This example is different from the above-described embodiment in that, instead of the first intermediate plate 3 and the end plate 4 of the above-described embodiment, a tank main body 23a made of an extruded aluminum material and a side lid 22 closing both sides thereof are provided. The flat tank 23 is used. That is, in this example, the flat tank 23 has a flat top surface 19, and a tank body 23a made of an extruded material having a groove-like cross section having a pair of side edges 20 that are lowered from the edge thereof. It comprises a pair of side lids 22 closing both ends. The side edge 20 of the tank body 23a is formed in an L-shape in cross section, and has a flange portion whose tip projects outward.
An entrance 21 for pipe attachment can be formed on the top surface 19 of the tank body 23a. An intermediate rib 24 extending in the longitudinal direction can be formed at an intermediate position in the width direction inside the top surface 19 of the tank body 23a. Thereby, the strength of the flat tank 23 is increased, and a heat exchanger with higher pressure resistance is obtained. Further, since the end face of the pipe 8 is seated on the intermediate rib 24, the positioning of the pipe 8 is facilitated, and the fixing of the pipe 8 is strengthened.
Side lids 22 matching the cross section of the extruded material are arranged at both ends in the longitudinal direction of the tank body 23a made of the extruded material. At this time, a positioning part 26 formed by pressing halfway is provided on the inner surface side of the top surface 19 of the tank body 23a, and the side lid 22 can be brought into contact therewith. The end cover 22, the tank main body 23a, and the intermediate plate 25 can be connected by welding after brazing of each component. Similarly, the pipe mounting port 21 and the pipe 8 can be connected by welding.
The plate thickness of the flat tank 23 is formed larger than the plate thickness of the header plate 2. The outer peripheries of the end surfaces of the pair of side edges 20 of the flat tank 23 are aligned with the outer perimeter of the header plate 2. At this time, the entire width Wc between the inner walls of the pair of side edges 20 of the flat tank 23 (see FIG. 10) is formed so as to be smaller than the entire width Wh of the tube insertion hole 2a of the header plate 2 (Wh> Wc). ing.
Then, the end face of the side edge 20 of the flat tank 23 and the header plate 2 are integrally brazed and joined in the thickness direction. At this time, as shown in FIG. 12, it is preferable to braze and join them via an intermediate plate 25 therebetween.
The intermediate plate 25 is provided with elongated slits 7 arranged in parallel at the same pitch in the longitudinal direction (FIG. 10). This intermediate plate 25 corresponds to the second intermediate plate 6 of the first embodiment (the formation of the end opening 6a is optional). The long axis of the flat tube insertion hole 2 a and the long axis of the opening of the elongated slit 7 are formed parallel to the width direction of the intermediate plate 25. The slit 7 is formed so that the entire length Wb thereof is longer than the entire width Wh of the tube insertion hole 2a (Wb> Wh).
Such a flat tank 23 can be manufactured with a small processing of a tank body 23a made of extruded material and a pair of end covers 22, and the flat tank 23 secures a sufficient flow path of the heat medium, and a flow resistance. Is reduced. Furthermore, since the flat tank 23 serves as a reinforcing material for the header plate 2 and the deformation (bending) of the header plate 2 is suppressed, the stress at the root of the tube 14 due to the bending of the header plate 2 is reduced.
 本発明は、オイルクーラ、エアークーラ等の内圧の高い熱媒体が流通する熱交換器に適用できる。 The present invention can be applied to a heat exchanger such as an oil cooler or an air cooler through which a heat medium having a high internal pressure flows.
 2 ヘッダプレート
 2a チューブ挿通孔
 2b バーリング加工部
 3 第1中間板
 3a 開口孔部
 3b 仕切部
 4 端板
 4a 出入口
 6 第2中間板
 6a 端部開口
 7 スリット
 8 パイプ
 8a フランジ部
 11 ブラケット
 12 リベット
 13 孔
 14 チューブ
 15 フィン
 16 コア
 17 支持ピン
 19 頂面
 20 側縁
 21 出入口
 22 側蓋
 23 偏平タンク
 23a タンク本体
 24 中間リブ
 25 中間板
 26 位置決め部
 27 溶接部
 Wa 全幅
 Wb 全長
 Wc 全幅
 Wh 全幅
2 header plate 2a tube insertion hole 2b burring portion 3 first intermediate plate 3a opening hole 3b partitioning portion 4 end plate 4a doorway 6 second intermediate plate 6a end opening 7 slit 8 pipe 8a flange 11 bracket 12 rivet 13 hole 14 Tube 15 Fin 16 Core 17 Support pin 19 Top surface 20 Side edge 21 Doorway 22 Side cover 23 Flat tank 23a Tank body 24 Intermediate rib 25 Intermediate plate 26 Positioning part 27 Welding part Wa Full width Wb Full length Wc Full width Wh Full width

Claims (9)

  1.  多数のチューブ挿通孔(2a)が並列されたヘッダプレート(2)と、
     厚み方向に熱媒体の流路をその板厚分、開口した第1中間板(3)と、
     前記第1中間板(3)の外側を被蔽する端板(4)と、
     前記ヘッダプレート(2)の各チューブ挿通孔(2a)に端部が挿通される多数のチューブ(14)と、を有し、
     前記第1中間板(3)と前記端板(4)とが平板状に形成されており、
     前記ヘッダプレート(2)と、前記第1中間板(3)と、前記端板(4)とが厚み方向に一体的にろう付接合されると共に、前記多数のチューブ(14)の端部と前記ヘッダプレート(2)との間がろう付接合されており、
     前記第1中間板(3)の板厚が、ヘッダプレート(2)の板厚より厚く形成されている熱交換器のタンク構造。
    A header plate (2) in which a number of tube insertion holes (2a) are arranged in parallel,
    A first intermediate plate (3) having a heat medium flow path opened in the thickness direction by the plate thickness,
    An end plate (4) covering the outside of the first intermediate plate (3);
    A large number of tubes (14) each having an end inserted into each tube insertion hole (2a) of the header plate (2),
    The first intermediate plate (3) and the end plate (4) are formed in a flat plate shape,
    The header plate (2), the first intermediate plate (3), and the end plate (4) are integrally brazed and joined in the thickness direction, and are connected to the ends of the multiple tubes (14). The header plate (2) is brazed and joined,
    The tank structure of the heat exchanger, wherein the plate thickness of the first intermediate plate (3) is larger than the plate thickness of the header plate (2).
  2.  前記ヘッダプレート(2)、第1中間板(3)及び端板(4)の外周が略整合する平面方形に形成されており、
     前記第1中間板(3)には平面枠状の開口孔部(3a)を有し、その第1中間板(3)の開口孔部(3a)の全幅(Wa)が、ヘッダプレート(2)のチューブ挿通孔(2a)の全幅(Wh)よりも小である請求項1に記載の熱交換器のタンク構造。
    The outer periphery of the header plate (2), the first intermediate plate (3) and the end plate (4) is formed in a flat rectangular shape substantially matching,
    The first intermediate plate (3) has a flat frame-shaped opening (3a), and the entire width (Wa) of the opening (3a) of the first intermediate plate (3) is equal to that of the header plate (2). 2) The tank structure of the heat exchanger according to claim 1, wherein the width is smaller than the entire width (Wh) of the tube insertion hole (2a).
  3.  前記ヘッダプレート(2)と第1中間板(3)との間に介装される平面方形の第2中間板(6)を有し、
     前記第2中間板(6)に、多数のスリット(7)が厚み方向に開口されて流路が形成されており、
     前記ヘッダプレート(2)と、前記第1中間板(3)と、前記第2中間板(6)と、前記端板(4)とが厚み方向に一体的にろう付接合されている請求項1または請求項2に記載の熱交換器のタンク構造。
    A planar intermediate second plate (6) interposed between the header plate (2) and the first intermediate plate (3);
    In the second intermediate plate (6), a number of slits (7) are opened in the thickness direction to form a flow path,
    The header plate (2), the first intermediate plate (3), the second intermediate plate (6), and the end plate (4) are integrally brazed and joined in a thickness direction. The heat exchanger tank structure according to claim 1 or 2.
  4.  前記ヘッダプレート(2)に、偏平なチューブ挿通孔(2a)がそのヘッダプレート(2)の長手方向に定間隔のピッチで穿設されており、
     前記第2中間板(6)に、細長いスリット(7)がその第2中間板(6)の長手方向に前記チューブ挿通孔(2a)と同一のピッチで穿設されており、
     前記偏平なチューブ挿通孔(2a)及び前記細長いスリット(7)の開口の長軸が、各板の幅方向に平行に位置して形成された請求項3に記載の熱交換器のタンク構造。
    A flat tube insertion hole (2a) is formed in the header plate (2) at regular intervals in the longitudinal direction of the header plate (2).
    An elongated slit (7) is formed in the second intermediate plate (6) at the same pitch as the tube insertion hole (2a) in the longitudinal direction of the second intermediate plate (6);
    The tank structure of the heat exchanger according to claim 3, wherein the long axes of the flat tube insertion holes (2a) and the openings of the elongated slits (7) are formed parallel to the width direction of each plate.
  5.  前記ヘッダプレート(2)の幅方向に離間して、複数のチューブ挿通孔(2a)が配置され、
     前記スリット(7)の幅方向の全長(Wb)が、前記チューブ挿通孔(2a)の全幅(Wh)より長く形成された請求項3または請求項4に記載の熱交換器のタンク構造。
    A plurality of tube insertion holes (2a) are arranged apart from each other in the width direction of the header plate (2),
    The tank structure of the heat exchanger according to claim 3 or 4, wherein a total length (Wb) in a width direction of the slit (7) is formed longer than a total width (Wh) of the tube insertion hole (2a).
  6.  前記端板(4)の平面に熱媒体の出入口(4a)が開口されており、
     前記出入口(4a)に熱媒体用のパイプ(8)の端部が挿通されており、そのパイプ(8)の端面が前記第1中間板(3)の平面に着座して固定される請求項1に記載の熱交換器のタンク構造。
    An entrance / exit (4a) for a heat medium is opened in a plane of the end plate (4),
    An end of a heat medium pipe (8) is inserted through the entrance (4a), and an end face of the pipe (8) is seated and fixed on a plane of the first intermediate plate (3). 2. The tank structure of the heat exchanger according to 1.
  7.  多数のチューブ挿通孔(2a)が並列されたヘッダプレート(2)と、
     前記ヘッダプレート(2)の各チューブ挿通孔(2a)に端部が挿通される多数のチューブ(14)と、
     平坦な頂面(19)および、その縁部から立ち下げられた一対の側縁(20)とからなる横断面が溝状に形成された偏平な押出材からなるタンク本体(23a)と、そのタンク本体(23a)の長手方向の両端を閉塞する側蓋(22)とを有する偏平タンク(23)と、
     を有し、
     偏平タンク(23)の前記一対の側縁(20)の端面と前記ヘッダプレート(2)とが厚み方向に一体的にろう付接合されており、
     前記偏平タンク(23)の板厚が、ヘッダプレート(2)の板厚より厚く形成されている熱交換器のタンク構造。
    A header plate (2) in which a number of tube insertion holes (2a) are arranged in parallel,
    A number of tubes (14) each having an end inserted into each tube insertion hole (2a) of the header plate (2);
    A tank body (23a) made of a flat extruded material having a groove-like cross section formed by a flat top surface (19) and a pair of side edges (20) lowered from the edge thereof; A flat tank (23) having a side lid (22) for closing both longitudinal ends of the tank body (23a);
    Has,
    The end faces of the pair of side edges (20) of the flat tank (23) and the header plate (2) are integrally brazed and joined in the thickness direction.
    A tank structure for a heat exchanger, wherein the plate thickness of the flat tank (23) is larger than the plate thickness of the header plate (2).
  8.  前記ヘッダプレート(2)、偏平タンク(23)の外周が略整合する平面方形に形成されており、
     前記偏平タンク(23)の一対の側縁(20)の内壁間の全幅(Wc)が、ヘッダプレート(2)のチューブ挿通孔(2a)の全幅(Wh)よりも小である請求項7に記載の熱交換器のタンク構造。
    The header plate (2) and the flat tank (23) are formed in a flat rectangular shape in which outer peripheries are substantially aligned,
    The entire width (Wc) between the inner walls of the pair of side edges (20) of the flat tank (23) is smaller than the entire width (Wh) of the tube insertion hole (2a) of the header plate (2). The tank structure of the described heat exchanger.
  9.  偏平タンク(23)とヘッダープレート(2)との間に、中間板(25)が介装され、細長いスリット(7)がその中間板(25)の長手方向に前記チューブ挿通孔(2a)と同一のピッチで穿設されており、
     偏平な前記チューブ挿通孔(2a)及び細長い前記スリット(7)の開口の長軸が、中間板(25)の幅方向に平行に位置して形成された請求項7又は請求項8のいずれかに記載の熱交換器のタンク構造。
    An intermediate plate (25) is interposed between the flat tank (23) and the header plate (2), and an elongated slit (7) is formed in the longitudinal direction of the intermediate plate (25) with the tube insertion hole (2a). Drilled at the same pitch,
    9. The flat tube insertion hole (2a) and the long axis of the opening of the elongated slit (7) are formed so as to be positioned parallel to the width direction of the intermediate plate (25). The tank structure of the heat exchanger according to 1.
PCT/JP2019/024854 2018-06-28 2019-06-17 Tank structure of heat exchanger WO2020004292A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020527493A JPWO2020004292A1 (en) 2018-06-28 2019-06-17 Heat exchanger tank structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018123683 2018-06-28
JP2018-123683 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020004292A1 true WO2020004292A1 (en) 2020-01-02

Family

ID=68986938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024854 WO2020004292A1 (en) 2018-06-28 2019-06-17 Tank structure of heat exchanger

Country Status (2)

Country Link
JP (1) JPWO2020004292A1 (en)
WO (1) WO2020004292A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060794B2 (en) * 2018-02-12 2021-07-13 Shenzhen Esin Technology Inc., Ltd. Gas-liquid heat exchanger

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296606A (en) * 1992-03-31 1993-11-09 Modine Mfg Co High efficiency evaporator
JPH08240395A (en) * 1995-03-06 1996-09-17 Zexel Corp Heat exchanger
JP2005300135A (en) * 2004-03-17 2005-10-27 Showa Denko Kk Header tank for heat exchanger, and heat exchanger using the same
JP2009257719A (en) * 2008-04-21 2009-11-05 Showa Denko Kk Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05296606A (en) * 1992-03-31 1993-11-09 Modine Mfg Co High efficiency evaporator
JPH08240395A (en) * 1995-03-06 1996-09-17 Zexel Corp Heat exchanger
JP2005300135A (en) * 2004-03-17 2005-10-27 Showa Denko Kk Header tank for heat exchanger, and heat exchanger using the same
JP2009257719A (en) * 2008-04-21 2009-11-05 Showa Denko Kk Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060794B2 (en) * 2018-02-12 2021-07-13 Shenzhen Esin Technology Inc., Ltd. Gas-liquid heat exchanger

Also Published As

Publication number Publication date
JPWO2020004292A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP4724433B2 (en) Heat exchanger
US7806170B2 (en) Heat exchanger
US10247481B2 (en) Multiple tube bank heat exchange unit with manifold assembly
WO2015037687A1 (en) Tank structure for header-plate-less heat exchanger
JP6276054B2 (en) Heat exchanger
JP2005326135A (en) Heat exchanger
US20070289727A1 (en) Heat Exchanger
JPH0735491A (en) Header tank for heat exchanger
JPH09126685A (en) Heat exchanger
JP2012247093A (en) Flat tubes for header-plate-less heat exchanger
JPH0545336B2 (en)
JP6583071B2 (en) Tank and heat exchanger
WO2020004292A1 (en) Tank structure of heat exchanger
JP4972488B2 (en) Heat exchanger
CN110530190A (en) Header and heat exchanger
JP4493221B2 (en) Manufacturing method of stacked heat exchanger
JP2008249241A (en) Heat exchanger
JP2008089188A (en) Heat exchanger
JP2884201B2 (en) Heat exchanger
JP2009287907A (en) Heat exchanger
JPH0645153Y2 (en) Stacked heat exchanger
JP2000039284A5 (en)
JP3054888U (en) Plate fin type heat exchanger
JP2000039284A (en) Laminated heat exchanger
JP2008281270A (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19825593

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19825593

Country of ref document: EP

Kind code of ref document: A1