WO2020003486A1 - 無線端末、無線基地局、及び無線通信システム - Google Patents

無線端末、無線基地局、及び無線通信システム Download PDF

Info

Publication number
WO2020003486A1
WO2020003486A1 PCT/JP2018/024772 JP2018024772W WO2020003486A1 WO 2020003486 A1 WO2020003486 A1 WO 2020003486A1 JP 2018024772 W JP2018024772 W JP 2018024772W WO 2020003486 A1 WO2020003486 A1 WO 2020003486A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
radio
base station
information
terminal
Prior art date
Application number
PCT/JP2018/024772
Other languages
English (en)
French (fr)
Inventor
晋 細川
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/024772 priority Critical patent/WO2020003486A1/ja
Publication of WO2020003486A1 publication Critical patent/WO2020003486A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a radio terminal, a radio base station, and a radio communication system capable of dynamically changing an uplink radio access scheme.
  • next-generation mobile communication system after the 5G system, services that require a different level of communication performance, such as tactile communication and augmented reality, are expected.
  • a 5G system is going to adopt a design policy that can flexibly change the operation mode.
  • a fourth generation mobile communication system also referred to as a 4G system
  • LTE or LTE-Advanced the uplink radio access scheme is fixed and does not change during the operation of the 4G system.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • An object of the disclosed technology is to provide a wireless terminal, a wireless base station, and a wireless communication system that can appropriately execute dynamic change of an uplink wireless access scheme.
  • a wireless terminal capable of wireless communication with a wireless base station, wherein a wireless signal generated by a first wireless access scheme and a wireless signal generated by a second wireless access scheme
  • a wireless communication unit capable of receiving a wireless signal from the wireless base station, and a wireless communication between the wireless base station and the wireless terminal in a state where a wireless connection with the wireless base station is established.
  • a processing unit for receiving, by the wireless communication unit, a first control message related to connection reconfiguration from the wireless base station, wherein the first control message instructs resynchronization to the wireless base station.
  • the processing unit detects the first information in the first control message, the processing unit suspends uplink data transmission to the wireless base station when the first information is detected in the first control message. , For the radio access scheme according to the second information, resynchronization with the radio base station.
  • FIG. 1 is a diagram illustrating an example of a configuration of the wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of assignment of an uplink wireless access scheme in the wireless communication system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a process flow in the wireless base station according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a content of a management table in the wireless base station according to the first embodiment.
  • FIG. 5 is a diagram illustrating an example of a processing flow in the wireless terminal according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a sequence in the wireless communication system according to the first embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of the wireless communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating an example of assignment of an uplink wireless access scheme in the wireless communication system according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a
  • FIG. 7 is a diagram illustrating an example of a process flow in the wireless base station according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of a processing flow in the wireless terminal according to the second embodiment.
  • FIG. 9 is a diagram illustrating an example of a process flow in the wireless base station according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a process flow in the wireless terminal according to the third embodiment.
  • FIG. 11 is a diagram illustrating an example of a sequence in the wireless communication system according to the third embodiment.
  • FIG. 12 is a diagram illustrating an example of a process flow in the wireless base station according to the fourth embodiment.
  • FIG. 13 is a diagram illustrating an outline of the scrambling process in the control information according to the fourth embodiment.
  • FIG. 14 is a diagram illustrating an example of a process flow in the wireless terminal according to the fourth embodiment.
  • FIG. 15 is a diagram illustrating an example of a hardware configuration of a wireless terminal and a wireless base
  • the inventors of the present invention have earnestly studied such a flexible operation mode of the 5G system, and as a result, the operation allowing the dynamic change of the uplink radio access scheme according to the situation in the 5G system is performed. It has been found that a new problem to be improved may occur due to the introduction of the form.
  • an RRC (Radio Resource Control) signal which is a type of control signal
  • An RRC signal (RRC message, terminal-specific RRC signaling, or UE-specific-RRC signaling) transmitted individually for each wireless terminal is transmitted over a PDSCH (Physical ⁇ Downlink ⁇ Shared ⁇ CHannel) which is a downlink shared channel. Since the information is transmitted by the resource, it has an aspect of having flexibility in adding information to be notified. In other words, the format change of the RRC signal is more permissive than the format change of the downlink control signal (DCI: Downlink Control Information).
  • RRC signals include, for example, an RRC-Reconfiguration signal, an RRC-Connection-Establishment signal, and an RRC-Connection-Re-Establishment signal.
  • the radio terminal processes the RRC signal.
  • the delay is greater than the processing delay for the layer 1 signal.
  • the notification by the RRC signal is less immediate than the notification by the downlink control signal. Therefore, even if the radio base station determines that the uplink radio access scheme of a certain radio terminal should be changed, the radio base station must accurately grasp the timing at which the uplink radio access scheme is actually changed in the radio terminal. Is difficult.
  • transmission data to be transmitted on the uplink and / or transmission data to be transmitted on the downlink may continue to be generated.
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable and Low Latency Communications
  • ultra-high-volume connection In order to support wireless services such as mMTC (massive Machine Type Communications) and the like, requirements are becoming more sophisticated.
  • the uplink peak data rate of a 5G system is set to 10 Gbps, and a performance 20 to 200 times higher than that of 500 Mbps of LTE-Advanced and 50 Mbps of LTE is required.
  • the peak data rate of the downlink of the 5G system is set to 20 Gbps, and the performance is required to be 20 to 200 times higher than 1 Gbps of LTE-Advanced and 100 Mbps of LTE.
  • a wireless terminal in a 5G system can generate 20 to 200 times more data than a service operated in a 4G system and transmit the generated data to a wireless base station. The same applies to the wireless base station in the 5G system.
  • the performance is compared with that of the 4G system. It is expected that a difficult amount of transmission data will be generated by the wireless terminal. In this case, even though the radio base station has determined that the uplink radio access scheme should be changed, the radio terminal may continue uplink data transmission for a while using the radio access scheme before the change.
  • the wireless base station may fail to receive the uplink data from the wireless terminal due to the continuation of the uplink data transmission using the inappropriate wireless access scheme.
  • uplink transmission using an inappropriate radio access scheme may cause radio interference to another radio terminal or another radio base station, for example.
  • the wireless terminal may excessively drain the remaining power of the battery due to the uplink transmission using an inappropriate wireless access scheme.
  • the uplink radio access scheme is fixed, and the uplink radio access scheme is not dynamically changed. Therefore, in the 4G system, the above-described inconvenience has not been noticed as a problem.
  • the inventors of the present invention have come up with the unique knowledge that the above-mentioned technical circumstances may hinder the realization of various wireless services such as eMBB, URLLC, and mMTC.
  • the 5G system in the present disclosure is an example of a mobile communication system (also referred to as a next-generation wireless communication system) that allows a dynamic change of an uplink wireless access scheme.
  • a mobile communication system also referred to as a next-generation wireless communication system
  • the above-described problem may occur if the system is extended to allow a dynamic change of an uplink radio access scheme.
  • a waveform in the OFDMA scheme may be referred to as a CP-OFDM (Cyclic Prefix-Orthogonal Frequency Frequency Division Multiplexing) waveform.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Frequency Division Multiplexing
  • a waveform in the SC-FDMA scheme may be referred to as a DFT-S-OFDM (Discrete Fourier Transform-spread-Orthogonal Frequency Frequency Division Multiplexing) waveform.
  • DFT-S-OFDM Discrete Fourier Transform-spread-Orthogonal Frequency Frequency Division Multiplexing
  • the names of various channels such as PDSCH (Physical Downlink Shared CHannel) and PUSCH (Physical Uplink Shared CHannel) may be changed in future discussion on standardization of 5G systems. The same applies to terms related to the radio frame structure, such as subframes, slots, symbols, resource elements, resource blocks, and subcarriers. It should be noted that this disclosure is not intended to limit the components of the invention to those using these names.
  • Non-Patent Documents 1 to 38 are incorporated herein by reference.
  • a wireless communication system that allows dynamically changing an uplink wireless access scheme (also referred to as a wireless connection scheme) is exemplified.
  • the wireless terminal in the wireless communication system according to the first embodiment is in a state where a wireless connection with the wireless base station is established (also referred to as an RRC_CONNECTED state), and a first control message related to reconfiguration of the wireless connection with the wireless base station.
  • the first control message transmitted from the radio base station includes first information instructing resynchronization with the radio base station and second information regarding a radio access scheme to be applied to uplink data transmission. Be composed.
  • the second information included in the first control message is a first radio access scheme (which may also be referred to as a first scheme) as information on a radio access scheme to be applied to uplink data transmission with the radio base station.
  • Information about any of the second wireless access schemes (which may also be referred to as the second scheme) may be set.
  • the wireless terminal suspends uplink data transmission to the wireless base station and is selected according to the second information included in the first control message. Attempts to synchronize with the radio base station (may be referred to as resynchronization) for the radio access scheme. Then, after establishing resynchronization with the wireless base station, the wireless terminal restarts uplink data transmission to the wireless base station by the wireless access scheme according to the second information.
  • FIG. 1 is a diagram illustrating an example of a configuration of the wireless communication system 1 according to the first embodiment.
  • the wireless communication system 1 illustrated in FIG. 1 includes a wireless terminal 10 and a wireless base station 20.
  • the wireless terminal 10 and the wireless base station 20 illustrated in FIG. 1 are an abstract representation of a plurality of properties (which may also be referred to as aspects and viewpoints).
  • the wireless base station 20 may be configured by a combination of a plurality of devices.
  • the wireless communication system 1 may include a plurality of wireless terminals 10.
  • the wireless base station 20 can establish a wireless connection with a plurality of wireless terminals 10.
  • the wireless base station 20 may be appropriately replaced with a wireless area, a cell, a sector, or the like.
  • the wireless terminal 10 illustrated in FIG. 1 is configured to support a plurality of wireless access schemes.
  • the wireless terminal 10 is configured to support a first scheme and a second scheme in an uplink wireless access scheme for the wireless base station 20.
  • the first scheme may be, for example, a radio access scheme using a single carrier waveform in the uplink.
  • Such a first scheme may be, for example, the SC-FDMA scheme.
  • the second scheme may be, for example, a radio access scheme using a multicarrier waveform in the uplink.
  • Such a second scheme may be, for example, an OFDMA scheme.
  • the single carrier waveform in the first scheme may be a DFT-S-OFDM waveform.
  • the multicarrier waveform in the second scheme may be, for example, a CP-OFDM waveform.
  • the wireless terminal 10 may be configured to support only one of the first scheme and the second scheme in the downlink with the wireless base station 20.
  • the wireless terminal 10 may support only the OFDMA scheme in the downlink with the wireless base station 20.
  • the radio terminal 10 may support a radio access scheme (also referred to as a third scheme) different from the first scheme and the second scheme in the downlink with the radio base station 20.
  • the wireless terminal 10 illustrated in FIG. 1 may perform the first or second wireless access method among a plurality of wireless access methods according to setting information from the wireless base station 20 or according to setting information stored in a memory of the wireless terminal 10 in advance.
  • One of the schemes may be selected, and a radio signal may be transmitted to the radio base station 20 according to the selected radio access scheme.
  • the wireless terminal 10 may transmit a wireless signal according to the first scheme to the wireless base station 20.
  • the radio terminal 10 may transmit a radio signal having a single carrier waveform to the radio base station 20 according to setting information indicating the first radio access scheme as the uplink radio access scheme.
  • the wireless terminal 10 transmits a wireless signal according to the second method to the wireless base station 20. May be.
  • the radio terminal 10 may transmit a radio signal with a multicarrier waveform to the radio base station 20 according to the setting information indicating the second radio access scheme as the uplink.
  • the radio base station 20 illustrated in FIG. 1 performs a first radio access scheme using a single carrier waveform and a second radio access scheme using a multi-carrier waveform for uplink radio connection from the radio terminal 10. It is configured to support the two methods. Although one wireless terminal 10 is illustrated in FIG. 1, the wireless base station 20 may be configured to be able to establish a wireless connection with a plurality of wireless terminals 10. For example, the radio base station 20 includes a radio terminal 10 (which may be referred to as a first radio terminal) that attempts to transmit an uplink radio signal according to a first scheme and a radio terminal that attempts to transmit an uplink radio signal according to a second scheme.
  • a radio terminal 10 which may be referred to as a first radio terminal
  • the radio base station 20 may be configured to establish an uplink wireless connection with the terminal 10 (which may also be referred to as a second wireless terminal).
  • the radio base station 20 may be configured to support only one of the first scheme and the second scheme in the downlink with the radio terminal 10.
  • the radio base station 20 may support only the OFDMA scheme in the downlink with the radio terminal 10.
  • the wireless base station 20 may support a wireless access scheme (also referred to as a third scheme) different from the first scheme and the second scheme in a downlink with the wireless terminal 10.
  • the radio base station 20 illustrated in FIG. 1 is configured to transmit either a first scheme capable of transmitting an uplink radio signal having a single carrier waveform or a second scheme capable of transmitting an uplink radio signal having a multicarrier waveform. May be assigned to the wireless terminal 10 based on an arbitrary algorithm. For example, the radio base station 20 transmits setting information indicating the uplink radio access scheme to the radio terminal 10 to which one of the first scheme and the second scheme is assigned as the uplink radio access scheme. May be configured.
  • FIG. 2 is a diagram illustrating an example of assignment of an uplink wireless access scheme in the wireless communication system according to the first embodiment.
  • the wireless communication system 1 illustrated in FIG. 2 includes two wireless terminals 10 (a first wireless terminal 10-1 and a second wireless terminal 10-2) and a wireless base station 20.
  • the first wireless terminal 10-1 may be located farther from the wireless base station 20 than the second wireless terminal 10-2.
  • the downlink radio quality from the radio base station 20 observed at the first radio terminal 10-1 is lower than the downlink radio quality observed at the second radio terminal 10-2.
  • the downlink radio quality includes, for example, a received signal strength (RSSI: Received Signal Strength Indicator), a signal-to-noise ratio (SNR: Signal-to-Noise Ratio), and a reference signal received power (RSRP: Reference Signal Received Power). ) And reference signal reception quality (RSRQ: Reference @ Signal @ Received @ Quality). Also, instead of downlink radio quality, uplink radio quality may be used.
  • RSSI Received Signal Strength Indicator
  • SNR Signal-to-Noise Ratio
  • RSRP Reference Signal Received Power
  • RSRQ Reference @ Signal @ Received @ Quality
  • the radio base station 20 shown in FIG. 2 receives a measurement result report including an index value indicating downlink radio quality from each radio terminal 10 (the first radio terminal 10-1 and the second radio terminal 10-2). May be.
  • the wireless base station 20 may select a wireless access scheme to be assigned to each wireless terminal 10 based at least in part on a measurement result report from each wireless terminal 10. For example, the wireless base station 20 may assign the second method, which is a wireless access method using a multi-carrier waveform, to the wireless terminal 10 that has transmitted the measurement result report regarding good wireless quality.
  • the wireless base station 20 may assign the first method, which is a wireless access method using a single carrier waveform, to the wireless terminal 10 that has transmitted the measurement result report regarding the poor wireless quality.
  • the radio base station 20 compares the index value included in the measurement result report with a predetermined threshold (which may also be referred to as a first threshold), so that the downlink radio quality indicated by the measurement result report is good. May be determined. For example, a description will be given on the assumption that the larger the index value indicated in the measurement result report is, the better the radio quality is. Under this assumption, when the index value included in the measurement result report is equal to or greater than a predetermined threshold, the radio base station 20 may determine that the radio quality indicated in the measurement result report is good. On the other hand, when the index value included in the measurement result report is less than the predetermined threshold, the radio base station 20 may determine that the radio quality indicated in the measurement result report is not good.
  • a predetermined threshold which may also be referred to as a first threshold
  • the threshold value (also referred to as a first threshold value) used for determining the switching of the wireless access method described above is a threshold value (also referred to as a second threshold value) used for determining the trigger of handover to another wireless base station. ) May be larger. In other words, even if the radio quality is determined to be relatively good in comparison with the second threshold, it may be determined that the radio quality is relatively poor in comparison to the first threshold. unknown. In addition, under the assumption that the smaller the index value indicated in the measurement result report is, the better the radio quality is, it may be possible to make a determination opposite to the above-described example.
  • a first range 30-1 which is a range where radio quality can be determined to be relatively poor
  • a second range 30-2 which is a range where radio quality can be determined to be good.
  • the first wireless terminal 10-1 belongs to the first range 30-1, and is assigned the first method, which is a wireless access method using a single carrier waveform. Therefore, the first wireless terminal 10-1 shown in FIG. 2 transmits a wireless signal 40-1 according to the first method to the wireless base station 20.
  • the second wireless terminal 10-2 belongs to the second range 30-2, and is assigned a second method, which is a wireless access method using a multicarrier waveform. Therefore, the second wireless terminal 10-2 illustrated in FIG.
  • the second wireless terminal 10-2 belonging to the second range 30-2 transmits the wireless signal 40-2 according to the second scheme to the wireless base station 20.
  • the first wireless terminal 10-1 belonging to the first range 30-1 uses SC-FDMA as an uplink (UL) wireless access method and a downlink (DL) wireless access method. OFDMA is assigned.
  • the second wireless terminal 10-2 belonging to the second range 30-2 is assigned OFDMA or SC-FDMA as an uplink (UL) wireless access scheme and OFDMA as a downlink (DL) wireless access scheme.
  • SC-FDMA is an example of the first method
  • OFDMA is an example of the second method.
  • the wireless terminal 10 with good wireless quality can use the second scheme, which is a wireless access scheme using a multicarrier waveform, to improve the uplink transmission rate compared to the first scheme.
  • the second scheme which is a wireless access scheme using a multicarrier waveform
  • signal transmission with high resistance to multipath interference can be realized by transmitting a wideband signal at a high information rate in parallel using a plurality of orthogonal subcarrier signals. .
  • an improvement in transmission rate is expected.
  • a radio access scheme using a multi-carrier waveform has a higher peak-to-average power ratio (PAPR) than a radio access scheme using a single-carrier waveform.
  • PAPR peak-to-average power ratio
  • the wireless communication system 1 sets an uplink of a first scheme, which is a wireless access scheme based on a multicarrier waveform, to a second range 30 in which wireless quality is determined to be good. Can be limited to -2. Accordingly, the wireless communication system 1 can appropriately execute the uplink transmission by the second method, which is the wireless access method of the multicarrier waveform, while suppressing the average output of the uplink transmission from the wireless terminal 10.
  • the wireless base station 20 may assign the first method, which is a wireless access method using a single carrier waveform, to the wireless terminal 10 having relatively good wireless quality.
  • the radio terminal 10 having relatively poor radio quality can use the first scheme, which is a radio access scheme using a single carrier waveform, to lower the uplink PAPR than the first scheme.
  • the SC-FDMA method using the DFT-S-OFDM waveform generates a single carrier signal by a combination of a discrete Fourier transform (DFT) process and an inverse fast Fourier transform (IFFT) process. I can do it.
  • the SC-FDMA scheme can reduce the uplink PAPR by using a single carrier signal, as compared with the second scheme, which is a multi-carrier waveform radio access scheme.
  • the first method of the single carrier waveform can appropriately suppress the increase of the spurious component that can be an interference source, as compared with the second method of the multicarrier waveform.
  • the first scheme of the single carrier waveform is expected to increase the coverage of the uplink as compared with the second scheme of the multicarrier waveform.
  • the wireless communication system 1 has a single carrier waveform for the uplink transmission in the first range 30-1 in which the wireless quality can be determined to be relatively poor. Assign the first method.
  • the wireless base station 20 assigns the first method of the single carrier waveform to the first wireless terminal 10-1 belonging to the first range 30-1.
  • the wireless terminal 10 in FIG. 2 may be a non-movable wireless communication device fixed to land or a building, or a wireless communication device mounted on a moving body such as a vehicle (may be referred to as a vehicle-mounted terminal).
  • the mobile communication device may be a mobile communication device (also referred to as a mobile station) such as a mobile communication device (also referred to as a smartphone) or a wireless communication device carried by a user.
  • the second wireless terminal 10-2 belongs to the second range 30-2 in the example of FIG. 2, but the outer edge portion (also referred to as a cell) of a wireless area (also referred to as a cell) formed by the wireless base station 20. Toward the cell edge).
  • the wireless base station 20 may detect the movement of the wireless terminal 10 based at least in part on a change in wireless quality indicated by the measurement result report from the wireless terminal 10.
  • the wireless base station 20 repeatedly receives the measurement result report from the wireless terminal 10 at predetermined time intervals. After allocating the second scheme to the radio terminal 10 having good radio quality received at the time point t1, the radio base station 20 determines that the radio quality received from the radio terminal 10 at the other time point t2 is relatively low. You may decide that it is not good. In that case, the radio base station 20 may change the uplink radio access scheme of the radio terminal 10 to the first scheme. This is expected to prevent the wireless terminal 10 from continuing the uplink transmission by the second scheme after moving from the second range 30-2 to the first range 30-1.
  • the change of the radio access scheme cannot be completed instantaneously.
  • a short period of time (which may also be referred to as a transition period) until the new radio access scheme is actually applied to the radio terminal 10
  • uplink transmission by the radio access scheme before the change may be continued.
  • the wireless signal output from the wireless terminal 10 by the uplink transmission during the transition period may increase interference due to spurious components. Therefore, after the necessity of changing the uplink radio access scheme arises, it is desirable to suppress uplink transmission from the radio terminal 10 to be changed until a new radio access scheme is applied to the radio terminal 10. .
  • the wireless terminal 10 may be notified of the change in the uplink wireless access scheme via an RRC message including an Intra-Cell @ HO (Hand @ Over) execution instruction.
  • the radio base station 20 may notify the radio terminal 10 of the change in the uplink radio access scheme via an RRC message including an Intra-Cell @ HO (Hand @ Over) execution instruction.
  • the Intra-Cell @ HO (Hand @ Over) execution instruction is instruction information for instructing the same wireless base station 20 as the wireless base station 20 with which the wireless terminal 10 has established wireless connection to perform a pseudo HO. is there.
  • the wireless terminal 10 By performing a pseudo HO, the wireless terminal 10 resets processing entities in some layers in the uplink wireless communication protocol stack and performs resynchronization with the same wireless base station 20.
  • the Intra-Cell @ HO (Hand @ Over) execution instruction has an aspect as first information for instructing resynchronization to the same radio base station.
  • Intra-Cell @ HO may be referred to as, for example, intra-cell handover, intra-sector handover, intra-base station handover, or radio base station handover.
  • the wireless terminal 10 may perform a random access operation of transmitting a preamble signal to the wireless base station 20 via a PRACH (Physical Random Access CHannel).
  • the radio terminal 10 transmits a preamble signal (also referred to as message 1) to the radio base station 20 and receives a RACH response as response information from the radio base station 20.
  • Wireless terminal 10 may transmit a connection request signal as message 3 after receiving a RACH response (also referred to as message 2) from wireless base station 20.
  • the wireless terminal 10 transmits an RRC connection setup (RRC @ connection @ setup) message (also referred to as message 4) including cell setup information for establishing a connection from the wireless base station 20. May receive.
  • FIG. 3 is a diagram illustrating an example of a processing flow in the wireless base station 20 according to the first embodiment.
  • the process flow illustrated in FIG. 3 may be started, for example, when the wireless base station 20 receives the measurement result report from the wireless terminal 10.
  • the radio base station 20 acquires information on the downlink radio quality of the radio base station 20 from the measurement result report received from the radio terminal 10 (S101).
  • the measurement result report may be referred to as MeasurementReport, for example.
  • Information on radio quality includes, for example, a reception quality indicator (CQI: Channel Quality Indicator), a precoding matrix (PMI: Precoding Matrix Indicator), a precoding type indicator (PTI: Precoding Type Indicator), and a rank indicator (RI: Rank Indicator).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • PTI Precoding Type Indicator
  • RI rank Indicator
  • the information acquired in S101 is not limited to the measurement result report on the downlink radio quality.
  • the radio base station 20 measures the radio quality of the uplink based at least in part on the radio signal (eg, SRS (Sounding Reference Signal)) transmitted from the radio terminal 10, and thereby measures the radio quality. (May be referred to as a measurement result report).
  • the measurement result report is an example of the information acquired in S101.
  • the wireless base station 20 determines whether the wireless quality is relatively good based at least in part on the information on the wireless quality obtained from the measurement result report (S102).
  • the radio base station 20 may, for example, compare information on radio quality with a predetermined threshold and determine whether the radio quality is relatively good based at least in part on the comparison result. For example, when the numerical value indicated in the information on the radio quality is equal to or more than a predetermined threshold, the radio base station 20 may determine that the radio quality is relatively good (YES in S102). On the other hand, when the numerical value indicated in the information on the radio quality is less than the predetermined threshold, the radio base station 20 may determine that the radio quality is relatively poor (NO in S102).
  • the example of the above determination is based on the premise that the larger the numerical value indicated in the information on the radio quality, the better the radio quality. In the case of a design in which the smaller the numerical value indicated in the information related to the radio quality is, the better the radio quality is, it is only necessary to perform a determination opposite to the above-described example.
  • the wireless base station 20 transmits the measurement result report to the wireless terminal 10 using the wireless access method based on the multi-carrier waveform.
  • a certain second method is selected (S103).
  • the radio base station 20 transmits the radio access using the single carrier waveform to the radio terminal 10 that transmitted the measurement result report.
  • the first method which is the method, is selected (S104).
  • the radio base station 20 accesses a management table T100 configured to store information on an uplink radio access scheme applied to each of the plurality of radio terminals 10, and transmits the measurement result report to the radio terminal. It is determined whether or not the selection result for 10 is different from the content of the management table T100 (S105).
  • FIG. 4 is a diagram illustrating an example of the content of the management table T100 in the wireless base station 20 according to the first embodiment.
  • the management table T100 illustrated in FIG. 4 includes a terminal ID (T101), which is information for identifying the wireless terminal 10, and information T102 regarding an uplink wireless access scheme applied to the wireless terminal 10.
  • T101 terminal ID
  • T102 uplink wireless access scheme
  • the “first method” is applied to the wireless terminal 10 having the terminal ID (T101) “terminal 1” as the uplink wireless access method T102.
  • the wireless terminal 10 whose terminal ID (T101) is "terminal 2” it is indicated that the "second method” is applied as the uplink wireless access method T102.
  • the terminal ID (T101) may be any information as long as the radio base station 20 can identify the radio terminal 10 at least during a certain finite time period.
  • C-RNTI Cell-Radio Network Network Temporary Identifier
  • identification information temporarily given to the wireless terminal 10 may be used.
  • the radio base station 20 may use the terminal ID (T101) of the radio terminal 10 obtained in the process of receiving (acquiring) the measurement result report from the uplink radio signal from the radio terminal 10. .
  • the wireless base station 20 learns that the terminal ID (T101) of the wireless terminal 10 that has transmitted the measurement result report is “terminal 2,” the wireless base station 20 accesses the management table T100, It is known that the contents of the management table T100 for the wireless terminal 10 whose terminal ID (T101) is "terminal 2" are "second method". Then, the wireless base station 20 can determine whether the selection result is different from the content of the management table T100 by comparing the selection result in S103 or S104 with the content of the management table T100 (S105).
  • the radio base station 20 issues an instruction to execute Intra-Cell @ HO (which may also be referred to as first information).
  • An RRC message (also referred to as a first control message) including information indicating the resulting radio access scheme (information related to the radio access scheme, also referred to as second information) is transmitted to the wireless terminal 10 (S106).
  • the instruction to execute Intra-Cell @ HO is an example of first information for instructing re-synchronization to the radio base station 20.
  • the information indicating the wireless access method as a selection result is an example of second information regarding the wireless access method used for uplink data transmission with the wireless base station 20.
  • the RRC message transmitted from the wireless base station 20 to the wireless terminal 10 in S106 is an example of a first control message related to reconfiguration of a wireless connection between the wireless base station 20 and the wireless terminal 10.
  • the wireless base station 20 updates the contents of the management table T100 based at least in part on the selection result in S103 or S104 (S107). For example, it is assumed that the selection result based on the wireless quality indicated in the measurement result report from the wireless terminal 10 whose terminal ID (T101) is “terminal 2” is “first method”. In this case, the contents of the management table T100 shown in FIG. 4 are overwritten from “second method” to “first method” for the wireless access method (T102) whose terminal ID (T101) corresponds to “terminal 2”. You.
  • the wireless base station 20 may skip the processing of S106 to S107.
  • FIG. 3 illustrates a part of the processing in the wireless base station 20.
  • the wireless base station 20 may execute other processing in addition to the processing flow illustrated in FIG.
  • FIG. 5 is a diagram illustrating an example of a processing flow in the wireless terminal 10 according to the first embodiment.
  • the flow of the process illustrated in FIG. 5 may be started, for example, when the wireless terminal 10 receives an RRC message from the wireless base station 20.
  • the RRC message is an example of a first control message related to reconfiguration of a wireless connection between the wireless base station 20 and the wireless terminal 10.
  • Such an RRC message is received from the wireless base station 20 by the wireless terminal 10 in a state in which a wireless connection with the wireless base station 20 has been established (also referred to as an RRC_CONNECTED state).
  • the wireless terminal 10 determines whether the RRC message received from the wireless base station 20 includes an instruction to execute Intra-Cell HO (S201). For example, when the information element “MobileControlInfo” is included in the RRC message, the wireless terminal 10 may determine that the RRC message includes an instruction to execute Intra-Cell @ HO (YES in S201). On the other hand, when the information element “MobilityControlInfo” is not included in the RRC message, the wireless terminal 10 may determine that the execution instruction of Intra-Cell @ HO is not included in the RRC message (NO in S201).
  • the information element “MobileControlInfo” has an aspect as first information that instructs the wireless terminal 10 to resynchronize with the wireless base station 20.
  • the information element “MobilityControlInfo” includes, as an execution instruction of Intra-Cell @ HO (which may be referred to as first information), an execution instruction of Inter-Cell @ HO for changing the connection destination to another cell. Side.
  • the wireless terminal 10 may or may not determine which aspect to have based at least in part on the content of the parameter set in the information element “MobileControlInfo”.
  • the determination process of S201 in the process flow illustrated in FIG. 5 may be equivalent to determining whether or not the RRC message includes the information element “MobilityControlInfo” regarding the mobility of the wireless terminal. Good.
  • step S201 as a method for strictly determining that the information element “MobileControlInfo” is an instruction to execute Intra-Cell @ HO, the wireless terminal 10 may use, for example, the content of the parameter set in the information element “MobileControlInfo” as the wireless terminal. 10 indicates that HO is directed to the same wireless base station 20 (which may be called a cell, a sector, a wireless area, etc.) as the wireless base station 20 with which a wireless connection has been established, or It may be determined whether the content is an instruction to perform HO to a wireless base station 20 different from the wireless base station 20 with which the connection has been established.
  • the wireless base station 20 which may be called a cell, a sector, a wireless area, etc.
  • the radio terminal 10 When the content of the parameter set in the information element “MobilityControlInfo” is a content instructing HO to the same radio base station 20 as the radio base station 20 with which the radio terminal 10 has established the radio connection, the radio terminal 10 , It can be determined strictly that the information element “MobilityControlInfo” is an instruction to execute Intra-Cell @ HO.
  • the wireless terminal 10 suspends the uplink transmission (S202). This makes it possible to suppress uplink transmission from the wireless terminal 10 until the new wireless access scheme is applied to the wireless terminal 10.
  • the radio terminal 10 acquires information on the radio access scheme from the RRC message (S203).
  • the information on the radio access scheme may be, for example, an information element “PUSCH-Config” on an uplink radio channel.
  • the radio terminal 10 performs the uplink radio access method using the single carrier waveform It can be determined that one scheme is shown.
  • the radio terminal 10 performs multicarrier transmission as an uplink radio access scheme.
  • the parameter indicating that the transform-precoding is applied may have an aspect as second information regarding one of the first scheme and the second scheme.
  • the information element “PUSCH-Config” may also have an aspect as second information relating to either the first scheme or the second scheme.
  • the information element “PUSCH-Config” may include a 1-bit flag indicating whether or not to apply the transform-precoding.
  • the information element “PUSCH-Config” includes a modulation coding scheme (MCS: Modulation Coding Scheme) index, and the radio terminal 10 transmits when the MCS index included in the information element “PUSCH-Config” is a predetermined value. It may be determined that a parameter indicating that precoding is applied is included. In other words, the wireless terminal 10 determines whether or not the MCS index included in the information element “PUSCH-Config” matches the value of the MCS index used only when transform-precoding is applied. Is also good.
  • MCS Modulation Coding Scheme
  • the modulation coding scheme (MCS: Modulation Coding Scheme) index in the information element “PUSCH-Config” may have an aspect as second information relating to either the first scheme or the second scheme.
  • MCS index may be called an MCS table index, a modulation coding scheme table index, or the like.
  • the information element “PUSCH-Config” is an example of information on a radio access scheme, and the present embodiment is not limited to this.
  • the above-mentioned parameters may be stored in the information element “SRS-config” (which may be referred to as SoundingRS-UL-Config), the information element “RadioResourceConfig”, the information element “PhysicalConfigDedicated”, and the like. Good.
  • SRS-config which may be referred to as SoundingRS-UL-Config
  • RadioResourceConfig the information element “PhysicalConfigDedicated”
  • These information elements can be included in, for example, an RRC @ Reconfiguration message.
  • the various information elements described above may also have an aspect as second information relating to either the first method or the second method.
  • the second information includes, for example, the type (for example, the first scheme or the second scheme) of the radio access scheme applied to the uplink radio signal from the radio terminal 10 to the radio base station 20, Information indicating the type of waveform (eg, a single-carrier waveform or a multi-carrier waveform) applied to a link radio signal, and information indicating whether or not predetermined signal processing is applied in the process of generating an uplink radio signal (eg, , Information indicating whether or not the precoding process is applied).
  • the type for example, the first scheme or the second scheme
  • Information indicating the type of waveform eg, a single-carrier waveform or a multi-carrier waveform
  • the radio terminal 10 transmits a parameter related to a radio access scheme (which may be referred to as a changed radio access scheme or a new radio access scheme) in accordance with information (also referred to as second information) relating to the radio access scheme. 20 (S204).
  • the wireless terminal 10 may attempt to perform synchronization processing with the HO-destination wireless base station 20 indicated by the information element “MobileControlInfo” acquired from the RRC message.
  • the HO destination and the HO source may be the same wireless base station 20.
  • the HO destination radio base station 20 indicated in the information element “MobilityControlInfo” is the same as the radio base station 20 that has established the radio connection at the time before the suspension of the uplink transmission in S202 described above. May be.
  • uplink synchronization between the wireless terminal 10 and the wireless base station 20 is established for the new wireless access scheme notified via the RRC message.
  • the synchronization processing in S204 may be referred to as resynchronization processing.
  • the wireless terminal 10 In the synchronization processing of S204, the wireless terminal 10 only needs to ensure synchronization with the wireless base station 20 for parameters related to the wireless access scheme to be applied to uplink data transmission. At this time, the wireless terminal 10 may perform a random access operation of transmitting a preamble signal to the wireless base station 20 via a PRACH (Physical Random Access CHannel). In the random access operation, the radio terminal 10 transmits a preamble signal (which may be referred to as a message 1, an Msg1 signal, a first message, or the like) to the radio base station 20 and transmits a RACH response as response information to the radio base station 20. 20.
  • a preamble signal which may be referred to as a message 1, an Msg1 signal, a first message, or the like
  • the radio terminal 10 After receiving the RACH response (which may be referred to as a message 2, an Msg2 signal, a second message, etc.) from the radio base station 20, the radio terminal 10 transmits a connection request signal to the message 3 (Msg3 signal, the third message, etc.). (Which may be referred to as). Further, after transmitting the connection request signal, the wireless terminal 10 is called an RRC connection setup (RRC @ connection @ setup) message (message 4, Msg4 signal, fourth message, etc.) including cell setup information for establishing a connection. May be received from the wireless base station 20.
  • RRC connection setup RRC @ connection @ setup
  • any or all of the messages 1 to 4 may be transmitted and received by a wireless access method according to information (also referred to as second information) on the wireless access method,
  • the information may be transmitted and received by a wireless access method different from information on the access method (which may also be referred to as second information).
  • the wireless terminal 10 transmits an RRC message of a completion report to the wireless base station 20 by the above-mentioned changed wireless access scheme (S205).
  • the RRC message of the completion report may be, for example, an RRC ⁇ Reconfiguration ⁇ Complete message.
  • the radio base station 20 can know that the uplink radio access scheme selected by the radio base station 20 has been normally applied to the radio terminal 10.
  • the wireless terminal 10 may omit the transmission of the completion report RRC message in S205.
  • the wireless base station 20 can determine that the changed wireless access scheme has been normally applied to the wireless terminal 10 through the process of the synchronization process (S204) with the wireless terminal 10. In other words, the radio base station 20 may determine that the change of the radio access scheme has been applied in the radio terminal 10 without confirming the reception of the RRC message of the completion report in S205.
  • the wireless terminal 10 restarts the uplink transmission using the changed wireless access scheme (S206). This makes it possible to appropriately perform uplink transmission using the dynamically changed uplink radio access scheme.
  • the above is an example of the processing flow in the wireless terminal 10 according to the first embodiment.
  • the example of the processing flow illustrated in FIG. 5 illustrates a part of the processing in the wireless terminal 10.
  • the wireless terminal 10 may execute other processing in addition to the processing flow illustrated in FIG.
  • the processing flow illustrated in FIG. 5 is an example, and the order of each step may be appropriately changed. For example, the execution order of S202 and S203 may be switched.
  • FIG. 6 is a diagram illustrating an example of a sequence in the wireless communication system 1 according to the first embodiment.
  • the sequence illustrated in FIG. 6 starts when the wireless terminal 10 makes an initial connection to the wireless base station 20 (A01).
  • the radio terminal 10 may acquire the parameters necessary for the radio connection with the radio base station 20 by receiving the system information broadcast from the radio base station 20.
  • the system information may be, for example, MIB (Master ⁇ Information ⁇ Block) or SIB (System ⁇ Information ⁇ Block).
  • the wireless terminal 10 may acquire the information element “RACH-config-common” from the SIB broadcasted from the wireless base station 20.
  • the radio terminal 10 determines whether or not to apply precoding to an Msg3 signal (which may be referred to as a third message, a message 3 or the like) in a random access process (Random @ Access @ Process) by using an information element "RACH-config”. The determination may be based at least in part on “-common”. If the wireless terminal 10 determines that precoding is to be applied to the Msg3 signal, the wireless terminal 10 may transmit the Msg3 signal of the random access process to the wireless base station 20 using the first method that is a wireless access method using a single carrier waveform. .
  • the wireless terminal 10 determines that precoding is not applied to the Msg3 signal
  • the wireless terminal 10 transmits the Msg3 signal of the random access process to the wireless base station 20 using the second method, which is a wireless access method using a multicarrier waveform. May be.
  • the wireless base station 20 transmits an RRC message (RRC Reconfiguration message) to the wireless terminal 10 after the establishment of the initial connection (A01) with the wireless terminal 10 or during the process of the initial connection (A01) (A02).
  • RRC Reconfiguration message an RRC message
  • the radio terminal 10 receives an RRC message (RRC @ Reconfiguration message) from the radio base station 20 after the establishment of the initial connection (A01) with the radio base station 20 or during the process of the initial connection (A01).
  • the RRC message in A02 may include, for example, setting information (MeasConfig) related to a measurement result report and setting information (PUSCH-Config) related to an uplink radio access scheme.
  • the wireless terminal 10 After receiving the A02 RRC message, the wireless terminal 10 transmits a response message (RRC Reconfiguration Complete message) indicating that the RRC message has been normally received to the wireless base station 20 (A03).
  • the radio base station 20 After transmitting the A02 RRC message, the radio base station 20 receives from the radio terminal 10 a response message (RRC @ Reconfiguration @ Complete message) indicating that the RRC message has been normally received (A03).
  • the radio terminal 10 starts uplink data transmission to the radio base station 20 according to the setting information (PUSCH-Config) on the uplink radio access scheme acquired from the RRC message of A02 (A04). For example, when the “first scheme” is indicated by the setting information (PUSCH-Config) related to the radio access scheme, the radio terminal 10 performs the uplink to the radio base station 20 using the first scheme that is the radio access scheme based on the single carrier waveform. (A04). For example, when the “second scheme” is indicated by the setting information (PUSCH-Config) related to the radio access scheme, the radio terminal 10 performs the uplink to the radio base station 20 using the second scheme that is the radio access scheme based on the multi-carrier waveform. (A04). In other words, the radio base station 20 receives uplink data from the radio terminal 10 using the radio access scheme specified in the R02 message of A02.
  • the radio terminal 10 measures downlink radio quality from the radio base station 20 according to the setting information (MeasConfig) related to the measurement result report acquired from the RRC message of A02, and transmits a measurement result report indicating the downlink radio quality.
  • the setting information (MeasConfig) related to the measurement result report may include, for example, a parameter related to a frequency band to be measured, a parameter related to a transmission cycle of the measurement result report, a parameter related to a transmission timing of the measurement result report, and the like.
  • the radio base station 20 receives the measurement result report from the radio terminal 10 and determines whether to change the uplink radio access scheme of the radio terminal 10 based at least in part on the radio quality indicated in the measurement result report. Is determined (A051).
  • a specific example of the determination of A051 is the same as the flow of processing illustrated in FIG. For example, in S105 in FIG. 3, determining that the selection result is different from the content of the management table (YES in S105) is equivalent to determining that the uplink wireless access method of the wireless terminal 10 should be changed. .
  • the radio base station 20 determines that the uplink radio access scheme of the radio terminal 10 should be changed (A051). As a result, the radio base station 20 notifies the radio terminal 10 of the changed uplink radio access scheme by the RRC message (A06).
  • the RRC message of A06 may include control information (MobilityControlInfo) related to mobility of the wireless terminal 10 and setting information (PUSCH-Config) related to an uplink wireless access scheme.
  • the radio terminal 10 receives from the radio base station 20 an RRC message including control information (MobilityControlInfo) related to mobility of the radio terminal 10 and setting information (PUSCH-Config) related to an uplink radio access scheme. (A06).
  • the radio terminal 10 detects that the RRC message (A06) received from the radio base station 20 includes the control information (MobilityControlInfo) related to the mobility of the radio terminal 10, and detects an uplink to the radio base station 20.
  • the data transmission is interrupted (A061).
  • the radio terminal 10 may stop transmitting a scheduling request signal requesting allocation of uplink radio resources for data to be transmitted on the uplink stored in the transmission buffer.
  • the wireless terminal 10 acquires setting information (PUSCH-Config) related to the uplink radio access scheme from the RRC message (A06) of A06, and applies the setting information to the uplink radio access scheme for the radio base station 20. (A062).
  • setting information PUSCH-Config
  • the wireless terminal 10 performs resynchronization with the wireless base station 20 for the changed wireless access scheme (A07).
  • the radio base station 20 performs resynchronization with the radio terminal 10 with respect to the changed radio access scheme specified by the RRC message of A06 (A07).
  • the wireless terminal 10 After the resynchronization is established (A07), the wireless terminal 10 transmits to the wireless base station 20 a RRC message (RRC @ Reconfiguration @ Complete message) of a completion report indicating that the reconnection based on the RRC message of A06 has been completed (A08). ).
  • the radio base station 20 receives the completion report RRC message from the radio terminal 10 after the re-synchronization is established by the radio access method after the change specified in the ARC RRC message (A07) (A08).
  • the wireless terminal 10 restarts uplink data transmission to the wireless base station 20 according to the changed wireless access scheme (A09).
  • the radio base station 20 when the radio base station 20 determines that the uplink radio access scheme of the radio terminal 10 should be changed, the radio base station 20 instructs resynchronization to the radio base station.
  • An RRC message (first control message) including control information (first information) and setting information (second information) related to the changed wireless access scheme is transmitted from the wireless base station 20 to the wireless terminal 10.
  • the wireless terminal 10 receives the first control message from the wireless base station 20, and the control information (first information) instructing resynchronization with the wireless base station is included in the first control message.
  • the uplink data transmission to the radio base station 20 is interrupted.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • the wireless terminal 10 can obtain the setting information obtained from the first control message (which can also be referred to as setting information relating to the changed wireless access scheme and second information). And performs a resynchronization process with the radio base station 20 and transmits an RRC message of a completion report to the radio base station 20. As a result, the radio base station 20 can appropriately determine that the changed radio access scheme notified by the RRC message is applied to the uplink radio connection with the radio terminal 10. With the above-described series of operations, the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • Example 2 a more specific example of the wireless communication system 1 described in Example 1 is provided.
  • the radio base station 20 includes, in a first control message transmitted to the radio terminal 10, a third control message instructing the radio terminal 10 to omit a part of the handover process based on the first information.
  • Information can be added.
  • the wireless terminal 10 can receive, from the wireless base station, a first control message including third information indicating that a part of the handover process based on the first information is to be omitted. .
  • the wireless terminal 10 suspends the uplink data transmission to the wireless base station 20, and stops the transmission of the second layer in the wireless communication protocol stack.
  • the state established before the reception of the first control message may be continuously used even after resynchronization with the radio base station.
  • the radio base station 20 transmits the first control message including the third information to the radio terminal 10
  • the uplink processing entity belonging to some sublayers of the second layer in the radio communication protocol stack The state established before the transmission of the first control message may be continuously used even after resynchronization with the wireless terminal.
  • a handover process is used to appropriately perform a dynamic change of an uplink radio access scheme.
  • the combination of the wireless terminal 10 and the wireless base station 20 may not be changed.
  • the combination of the radio terminal 10 and a cell (which may be referred to as a radio area or a sector) controlled by the radio base station 20 may not be changed.
  • a process required for changing the uplink radio access scheme by omitting some redundant processing of the handover process. Delay can be reduced.
  • loss of uplink data to be transmitted can be reduced by omitting some redundant processing of the handover processing.
  • the radio base station 20 may be read as a cell controlled by the radio base station 20.
  • FIG. 7 is a diagram illustrating an example of a processing flow in the wireless base station 20 according to the second embodiment.
  • the same reference numerals are given to the same portions as those in the first embodiment in FIG.
  • an information element of the RRC message transmitted to the wireless terminal 10 is newly added (S106A).
  • the radio base station 20 issues an Intra-Cell @ HO execution instruction (first information), information (second information) on the radio access scheme as a selection result, and an instruction to omit a part of the HO processing.
  • An RRC message (first control message) including the information (third information) to be transmitted is transmitted to the wireless terminal 10.
  • the radio base station 20 transmits the RRC message (first control message) including the third information to the radio terminal 10
  • the radio base station 20 belongs to at least a part of the sublayer of the second layer in the radio communication protocol stack.
  • the state established before the transmission of the first control message may be used continuously after resynchronization with the wireless terminal.
  • the uplink processing entity belonging to at least a part of the sub-layer of the second layer may include, for example, a packet data convergence protocol (PDCP) entity, a radio link control (RLC) entity, and the like.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • the radio base station 20 When the radio base station 20 transmits an RRC message (first control message) including the third information to the radio terminal 10, for example, the radio base station 20 sets the header compression context for compressing the PDCP service data unit (SDU) to the first control Even after resynchronization with the wireless terminal 10 by the message, the PDCP entity may continue to use the message. In other words, when the radio base station 20 transmits the RRC message (first control message) including the third information to the radio terminal 10, the PDCP re-establishment (PDCP re-establishment) may be omitted.
  • RRC message first control message
  • SDU PDCP service data unit
  • various states in the PDCP entity include, for example, various state variables such as sequence @ number and the state of the reordering buffer.
  • various state variables such as sequence @ number and the state of the reordering buffer.
  • the radio base station 20 transmits an RRC message (first control message) including the third information to the radio terminal 10, for example, a part or all of an RLC configuration for processing an RLC service data unit (SDU) is transmitted.
  • the RLC entity may be continuously used.
  • the radio base station 20 may omit RLC @ re-establishment.
  • various states in the RLC entity are May be continued.
  • Various states in the RLC entity include, for example, sequence @ number, state variables related to retransmission control and reordering control, states of a reordering buffer, and the like.
  • sequence @ number For example, initialization of sequence @ number, initialization of state variables related to retransmission control and reordering control, initialization of a reordering buffer, and the like.
  • FIG. 8 is a diagram illustrating an example of a processing flow in the wireless terminal 10 according to the second embodiment.
  • the processing flow illustrated in FIG. 8 shows the processing related to S204 in the processing flow in FIG. 5 more specifically.
  • the wireless terminal 10 according to the second embodiment may execute the entire processing flow illustrated in FIG.
  • the wireless terminal 10 may determine whether the RRC message (first control message) includes the third information in the process related to S204 illustrated in FIG. 5 (S2041A).
  • the third information may be a 1-bit flag. For example, when the value of the flag as the third information is “1”, it may mean that the execution of a part of the handover process is omitted.
  • the wireless terminal 10 may determine that the third information is included in the first control message (YES in S2041A). .
  • the wireless terminal 10 may determine that the third information is not included in the first control message (NO in S2041A).
  • the third information may have an aspect as information indicating whether to instruct the wireless terminal 10 to omit part of the execution of the handover process. That is, the determination in S2041A may be changed to determine whether or not the third information instructs the wireless terminal 10 to omit the execution of a part of the handover process.
  • wireless terminal 10 may continue to use the PDCP context (S2042A). In other words, in S2041A, when it is determined that the third information is included in the first control message (YES in S2041A), wireless terminal 10 may omit PDCP re-establishment (PDCP @ re-establishment) ( S2042A). For example, when it is determined in S2041A that the third information is included in the first control message (YES in S2041A), the wireless terminal 10 may continue various states in the PDCP entity (S2042A).
  • PDCP @ re-establishment PDCP @ re-establishment
  • the various states in the PDCP entity include, for example, various state variables such as sequence @ number and the state of the reordering buffer.
  • various state variables such as sequence @ number and the state of the reordering buffer.
  • initialization of various state variables such as sequence @ number and initialization of a reordering buffer can be omitted.
  • the wireless terminal 10 continuously uses, for example, the header compression context for compressing the PDCP service data unit (SDU) to the PDCP entity even after resynchronization with the wireless base station 20 by the first control message. You may let it.
  • S2042A the wireless terminal 10 may continue various states in the PDCP entity even after resynchronization.
  • PDCP is an example of a sublayer belonging to layer 2 in the wireless communication protocol stack.
  • wireless terminal 10 may continue to use the RLC configuration (S2043A).
  • S2043A the wireless terminal 10 continues a part or all of the RLC configuration for processing the RLC service data unit (SDU) to the RLC entity after resynchronization with the wireless base station 20 by the first control message. May be used.
  • wireless terminal 10 may omit RLC re-establishment (RLC @ re-establishment).
  • the wireless terminal 10 may continue various states in the RLC entity even after resynchronization.
  • the RLC is an example of a sublayer belonging to layer 2 in the wireless communication protocol stack.
  • the RLC configuration (which may be referred to as various states in the RLC entity) includes, for example, an RLC timer value, an RLC counter value, an RLC sequence number size, state variables related to retransmission control and reordering control, and states of a reordering buffer. And so on.
  • wireless terminal 10 when it is determined that the third information is not included in the first control message (NO in S2041A), wireless terminal 10 resets the PDCP context (S2044A). In other words, in S2041A, when it is determined that the third information is not included in the first control message (NO in S2041A), wireless terminal 10 resets various states of PDCP (S2044).
  • the wireless terminal 10 may reset the PDCP context, for example, by reestablishing a PDCP entity related to the uplink to the wireless base station 20.
  • the wireless terminal 10 may reset various states of PDCP by, for example, re-establishing a PDCP entity related to the uplink to the wireless base station 20.
  • the wireless terminal 10 may reset the RLC configuration (S2045A). In other words, in S2041A, when it is determined that the third information is not included in the first control message (NO in S2041A), wireless terminal 10 may reset various states of RLC (S2045A). In S2045A, the wireless terminal 10 may reset the RLC configuration by, for example, re-establishing the RLC entity related to the uplink to the wireless base station 20. In other words, in S2045A, the wireless terminal 10 may reset various states of the RLC, for example, by reestablishing an RLC entity related to the uplink to the wireless base station 20.
  • the wireless base station 20 when the wireless base station 20 determines that the uplink wireless access scheme of the wireless terminal 10 should be changed, the wireless base station 20 instructs resynchronization to the wireless base station.
  • Control information also referred to as first information
  • setting information also referred to as second information
  • execution of a part of the handover process based on the first information are transmitted to the wireless terminal 10.
  • An RRC message also referred to as a first control message
  • information instructing to omit also referred to as third information
  • the wireless terminal 10 receives the first control message from the wireless base station 20, and includes control information (also referred to as first information) instructing resynchronization with the wireless base station in the first control message.
  • control information also referred to as first information
  • the transmission of uplink data to the radio base station 20 is interrupted.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • the wireless terminal 10 obtains the setting information acquired from the first control message (which may also be referred to as setting information relating to the changed wireless access scheme or second information).
  • the wireless base station 20 executes a synchronization process (which may be referred to as a resynchronization process) with the wireless base station 20 for the wireless access method according to.
  • a synchronization process (which may be referred to as a resynchronization process) with the wireless base station 20 for the wireless access method according to.
  • the wireless terminal 10 detects that the third information is included in the first control message, in the resynchronization process with the wireless base station 20, the wireless terminal 10 performs the first The state established before receiving the control message is maintained after resynchronization.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • Embodiment 3 a further example of the wireless communication system 1 that allows the uplink wireless access scheme to be dynamically changed is shown.
  • the wireless terminal 10 in the wireless communication system 1 according to the third embodiment acquires information on a wireless access scheme in uplink data transmission via control information on allocation of uplink wireless resources.
  • the radio base station 20 adds a function indicating information on a radio access scheme in uplink data transmission to control information on allocation of uplink radio resources to the radio terminal 10.
  • the radio terminal 10 may execute uplink data transmission according to the radio access scheme indicated by the control information.
  • the radio base station 20 receives the uplink data transmission from the radio terminal 10 according to the radio access scheme indicated by the control information. I can do it.
  • information on the radio access scheme in uplink data transmission is transmitted from the radio base station 20 to the radio terminal 10 via control information on allocation of uplink radio resources.
  • the first control message may be a layer 3 control message in the wireless communication protocol stack.
  • the control information may be layer 1 control information in the wireless communication protocol stack.
  • information on the radio access scheme in uplink data transmission is called control information (downlink control signal, DCI, uplink grant signal (ULgrant signal), etc.) of layer 1, which is a lower layer than layer 3. May be transmitted from the wireless base station 20 to the wireless terminal 10. Therefore, in the third embodiment, information on the wireless access scheme in uplink data transmission can be transmitted to the wireless terminal 10 more quickly.
  • the transmission of information related to the wireless access scheme based on the layer 1 control information causes an increase in the amount of layer 1 control information.
  • the control information of Layer 1 is wirelessly transmitted by radio resources of a finite physical channel such as PDCCH (Physical Downlink Control CHannel).
  • PDCCH Physical Downlink Control CHannel
  • the radio resources allocated for transmission of the layer 1 control information are extremely smaller than the radio resources for data transmission. Therefore, an increase in the information amount of the layer 1 control information causes a decrease in the number of control information that can be accommodated in the radio resources reserved for transmission of the layer 1 control information.
  • a decrease in the number of pieces of control information that the radio base station 20 can transmit in one transmission time interval means a decrease in the number of multiple access in the downlink.
  • the wireless use efficiency decreases.
  • the radio base station 20 counts the number of times (determination times) that it is determined that the uplink wireless access method should be changed for each of the plurality of wireless terminals 10, and the number of determinations is If the value is less than the threshold, information on the uplink wireless access scheme is transmitted to the wireless terminal 10 using the layer 1 control information. On the other hand, if the number of determinations is equal to or greater than the threshold, the radio base station 20 transmits information on the uplink radio access scheme to the radio terminal 10 using a layer 3 first control message.
  • the radio base station 20 may implement a timer that measures the elapsed time from the start of counting the number of determinations for each of the plurality of radio terminals 10. Then, when the elapsed time measured by the timer reaches a predetermined value, the above-described number of determinations may be cleared.
  • transmission of information related to a wireless access scheme by layer 1 control information may be selected with emphasis on quickness.
  • transmission of information related to a wireless access scheme by layer 1 control information may be selected with emphasis on quickness.
  • a more reliable change of the wireless access method by resynchronization of the wireless connection between the wireless terminal 10 and the wireless base station 20 is less than quickness. It might be desirable.
  • FIG. 9 is a diagram illustrating an example of a processing flow in the wireless base station 20 according to the third embodiment.
  • the processing flow illustrated in FIG. 9 shows the processing related to S106 in the processing flow in FIG. 3 more specifically.
  • the wireless base station 20 according to the third embodiment may execute the entire processing flow illustrated in FIG.
  • the wireless base station 20 determines whether, for example, the timer value associated with the wireless terminal 10 to be changed has expired (S1061B).
  • the wireless base station 20 is associated with the wireless terminal 10 using the terminal ID (T101) obtained in the process of receiving (acquiring) the measurement result report from the uplink wireless signal from the wireless terminal 10.
  • the timer value may be managed.
  • the wireless terminal 10 to be changed is the wireless terminal 10 that has been determined to change the wireless access scheme by the processes related to S101 to S105 illustrated in FIG.
  • the wireless base station 20 may determine whether the timer value has expired, for example, by comparing a timer value associated with the wireless terminal 10 to be changed with a predetermined threshold. For example, when the timer value is less than the threshold value, the radio base station 20 may determine that the timer value has not expired (YES in S1061B). On the other hand, if the timer value is equal to or larger than the threshold, the radio base station 20 may determine that the timer value has expired (NO in S1061B). Note that the wireless base station 20 may start counting the timer value associated with the wireless terminal 10 at an arbitrary time, such as when the initial access from the wireless terminal 10 is detected.
  • radio base station 20 determines whether the number of determinations is less than a threshold (S1062B).
  • the radio base station 20 may manage, for each radio terminal 10, the number of times that it is determined that the radio access scheme should be changed by the processes related to S101 to S105 shown in FIG. For example, the initial value of the number of determinations may be 0.
  • the radio base station 20 initializes the number of determinations (S1063B), skips the determination in S1062B, and proceeds to S1064B described later. May be performed.
  • the radio base station 20 uses the layer 1 control information (also referred to as DCI (Downlink Control Information)),
  • the information related to the wireless access method is transmitted to the wireless terminal 10 to be changed (S1064B).
  • the control information of layer 1 may include information on a radio access scheme and information on a radio resource for uplink data transmission from radio terminal 10. Such control information may be referred to as, for example, a first format (DCI @ format0_1).
  • the control information having no information on the radio access scheme and having information on the radio resources for uplink data transmission may be referred to as, for example, a second format (DCI @ forma0_0).
  • the control information of the second format (DCI @ format0_0) is less than the control information of the first format (DCI @ format0_1) because it does not have information on the radio access scheme. Good) may be less.
  • the information on the wireless access scheme may be referred to as, for example, a transform-precoding-indicator, a transform-precoder-indicator, or a transform-precoding-application-indicator. May be referred to.
  • These also have an aspect as a parameter indicating whether or not to apply the transform-precoding to a PUSCH (Physical Uplink Shared CHannel) waveform.
  • PUSCH Physical Uplink Shared CHannel
  • the transform-precoding-indicator included in the control information has a parameter (for example, 1) for instructing to apply the transform-precoding
  • the waveform of the PUSCH used for uplink data transmission from the wireless terminal 10 is included in the waveform of the PUSCH.
  • transform-precoding is applied, and that the first method (for example, SC-FDMA method), which is a wireless access method using a single carrier waveform, may be applied.
  • the transform-precoding-indicator included in the control information has a parameter (for example, 0) indicating that the transform-precoding is not applied
  • the waveform of the PUSCH used for uplink data transmission from the wireless terminal 10 is This may mean that transform-precoding is not applied, and may mean that a second method (for example, an OFDMA method) that is a wireless access method using a multicarrier waveform is applied.
  • the information on the radio access scheme may be referred to as a waveform-indicator, for example.
  • a waveform-indicator for example.
  • These also have an aspect as a parameter indicating whether a PUSCH waveform is a single-carrier waveform or a multi-carrier waveform.
  • the waveform-indicator included in the control information has a parameter (for example, 1) indicating that the PUSCH waveform is a single carrier waveform (for example, a DFT-s-OFDM waveform)
  • Means that the PUSCH waveform used for uplink data transmission is a single carrier waveform
  • the first scheme for example, SC-FDMA scheme
  • the uplink from the wireless terminal 10 may mean that a PUSCH waveform used for data transmission is a multicarrier waveform, and may also mean that a second system (for example, an OFDMA system) that is a wireless access system using the multicarrier waveform is applied.
  • the control information of DCI @ format0_1 may include both a transform-precoding-indicator and a waveform-indicator, or may include any one of them.
  • the wireless base station 20 initializes the timer value at any timing before and after execution of S1064B (S1065B) and updates the number of determinations (S1066B). Note that the number of determinations is assumed to be carried over to the next execution timing of the processing flow shown in FIGS. 3 to 9. It is assumed that the timer value is updated as time passes.
  • the radio base station 20 issues an Intra-Cell @ HO execution instruction (first information) and information on the radio access scheme in the selection result. (Second information), and transmits an RRC message (first control message) including the information to the wireless terminal 10 (S1067B).
  • the wireless base station 20 initializes the number of determinations and the timer value at any timing before and after execution of S1067B (S1068B). Accordingly, at the next execution timing of the processing flow shown in FIGS. 3 to 9, information on the wireless access scheme can be transmitted using the layer 1 control information. In other words, in order to avoid an increase in processing delay due to repeated execution of Intra-Cell @ HO, it is possible to appropriately avoid continuously transmitting the first control message.
  • FIG. 9 illustrates a part of the processing in the wireless base station 20.
  • the wireless base station 20 may execute other processing in addition to the processing flows illustrated in FIGS.
  • FIG. 10 is a diagram illustrating an example of a processing flow in the wireless terminal 10 according to the third embodiment.
  • the flow of the process illustrated in FIG. 10 may be started, for example, when the wireless terminal 10 receives the layer 1 control information (DCI) from the wireless base station 20.
  • DCI layer 1 control information
  • the wireless terminal 10 detects the presence of control information that has been successfully decoded using the desired signal sequence in the downlink PDCCH from the wireless base station 20, and the process illustrated in FIG. May be executed.
  • DCI layer 1 control information
  • the wireless terminal 10 determines whether the DCI format is the first format (S301). In S301, the wireless terminal 10 may determine whether or not the first format is used, based at least in part on a format ID (DCI ⁇ format ⁇ indicator) included in DCI.
  • a format ID DCI ⁇ format ⁇ indicator
  • step S301 when it is determined that the DCI format is the first format (YES in S301), the wireless terminal 10 determines whether the wireless access scheme indicated by the DCI is the first scheme (S302). In S302, for example, when the value of the transform-precoding-indicator in DCI is “1”, the wireless terminal 10 may determine that the wireless access scheme indicated in DCI is the first scheme (YES in S302). ). On the other hand, in S302, for example, when the value of the transform-precoding-indicator in DCI is “0”, the wireless terminal 10 may determine that the wireless access scheme indicated in DCI is not the first scheme (S302). NO). As an alternative to the above-described transform-precoding-indicator, the determination in S302 based on the value of the waveform-indicator may be performed.
  • the wireless terminal 10 uses the wireless access scheme applied to the uplink data transmission to the wireless base station 20. Change to the first method (S303). On the other hand, if it is determined in S302 that the radio access scheme indicated by the DCI is not the first scheme (NO in S302), the radio terminal 10 transmits the radio access scheme applied to the uplink data transmission to the radio base station 20. Is changed to the second method (S304).
  • the wireless terminal 10 changes the wireless access scheme applied to uplink data transmission to the wireless base station 20. It may not be necessary (S305).
  • the above is an example of the processing flow in the wireless terminal 10 according to the third embodiment illustrated in FIG.
  • the example of the processing flow illustrated in FIG. 10 illustrates a part of the processing in the wireless terminal 10.
  • Other processing may be performed in addition to the processing flow illustrated in FIG.
  • the wireless terminal 10 according to the third embodiment receives an RRC message (first control message) having information (second information) related to a wireless access scheme
  • the same processing flow as that of the terminal 10 may be executed.
  • FIG. 11 is a diagram illustrating an example of a sequence in the wireless communication system 1 according to the third embodiment.
  • the same reference numerals are assigned to the same portions as those in the sequence example in the wireless communication system 1 according to the first embodiment illustrated in FIG. That is, the sequence illustrated in FIG. 11 may start from the point where the wireless terminal 10 makes an initial connection to the wireless base station 20 as in the sequence example in FIG. 6 (A01).
  • A01 to A05 are the same as the sequence example illustrated in FIG. 6, and thus detailed description will be omitted.
  • the radio base station 20 receives the measurement result report from the radio terminal 10 and determines whether to change the uplink radio access scheme of the radio terminal 10 based at least in part on the radio quality indicated in the measurement result report. Is determined (A051C).
  • a specific example of the determination of A051 is the same as the flow of processing illustrated in FIG. For example, in S105 in FIG. 3, determining that the selection result is different from the content of the management table (YES in S105) is equivalent to determining that the uplink wireless access method of the wireless terminal 10 should be changed. .
  • the radio base station 20 determines that the uplink radio access scheme of the radio terminal 10 should be changed (A051C).
  • the radio base station 20 further selects a notification method of the radio access scheme according to the number of times of determination of A051C within a predetermined period (A052C).
  • a specific example of the selection of A052C is the same as the processing flow illustrated in FIG.
  • the radio base station 20 selects the notification of the radio access scheme by the control information (DCI) of the layer 1 as the notification method of the radio access scheme (A052C).
  • the radio base station 20 performs control information (DCI) including information (Resource-Allocation) on radio resources used for uplink data transmission from the radio terminal 10 and information (TP-indicator) on the radio access scheme. format0_1) to the wireless terminal 10 (A06C).
  • DCI control information
  • the wireless terminal 10 detects that the layer 1 control information (A06C) received from the wireless base station 20 is in the first format, and applies the control information to uplink data transmission according to the wireless access scheme indicated in the control information. (A062C). Then, the wireless terminal 10 performs uplink data transmission to the wireless base station 20 according to the changed wireless access scheme (A09). Accordingly, in uplink data transmission between the wireless terminal 10 and the wireless base station 20, dynamic change of the wireless access method can be performed quickly. Note that, in the case of selecting A052C, when the notification of the radio access scheme by the RRC message (first control message) is selected, a sequence similar to A06 to A09 in the sequence illustrated in FIG. 6 may be executed.
  • the wireless access method to be applied to the uplink data transmission is notified to the wireless terminal 10 by the layer 1 control information (DCI).
  • DCI layer 1 control information
  • the change in the radio access scheme for uplink data transmission can be quickly applied to the radio terminal 10 as compared with the notification using the RRC message that is a layer 3 control message.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • the notification method of the wireless access method is selected according to the number of determinations. For example, if the number of times (the number of times of determination) that the uplink radio access scheme from the radio terminal should be changed is less than the threshold, the radio access scheme to be applied to the uplink data transmission (after the change) Is notified to the wireless terminal 10 by the layer 1 control information (DCI). For example, if the number of times that it is determined that the uplink wireless access method from the wireless terminal should be changed (the number of times of determination) is equal to or greater than the threshold, the wireless access method to be applied to uplink data transmission (after the change) Is notified to the wireless terminal 10 by a layer 3 RRC message (first control message).
  • DCI layer 1 control information
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • Example 4 a further example is shown for a part of the processing of the wireless terminal 10 and the wireless base station 20 according to Example 3.
  • information on the radio access scheme in uplink data transmission is transmitted through control information on allocation of radio resources used for uplink data transmission. It can be transmitted from the wireless base station 20 to the wireless terminal 10.
  • the radio base station 20 according to the fourth embodiment adds a function of indicating information on a radio access scheme in uplink data transmission to control information (DCI) on allocation of uplink radio resources to the radio terminal 10. I do.
  • DCI control information
  • the third embodiment an example in which an information field indicating information on a radio access scheme in uplink data transmission is added to the control information format as the above-described notification function will be described.
  • the fourth embodiment information on the radio access scheme in uplink data transmission is notified based on the type of a signal sequence used for DCI scrambling.
  • FIG. 12 is a diagram illustrating an example of a processing flow in the wireless base station 20 according to the fourth embodiment.
  • the processing flow illustrated in FIG. 12 shows the processing related to S1064B in the processing flow in FIG. 9 more specifically. 12, the same reference numerals as in FIG. 9 denote the same parts as in the processing flow shown in FIG. 9, and a detailed description thereof will be omitted.
  • the processing flow illustrated in FIG. 3 is also referred to for the processing flow illustrated in FIG.
  • the wireless base station 20 according to the fourth embodiment may execute the entire processing flow illustrated in FIG.
  • the wireless base station 20 selects, for example, a signal sequence according to the wireless access scheme in the processing related to S1064B illustrated in FIG. 9 (S10641D). It should be noted that the wireless access scheme in S10641D is a new wireless access scheme selected in the processes of S101 to S104 illustrated in FIG.
  • the radio base station 20 may select the first stream when the new radio access scheme to be applied to uplink data transmission is the first scheme.
  • the radio base station 20 may select the second sequence when the new radio access scheme to be applied to uplink data transmission is the second scheme.
  • the first stream may be a signal stream having a different content from the second stream. Note that the first stream and the second stream may have the same content as a part of the signal series.
  • the first stream is a signal obtained by concatenating identification information (C-RNTI (16 bits)) allocated to the wireless terminal 10 to be changed and a signal sequence of a predetermined length (for example, an 8-bit signal sequence (01000000)). Series (01000000+ [C-RNTI]).
  • the second sequence is a signal obtained by connecting identification information (C-RNTI (16 bits)) allocated to the wireless terminal 10 to be changed and a signal sequence of a predetermined length (for example, an 8-bit signal sequence (10000000)). Series (10000000+ [C-RNTI]).
  • the radio base station 20 scrambles and transmits the control information (DCI) of Layer 1 using the selected signal sequence (S10642D).
  • the radio base station 20 converts, for example, an error detection code (eg, CRC (Cyclic Redundancy Check)) attached to the control information into a target of scrambling processing using the first signal sequence or the second signal sequence (scrambling). (Which may also be referred to as an object).
  • CRC Cyclic Redundancy Check
  • the error detection code (CRC) attached to the control information may have an error correction function.
  • FIG. 13 is a diagram illustrating an outline of the scrambling process in the control information (DCI) according to the fourth embodiment.
  • a 24-bit error detection code (CRC) is attached to control information (DCI) regarding allocation of radio resources used for uplink data transmission.
  • DCI control information
  • either one of the first series (1 st sequence) or the second series (2 nd sequence) is applied to the control information error detection code attached to (DCI) (CRC).
  • the radio base station 20 transmits the error detection code (CRC) attached to the control information (DCI) to the first sequence (CCI). 1 st sequence) in scrambling (S10642D).
  • the radio base station 20 includes a control information error detection code attached to (DCI) (CRC), scrambling in the second series (2 nd sequence) ( S10642D).
  • DCI control information error detection code attached to
  • CRC control information error detection code attached to
  • S10642D The format of the control information (DCI) may be any of the formats described in the third embodiment.
  • the format of the control information (DCI) may be the first format (DCI format0_1), the second format (DCI format0_0), or another format.
  • FIG. 14 is a diagram illustrating an example of a processing flow in the wireless terminal 10 according to the fourth embodiment.
  • the processing flow illustrated in FIG. 14 is obtained by partially changing the processing flow in the wireless terminal 10 according to the third embodiment illustrated in FIG. 14, the same reference numerals as in FIG. 10 denote the same parts as in the processing flow shown in FIG. 10, and a detailed description thereof will be omitted.
  • the wireless terminal 10 blinds control information (DCI) from wireless resources of a PDCCH (Physical Downlink Control CHannel) that is a downlink control channel transmitted from the wireless base station 20. It may be executed when searching.
  • DCI control information
  • the wireless terminal 10 searches for DCI based on the first sequence in the process of performing a blind search for control information (DCI) from the PDCCH wireless resource (S306C).
  • the radio terminal 10 descrambles a region of a predetermined length (24 bits) corresponding to an error detection code (CRC) attached to the DCI in the radio resource of the PDCCH by a first sequence (referred to as demodulation / decoding).
  • a first sequence referred to as demodulation / decoding
  • an error detection code descrambled by the first sequence (which may be referred to as a first error detection code or a first CRC) is obtained.
  • the wireless terminal 10 performs error detection of the control information (DCI) using the error detection code (first error detection code) descrambled by the first sequence. Note that error correction may be performed as necessary.
  • S307C for example, when an uncorrectable error is detected in the error detection of the control information (DCI) by the first error detection code, the wireless terminal 10 determines that the search for the DCI by the first stream has failed. (YES in S307C).
  • S307C when an error that cannot be corrected is not detected in the error detection of the control information (DCI) by the first error detection code, it may be determined that the DCI search by the first sequence is successful. (NO in S307C).
  • wireless terminal 10 searches for DCI by the second stream (S308C).
  • S308C similarly to S306C, the radio terminal 10 descrambles a region of a predetermined length (24 bits) corresponding to an error detection code (CRC) attached to the DCI in the PDCCH radio resource using the second sequence.
  • an error detection code may be referred to as a second error detection code or a second CRC
  • the wireless terminal 10 performs error detection of control information (DCI) using the error detection code (second error detection code) descrambled by the second sequence. Note that error correction may be performed as necessary.
  • the wireless terminal 10 determines whether the wireless terminal 10 has successfully searched for DCI by the second sequence based at least in part on the result of error detection of control information (DCI) by the second error detection code (which may also be referred to as a second result). Is determined (S309C).
  • S309C for example, when an uncorrectable error is not detected in the error detection of the control information (DCI) by the second error detection code, the wireless terminal 10 determines that the search for the DCI by the second sequence has been successful. (YES in S309C).
  • S309C when an error that cannot be corrected is detected in the error detection of the control information (DCI) by the second error detection code, it may be determined that the DCI search by the second sequence has failed ( (NO in S309C).
  • wireless terminal 10 determines whether the wireless access scheme indicated by DCI is the first scheme (S302C). On the other hand, in the above-described S307C, when it is determined that the DCI search by the first stream has been successful (NO in S307C), the wireless terminal 10 may skip S308C to S309C and execute S302C.
  • the wireless terminal 10 may determine the wireless access scheme based at least in part on whether the DCI search by the first sequence or the DCI search by the second sequence succeeds in the DCI search. Good. For example, if the determination result in S307C indicates that the search for DCI by the first stream has been successful (NO in S307C), the wireless terminal 10 may determine that the wireless access scheme indicated by DCI is the first scheme. Good (YES in S302C). On the other hand, when the result of the determination in S309C indicates that the search for DCI by the second stream has been successful (YES in S309C), wireless terminal 10 may determine that the wireless access method indicated by DCI is not the first method. (NO in S302C).
  • the wireless terminal 10 when it is determined that the wireless access scheme indicated by the DCI is the first scheme (YES in S302C), the wireless terminal 10 changes the wireless access scheme applied to uplink data transmission to the first scheme. (S303).
  • S303 The details of S303 in FIG. 14 are the same as those in S303 shown in FIG.
  • the radio terminal 10 changes the radio access scheme applied to uplink data transmission to the second scheme. (S304).
  • S304 The details of S304 in FIG. 14 are the same as S304 shown in FIG.
  • the wireless terminal 10 when it is determined that the DCI search by the second stream has failed (NO in S309C), the wireless terminal 10 skips S302 to S304 and performs wireless access applied to uplink data transmission. The method does not need to be changed (S305). In other words, when both the DCI search by the first sequence and the DCI search by the second sequence fail, the wireless terminal 10 determines that the DCI addressed to the wireless terminal 10 is not stored in the PDCCH wireless resource. May be. Note that, even in such a case, DCI addressed to another wireless terminal 10 may be stored in the wireless resource of the PDCCH.
  • the wireless terminal 10 is notified of the wireless access scheme to be applied to the uplink data transmission by the layer 1 control information (DCI).
  • DCI layer 1 control information
  • the change in the radio access scheme for uplink data transmission can be quickly applied to the radio terminal 10 as compared with the notification using the RRC message that is a layer 3 control message.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • the notification method of the wireless access method is selected according to the number of determinations. For example, if the number of times (the number of times of determination) that the uplink radio access scheme from the radio terminal should be changed is less than the threshold, the radio access scheme to be applied to the uplink data transmission (after the change) Is notified to the wireless terminal 10 by the layer 1 control information (DCI). For example, if the number of times that it is determined that the uplink wireless access method from the wireless terminal should be changed (the number of times of determination) is equal to or greater than the threshold, the wireless access method to be applied to uplink data transmission (after the change) Is notified to the wireless terminal 10 by a layer 3 RRC message (first control message).
  • DCI layer 1 control information
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • a layer is provided for notifying a new radio access scheme to be applied to uplink data transmission from the radio base station 20 to the radio terminal 10. It is not necessary to add an information field to one control information (DCI). Therefore, as compared with the third embodiment, the control information according to the fourth embodiment may be able to reduce the information amount. In other words, in the wireless communication system 1 according to the fourth embodiment, it is expected that the usage efficiency of wireless resources is improved.
  • the wireless terminal 10 and the wireless base station 20 in the wireless communication system 1 can more appropriately execute the dynamic change of the uplink wireless access scheme. Such an operation is useful for flexibly changing the operation mode of the uplink in the 5G system and realizing various wireless services.
  • Example 4 shows an example in which control information (DCI) is scrambled or descrambled using one of two types of signal sequences, a first sequence and a second sequence.
  • DCI control information
  • Example 4 is not limited to this.
  • the control information (DCI) may be scrambled or descrambled using any one of the three types of signal sequences of the first sequence, the second sequence, and the third sequence.
  • the use of the first stream and the use of the second stream may be for notifying whether the wireless access scheme is the first scheme or the second scheme as in the fourth embodiment.
  • the use of the third stream may be for notifying that the radio access scheme applied to uplink data transmission is not changed.
  • the third embodiment it is determined whether to change the radio access scheme applied to the uplink data transmission according to the type of the format of the control information (DCI).
  • the first modification of the fourth embodiment it is determined whether to change the radio access scheme applied to the uplink data transmission according to the type of the signal sequence in which the control information (DCI) is successfully searched. obtain.
  • Such a third sequence is, for example, identification information (C-RNTI (16 bits)) allocated to the wireless terminal 10 that is the destination of the DCI and a signal sequence of a predetermined length (for example, an 8-bit signal sequence (00000000)).
  • a signal sequence (00000000+ [C-RNTI]) obtained by connecting
  • the third stream may be any content that can be distinguished from both the first stream and the second stream.
  • ⁇ Modification 2> information on a new radio access scheme to be applied to uplink data transmission is transmitted from the radio base station 20 to the radio terminal using the layer 1 control information (DCI). 10 is transmitted.
  • DCI layer 1 control information
  • the third embodiment and the third embodiment determine whether or not a notification according to the change is transmitted from the radio terminal 10 to the radio base station 20. 4 does not specify it.
  • a notification may be transmitted from the wireless terminal 10 to the wireless base station 20 in response to a change in the wireless access scheme applied to uplink data transmission. However, such a notification need not be transmitted.
  • the notification is transmitted from the wireless terminal 10 to the wireless base station 20 in response to the change in the wireless access scheme applied to the uplink data transmission, and the layer 1 While realizing that the change to the new radio access scheme is promptly applied by the control information (DCI), the radio base station 20 appropriately adjusts the radio access scheme applied to the uplink data transmission from the radio terminal 10. Can be grasped.
  • DCI control information
  • the determination in S105 may be omitted.
  • the wireless base station 20 may skip S105 and execute S106.
  • Such a third modification can be applied to any of the first to fourth embodiments.
  • the processing delay in the wireless base station 20 can be reduced, and after the selection of the wireless access method is performed in S102 to S104, the selected wireless access Delay time until the scheme is applied to uplink data transmission from the wireless terminal 10 can be further reduced.
  • the wireless access scheme indicated by the layer 1 control information (DCI) from the wireless base station 20 is different from the wireless access scheme indicated by the previous notification (for example, the RRC message). May be determined.
  • the radio terminal 10 notifies the radio base station 20 when the radio access scheme indicated by the layer 1 control information (DCI) from the radio base station 20 is different from the radio access scheme indicated by the previous notification (for example, the RRC message). May be transmitted.
  • the wireless terminal 10 according to Modification 3 is different in that the wireless access method indicated by the control information (DCI) of layer 1 is different from the wireless access method indicated by a notification (for example, an RRC message) earlier than that.
  • the notification transmitted from the wireless terminal 10 indicates that the wireless access scheme indicated by the layer 1 control information (DCI) does not match the wireless access scheme indicated by the RRC message received before. It may be a notification that indicates. Thereby, the radio base station 20 can recognize that the radio terminal 10 has received the control information (DCI) indicating the new radio access scheme.
  • DCI layer 1 control information
  • ⁇ Modification 4> As a method of transmitting information on a radio access scheme to be applied to uplink data transmission from the radio base station 20 to the radio terminal 10, a layer 3 RRC message is used. An example is described in which two types of methods, a transmission method (which may be referred to as a first transmission method) and a transmission method using layer 1 DCI (which may be referred to as a second transmission method), are combined. Was. As a fourth modification, which of these methods is used may be appropriately selected.
  • the radio base station 20 transmits a transmission method using a layer 3 RRC message according to setting information from another device (which may be referred to as a core node, an information processing device, a control device, a management device, or the like) on the network; Any of the layer 1 DCI-based transmission methods may be selected as the information transmission means for the radio access scheme to be applied to the uplink data transmission.
  • a core node an information processing device, a control device, a management device, or the like
  • Any of the layer 1 DCI-based transmission methods may be selected as the information transmission means for the radio access scheme to be applied to the uplink data transmission.
  • which of the first transmission method and the second transmission method should be used as a means for transmitting information on the radio access scheme to be applied to the uplink data transmission is an optional matter.
  • the radio terminal 10 and the radio base station 20 may use any one of the first transmission method and the second transmission method as a transmission unit of information on a radio access scheme to be applied to uplink data transmission. Any transmission method used during
  • FIG. 15 is a diagram illustrating an example of a hardware configuration of the wireless terminal (UE) 10 and the wireless base station (gNB) 20 in the wireless communication system 1.
  • the UE 10 in FIG. 15 includes a wireless communication circuit 101 (which may be referred to as a wireless communication unit, a second wireless communication unit, and a second wireless communication circuit), a processing circuit 102 (a processing unit, a second processing unit, and a second processing circuit). ), And a memory 103. Note that the UE 10 in FIG. 15 does not show some components such as an antenna.
  • the UE 10 may include a display device such as a liquid crystal display, an input device such as a touch panel, and a battery such as a lithium-ion secondary battery (lithium-ion rechargeable battery).
  • the wireless communication circuit 101 receives a supply of a baseband signal (may be referred to as a wireless signal or a digital wireless signal) from the processing circuit 102, and receives a wireless signal of a predetermined output level (second wireless signal) from the baseband signal.
  • Signal which may be referred to as an analog wireless signal
  • UE10 can transmit a radio signal to gNB20.
  • the wireless communication circuit 101 is configured to receive a wireless signal input from an antenna, convert the wireless signal into a baseband signal, and supply the baseband signal to the processing circuit 102. Thereby, UE10 can receive the radio signal from gNB20.
  • the wireless communication circuit 101 is configured to be able to transmit and receive wireless signals, and has a function of performing wireless communication with the gNB 20.
  • the wireless communication circuit 101 can transmit a wireless signal generated by the first wireless access method and a wireless signal generated by the second wireless access method, and can receive a wireless signal from the gNB 20. It can be configured as possible.
  • the wireless communication circuit 101 can be communicably connected to the processing circuit 102 via a transmission circuit mounted inside the UE 10.
  • a transmission circuit for example, a transmission circuit conforming to a standard such as M-PHY, Dig-RF and the like can be mentioned.
  • the processing circuit 102 (which may be referred to as a processor circuit or an arithmetic circuit) is a circuit configured to perform baseband signal processing.
  • the processing circuit 102 generates a baseband signal (may be referred to as a wireless signal or a digital wireless signal) based on a wireless communication protocol stack in the wireless communication system 1 and outputs the baseband signal to the wireless communication circuit 101.
  • the processing circuit 102 is configured to perform reception processing such as demodulation and decoding on the baseband signal input from the wireless communication circuit 101 based on the wireless communication protocol stack in the wireless communication system 1.
  • the processing circuit 102 transmits the first data addressed to the gNB 20 from the upper layer to the lower layer according to the procedure of the wireless communication protocol stack in which the wireless communication function is divided into a plurality of layers.
  • the wireless communication circuit 101 has an aspect as a circuit that causes the wireless communication circuit 101 to transmit a wireless signal based at least in part on the second data obtained by sequentially processing.
  • the processing circuit 102 is a circuit that sequentially processes a wireless signal received via the wireless communication circuit 101 from a lower layer to an upper layer according to a procedure of a wireless communication protocol stack in which a wireless communication function is divided into a plurality of layers. With the side as.
  • receiving the input of the baseband signal from the wireless communication circuit 101 via the transmission circuit has the aspect of receiving the wireless signal from the gNB 20 via the wireless communication circuit 101.
  • Outputting a baseband signal to the wireless communication circuit 101 via a transmission circuit has a feature of transmitting a wireless signal to the gNB 20 via the wireless communication circuit 101.
  • the processing circuit 102 may be, for example, an arithmetic device that reads and executes a program stored in the memory 103 to realize the operation of the UE 10 according to each of the above-described embodiments. In other words, the processing circuit 102 executes the processing flow in the operation of the wireless terminal 10 according to each of the above-described embodiments (for example, the operation illustrated in FIGS. 5, 8, 10, and 14). (Which may also be referred to as an arithmetic device). Examples of the processing circuit 102 include a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), and a combination thereof. Note that the processing circuit 102 may be a multi-core processor including two or more cores. Further, the processing circuit 102 may include two or more processing circuits 102 according to each layer in the wireless communication protocol stack of the wireless communication system 1.
  • the processing circuit 102 may be referred to as a C-CPU.
  • the UE 10 may implement, in addition to the processing circuit 102, a processor circuit that may be referred to as an A-CPU that executes an application.
  • the processing circuit 102 may be mounted on a single chip together with a processor circuit which may also be referred to as an A-CPU, or may be mounted as a separate chip from the A-CPU.
  • the processing circuit 102 may have an aspect as a control unit having a function of controlling the operation of the UE 10.
  • the processing circuit 102 is a processing unit configured to receive the first control message related to the reconfiguration of the wireless connection between the wireless base station 20 and the wireless terminal 10 from the wireless base station 20 by the wireless communication circuit 102. May be provided.
  • the memory 103 is a circuit configured to store and hold data and programs related to baseband signal processing executed by the processing circuit 102.
  • the memory 103 is configured to include at least one or both of a nonvolatile storage device and a volatile storage device.
  • a nonvolatile storage device for example, a random access memory (RAM), a read only memory (ROM), a solid state drive (SSD), a hard disk drive (HDD), and the like can be given.
  • a memory 103 is a general term for various storage devices such as a main storage device and an auxiliary storage device. Note that, as with the processing circuit 102, two or more memories 103 may be mounted in the memory 103 according to each layer in the wireless communication protocol stack of the wireless communication system 1.
  • the gNB 20 illustrated in FIG. 15 includes a wireless communication circuit 201 (also referred to as a wireless communication unit, a first wireless communication unit, and a first wireless communication circuit), a processing circuit 202 (a processing unit, a first processing unit, and a first wireless communication unit). (May be referred to as a processing circuit), a memory 203, and a wired communication circuit 204.
  • the wireless communication circuit 201 receives a baseband signal from the processing circuit 202 on the downlink, generates a wireless signal of a predetermined output level from the baseband signal, and radiates the wireless signal to space via an antenna. Be composed.
  • the wireless communication circuit 201 is configured to receive a wireless signal input from an antenna, convert the wireless signal into a baseband signal, and supply the baseband signal to the processing circuit 202 on the uplink.
  • the wireless communication circuit 201 can be communicably connected to the processing circuit 202 via a transmission path such as CPRI (Common ⁇ Radio ⁇ Interface), and is also referred to as RRH (Remote ⁇ Radio ⁇ Head) and RRE (Remote ⁇ Radio ⁇ Equipment). Can be done.
  • CPRI Common ⁇ Radio ⁇ Interface
  • RRH Remote ⁇ Radio ⁇ Head
  • RRE Remote ⁇ Radio ⁇ Equipment
  • the combination of the wireless communication circuit 201 and the processing circuit 202 is not limited to one-to-one, and a plurality of processing circuits 202 may be associated with one wireless communication circuit 201, or a plurality of wireless communication circuits 201 may be combined. It is also possible to correspond to one processing circuit 202 or to associate a plurality of wireless communication circuits 201 with a plurality of processing circuits 202.
  • the wireless communication circuit 201 has an aspect as a communication unit (also referred to as a transmission / reception unit or a second transmission / reception unit) having a function of performing wireless communication with the UE 10.
  • the radio communication circuit 201 can receive a radio signal generated by the first radio access scheme and a radio signal generated by the second radio access scheme, and can transmit a radio signal to U10. May be configured to be
  • the processing circuit 202 is a circuit configured to perform baseband signal processing.
  • the processing circuit 202 is configured to generate a baseband signal on the downlink based on a wireless communication protocol stack in the wireless communication system 1 and output the baseband signal to the wireless communication circuit 201.
  • the processing circuit 202 is configured to perform reception processing such as demodulation and decoding on a baseband signal input from the wireless communication circuit 201 on the uplink based on a wireless communication protocol stack in the wireless communication system 1. Is done.
  • the processing circuit 202 transfers transmission data addressed to the UE 10 as a receiving device from an upper layer to a lower layer according to a procedure of a wireless communication protocol stack in which a wireless communication function is divided into a plurality of layers.
  • the processing circuit 202 transfers a wireless signal received via the wireless communication circuit 201 from a lower layer to an upper layer according to a procedure of a wireless communication protocol stack in which a wireless communication function is divided into a plurality of layers. It has an aspect as a circuit for sequentially processing.
  • receiving an input of a baseband signal from the wireless communication circuit 201 in the uplink has an aspect of receiving a wireless signal from the UE 10 via the wireless communication circuit 201.
  • some functions of the processing circuit 202 may be implemented in the wireless communication circuit 201 described above.
  • the wireless communication circuit 201 may include a function related to a physical layer (also referred to as layer 1) in the wireless communication protocol stack.
  • a physical layer also referred to as layer 1
  • the layout of the implementation related to the processing of the layer (or the sublayer) in the wireless communication protocol stack may be design-changeable between the wireless communication circuit 201 and the processing circuit 202.
  • the processing circuit 202 reads out and executes a program stored in the memory 203, for example, to thereby operate the radio base station 20 according to each of the above-described embodiments (for example, FIG. 3, FIG. 7, FIG. 9, FIG. In the operation shown in (1), there is an aspect as a subject (which may be referred to as an arithmetic device) that executes the flow of processing.
  • Examples of the processing circuit 202 include a CPU (Central Processing Unit), an MPU (Micro Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array). Note that the processing circuit 202 may be a multi-core processor including two or more cores.
  • the processing circuit 202 may include two or more processing circuits 202 according to each layer in the wireless communication protocol stack of the wireless communication system 1. For example, a processing circuit 202 that executes processing as a MAC entity belonging to the MAC layer, a processing circuit 202 that executes processing as an RLC entity that belongs to the RLC layer, and a processing circuit that executes processing as a PDCP entity that belongs to the PDCP layer 202 may be implemented separately. As described above, the processing circuit 202 has an aspect as a control unit having a function of controlling the operation of the gNB 20 (which may be referred to as a second control unit to distinguish it from the control unit of the UE 10). For example, the processing circuit 202 executes a process of transmitting various types of setting information (for example, first setting information and second setting information) to the UE 10. Note that various types of setting information may be referred to as control signals.
  • various types of setting information may be referred to as control signals.
  • the memory 203 is a circuit configured to store and hold data and programs related to baseband signal processing executed by the processing circuit 202.
  • the memory 203 includes at least one of a nonvolatile storage device and a volatile storage device.
  • a nonvolatile storage device for example, a random access memory (RAM), a read only memory (ROM), a solid state drive (SSD), a hard disk drive (HDD), and the like can be given.
  • a memory 203 is a general term for various storage devices such as a main storage device and an auxiliary storage device. Note that, as with the processing circuit 202, two or more memories 203 may be mounted in the memory 203 according to each layer in the wireless communication protocol stack of the wireless communication system 1.
  • a memory 203 used for processing as a MAC entity belonging to the MAC layer a memory 203 used for processing as an RLC entity belonging to the RLC layer, and a memory 203 used for processing as a PDCP entity belonging to the PDCP layer , May be implemented individually.
  • the wired communication circuit 204 converts the packet data into a format that can be output to another device and transmits the packet data to another device, or extracts data from packet data received from another device, 202 or the like.
  • Examples of other devices may include other wireless base stations, MME (Mobility Management Entity), SGW (Serving Gateway), and the like.
  • MME and the SGW are also referred to as a core node, and a logical communication interface used for communication with the core node may be referred to as an S1 interface.
  • a logical communication interface used for communication with another wireless base station may be referred to as an X2 interface. It should be noted that the names of the above-described various devices can be changed in formulating 5G specifications.
  • wireless communication system 10 wireless terminal (UE) 101 wireless communication circuit 102 processing circuit 103 memory 20 wireless base station (gNB) 201 wireless communication circuit 202 processing circuit 203 memory 204 wired communication circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】 上りリンクの無線アクセス方式の動的な変更を適切に実行できる技術の提供を目的とする。 【課題を解決するための手段】 無線端末であって、第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを送信可能であり、無線基地局からの無線信号を受信可能な無線通信部と、無線基地局との無線接続の再構成に関する第1制御メッセージを、無線通信部により受信する処理部を備え、第1制御メッセージは、無線基地局への再同期を指示する第1情報と、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する第2情報を含むように構成され、第2情報は、第1の無線アクセス方式と第2の無線アクセス方式との何れかに関する情報であり、処理部は、第1情報を検知した場合、上りリンクのデータ伝送を中断し、第2情報に従った無線アクセス方式について、無線基地局との再同期を行うように構成される。

Description

無線端末、無線基地局、及び無線通信システム
 本発明は、上りリンクの無線アクセス方式の動的な変更が可能な無線端末、無線基地局、及び無線通信システムに関する。
 近年、携帯電話システム(セルラーシステム)等の無線通信システム(移動通信システムとも称され得る)について様々なユースケースを想定し、無線通信(移動通信とも称され得る)の更なる高速化・大容量化等を図るため、次世代の無線通信技術について議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEの無線通信技術をベースとしたLTE-アドバンスト(LTE-Advanced)と呼ばれる通信規格の仕様策定を既に行い、その機能の拡張のための検討作業が継続的に行なわれている。例えば、ITU-R(International Telecommunication Union Radio communications sector)から提示された運用シナリオや技術要件の内容を実現する第五世代移動通信システム(5Gシステムとも称され得る)の標準化に関する議論が行われている。
 5Gシステム以降の次世代移動通信システムにおいては、例えば、触覚通信や拡張現実など、従来と異なるレベルの通信性能が要求されるサービスの登場が期待されている。そのような新たなサービスに対応するため、5Gシステムでは、運用形態を柔軟に変更し得る設計方針が採られる予定である。例えば、LTEやLTE-アドバンストなどの第4世代移動通信システム(4Gシステムとも称され得る)では、上りリンクの無線アクセス方式が固定されており、4Gシステムの動作中に変化されない。それに対し、5Gシステムでは、上りリンクの無線アクセス方式について、シングルキャリア周波数分割多元接続(SC-FDMA:Single Carrier - Frequency Division Multiple Access)方式と直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)方式とで動的に切り換えるられる運用を許容することが検討されている。
3GPP TS 36.211 V15.1.0(2018-03) 3GPP TS 36.212 V15.1.0(2018-03) 3GPP TS 36.213 V15.1.0(2018-03) 3GPP TS 36.300 V15.1.0(2018-03) 3GPP TS 36.321 V15.1.0(2018-03) 3GPP TS 36.322 V15.0.1(2018-04) 3GPP TS 36.323 V14.5.0(2017-12) 3GPP TS 36.331 V15.1.0(2018-03) 3GPP TS 36.413 V15.1.0(2018-03) 3GPP TS 36.423 V15.1.0(2018-03) 3GPP TS 36.425 V14.1.0(2018-03) 3GPP TS 37.340 V15.1.0(2018-03) 3GPP TS 38.201 V15.0.0(2017-12) 3GPP TS 38.202 V15.1.0(2018-03) 3GPP TS 38.211 V15.1.0(2018-03) 3GPP TS 38.212 V15.1.1(2018-04) 3GPP TS 38.213 V15.1.0(2018-03) 3GPP TS 38.214 V15.1.0(2018-03) 3GPP TS 38.215 V15.1.0(2018-03) 3GPP TS 38.300 V15.1.0(2018-03) 3GPP TS 38.321 V15.1.0(2018-03) 3GPP TS 38.322 V15.1.0(2018-03) 3GPP TS 38.323 V15.1.0(2018-03) 3GPP TS 38.331 V15.1.0(2018-03) 3GPP TS 38.401 V15.1.0(2018-03) 3GPP TS 38.410 V0.9.0(2018-04) 3GPP TS 38.413 V0.8.0(2018-04) 3GPP TS 38.420 V0.8.0(2018-04) 3GPP TS 38.423 V0.8.0(2018-04) 3GPP TS 38.470 V15.1.0(2018-03) 3GPP TS 38.473 V15.1.1(2018-04) 3GPP TR 38.801 V14.0.0(2017-04) 3GPP TR 38.802 V14.2.0(2017-09) 3GPP TR 38.803 V14.2.0(2017-09) 3GPP TR 38.804 V14.0.0(2017-03) 3GPP TR 38.900 V14.3.1(2017-07) 3GPP TR 38.912 V14.1.0(2017-06) 3GPP TR 38.913 V14.3.0(2017-06) "UL waveform configuration", Qualcomm Incorporated, R1-1612075, 3GPP TSG-RAN WG1 #87 14th - 18th Nov 2016, 2011/11/04 "On UL Waveform Type Signaling", Ericsson, R1-1714450, 3GPP TSG RAN WG1 #90 21th - 25th Aug 2017 "Discussion on the waveform indication", Guangdong OPPO Mobile Telecom, R1-1713295, 3GPP TSG RAN WG1 Meeting #90 21th - 25th August 2017 "Waveform Selection mechanisms for DFTs-OFDM", AT&T, R1-1718400, 3GPP TSG RAN WG1 #90bis 21st - 25th August 2017
 上述のように、5Gシステムの標準化に関する議論では、運用形態を柔軟に変更し得る設計方針が検討されている。本発明の発明者らは、この様な設計方針について鋭意検討を行った結果、5Gシステムにおいて上りリンクの無線アクセス方式を状況に応じて動的に変更することを許容する運用形態が導入されることに起因して、改善されるべき新たな不具合が生じ得ることを見出した。
 しかし、5Gシステムの標準化に関する議論では、基本的なシステム設計が主に検討されており、5Gシステムの無線サービスを実現するための具体的な実装技術については十分な検討がなされているとは言い難い。例えば、5Gシステムの上りリンクの無線アクセス方式を動的に変更する場合の実装上の課題などについては、議論があまり進んでいないのが実情である。
 開示の技術は、上りリンクの無線アクセス方式の動的な変更を適切に実行できる無線端末、無線基地局、及び無線通信システムを提供することを目的とする。
 開示の一側面によれば、無線基地局との無線通信が可能な無線端末であって、第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを送信可能であり、前記無線基地局からの無線信号を受信可能な無線通信部と、前記無線基地局との無線接続が確立された状態で、前記無線基地局と前記無線端末との無線接続の再構成に関する第1制御メッセージを、前記無線基地局から、前記無線通信部により受信する処理部と、を備え、前記第1制御メッセージは、前記無線基地局への再同期を指示する第1情報と、前記無線基地局との上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する第2情報と、を含むように構成されており、前記第2情報は、前記第1の無線アクセス方式と前記第2の無線アクセス方式との何れかに関する情報であり、前記処理部は、前記第1制御メッセージにおいて前記第1情報を検知した場合、前記無線基地局への上りリンクのデータ伝送を中断し、前記第2情報に従った前記無線アクセス方式について、前記無線基地局との再同期を行うように構成される。
 開示の技術の一側面によれば、上りリンクの無線アクセス方式の動的な変更を適切に実行できるようになる。
図1は、実施例1に係る無線通信システムの構成の一例を示す図である。 図2は、実施例1に係る無線通信システムにおける上りリンクの無線アクセス方式の割当ての一例を示す図である。 図3は、実施例1に係る無線基地局における処理の流れの一例を示す図である。 図4は、実施例1に係る無線基地局における管理テーブルの内容例を示す図である。 図5は、実施例1に係る無線端末における処理の流れの一例を示す図である。 図6は、実施例1に係る無線通信システムにおけるシーケンスの一例を示す図である。 図7は、実施例2に係る無線基地局における処理の流れの一例を示す図である。 図8は、実施例2に係る無線端末における処理の流れの一例を示す図である。 図9は、実施例3に係る無線基地局における処理の流れの一例を示す図である。 図10は、実施例3に係る無線端末における処理の流れの一例を示す図である。 図11は、実施例3に係る無線通信システムにおけるシーケンスの一例を示す図である。 図12は、実施例4に係る無線基地局における処理の流れの一例を示す図である。 図13は、実施例4に係る制御情報におけるスクランブリング処理の概要を示す図である。 図14は、実施例4に係る無線端末における処理の流れの一例を示す図である。 図15は、無線通信システムにおける無線端末と無線基地局とのハードウェア構成の一例を示す図である。
 上述の如く、5Gシステムの標準化に関する議論はまだ開始されたばかりである。例えば、5Gシステムの上りリンクの無線アクセス方式を動的に変更する場合の実装上の課題などについては、議論があまり進んでいないのが実情である。
 本発明の発明者らは、この様な5Gシステムの柔軟な運用形態について鋭意検討を行った結果、5Gシステムにおいて上りリンクの無線アクセス方式を状況に応じて動的に変更することを許容する運用形態が導入されることに起因して、改善されるべき新たな不具合が生じ得るという問題を見出した。
 例えば、5Gシステムでは、端末毎の上りリンクの無線アクセス方式を、SC-FDMA方式とOFDMA方式とで動的に変更することが許容される。しかし、上りリンクの無線アクセス方式に関する設定を、無線端末と無線基地局とで同期させる手法については、5Gシステムの標準化に関する議論において解決されていない。
 例えば、5Gシステムの無線基地局から無線端末へ、上りリンクの無線アクセス方式の変更の指示を送信する媒体として、制御信号の一種であるRRC(Radio Resource Control)信号が挙げられる。無線端末毎に個別に送信されるRRC信号(RRCメッセージ、端末固有RRCシグナリング、UE-specific-RRCシグナリングとも称され得る)は、下りリンクの共有チャネルであるPDSCH(Physical Downlink Shared CHannel)上の無線リソースで送信されるため、通知すべき情報の追加に対して柔軟性を有するという側面を有する。別言すると、RRC信号のフォーマット変更は、下り制御信号(DCI:Downlink Control Information)のフォーマット変更よりも、寛容的である。この様なRRC信号として、例えば、RRC再構成(RRC-Reconfiguration)信号、RRC接続確立(RRC-Connection-Establishment)信号、RRC接続再確立(RRC-Connection-Re-Establishment)信号などが挙げられる。
 ところが、RRC信号は、無線通信プロトコルスタックにおける物理層(レイヤ1とも称され得る)よりも上位レイヤであるRRCレイヤ(レイヤ3とも称され得る)で処理されるため、無線端末におけるRRC信号に対する処理遅延はレイヤ1の信号に対する処理遅延よりも増加する。別言すると、RRC信号による通知は、下り制御信号による通知よりも即時性に劣る。そのため、無線基地局は、ある無線端末の上りリンクの無線アクセス方式を変更すべきと判断しても、その無線端末において上りリンクの無線アクセス方式が実際に変更されるタイミングを正確に把握することが難しい。
 しかも、ある無線端末の上りリンクの無線アクセス方式を変更すべきと判断された後も、上りリンクで伝送すべき送信データ及び/又は下りリンクで伝送すべき送信データは発生し続けるかもしれない。特に、5Gシステムでは、超高速大容量のデータ伝送サービスであるeMBB(enhanced Mobile BroadBand)や、超高信頼低遅延の無線サービスであるURLLC(Ultra-Reliable and Low Latency Communications)や、超大量接続の無線サービスであるmMTC(massive Machine Type Communications)などをサポートするために、要求条件が高度化している。例えば、5Gシステムの上りリンクのピークデータレートは10Gbpsとされており、LTE-Advancedの500Mbps、LTEの50Mbpsよりも、20倍乃至200倍の性能が要求される。例えば、5Gシステムの下りリンクのピークデータレートは20Gbpsとされており、LTE-Advancedの1Gbps、LTEの100Mbpsよりも、20倍乃至200倍の性能が要求される。別言すると、5Gシステムにおける無線端末は、4Gシステムで動作していたサービスよりも20倍乃至200倍の量のデータを生成し、無線基地局へ送信できることが期待される。5Gシステムにおける無線基地局についても同様である。
 上述の5Gシステムの性能要件によれば、上りリンクの無線アクセス方式を変更すべきと判断されてから、実際に無線アクセス方式が変更されるまでの僅かな期間にも、4Gシステムとは比較し難いほどの大量の送信データが無線端末で生成されることが予想される。この場合、上りリンクの無線アクセス方式を変更すべきと無線基地局が判断したにもかかわらず、無線端末は変更前の無線アクセス方式で上りリンクのデータ送信を暫くの間続けるかもしれない。
 その結果、不適切な無線アクセス方式での上りリンクのデータ送信が継続されることで、例えば、無線基地局は無線端末からの上りリンクデータの受信に失敗するかもしれない。また、不適切な無線アクセス方式での上りリンク伝送は、例えば、他の無線端末や他の無線基地局への電波干渉を生じさせるかもしれない。あるいは、無線端末は、不適切な無線アクセス方式での上りリンク伝送により、バッテリの電力残量を過度に消耗するかもしれない。
 なお、4Gシステムでは、上りリンクの無線アクセス方式が固定されており、上りリンクの無線アクセス方式が動的に変更されることはない。そのため、4Gシステムにおいて、上述の不具合は、問題として着目されていない。
 5Gシステムの標準化に関する議論では、上りリンクの無線アクセス方式を状況に応じて動的に変更することを許容する設計方針が検討されているものの、上りリンクの無線アクセス方式の動的な変更を適切に実行するための具体的な方策は何も決められていない。
 本発明の発明者らは、上述の技術的事情はeMBBやURLLCやmMTCなどの多様な無線サービスの実現に障害となり得る、という独自の知見を得るに至った。なお、本開示における5Gシステムは、上りリンクの無線アクセス方式を動的に変更することを許容する移動通信システム(次世代無線通信システムとも称され得る)の一例である。従来の移動通信システム(例えば4Gシステム)においても、上りリンクの無線アクセス方式を動的に変更することを許容するように拡張された場合、上述の問題が生じ得ることに留意されたい。
 以下、図面を参照して本発明を実施するための形態(以下、実施形態、実施例とも称する)について説明する。以下に示す実施形態の構成は、本発明の技術的思想を具体化するための一例を示したものであり、本発明をこの実施形態の構成に限定することを意図するものではなく、請求の範囲に含まれるその他の実施形態にも等しく適用し得るものである。例えば、OFDMA方式における波形は、CP-OFDM(Cyclic Prefix-Orthogonal Frequency Division Multiplexing)波形と称されてもよい。例えば、SC-FDMA方式における波形は、DFT-S-OFDM(Discrete Fourier Transform-spread-Orthogonal Frequency Division Multiplexing)波形と称されてもよい。また、例えば、PDSCH(Physical Downlink Shared CHannel)、PUSCH(Physical Uplink Shared CHannel)などの各種チャネルの名称については、今後の5Gシステムの標準化に関する議論において、名称が変更され得ることも考えられる。また、サブフレーム、スロット、シンボル、リソースエレメント、リソースブロック、サブキャリアなど、無線フレーム構造に関する用語についても、同様である。本開示は、本発明の構成要素をこれらの名称を用いたものに限定する意図ではないことに留意されたい。
 また、以下に示す各実施例は、適宜組み合わせて実施してもよいことはいうまでもない。ここで、非特許文献1ないし非特許文献38の全ての内容は、参照することによりここに援用される。
 <実施例1> 実施例1では、上りリンクの無線アクセス方式(無線接続方式とも称され得る)を動的に変更することを許容する無線通信システムが例示される。実施例1に係る無線通信システムにおける無線端末は、無線基地局との無線接続が確立された状態(RRC_CONNECTED状態とも称され得る)で、無線基地局との無線接続の再構成に関する第1制御メッセージを、無線基地局から受信する。無線基地局から送信される第1制御メッセージは、無線基地局との再同期を指示する第1情報と、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する第2情報とを含むように構成される。第1制御メッセージに含まれる第2情報は、無線基地局との上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する情報として、第1の無線アクセス方式(第1方式とも称され得る)か第2の無線アクセス方式(第2方式とも称され得る)の何れかに関する情報が設定され得る。そのような無線端末は、第1制御メッセージに上述の第1情報が含まれる場合、無線基地局への上りリンクのデータ伝送を中断し、第1制御メッセージに含まれる第2情報に従って選択される無線アクセス方式について、無線基地局との同期(再同期と称されてもよい)を試みる。そして、無線端末は、無線基地局との再同期の確立後に、第2情報に従った無線アクセス方式により、無線基地局への上りリンクのデータ伝送を再開する。実施例1の一側面によれば、上りリンクの無線アクセス方式の動的な変更を適切に実行できる。
 図1は、実施例1に係る無線通信システム1の構成の一例を示す図である。図1に例示される無線通信システム1は、無線端末10と無線基地局20とを有する。図1に図示される無線端末10及び無線基地局20は、複数の性質(側面、観点とも称され得る)を抽象的に表現されたものであることに留意されたい。例えば、無線基地局20は、複数の装置の組合せにより構成されてもよい。図1において、一つの無線端末10が例示されているが、無線通信システム1は複数の無線端末10を有してもよい。別言すると、無線基地局20は、複数の無線端末10と無線接続を確立し得る。なお、以下の説明において、無線基地局20を、適宜、無線エリア、セル、セクタなどと読み替えてもよい。
 図1に例示される無線端末10は、複数の無線アクセス方式をサポートするように構成される。例えば、無線端末10は、無線基地局20に対する上りリンクの無線アクセス方式において、第1方式と第2方式とをサポートするように構成される。第1方式は、例えば、上りリンクにおいてシングルキャリア波形が用いられる無線アクセス方式であってもよい。その様な第1方式は、例えば、SC-FDMA方式でもよい。第2方式は、例えば、上りリンクにおいてマルチキャリア波形が用いられる無線アクセス方式であってもよい。その様な第2方式は、例えば、OFDMA方式でもよい。一例として、第1方式におけるシングルキャリア波形は、DFT-S-OFDM波形でもよい。第2方式におけるマルチキャリア波形は、例えば、CP-OFDM波形でもよい。なお、無線端末10は、無線基地局20との下りリンクにおいて、第1方式又は第2方式の何れか一方のみをサポートするように構成されてもよい。例えば、無線端末10は、無線基地局20との下りリンクにおいて、OFDMA方式のみをサポートしてもよい。あるいは、無線端末10は、無線基地局20との下りリンクにおいて、第1方式及び第2方式とは異なる無線アクセス方式(第3方式とも称され得る)をサポートしてもよい。
 図1に例示される無線端末10は、無線基地局20からの設定情報に従って、あるいは、無線端末10のメモリに予め格納された設定情報に従って、複数の無線アクセス方式のうち第1方式又は第2方式の何れかを選択し、選択された無線アクセス方式により、無線基地局20に無線信号を送信してもよい。例えば、無線基地局20から受信された設定情報に従って上りリンクの無線アクセス方式として第1方式が選択される場合、無線端末10は、第1方式による無線信号を無線基地局20に送信してもよい。別言すると、無線端末10は、上りリンクの無線アクセス方式として第1方式を示す設定情報に従って、シングルキャリア波形による無線信号を、無線基地局20に送信してもよい。一方、例えば、無線基地局20から受信された設定情報に従って上りリンクの無線アクセス方式として第2方式が選択される場合、無線端末10は、第2方式による無線信号を、無線基地局20に送信してもよい。別言すると、無線端末10は、上りリンクの無線アクセス方式として第2方式を示す設定情報に従って、マルチキャリア波形による無線信号を、無線基地局20に送信してもよい。
 図1に例示される無線基地局20は、無線端末10からの上りリンクの無線接続に対して、シングルキャリア波形による無線アクセス方式である第1方式と、マルチキャリア波形による無線アクセス方式である第2方式とをサポートするように構成される。図1において、一つの無線端末10が例示されているが、無線基地局20は、複数の無線端末10と無線接続を確立し得るように構成されてもよい。例えば、無線基地局20は、第1方式により上りリンクの無線信号の送信を試みる無線端末10(第1無線端末とも称され得る)と、第2方式による上りリンクの無線信号の送信を試みる無線端末10(第2無線端末とも称され得る)とに対して、上りリンクの無線接続を確立するように構成されてもよい。なお、無線基地局20は、無線端末10との下りリンクにおいて、第1方式又は第2方式の何れか一方のみをサポートするように構成されてもよい。例えば、無線基地局20は、無線端末10との下りリンクにおいて、OFDMA方式のみをサポートしてもよい。あるいは、無線基地局20は、無線端末10との下りリンクにおいて、第1方式及び第2方式とは異なる無線アクセス方式(第3方式とも称され得る)をサポートしてもよい。
 図1に例示される無線基地局20は、シングルキャリア波形の上りリンクの無線信号を送信し得る第1方式と、マルチキャリア波形の上りリンクの無線信号を送信し得る第2方式と、のどちらを使用するかを、任意のアルゴリズムに基づいて、無線端末10に割当てるように構成されてもよい。例えば、無線基地局20は、上りリンクの無線アクセス方式として第1方式及び第2方式の何れかが割当てられた無線端末10に対して、上りリンクの無線アクセス方式を示す設定情報を送信するように構成されてもよい。
 図2は、実施例1に係る無線通信システムにおける上りリンクの無線アクセス方式の割当ての一例を示す図である。図2に例示される無線通信システム1は、2つの無線端末10(第1無線端末10-1,第2無線端末10-2)と、無線基地局20とを有する。図2において、第1無線端末10-1は、第2無線端末10-2よりも、無線基地局20から離れた位置に存在するかもしれない。別言すると、第1無線端末10-1において観測される無線基地局20からの下りリンクの無線品質は、第2無線端末10-2において観測される下りリンクの無線品質よりも低い。ここで、下りリンクの無線品質は、例えば、受信信号強度(RSSI:Received Signal Strength Indicator)、信号対雑音比(SNR:Signal-to-Noise Ratio)、基準信号受信電力(RSRP:Reference Signal Received Power)、基準信号受信品質(RSRQ:Reference Signal Received Quality)の何れかであってもよい。また、下りリンクの無線品質の代わりに、上りリンクの無線品質が用いられてもよい。
 図2に示される無線基地局20は、各無線端末10(第1無線端末10-1、第2無線端末10-2)から、下りリンクの無線品質を示す指標値を含む測定結果報告を受信してもよい。無線基地局20は、各無線端末10からの測定結果報告に少なくとも部分的に基づいて、各無線端末10に割当てる無線アクセス方式を選択してもよい。例えば、無線基地局20は、良好な無線品質に関する測定結果報告を送信した無線端末10に対して、マルチキャリア波形による無線アクセス方式である第2方式を割当ててもよい。一方、無線基地局20は、良好ではない無線品質に関する測定結果報告を送信した無線端末10に対して、シングルキャリア波形による無線アクセス方式である第1方式を割当ててもよい。
 無線基地局20は、例えば、測定結果報告に含まれる指標値を、所定の閾値(第1の閾値とも称され得る)と比較することで、測定結果報告により示される下りリンクの無線品質が良好であるか否かを判定してもよい。例えば、測定結果報告に示される指標値が大きな値であるほど、無線品質が良いことを意味するという前提で説明する。この前提の下では、測定結果報告に含まれる指標値が所定の閾値以上である場合、無線基地局20は、測定結果報告に示される無線品質が良好であると判定してもよい。一方、測定結果報告に含まれる指標値が所定の閾値未満である場合、無線基地局20は、測定結果報告に示される無線品質が良好でないと判定してもよい。上述の無線アクセス方式の切替えの判定に用いられる閾値(第1の閾値とも称され得る)は、他の無線基地局へのハンドオーバの契機の判定に用いられる閾値(第2の閾値とも称され得る)よりも、大きな値であってもよい。別言すると、第2の閾値との比較において無線品質が比較的良好であると判定される場合であっても、第1の閾値との比較において無線品質が比較的良好でないと判定されるかもしれない。なお、測定結果報告に示される指標値が小さい値であるほど、無線品質が良いことを意味するという前提の下では、上述の例と逆の判定をしてもよい。
 図2の例では、無線品質が比較的良好でないと判定され得る範囲である第1の範囲30-1と、無線品質が良好であると判定され得る範囲である第2の範囲30-2とが示される。第1無線端末10-1は、第1の範囲30-1に属しており、シングルキャリア波形による無線アクセス方式である第1方式が割当てられる。そのため、図2に示される第1無線端末10-1は、無線基地局20に対して、第1方式による無線信号40-1を送信する。一方、第2無線端末10-2は、第2の範囲30-2に属しており、マルチキャリア波形による無線アクセス方式である第2方式が割当てられる。そのため、図2に示される第2無線端末10-2は、無線基地局20に対して、第2方式による無線信号40-2を送信する。なお、図2における例では、第1の範囲30-1に属する第1無線端末10-1は、上りリンク(UL)の無線アクセス方式としてSC-FDMA、下りリンク(DL)の無線アクセス方式としてOFDMAが割当てられる。また、第2の範囲30-2に属する第2無線端末10-2は、上りリンク(UL)の無線アクセス方式としてOFDMA又はSC-FDMA、下りリンク(DL)の無線アクセス方式としてOFDMAが割当てられる。なお、図2において、SC-FDMAは第1方式の一例であり、OFDMAは第2方式の一例である。
 良好な無線品質の無線端末10は、マルチキャリア波形による無線アクセス方式である第2方式を用いることで、上りリンクの伝送レートを第1方式よりも向上させることができる。例えば、マルチキャリア波形であるOFDM波形によるOFDMA方式は、高速情報レートの広帯域信号を複数の直交サブキャリア信号を用いて並列伝送することにより、マルチパス干渉に対して耐性の高い信号伝送を実現できる。その結果として、OFDMA方式では、伝送レートの向上が期待される。その反面、マルチキャリア波形による無線アクセス方式は、シングルキャリア波形による無線アクセス方式よりも、ピーク電力対平均電力比(PAPR:Peak-to-Average Power Ration)が高いとされる。
 例えば、OFDMA方式では、直交サブキャリア信号の数の増加に伴い、シングルキャリア波形による無線アクセス方式よりも、大きなPAPRが発生し得る。そして、無線端末10の送信電力増幅器の線形性を逸脱するほど大きなPAPRが発生すると、無視しえない程度の信号波形の歪が生じ、干渉源となり得るスプリアス成分が増加する。送信電力増幅器の線形性を保つ領域での動作を保証するために、マルチキャリア波形による無線アクセス方式の上りリンクについて、上りリンクのカバレッジエリアを制限することは有用である。実施例1に係る無線通信システム1は、図2に例示されるように、マルチキャリア波形による無線アクセス方式である第1方式の上りリンクを、無線品質が良好と判定される第2の範囲30-2に制限し得る。これにより、無線通信システム1は、無線端末10からの上りリンク伝送の平均出力を抑えつつ、マルチキャリア波形の無線アクセス方式である第2方式による上りリンク伝送を、適切に実行することができる。なお、無線基地局20は、無線品質が比較的良好な無線端末10に対して、シングルキャリア波形による無線アクセス方式である第1方式を割当ててもよい。
 一方、比較的良好でない無線品質の無線端末10は、シングルキャリア波形による無線アクセス方式である第1方式を用いることで、上りリンクのPAPRを第1方式よりも下げることができる。例えば、DFT-S-OFDM波形によるSC-FDMA方式は、離散フーリエ変換(DFT:Discrete Fourier Transform)処理と逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理との組合せにより、シングルキャリア信号を生成し得る。SC-FDMA方式は、シングルキャリア信号を用いることで、マルチキャリア波形の無線アクセス方式である第2方式よりも、上りリンクのPAPRを低減できる。別言すると、シングルキャリア波形の第1方式は、マルチキャリア波形の第2方式よりも、干渉源となり得るスプリアス成分の増加を適切に抑えることができる。その結果、シングルキャリア波形の第1方式は、マルチキャリア波形の第2方式よりも、上りリンクのカバレッジを広げることが期待される。
 図2に例示されるように、実施例1に係る無線通信システム1は、無線品質が比較的良好でないと判定され得る第1の範囲30-1における上りリンク伝送に対して、シングルキャリア波形の第1方式を割当てる。別言すると、無線基地局20は、第1の範囲30-1に属する第1無線端末10-1に対して、シングルキャリア波形の第1方式を割当てる。無線品質が比較的良好でない無線端末10からの上りリンク伝送に第1方式を用いることで、上りリンクの無線品質を補償するために上りリンクの送信出力を上げつつ、干渉源となり得るスプリアス成分の発生を抑えることができる。
 図2における無線端末10は、土地ないし建物などに固定された移動しない無線通信装置であってもよいし、車両などの移動体に搭載された無線通信装置(車載端末と称されてもよい)や利用者が携帯する無線通信装置(スマートフォンと称されてもよい)など、移動が可能な無線通信装置(移動局とも称され得る)であってもよい。例えば、第2無線端末10-2は、図2の例示では第2の範囲30-2に属しているが、無線基地局20により形成される無線エリア(セルとも称され得る)の外縁部分(セル端とも称され得る)に向けて移動するかもしれない。
 無線基地局20は、無線端末10からの測定結果報告により示される無線品質の変化に少なくとも部分的に基づいて、無線端末10の移動を検知してもよい。無線基地局20は、無線端末10からの測定結果報告を、所定の時間間隔で繰り返し受信する。無線基地局20は、ある時点t1で受信した無線品質が良好である無線端末10に対して第2方式を割当てた後に、他のある時点t2で当該無線端末10から受信した無線品質が比較的良好でないと判定するかもしれない。その場合、無線基地局20は、その無線端末10の上りリンクの無線アクセス方式を、第1方式に変更してもよい。これにより、無線端末10が、第2の範囲30-2から第1の範囲30-1への移動後に、第2方式による上りリンク伝送を継続することを防止することが期待される。
 しかし、上述した様に、無線基地局20において、無線端末10による上りリンクの無線アクセス方式を変更すべきであると判定したとしても、瞬時に無線アクセス方式の変更が完了できるわけではない。別言すると、新たな無線アクセス方式が実際に無線端末10に適用されるまでのわずかな期間(遷移期間とも称され得る)において、変更前の無線アクセス方式による上りリンク伝送が継続され得る。その結果、遷移期間における上りリンク伝送により無線端末10から出力される無線信号は、スプリアス成分による干渉を増加させるかもしれない。そのため、上りリンクの無線アクセス方式を変更する必要性が生じた後、新たな無線アクセス方式が無線端末10に適用されるまで、変更対象の無線端末10からの上りリンク伝送を抑制することが望ましい。そこで、実施例1に係る無線通信システム1では、無線端末10は、Intra-Cell HO(Hand Over)実行指示を含むRRCメッセージを介して、上りリンクの無線アクセス方式の変更を通知されてもよい。別言すると、無線基地局20は、Intra-Cell HO(Hand Over)実行指示を含むRRCメッセージを介して、上りリンクの無線アクセス方式の変更を、無線端末10に通知してもよい。ここで、Intra-Cell HO(Hand Over)実行指示は、無線端末10が無線接続を確立している無線基地局20と同じ無線基地局20に、疑似的にHOすることを指示する指示情報である。疑似的にHOすることで、無線端末10は、上りリンクの無線通信プロトコルスタックにおける一部のレイヤにおける処理エンティティをリセットし、同じ無線基地局20に対する再同期を実行する。別言すると、Intra-Cell HO(Hand Over)実行指示は、同じ無線基地局に対する再同期を指示する第1情報としての側面を有する。なお、Intra-Cell HOは、例えば、セル内ハンドオーバ、セクタ内ハンドオーバ、基地局内ハンドオーバ、無線基地局内ハンドオーバなどと称されてもよい。
 再同期では、例えば、変更後の無線アクセス方式に関するパラメータについて、無線端末10と無線基地局20とで同期が確保されればよい。その際、無線端末10は、PRACH(Physical Random Access CHannel)を介してプリアンブル信号を無線基地局20に送信するランダムアクセス動作を行ってもよい。ランダムアクセス動作では、無線端末10は、プリアンブル信号(メッセージ1とも称され得る)を無線基地局20へ送信し、その応答情報であるRACH応答を無線基地局20から受信する。無線端末10は、無線基地局20からRACH応答(メッセージ2とも称され得る)を受信した後に、コネクション要求信号をメッセージ3として送信するかもしれない。また、無線端末10は、コネクション要求信号を送信した後に、コネクション確立のためのセル設定情報などを含むRRC接続設定(RRC connection setup)メッセージ(メッセージ4とも称され得る)を、無線基地局20から受信するかもしれない。
 図3は、実施例1に係る無線基地局20における処理の流れの一例を示す図である。図3に例示される処理の流れは、例えば、無線基地局20が無線端末10から測定結果報告を受信したことを契機として実行を開始されてもよい。
 無線基地局20は、無線端末10から受信した測定結果報告から、無線基地局20の下りリンクの無線品質に関する情報を取得する(S101)。測定結果報告は、例えば、MeasurementReportと称されてもよい。無線品質に関する情報は、例えば、受信品質指標(CQI:Channel Quality Indicator)、プレコーディング行列(PMI:Precoding Matrix Indicator)、プレコーディングタイプ指標(PTI:Precoding Type Indicator)、ランク指標(RI:Rank Indicator)、チャネル状態情報(CSI:Channel State Information)、受信信号強度(RSSI:Received Signal Strength Indicator)、信号対雑音比(SNR:Signal-to-Noise Ratio)、基準信号受信電力(RSRP:Reference Signal Received Power)、基準信号受信品質(RSRQ:Reference Signal Received Quality)などであってもよい。なお、S101において取得される情報は、下りリンクの無線品質に関する測定結果報告に限定されない。例えば、無線基地局20は、S101において、無線端末10から送信される無線信号(例えば、SRS(Sounding Reference Signal))に少なくとも部分的に基づいて上りリンクの無線品質を測定することで、無線品質に関する情報(測定結果報告と称されてもよい)を取得してもよい。以下の説明において、測定結果報告は、S101において取得される情報の一例である。
 無線基地局20は、測定結果報告から取得した無線品質に関する情報に少なくとも部分的に基づいて、無線品質が比較的良好かを判定する(S102)。S102において、無線基地局20は、例えば、無線品質に関する情報と所定の閾値とを比較して、比較結果に少なくとも部分的に基づいて無線品質が比較的良好か否かを判定してもよい。例えば、無線品質に関する情報に示される数値が所定の閾値以上である場合、無線基地局20は、無線品質が比較的良好であると判定してもよい(S102でYES)。一方、無線品質に関する情報に示される数値が所定の閾値未満である場合、無線基地局20は、無線品質が比較的良好ではないと判定してもよい(S102でNO)。なお、上述の判定の例は、無線品質に関する情報に示される数値が大きいほど、無線品質が良好であるという前提によるものである。無線品質に関する情報に示される数値が小さいほど、無線品質が良好であるという設計の場合、上述の例とは逆の判定を行えばよい。
 S102において、無線品質が比較的良好であると判定された場合(S102でYES)、無線基地局20は、当該測定結果報告を送信した無線端末10に対して、マルチキャリア波形による無線アクセス方式である第2方式を選択する(S103)。一方、S102において、無線品質が比較的良好ではないと判定された場合(S102でNO)、無線基地局20は、当該測定結果報告を送信した無線端末10に対して、シングルキャリア波形による無線アクセス方式である第1方式を選択する(S104)。
 無線基地局20は、複数の無線端末10の各々に対し適用中の上りリンクの無線アクセス方式に関する情報を格納するように構成された管理テーブルT100にアクセスし、当該測定結果報告を送信した無線端末10に対する選択結果が、管理テーブルT100の内容と異なるか否かを判定する(S105)。
 図4は、実施例1に係る無線基地局20における管理テーブルT100の内容例を示す図である。図4に示される管理テーブルT100は、無線端末10を識別する情報である端末ID(T101)と、当該無線端末10に対して適用中の上りリンクの無線アクセス方式に関する情報T102とを含む。図4の例示では、端末ID(T101)が「端末1」の無線端末10に対して、上りリンクの無線アクセス方式T102として「第1方式」が適用されていることが示される。同様に、端末ID(T101)が「端末2」の無線端末10に対して、上りリンクの無線アクセス方式T102として「第2方式」が適用されていることが示される。なお、端末ID(T101)は、少なくともある有限の時間期間において無線基地局20が無線端末10を識別することができる情報であれば何でもよく、例えば、C-RNTI(Cell-Radio Network Temporary Identifier)など、無線端末10に対して一時的に与えられる識別情報であってもよい。
 S105において、無線基地局20は、無線端末10からの上りリンクの無線信号から測定結果報告を受信(取得)する過程で知得した、当該無線端末10の端末ID(T101)を用いてもよい。図4の例示において、無線基地局20は、測定結果報告を送信した無線端末10の端末ID(T101)が「端末2」であることを知得した場合、管理テーブルT100にアクセスすることで、端末ID(T101)が「端末2」の無線端末10に対する管理テーブルT100の内容が「第2方式」であることを知得する。そして、無線基地局20は、S103又はS104における選択結果と管理テーブルT100の内容とを比較することで、選択結果が管理テーブルT100の内容と異なるかを判定することができる(S105)。
 S105において、S103又はS104における選択結果と管理テーブルT100の内容とが異なる場合(S105でYES)、無線基地局20は、Intra-Cell HOの実行指示(第1情報とも称され得る)と、選択結果の無線アクセス方式を示す情報(無線アクセス方式に関する情報、第2情報とも称され得る)と、を含むRRCメッセージ(第1制御メッセージとも称され得る)を、無線端末10に送信する(S106)。Intra-Cell HOの実行指示は、無線基地局20への再同期を指示する第1情報の一例である。選択結果の無線アクセス方式を示す情報は、無線基地局20との上りリンクのデータ伝送に用いられる無線アクセス方式に関する第2情報の一例である。S106において無線基地局20から無線端末10へ送信されるRRCメッセージは、無線基地局20と無線端末10との無線接続の再構成に関する第1制御メッセージの一例である。
 無線基地局20は、S103又はS104における選択結果に少なくとも部分的に基づいて、管理テーブルT100の内容を更新する(S107)。例えば、端末ID(T101)が「端末2」の無線端末10からの測定結果報告に示される無線品質に基づく選択結果が「第1方式」であったとする。この場合、図4に示される管理テーブルT100の内容は、端末ID(T101)が「端末2」に対応する無線アクセス方式(T102)について、「第2方式」から「第1方式」に上書きされる。
 一方、S105において、選択結果が管理テーブルの内容と異ならないと判定された場合(S105でNO)、無線基地局20は、S106ないしS107の処理をスキップしてもよい。
 以上が、実施例1に係る無線基地局20における処理の流れの一例である。なお、図3に例示される処理の流れの一例は、無線基地局20における処理の一部について例示されたものである。無線端末10から測定結果報告を受信した場合に、無線基地局20は、図3に例示される処理の流れに加えて、他の処理を実行してもよい。
 図5は、実施例1に係る無線端末10における処理の流れの一例を示す図である。図5に例示される処理の流れは、例えば、無線端末10が無線基地局20からRRCメッセージを受信したことを契機として実行を開始されてもよい。ここで、RRCメッセージは、無線基地局20と無線端末10との無線接続の再構成に関する第1制御メッセージの一例である。このようなRRCメッセージは、無線基地局20との無線接続が確立された状態(RRC_CONNECTED状態とも称され得る)の無線端末10により、無線基地局20から受信される。
 無線端末10は、無線基地局20から受信したRRCメッセージに、Intra-Cell HOの実行指示が含まれるかを判定する(S201)。例えば、無線端末10は、RRCメッセージに情報要素「MobilityControlInfo」が含まれている場合、RRCメッセージにIntra-Cell HOの実行指示が含まれると判定してもよい(S201でYES)。一方、RRCメッセージに情報要素「MobilityControlInfo」が含まれていない場合、無線端末10は、RRCメッセージにIntra-Cell HOの実行指示が含まれないと判定してもよい(S201でNO)。ここで、情報要素「MobilityControlInfo」は、無線端末10に対して、無線基地局20への再同期を指示する第1情報としての側面を有する。
 なお、情報要素「MobilityControlInfo」は、Intra-Cell HOの実行指示(第1情報と称されてもよい)としての側面に加え、他のセルに接続先を変更するInter-Cell HOの実行指示としての側面をも有し得る。S201において、無線端末10は、情報要素「MobilityControlInfo」に設定されたパラメータの内容に少なくとも部分的に基づいて、何れの側面を有するかを判定しもよいし、判定しなくてもよい。別言すると、図5に例示される処理の流れにおけるS201の判定処理は、RRCメッセージに無線端末の移動性に関する情報要素「MobilityControlInfo」が含まれるか否かを判定することと等価であってもよい。
 S201において、情報要素「MobilityControlInfo」がIntra-Cell HOの実行指示であることを厳密に判定する手法として、無線端末10は、例えば、情報要素「MobilityControlInfo」に設定されたパラメータの内容が、無線端末10が無線接続を確立している無線基地局20と同じ無線基地局20(セル、セクタ、無線エリアなどと称されてもよい)へのHOを指示する内容であるか、無線端末10が無線接続を確立している無線基地局20とは異なる無線基地局20へのHOを指示する内容であるかを判定してもよい。情報要素「MobilityControlInfo」に設定されたパラメータの内容が、無線端末10が無線接続を確立している無線基地局20と同じ無線基地局20へのHOを指示する内容である場合、無線端末10は、情報要素「MobilityControlInfo」がIntra-Cell HOの実行指示であることを厳密に判定することができる。
 S201において、RRCメッセージにIntra-Cell HOの実行指示が含まれると判定された場合(S201でYES)、無線端末10は、上りリンク伝送を中断する(S202)。これにより、新たな無線アクセス方式が無線端末10に適用されるまで、無線端末10からの上りリンク伝送を抑制することができる。
 無線端末10は、RRCメッセージから無線アクセス方式に関する情報を取得する(S203)。無線アクセス方式に関する情報は、例えば、上りリンクの無線チャネルに関する情報要素「PUSCH-Config」であってもよい。S203において、RRCメッセージから取得された情報要素「PUSCH-Config」が、transform-precodingを適用する旨を示すパラメータを含む場合、無線端末10は、上りリンクの無線アクセス方式として、シングルキャリア波形の第1方式が示されていると判定し得る。一方、S203において、RRCメッセージから取得された情報要素「PUSCH-Config」が、transform-precodingを適用する旨を示すパラメータを含まない場合、無線端末10は、上りリンクの無線アクセス方式として、マルチキャリア波形の第2方式が示されていると判定し得る。ここで、transform-precodingを適用する旨を示すパラメータは、第1方式と第2方式との何れかに関する第2情報としての側面を有し得る。また、情報要素「PUSCH-Config」も、第1方式と第2方式との何れかに関する第2情報としての側面を有し得る。
 情報要素「PUSCH-Config」は、transform-precodingを適用するか否かを示す1ビットのフラグを含んでもよい。あるいは、情報要素「PUSCH-Config」は変調符号方式(MCS:Modulation Coding Scheme)インデックスを含み、無線端末10は、情報要素「PUSCH-Config」に含まれるMCSインデックスが所定の値である場合、transform-precodingを適用する旨を示すパラメータを含むと判定してもよい。別言すると、無線端末10は、情報要素「PUSCH-Config」に含まれるMCSインデックスが、transform-precodingが適用される場合にのみ使用されるMCSインデックスの値と合致するか否かを判定してもよい。ここで、情報要素「PUSCH-Config」における変調符号方式(MCS:Modulation Coding Scheme)インデックスは、第1方式と第2方式との何れかに関する第2情報としての側面を有し得る。なお、MCSインデックスは、MCSテーブルインデックス、変調符号方式テーブルインデックスなどと称されてもよい。
 なお、情報要素「PUSCH-Config」は、無線アクセス方式に関する情報の一例であって、本実施例はこれに限定されるわけではない。例えば、情報要素「SRS-config」(SoundingRS-UL-Configと称されてもよい)、情報要素「RadioResourceConfig」、情報要素「PhysicalConfigDedicated」などに、上述のパラメータが格納されるように構成してもよい。これらの情報要素は、例えば、RRC Reconfigurationメッセージに含まれ得る。上述の種々の情報要素も、第1方式と第2方式との何れかに関する第2情報としての側面を有し得る。別言すると、第2情報は、例えば、無線端末10から無線基地局20への上りリンクの無線信号に適用される無線アクセス方式の種類(例えば、第1の方式又は第2の方式)、上りリンクの無線信号に適用される波形の種類(例えば、シングルキャリア波形又はマルチキャリア波形)、上りリンクの無線信号が生成される過程において所定の信号処理が適用されるか否かを示す情報(例えば、precoding処理が適用されるか否かを示す情報)の何れかであってもよい。
 無線端末10は、無線アクセス方式に関する情報(第2情報とも称され得る)に従った無線アクセス方式(変更後の無線アクセス方式、新たな無線アクセス方式とも称され得る)に関するパラメータについて、無線基地局20との同期処理(再同期処理と称されてもよい)を実行する(S204)。S204において、無線端末10は、RRCメッセージから取得した情報要素「MobilityControlInfo」に示されるHO先の無線基地局20との同期処理を試みてもよい。この場合、情報要素「MobilityControlInfo」において、HO先とHO元とは、同じ無線基地局20であってもよい。別言すると、情報要素「MobilityControlInfo」に示されるHO先の無線基地局20は、上述のS202において上りリンク伝送を中断する前の時点において無線接続を確立している無線基地局20と同じであってよい。S204により、RRCメッセージを介して通知された新たな無線アクセス方式について、無線端末10と無線基地局20との上りリンクの同期が確立される。S204における同期処理は、再同期処理と称されてもよい。
 S204の同期処理において、無線端末10は、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関するパラメータなどについて、無線基地局20との同期が確保されればよい。その際、無線端末10は、PRACH(Physical Random Access CHannel)を介してプリアンブル信号を無線基地局20に送信するランダムアクセス動作を行ってもよい。ランダムアクセス動作では、無線端末10は、プリアンブル信号(メッセージ1、Msg1信号、第1メッセージなどと称されてもよい)を無線基地局20へ送信し、その応答情報であるRACH応答を無線基地局20から受信する。無線端末10は、無線基地局20からRACH応答(メッセージ2、Msg2信号、第2メッセージなどと称されてもよい)を受信した後に、コネクション要求信号をメッセージ3(Msg3信号、第3メッセージなどと称されてもよい)として送信するかもしれない。また、無線端末10は、コネクション要求信号を送信した後に、コネクション確立のためのセル設定情報などを含むRRC接続設定(RRC connection setup)メッセージ(メッセージ4、Msg4信号、第4メッセージなどと称されてもよい)を、無線基地局20から受信するかもしれない。なお、上述のランダムアクセス動作において、メッセージ1乃至メッセージ4の何れか又は全ては、無線アクセス方式に関する情報(第2情報とも称され得る)に従った無線アクセス方式により送受信されてもよいし、無線アクセス方式に関する情報(第2情報とも称され得る)とは異なる無線アクセス方式により送受信されてもよい。
 無線端末10は、S204による同期確立後、上述の変更後の無線アクセス方式により、完了報告のRRCメッセージを、無線基地局20に送信する(S205)。完了報告のRRCメッセージは、例えば、RRC Reconfiguration Completeメッセージであってもよい。これにより、無線基地局20により選択された上りリンクの無線アクセス方式が、無線端末10に正常に適用されたことを、無線基地局20は知得することができる。なお、無線端末10は、S205による完了報告のRRCメッセージの送信を省略してもよい。この場合でも、無線基地局20は、無線端末10との同期処理(S204)の過程により、変更後の無線アクセス方式が無線端末10に正常に適用されたことを判断し得る。別言すると、無線基地局20は、S205による完了報告のRRCメッセージの受信確認なしに、無線端末10において無線アクセス方式の変更が適用されたことを判断してもよい。
 無線端末10は、変更後の無線アクセス方式により、上りリンク伝送を再開する(S206)。これにより、動的に変更された上りリンクの無線アクセス方式を用いて、適切に上りリンク伝送を実行することができる。
 以上が、実施例1に係る無線端末10における処理の流れの一例である。なお、図5に例示される処理の流れの一例は、無線端末10における処理の一部について例示されたものである。無線基地局20からRRCメッセージを受信した場合に、無線端末10は、図5に例示される処理の流れに加えて、他の処理を実行してもよい。なお、図5に例示される処理の流れは、一例であり、各工程の順序を適宜入れ替えてもよい。例えば、S202とS203との実行順序を入れ替えてもよい。
 図6は、実施例1に係る無線通信システム1におけるシーケンスの一例を示す図である。図6に例示されるシーケンスは、無線端末10が無線基地局20に初期接続するところから始まる(A01)。初期接続(A01)の過程において、無線端末10は、無線基地局20からブロードキャストされるシステム情報を受信することで、無線基地局20との無線接続に必要なパラメータを取得してもよい。ここで、システム情報は、例えば、MIB(Master Information Block)であってもよいし、SIB(System Information Block)であってもよい。例えば、無線端末10は、無線基地局20からブロードキャストされたSIBから、情報要素「RACH-config-common」を取得してもよい。無線端末10は、ランダムアクセスプロセス(Random Access Process)でのMsg3信号(第3メッセージ、メッセージ3などと称されてもよい)に対してprecodingを適用するか否かを、情報要素「RACH-config-common」に少なくとも部分的に基づいて判定してもよい。無線端末10は、Msg3信号に対してprecodingを適用すると判定した場合、ランダムアクセスプロセスのMsg3信号を、シングルキャリア波形による無線アクセス方式である第1方式で、無線基地局20に送信してもよい。一方、無線端末10は、Msg3信号に対してprecodingを適用しないと判定した場合、ランダムアクセスプロセスのMsg3信号を、マルチキャリア波形による無線アクセス方式である第2方式で、無線基地局20に送信してもよい。
 無線基地局20は、無線端末10との初期接続(A01)の確立後、あるいは、初期接続(A01)の過程において、RRCメッセージ(RRC Reconfigurationメッセージ)を、無線端末10に送信する(A02)。別言すると、無線端末10は、無線基地局20との初期接続(A01)の確立後、あるいは、初期接続(A01)の過程において、RRCメッセージ(RRC Reconfigurationメッセージ)を無線基地局20から受信する(A02)。A02におけるRRCメッセージは、例えば、測定結果報告に関する設定情報(MeasConfig)と、上りリンクの無線アクセス方式に関する設定情報(PUSCH-Config)とを含んでもよい。
 無線端末10は、A02のRRCメッセージの受信後、当該RRCメッセージが正常に受信された旨を示す応答メッセージ(RRC Reconfiguration Completeメッセージ)を、無線基地局20に送信する(A03)。別言すると、無線基地局20は、A02のRRCメッセージの送信後、当該RRCメッセージが正常に受信された旨を示す応答メッセージ(RRC Reconfiguration Completeメッセージ)を、無線端末10から受信する(A03)。
 無線端末10は、A02のRRCメッセージから取得された上りリンクの無線アクセス方式に関する設定情報(PUSCH-Config)に従って、無線基地局20に対する上りリンクのデータ伝送を開始する(A04)。例えば、無線アクセス方式に関する設定情報(PUSCH-Config)により「第1方式」が示される場合、無線端末10は、シングルキャリア波形による無線アクセス方式である第1方式で、無線基地局20に対する上りリンクのデータ伝送を行う(A04)。例えば、無線アクセス方式に関する設定情報(PUSCH-Config)により「第2方式」が示される場合、無線端末10は、マルチキャリア波形による無線アクセス方式である第2方式で、無線基地局20に対する上りリンクのデータ伝送を行う(A04)。別言すると、無線基地局20は、A02のRRCメッセージにおいて指定した無線アクセス方式により、無線端末10から、上りリンクのデータを受信する。
 無線端末10は、A02のRRCメッセージから取得された測定結果報告に関する設定情報(MeasConfig)に従って、無線基地局20からの下りリンクの無線品質を測定し、下りリンクの無線品質を示す測定結果報告を、無線基地局20に送信する(A05)。測定結果報告に関する設定情報(MeasConfig)は、例えば、測定対象の周波数帯域に関するパラメータ、測定結果報告の送信周期に関するパラメータ、測定結果報告の送信タイミングに関するパラメータなどを含んでもよい。
 無線基地局20は、無線端末10からの測定結果報告を受信し、測定結果報告に示される無線品質に少なくとも部分的に基づいて、無線端末10の上りリンクの無線アクセス方式を変更すべきか否かを判定する(A051)。A051の判定の具体例は、図3に例示される処理の流れと同じである。例えば、図3におけるS105において、選択結果が管理テーブルの内容と異なると判定(S105でYES)することは、無線端末10の上りリンクの無線アクセス方式を変更すべきと判定することと等価である。
 図6では、無線基地局20は、無線端末10の上りリンクの無線アクセス方式を変更すべきと判定する(A051)。その結果、無線基地局20は、RRCメッセージにより、変更後の上りリンクの無線アクセス方式を、無線端末10に通知する(A06)。A06のRRCメッセージは、無線端末10の移動性に関する制御情報(MobilityControlInfo)と、上りリンクの無線アクセス方式に関する設定情報(PUSCH-Config)とを含んでもよい。別言すると、無線端末10は、無線端末10の移動性に関する制御情報(MobilityControlInfo)と、上りリンクの無線アクセス方式に関する設定情報(PUSCH-Config)とを含むRRCメッセージを、無線基地局20から受信する(A06)。
 無線端末10は、無線基地局20から受信したRRCメッセージ(A06)に、無線端末10の移動性に関する制御情報(MobilityControlInfo)が含まれていることを検知し、無線基地局20への上りリンクのデータ伝送を中断する(A061)。A061において、無線端末10は、例えば、送信バッファに格納されている上りリンクで送信すべきデータについて、上りリンクの無線リソースの割当てを要求するスケジューリングリクエスト信号の送信を停止してもよい。
 無線端末10は、A06のRRCメッセージ(A06)から、上りリンクの無線アクセス方式に関する設定情報(PUSCH-Config)を取得し、当該設定情報を、無線基地局20に対する上りリンクの無線アクセス方式に適用する(A062)。
 無線端末10は、変更後の無線アクセス方式について、無線基地局20との再同期を実行する(A07)。別言すると、無線基地局20は、A06のRRCメッセージで指定した変更後の無線アクセス方式について、無線端末10との再同期が実行される(A07)。
 無線端末10は、再同期の確立後(A07)、A06のRRCメッセージに基づく再接続が完了した旨を示す完了報告のRRCメッセージ(RRC Reconfiguration Completeメッセージ)を、無線基地局20へ送信する(A08)。別言すると、無線基地局20は、A06のRRCメッセージで指定した変更後の無線アクセス方式による再同期の確立後(A07)、無線端末10から、完了報告のRRCメッセージを受信する(A08)。
 無線端末10は、変更後の無線アクセス方式により、無線基地局20に対する、上りリンクのデータ伝送を再開する(A09)。
 以上が、実施例1に係る無線通信システム1におけるシーケンスの一例である。
 以上に開示される実施例1の一側面によれば、無線端末10の上りリンクの無線アクセス方式を変更すべきと無線基地局20により判定された場合、無線基地局への再同期を指示する制御情報(第1情報)と、変更後の無線アクセス方式に関する設定情報(第2情報)と、を含むRRCメッセージ(第1制御メッセージ)が、無線基地局20から無線端末10に送信される。これにより、無線端末10は、無線基地局20からの第1制御メッセージを受信し、無線基地局への再同期を指示する制御情報(第1情報)が第1制御メッセージに含まれていることを検知したことに応じて、無線基地局20への上りリンクのデータ伝送を中断する。その結果、変更後の無線アクセス方式が上りリンクのデータ伝送に適用されるまでの時間期間において、変更前の無線アクセス方式による上りリンクのデータ伝送が継続されることを適切に抑制することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 以上に開示される実施例1の他の一側面によれば、無線端末10は、第1制御メッセージから取得した設定情報(変更後の無線アクセス方式に関する設定情報、第2情報とも称され得る)に従った無線アクセス方式について、無線基地局20との再同期処理を実行し、完了報告のRRCメッセージを無線基地局20に送信する。その結果、無線基地局20は、RRCメッセージで通知した変更後の無線アクセス方式が、無線端末10との上りリンクの無線接続に適用されていることを適切に判断することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 <実施例2> 実施例2では、実施例1において説明された無線通信システム1のより具体的な例示が提供される。実施例2に係る無線基地局20は、無線端末10に送信される第1制御メッセージに、前記第1情報に基づくハンドオーバ処理の一部の実行を無線端末10に省略させることを指示する第3情報を追加し得る。別言すると、実施例2に無線端末10は、第1情報に基づくハンドオーバ処理の一部の実行を省略させることを指示する第3情報を含む第1制御メッセージを、無線基地局から受信し得る。無線端末10は、無線基地局20から受信した第1制御メッセージに第3情報が含まれる場合、無線基地局20への上りリンクのデータ伝送を中断し、無線通信プロトコルスタックにおける第2レイヤの一部のサブレイヤに属する上りリンクの処理エンティティについて、第1制御メッセージの受信前に確立済みの状態を、無線基地局に対する再同期後も継続して使用し得る。別言すると、無線基地局20は、第3情報を含む第1制御メッセージを無線端末10に送信した場合、無線通信プロトコルスタックにおける第2レイヤの一部のサブレイヤに属する上りリンクの処理エンティティについて、第1制御メッセージの送信前に確立済みの状態を、無線端末との再同期後も継続して使用してもよい。
 実施例2の一側面によれば、上りリンクの無線アクセス方式の動的な変更を適切に実行するために、ハンドオーバ処理が利用される。ただし、当該ハンドオーバ処理では、無線端末10と無線基地局20との組合せが変更されないかもしれない。別言すると、当該ハンドオーバ処理の実行前後において、無線端末10と、無線基地局20により制御されるセル(無線エリア、セクタなどと称されてもよい)との組合せが変更されないかもしれない。当該ハンドオーバ後も無線端末10と無線基地局20との組合せが変更されないという運用形態の場合、ハンドオーバ処理の一部の冗長な処理を省略することで、上りリンクの無線アクセス方式の変更に要する処理遅延の短縮を図ることができる。また、実施例2の他の一側面によれば、ハンドオーバ処理の一部の冗長な処理を省略することで、送信すべき上りリンクのデータの損失を減らし得る。なお、無線基地局20は、無線基地局20により制御されるセルと読み替えてもよい。
 図7は、実施例2に係る無線基地局20における処理の流れの一例を示す図である。図7における実施例2の例示において、図3における実施例1の例示と同様の箇所には、同じ参照符号を付している。図7に示す処理の流れでは、例えば、無線端末10へ送信されるRRCメッセージの情報要素が新たに追加される(S106A)。
 S106Aにおいて、無線基地局20は、例えば、Intra-Cell HO実行指示(第1情報)と、選択結果の無線アクセス方式に関する情報(第2情報)と、HO処理の一部を省略させることを指示する情報(第3情報)とを含むRRCメッセージ(第1制御メッセージ)を、無線端末10に送信する。
 上述した様に、無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、無線通信プロトコルスタックにおける第2レイヤの少なくとも一部のサブレイヤに属する上りリンクの処理エンティティについて、第1制御メッセージの送信前に確立済みの状態を、無線端末との再同期後も継続して使用してもよい。
 上述の第2レイヤの少なくとも一部のサブレイヤに属する上りリンクの処理エンティティは、例えば、パケットデータ収束プロトコル(PDCP)エンティティや、無線リンク制御(RLC)エンティティなどを含んでもよい。
 無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、例えば、PDCPサービスデータユニット(SDU)を圧縮するためのヘッダ圧縮コンテキストを、第1制御メッセージによる無線端末10との再同期後も、PDCPエンティティに継続して使用させてもよい。別言すると、無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、PDCP再確立(PDCP re-establishment)を省略してもよい。例えば、無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、第1制御メッセージによる無線端末10との再同期後も、PDCPエンティティにおける各種状態を継続してもよい。PDCPエンティティにおける各種状態としては、例えば、sequence numberなどの各種状態変数や、リオーダリングバッファの状態などが挙げられる。別言すると、再同期後もPDCPエンティティにおける各種状態を継続させることで、例えば、sequence numberなどの各種状態変数の初期化や、リオーダリングバッファの初期化などを省略することができる。
 無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、例えば、RLCサービスデータユニット(SDU)を処理するためのRLC構成の一部ないしは全てを、第1制御メッセージによる無線端末10との再同期後も、RLCエンティティに継続して使用させてもよい。別言すると、無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、RLC re-establishmentを省略してもよい。例えば、無線基地局20は、第3情報を含むRRCメッセージ(第1制御メッセージ)を無線端末10に送信した場合、第1制御メッセージによる無線端末10との再同期後も、RLCエンティティにおける各種状態を継続してもよい。RLCエンティティにおける各種状態としては、例えば、sequence numberや、再送制御やリオーダリング制御に関する状態変数や、リオーダリングバッファの状態などが挙げられる。別言すると、再同期後もRLCエンティティにおける各種状態を継続させることで、例えば、sequence numberの初期化や、再送制御やリオーダリング制御に関する状態変数の初期化や、リオーダリングバッファの初期化などを省略することができる。
 以上が、図7に例示される実施例2に係る無線基地局20に追加された処理の説明である。そのほかの点については、図3に例示される実施例1に係る処理の流れと同様であるため、詳細な説明を省略する。
 図8は、実施例2に係る無線端末10における処理の流れの一例を示す図である。図8に例示される処理の流れは、図5における処理の流れのうちS204に関する処理を、より具体的に示したものである。別言すると、実施例2に係る無線端末10は、図5に例示される処理の流れの全体を実行してもよい。
 無線端末10は、図5に示されるS204に関する処理において、RRCメッセージ(第1制御メッセージ)に第3情報が含まれるかを判定してもよい(S2041A)。ここで、第3情報は、1ビット長のフラグであってもよい。例えば、第3情報としてのフラグの値が「1」である場合、ハンドオーバ処理の一部の実行を省略させることを意味してもよい。別言すると、S2041Aにおいて、無線端末10は、第3情報としてのフラグの値が「1」である場合、第1制御メッセージに第3情報が含まれると判定してもよい(S2041AでYES)。一方、S2041Aにおいて、無線端末10は、第3情報としてのフラグの値が「0」である場合、第1制御メッセージに第3情報が含まれないと判定してもよい(S2041AでNO)。上述の例において、第3情報は、ハンドオーバ処理の一部の実行を無線端末10に省略させることを指示するか否かを示す情報としての側面をも有し得ることに留意されたい。すなわち、S2041Aの判定は、第3情報がハンドオーバ処理の一部の実行を無線端末10に省略させることを指示するか否かを判定するように変更し得る。
 S2041Aにおいて、第1制御メッセージに第3情報が含まれると判定された場合(S2041AでYES)、無線端末10は、PDCPコンテキストを継続使用してもよい(S2042A)。別言すると、S2041Aにおいて、第1制御メッセージに第3情報が含まれると判定された場合(S2041AでYES)、無線端末10は、PDCP再確立(PDCP re-establishment)を省略してもよい(S2042A)。例えば、S2041Aにおいて、第1制御メッセージに第3情報が含まれると判定された場合(S2041AでYES)、無線端末10は、PDCPエンティティにおける各種状態を継続してもよい(S2042A)。PDCPエンティティにおける各種状態としては、例えば、sequence numberなどの各種状態変数や、リオーダリングバッファの状態などが挙げられる。別言すると、再同期後もPDCPエンティティにおける各種状態を継続させることで、例えば、sequence numberなどの各種状態変数の初期化や、リオーダリングバッファの初期化などを省略することができる。S2042Aにおいて、無線端末10は、例えば、PDCPサービスデータユニット(SDU)を圧縮するためのヘッダ圧縮コンテキストを、第1制御メッセージによる無線基地局20との再同期後も、PDCPエンティティに継続して使用させてもよい。別言すると、S2042Aにおいて、無線端末10は、PDCPエンティティにおける各種状態を、再同期後も継続してもよい。ここで、PDCPは、無線通信プロトコルスタックにおけるレイヤ2に属するサブレイヤの一例である。
 S2041Aにおいて、第1制御メッセージに第3情報が含まれると判定された場合(S2041AでYES)、無線端末10は、RLC構成を継続使用してもよい(S2043A)。S2043Aにおいて、無線端末10は、RLCサービスデータユニット(SDU)を処理するためのRLC構成の一部又は全部を、第1制御メッセージによる無線基地局20との再同期後も、RLCエンティティに継続して使用させてもよい。別言すると、S2041Aにおいて、第1制御メッセージに第3情報が含まれると判定された場合(S2041AでYES)、無線端末10は、RLC再確立(RLC re-establishment)を省略してもよい。例えば、S2043Aにおいて、無線端末10は、RLCエンティティにおける各種状態を、再同期後も継続してもよい。ここで、RLCは、無線通信プロトコルスタックにおけるレイヤ2に属するサブレイヤの一例である。また、RLC構成(RLCエンティティにおける各種状態と称されてもよい)は、例えば、RLCタイマ値、RLCカウンタ値、RLCシーケンス番号サイズ、再送制御やリオーダリング制御に関する状態変数や、リオーダリングバッファの状態などであってもよい。
 一方、S2041Aにおいて、第1制御メッセージに第3情報が含まれないと判定された場合(S2041AでNO)、無線端末10は、PDCPコンテキストをリセットする(S2044A)。別言すると、S2041Aにおいて、第1制御メッセージに第3情報が含まれないと判定された場合(S2041AでNO)、無線端末10は、PDCPの各種状態をリセットする(S2044)。S2044Aにおいて、無線端末10は、例えば、無線基地局20への上りリンクに関するPDCPエンティティを再確立することで、PDCPコンテキストをリセットしてもよい。別言すると、S2044において、無線端末10は、例えば、無線基地局20への上りリンクに関するPDCPエンティティを再確立することで、PDCPの各種状態をリセットしてもよい。
 また、S2041Aにおいて、第1制御メッセージに第3情報が含まれないと判定された場合(S2041AでNO)、無線端末10は、RLC構成をリセットしてもよい(S2045A)。別言すると、S2041Aにおいて、第1制御メッセージに第3情報が含まれないと判定された場合(S2041AでNO)、無線端末10は、RLCの各種状態をリセットしてもよい(S2045A)。S2045Aにおいて、無線端末10は、例えば、無線基地局20への上りリンクに関するRLCエンティティを再確立することで、RLC構成をリセットしてもよい。別言すると、S2045Aにおいて、無線端末10は、例えば、無線基地局20への上りリンクに関するRLCエンティティを再確立することで、RLCの各種状態をリセットしてもよい。
 以上が、図8に例示される処理の流れの説明である。なお、図8に例示される処理の流れは、第1制御メッセージによるハンドオーバ処理の一部について例示したものであり、その他の処理が実行されてもよい。
 以上に開示される実施例2の一側面によれば、無線端末10の上りリンクの無線アクセス方式を変更すべきと無線基地局20により判定された場合、無線基地局への再同期を指示する制御情報(第1情報とも称され得る)と、変更後の無線アクセス方式に関する設定情報(第2情報とも称され得る)と、第1情報に基づくハンドオーバ処理の一部の実行を無線端末10に省略させることを指示する情報(第3情報とも称され得る)と、を含むRRCメッセージ(第1制御メッセージとも称され得る)が、無線基地局20から無線端末10に送信される。これにより、無線端末10は、無線基地局20からの第1制御メッセージを受信し、無線基地局への再同期を指示する制御情報(第1情報とも称され得る)が第1制御メッセージに含まれていることを検知したことに応じて、無線基地局20への上りリンクのデータ伝送を中断する。その結果、変更後の無線アクセス方式が上りリンクのデータ伝送に適用されるまでの時間期間において、変更前の無線アクセス方式による上りリンクのデータ伝送が継続されることを適切に抑制することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 以上に開示される実施例2の他の一側面によれば、無線端末10は、第1制御メッセージから取得した設定情報(変更後の無線アクセス方式に関する設定情報、第2情報とも称され得る)に従った無線アクセス方式について、無線基地局20との同期処理(再同期処理と称されてもよい)を実行する。無線端末10は、第1制御メッセージに第3情報が含まれることを検知した場合、無線基地局20との再同期処理において、無線通信プロトコルスタックにおけるレイヤ2に属する一部のサブレイヤについて、第1制御メッセージを受信する前に確立された状態を、再同期後も維持する。これにより、レイヤ2に属する一部のサブレイヤについて再確立の処理を省略することで、無線アクセス方式の動的な変更における処理遅延を短縮することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 以上に開示される実施例2の更なる他の一側面によれば、変更後の無線アクセス方式についての無線端末10と無線基地局20との再同期処理において、レイヤ2に属する一部のサブレイヤ(RLCレイヤ、PDCPレイヤ)について再確立の処理が省略される。その結果、当該サブレイヤ(RLCレイヤ、PDCPレイヤ)の再確立(re-establishment)に伴うデータ損失を回避し、上りリンクで送信されるべきデータの損失を減じることができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 <実施例3> 実施例3では、上りリンクの無線アクセス方式を動的に変更することを許容する無線通信システム1のさらなる例が示される。実施例3に係る無線通信システム1における無線端末10は、上りリンクの無線リソースの割当てに関する制御情報を介して、上りリンクのデータ伝送における無線アクセス方式に関する情報を取得する。別言すると、無線基地局20は、無線端末10に対する上りリンクの無線リソースの割当てに関する制御情報に、上りリンクのデータ伝送における無線アクセス方式に関する情報を示す機能を追加する。例えば、無線端末10は、無線基地局20から受信した制御情報に、無線アクセス方式に関する情報が含まれる場合、制御情報により示される無線アクセス方式に従って、上りリンクのデータ伝送を実行してもよい。別言すると、無線基地局20は、無線アクセス方式に関する情報を含む制御情報を無線端末10に送信した場合、制御情報により示される無線アクセス方式に従って、無線端末10からの上りリンクのデータ伝送を受信し得る。
 実施例3の一側面によれば、上りリンクのデータ伝送における無線アクセス方式に関する情報は、上りリンクの無線リソースの割当てに関する制御情報を介して、無線基地局20から無線端末10へ伝達される。ここで、第1制御メッセージは、無線通信プロトコルスタックにおけるレイヤ3の制御メッセージであってもよい。また、制御情報は、無線通信プロトコルスタックにおけるレイヤ1の制御情報であってもよい。別言すると、上りリンクのデータ伝送における無線アクセス方式に関する情報は、レイヤ3よりも下位レイヤであるレイヤ1の制御情報(下り制御信号、DCI、上りリンクグラント信号(ULgrant信号)などと称されてもよい)を介して、無線基地局20から無線端末10へ伝達され得る。そのため、実施例3では、上りリンクのデータ伝送における無線アクセス方式に関する情報を、より迅速に、無線端末10へ伝達することができる。
 一方、レイヤ1の制御情報による無線アクセス方式に関する情報の伝達は、レイヤ1の制御情報の情報量の増加を招く。レイヤ1の制御情報は、PDCCH(Physical Downlink Control CHannel)などの有限の物理チャネルの無線リソースで無線送信される。一般的に、データ伝送用の無線リソースの利用効率を向上させるために、レイヤ1の制御情報の伝送に用いられる無線リソースは少ない方が良い。そのため、レイヤ1の制御情報の伝送用に割当てられる無線リソースは、データ伝送用の無線リソースよりも極めて少ない。したがって、レイヤ1の制御情報の情報量の増加は、レイヤ1の制御情報の伝送用に確保された無線リソースに収容できる制御情報の個数の減少を招く。別言すると、無線基地局20が一つの送信時間間隔(TTI、サブフレーム、スロットなどと称されてもよい)において送信できる制御情報の個数の減少は、下りリンクにおける多元接続数の低下を意味し、無線利用効率が低下する。
 上述の技術的事情により、レイヤ1の制御情報による無線アクセス方式に関する情報の伝達は、迅速な伝達というメリットと、多元接続数の低下を招き得るという潜在的なデメリットとを有する。そこで、実施例3に係る無線基地局20は、複数の無線端末10の各々について、上りリンクの無線アクセス方式を変更すべきであると判定された回数(判定回数)をカウントし、判定回数が閾値未満の場合、レイヤ1の制御情報により、上りリンクの無線アクセス方式に関する情報を、当該無線端末10へ送信する。一方、判定回数が閾値以上の場合、無線基地局20は、レイヤ3の第1制御メッセージにより、上りリンクの無線アクセス方式に関する情報を、当該無線端末10へ送信する。なお、無線基地局20は、複数の無線端末10の各々について、判定回数のカウントを開始してからの経過時間を計測するタイマを実装してもよい。そして、タイマにより計測された経過時間が所定値に達することで、上述の判定回数をクリアしてもよい。
 判定回数に応じて伝達方法を選択することで、上述のメリットとデメリットとのバランスを図ることが期待される。例えば、所定時間内に数回程度(例えば1回)の変更であれば、迅速性を重視して、レイヤ1の制御情報による無線アクセス方式に関する情報の伝達が選択されるかもしれない。また、例えば、所定時間内に閾値以上の変更があれば(例えば2回)、迅速性よりも、無線端末10と無線基地局20との無線接続の再同期による無線アクセス方式の確実な変更が望ましいかもしれない。
 図9は、実施例3に係る無線基地局20における処理の流れの一例を示す図である。図9に例示される処理の流れは、図3における処理の流れのうちS106に関する処理を、より具体的に示したものである。別言すると、実施例3に係る無線基地局20は、図3に例示される処理の流れの全体を実行してもよい。
 無線基地局20は、図3に示されるS106に関する処理において、例えば、変更対象の無線端末10に対応付けられたタイマ値が満了していないかを判定する(S1061B)。S1061Bにおいて、無線基地局20は、無線端末10からの上りリンクの無線信号から測定結果報告を受信(取得)する過程で知得した端末ID(T101)を用いて、無線端末10に対応付けられたタイマ値を管理してもよい。なお、変更対象の無線端末10は、図3に示されるS101乃至S105に関する処理により、無線アクセス方式を変更すべきと判定された無線端末10である。
 S1061Bにおいて、無線基地局20は、例えば、変更対象の無線端末10に対応付けられたタイマ値と所定の閾値とを比較することで、タイマ値が満了していないかを判定してもよい。例えば、タイマ値が閾値未満の場合、無線基地局20は、タイマ値は満了していないと判定してもよい(S1061BでYES)。一方、タイマ値が閾値以上の場合、無線基地局20は、タイマ値は満了していると判定してもよい(S1061BでNO)。なお、無線基地局20は、無線端末10からの初期アクセスを検知した時点など任意の時点から、無線端末10に対応付けられたタイマ値のカウントを開始してもよい。
 S1061Bにおいて、タイマ値は満了していないと判定された場合(S1061BでYES)、無線基地局20は、判定回数は閾値未満かを判定する(S1062B)。S1062Bにおいて、無線基地局20は、例えば、図3に示されるS101乃至S105に関する処理により無線アクセス方式を変更すべきと判定され回数を、無線端末10毎に管理してもよい。例えば、判定回数の初期値は、0であってもよい。一方、S1061Bにおいて、タイマ値は満了していると判定された場合(S1061BでNO)、無線基地局20は、判定回数を初期化し(S1063B)、S1062Bの判定をスキップして、後述のS1064Bを実行してもよい。
 S1062Bにおいて、判定回数が所定の閾値未満であると判定された場合(S1062BでYES)、無線基地局20は、レイヤ1の制御情報(DCI(Downlink Control Information)とも称され得る)を用いて、無線アクセス方式に関する情報を、変更対象の無線端末10に送信する(S1064B)。S1064Bにおいて、レイヤ1の制御情報は、無線アクセス方式に関する情報と、無線端末10からの上りリンクのデータ伝送用の無線リソースに関する情報とを含んでもよい。このような制御情報は、例えば、第1フォーマット(DCI format0_1)と称され得る。なお、無線アクセス方式に関する情報を有さず、上りリンクのデータ伝送用の無線リソースに関する情報を有する制御情報は、例えば、第2フォーマット(DCI forma0_0)と称されてもよい。別言すると、第2フォーマット(DCI format0_0)の制御情報は、第1フォーマット(DCI format0_1)の制御情報よりも、無線アクセス方式に関する情報を有さない分、情報量(信号量と称されてもよい)が少ないかもしれない。
 DCI format0_1の制御情報において、無線アクセス方式に関する情報は、例えば、transform-precoding-indicatorと称されてもよいし、transform-precoder-indicatorと称されてもよいし、transform-precoding-application-indicatorと称されてもよい。これらは、PUSCH(Physical Uplink Shared CHannel)の波形(waveform)にtransform-precodingを適用するか否かを示すパラメータとしての側面をも有する。例えば、制御情報に含まれるtransform-precoding-indicatorが、transform-precodingを適用することを指示するパラメータ(例えば1)を有する場合、無線端末10からの上りリンクのデータ伝送に用いられるPUSCHの波形にtransform-precodingが適用されることを意味するとともに、シングルキャリア波形による無線アクセス方式である第1方式(例えばSC-FDMA方式)が適用されることを意味してもよい。一方、制御情報に含まれるtransform-precoding-indicatorが、transform-precodingを適用しないことを指示するパラメータ(例えば0)を有する場合、無線端末10からの上りリンクのデータ伝送に用いられるPUSCHの波形にtransform-precodingが適用されないことを意味するとともに、マルチキャリア波形による無線アクセス方式である第2方式(例えばOFDMA方式)が適用されることを意味してもよい。
 あるいは、DCI format0_1の制御情報において、無線アクセス方式に関する情報は、例えば、waveform-indicatorと称されてもよい。これらは、PUSCHの波形(waveform)をシングルキャリア波形とするかマルチキャリア波形とするかを示すパラメータとしての側面をも有する。例えば、制御情報に含まれるwaveform-indicatorが、PUSCHの波形(waveform)をシングルキャリア波形(例えばDFT-s-OFDM波形)とすることを指示するパラメータ(例えば1)を有する場合、無線端末10からの上りリンクのデータ伝送に用いられるPUSCHの波形をシングルキャリア波形とすることを意味するとともに、シングルキャリア波形による無線アクセス方式である第1方式(例えばSC-FDMA方式)が適用されることを意味してもよい。一方、制御情報に含まれるwaveform-indicatorが、PUSCHの波形(waveform)をマルチキャリア波形(例えばOFDM波形)とすることを指示するパラメータ(例えば0)を有する場合、無線端末10からの上りリンクのデータ伝送に用いられるPUSCHの波形をマルチキャリア波形とすることを意味するとともに、マルチキャリア波形による無線アクセス方式である第2方式(例えばOFDMA方式)が適用されることを意味してもよい。なお、DCI format0_1の制御情報は、transform-precoding-indicatorと、waveform-indicatorとの両方を有してもよいし、何れか一方を有してもよい。
 無線基地局20は、S1064Bの実行前後の何れかのタイミングにおいて、タイマ値を初期化し(S1065B)、判定回数を更新する(S1066B)。なお、判定回数は、図3乃至図9に示される処理の流れの次の実行契機にも引き継がれるものとする。また、タイマ値は、時間の経過に連動して値が更新されるものとする。
 一方、S1062Bにおいて、判定回数が閾値以上であると判定された場合(S1062BでNO)、無線基地局20は、Intra-Cell HO実行指示(第1情報)と、選択結果の無線アクセス方式に関する情報(第2情報)と、を含むRRCメッセージ(第1制御メッセージ)を、無線端末10に送信する(S1067B)。
 無線基地局20は、S1067Bの実行前後の何れかのタイミングにおいて、判定回数とタイマ値とを初期化する(S1068B)。これにより、図3乃至図9に示される処理の流れの次の実行契機では、レイヤ1の制御情報を用いて無線アクセス方式に関する情報が送信され得る。別言すると、Intra-Cell HOの実行を繰り返すことにより処理遅延が大きくなることを避けるため、第1制御メッセージを連続して送信することを適切に回避し得る。
 以上が、図9に示される実施例3に係る無線基地局20における処理の流れの一例である。なお、図9に例示される処理の流れの一例は、無線基地局20における処理の一部について例示されたものである。無線端末10から測定結果報告を受信した場合に、無線基地局20は、図3乃至図9に例示される処理の流れに加えて、他の処理を実行してもよい。
 図10は、実施例3に係る無線端末10における処理の流れの一例を示す図である。図10に例示される処理の流れは、例えば、無線端末10が無線基地局20からレイヤ1の制御情報(DCI)を受信したことを契機として実行を開始されてもよい。別言すると、無線端末10は、無線基地局20からの下りリンクのPDCCHにおいて所望の信号系列を用いた復号に成功した制御情報の存在を検知したことを契機として、図10に例示される処理の流れを実行してもよい。
 無線端末10は、DCIのフォーマットが第1フォーマットか否かを判定する(S301)。S301において、無線端末10は、DCIに含まれるフォーマットID(DCI format indicator)に少なくとも部分的に基づいて、第1フォーマットか否かを判定してもよい。
 S301において、DCIフォーマットが第1フォーマットであると判定された場合(S301でYES)、無線端末10は、DCIに示される無線アクセス方式は第1方式かを判定する(S302)。S302において、無線端末10は、例えば、DCIにおけるtransform-precoding-indicatorの値が「1」である場合、DCIに示される無線アクセス方式は第1方式であると判定してもよい(S302でYES)。一方、S302において、無線端末10は、例えば、DCIにおけるtransform-precoding-indicatorの値が「0」である場合、DCIに示される無線アクセス方式は第1方式でないと判定してもよい(S302でNO)。上述のtransform-precoding-indicatorの代替として、waveform-indicatorの値に基づくS302の判定が行われてもよい。
 S302において、DCIに示される無線アクセス方式は第1方式であると判定された場合(S302でYES)、無線端末10は、無線基地局20への上りリンクのデータ伝送に適用する無線アクセス方式を第1方式に変更する(S303)。一方、S302において、DCIに示される無線アクセス方式は第1方式でないと判定された場合(S302でNO)、無線端末10は、無線基地局20への上りリンクのデータ伝送に適用する無線アクセス方式を第2方式に変更する(S304)。
 上述のS301において、DCIのフォーマットが第1フォーマットではないと判定された場合(S301でNO)、無線端末10は、無線基地局20への上りリンクのデータ伝送に適用する無線アクセス方式を変更しなくてもよい(S305)。
 以上が、図10に示される実施例3に係る無線端末10における処理の流れの一例である。なお、図10に示される処理の流れの一例は、無線端末10における処理の一部について例示されたものである。図10に例示される処理の流れに加えて、他の処理を実行してもよい。また、実施例3に係る無線端末10は、無線アクセス方式に関する情報(第2情報)を有するRRCメッセージ(第1制御メッセージ)を受信した場合には、図5に示される実施例1に係る無線端末10と同様の処理の流れを実行してもよい。
 図11は、実施例3に係る無線通信システム1におけるシーケンスの一例を示す図である。図11に例示されるシーケンスは、図6に示される実施例1に係る無線通信システム1におけるシーケンス例と同様の箇所に、同じ参照符号を付している。すなわち、図11に例示されるシーケンスは、図6におけるシーケンス例と同様に、無線端末10が無線基地局20に初期接続するところから始まってもよい(A01)。なお、図11に例示されるシーケンスのうち、A01乃至A05は、図6に示されるシーケンス例と同様であるため、詳細な説明を省略する。
 無線基地局20は、無線端末10からの測定結果報告を受信し、測定結果報告に示される無線品質に少なくとも部分的に基づいて、無線端末10の上りリンクの無線アクセス方式を変更すべきか否かを判定する(A051C)。A051の判定の具体例は、図3に例示される処理の流れと同じである。例えば、図3におけるS105において、選択結果が管理テーブルの内容と異なると判定(S105でYES)することは、無線端末10の上りリンクの無線アクセス方式を変更すべきと判定することと等価である。
 図11では、無線基地局20は、無線端末10の上りリンクの無線アクセス方式を変更すべきと判定する(A051C)。無線基地局20は、さらに、所定期間内におけるA051Cの判定回数に応じて、無線アクセス方式の通知方法を選択する(A052C)。A052Cの選択の具体例は、図9に例示される処理の流れと同じである。
 図11では、無線基地局20は、無線アクセス方式の通知方法として、レイヤ1の制御情報(DCI)による無線アクセス方式の通知を選択する(A052C)。その結果、無線基地局20は、無線端末10からの上りリンクのデータ伝送に用いられる無線リソースに関する情報(Resource-Allocation)と、無線アクセス方式に関する情報(TP-indicator)とを含む制御情報(DCI format0_1)を、無線端末10へ送信する(A06C)。
 無線端末10は、無線基地局20から受信したレイヤ1の制御情報(A06C)が第1フォーマットであることを検知して、当該制御情報に示される無線アクセス方式に従って、上りリンクのデータ伝送に適用される無線アクセス方式を変更する(A062C)。そして、無線端末10は、変更後の無線アクセス方式により、無線基地局20への上りリンクのデータ伝送を行う(A09)。これにより、無線端末10と無線基地局20との上りリンクのデータ伝送において、無線アクセス方式の動的変更を迅速に行うことができる。なお、A052Cの選択において、RRCメッセージ(第1制御メッセージ)による無線アクセス方式の通知が選択される場合、図6に例示されるシーケンスのA06乃至A09と同様のシーケンスが実行されてもよい。
 以上が、実施例3に係る無線通信システム1におけるシーケンスの一例である。
 以上に開示される実施例3の一側面によれば、レイヤ1の制御情報(DCI)により、上りリンクのデータ伝送に適用されるべき無線アクセス方式が無線端末10に通知される。これにより、レイヤ3の制御メッセージであるRRCメッセージによる通知と比較して、上りリンクのデータ伝送の無線アクセス方式の変更を、迅速に無線端末10に適用することができる。その結果、無線アクセス方式の動的な変更における処理遅延を短縮することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 以上に開示される実施例3の他の一側面によれば、判定回数に応じて無線アクセス方式の通知方法が選択される。例えば、無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定された回数(判定回数)が閾値未満であれば、上りリンクのデータ伝送に適用されるべき無線アクセス方式(変更後の無線アクセス方式とも称され得る)が、レイヤ1の制御情報(DCI)により無線端末10に通知される。例えば、無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定された回数(判定回数)が閾値以上であれば、上りリンクのデータ伝送に適用されるべき無線アクセス方式(変更後の無線アクセス方式とも称され得る)が、レイヤ3のRRCメッセージ(第1制御メッセージ)により無線端末10に通知される。これにより、レイヤ1の制御情報による迅速な通知・変更の適用を可能としつつ、レイヤ1の制御情報による通知の過度な繰り返しによる無線リソースの利用効率の低下を効果的に防止することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 <実施例4> 実施例4では、実施例3に係る無線端末10及び無線基地局20の処理の一部について、さらなる例が示される。実施例4に係る無線通信システム1では、実施例3と同様に、上りリンクのデータ伝送に用いられる無線リソースの割当てに関する制御情報を介して、上りリンクのデータ伝送における無線アクセス方式に関する情報が、無線基地局20から無線端末10へ伝達され得る。別言すると、実施例4に係る無線基地局20は、無線端末10に対する上りリンクの無線リソースの割当てに関する制御情報(DCI)に、上りリンクのデータ伝送における無線アクセス方式に関する情報を示す機能を追加する。実施例3では、上述の通知機能として、制御情報のフォーマットに、上りリンクのデータ伝送における無線アクセス方式に関する情報を示す情報フィールドを追加する例が示される。これに対し、実施例4では、上述の通知機能として、DCIのスクランブリング処理に用いられる信号系列の種類により、上りリンクのデータ伝送における無線アクセス方式に関する情報が通知される。
 図12は、実施例4に係る無線基地局20における処理の流れの一例を示す図である。図12に例示される処理の流れは、図9における処理の流れのうちS1064Bに関する処理を、より具体的に示したものである。図12において、図9に示される処理の流れと同様の箇所については、図9と同じ参照符号が付され、詳細な説明は省略される。なお、図12に示される処理の流れについても、図3に例示される処理の流れが引用される。別言すると、実施例4に係る無線基地局20は、図3に例示される処理の流れの全体を実行してもよい。
 無線基地局20は、図9に示されるS1064Bに関する処理において、例えば、無線アクセス方式に応じた信号系列を選択する(S10641D)。なお、S10641Dにおける無線アクセス方式は、図3に例示されるS101乃至S104の過程により選択される新たな無線アクセス方式であることに留意されたい。
 S10641Dにおいて、無線基地局20は、上りリンクのデータ伝送に適用されるべき新たな無線アクセス方式が第1方式である場合、第1系列を選択してもよい。S10641Dにおいて、無線基地局20は、上りリンクのデータ伝送に適用されるべき新たな無線アクセス方式が第2方式である場合、第2系列を選択してもよい。ここで、第1系列は、第2系列とは異なる内容の信号系列であればよい。なお、第1系列と第2系列とは、信号系列の一部が同じ内容であってもよい。例えば、第1系列は、変更対象の無線端末10に対して割当てられた識別情報(C-RNTI(16bit))と所定長の信号系列(例えば8bitの信号系列(01000000))とを連結した信号系列(01000000+[C-RNTI])であってもよい。例えば、第2系列は、変更対象の無線端末10に対して割当てられた識別情報(C-RNTI(16bit))と所定長の信号系列(例えば8bitの信号系列(10000000))とを連結した信号系列(10000000+[C-RNTI])であってもよい。
 無線基地局20は、選択された信号系列でレイヤ1の制御情報(DCI)をスクランブリングして送信する(S10642D)。S10642Dにおいて、無線基地局20は、例えば、制御情報に添付される誤り検出符号(例えば、CRC(Cyclic Redundancy Check))を、第1信号系列又は第2信号系列によるスクランブリング処理の対象(スクランブリング対象とも称され得る)としてもよい。なお、制御情報に添付される誤り検出符号(CRC)は、誤り訂正機能を有してもよい。
 図13は、実施例4に係る制御情報(DCI)におけるスクランブリング処理の概要を示す図である。図13の例示では、上りリンクのデータ伝送に用いられる無線リソースの割当てに関する制御情報(DCI)に、24bit長の誤り検出符号(CRC)が添付されている。図13の例では、第1系列(1st sequence)又は第2系列(2ndsequence)の何れか一方が、制御情報(DCI)に添付された誤り検出符号(CRC)に適用される。S10641Dにおいて、例えば、無線アクセス方式に応じた信号系列として第1系列が選択された場合、無線基地局20は、制御情報(DCI)に添付された誤り検出符号(CRC)を、第1系列(1st sequence)でスクランブリングする(S10642D)。S10641Dにおいて、例えば、第2系列が選択された場合、無線基地局20は、制御情報(DCI)に添付された誤り検出符号(CRC)を、第2系列(2nd sequence)でスクランブリングする(S10642D)。なお、制御情報(DCI)のフォーマットは、実施例3において説明された何れのフォーマットであってもよい。例えば、制御情報(DCI)のフォーマットは、第1フォーマット(DCI format0_1)であってもよいし、第2フォーマット(DCI format0_0)であってもよいし、他のフォーマットであってもよい。
 以上が、図12に示される実施例4に係る無線基地局20における処理の流れの一例である。なお、図12に例示される処理の流れのうち、図9と同様の箇所についての説明は省略される。適宜、実施例3における図9の説明を参照されたい。
 図14は、実施例4に係る無線端末10における処理の流れの一例を示す図である。図14に例示される処理の流れは、図10に示される実施例3に係る無線端末10における処理の流れの一部が変更されたものである。図14において、図10に示される処理の流れと同じ個所については、図10と同じ参照符号が付され、詳細な説明は省略される。図14に示される処理の流れは、例えば、無線端末10が、無線基地局20から送信される下りリンクの制御チャネルであるPDCCH(Physical Downlink Control CHannel)の無線リソースから制御情報(DCI)をブラインドサーチする際に実行されてもよい。
 無線端末10は、PDCCHの無線リソースから制御情報(DCI)をブラインドサーチする過程で、第1系列によるDCIの探索を行う(S306C)。S306Cにおいて、無線端末10は、PDCCHの無線リソースにおいて、DCIに添付された誤り検出符号(CRC)に相当する所定長(24bit)の領域を、第1系列によりデ・スクランブル(復調・復号と称されてもよい)することで、第1系列によりデ・スクランブルされた誤り検出符号(第1の誤り検出符号、第1のCRCと称されてもよい)を取得する。そして、無線端末10は、第1系列によりデ・スクランブルされた誤り検出符号(第1の誤り検出符号)を用いて、制御情報(DCI)の誤り検出を行う。なお、必要に応じて、誤り訂正が行われてもよい。
 無線端末10は、第1の誤り検出符号による制御情報(DCI)の誤り検出の結果(第1結果とも称され得る)に少なくとも部分的に基づいて、第1系列によるDCIの探索に失敗したかを判定する(S307C)。S307Cにおいて、例えば、第1の誤り検出符号による制御情報(DCI)の誤り検出において、訂正し得ない誤りが検出された場合、無線端末10は、第1系列によるDCIの探索に失敗したと判定してもよい(S307CでYES)。一方、S307Cにおいて、第1の誤り検出符号による制御情報(DCI)の誤り検出において、訂正し得ない誤りが検出されなかった場合、第1系列によるDCIの探索に成功したと判定してもよい(S307CでNO)。
 S307Cにおいて、第1系列によるDCIの探索に失敗したと判定された場合(S307CでYES)、無線端末10は、第2系列によるDCIの探索を行う(S308C)。S308Cにおいて、無線端末10は、S306Cと同様に、PDCCHの無線リソースにおいて、DCIに添付された誤り検出符号(CRC)に相当する所定長(24bit)の領域を、第2系列によりデ・スクランブル(復調・復号と称されてもよい)することで、第2系列によりデ・スクランブルされた誤り検出符号(第2の誤り検出符号、第2のCRCと称されてもよい)を取得する。そして、無線端末10は、第2系列によりデ・スクランブルされた誤り検出符号(第2の誤り検出符号)を用いて、制御情報(DCI)の誤り検出を行う。なお、必要に応じて、誤り訂正が行われてもよい。
 無線端末10は、第2の誤り検出符号による制御情報(DCI)の誤り検出の結果(第2結果とも称され得る)に少なくとも部分的に基づいて、第2系列によるDCIの探索に成功したかを判定する(S309C)。S309Cにおいて、例えば、第2の誤り検出符号による制御情報(DCI)の誤り検出において、訂正し得ない誤りが検出されない場合、無線端末10は、第2系列によるDCIの探索に成功したと判定してもよい(S309CでYES)。一方、S309Cにおいて、第2の誤り検出符号による制御情報(DCI)の誤り検出において、訂正し得ない誤りが検出された場合、第2系列によるDCIの探索に失敗したと判定してもよい(S309CでNO)。
 S309Cにおいて、第2系列によるDCIの探索に成功したと判定された場合(S309CでYES)、無線端末10は、DCIに示される無線アクセス方式が第1方式であるかを判定する(S302C)。一方、上述のS307Cにおいて、第1系列によるDCIの探索に成功したと判定された場合(S307CでNO)、無線端末10は、S308CないしS309Cをスキップして、S302Cを実行してもよい。
 S302Cにおいて、無線端末10は、第1系列によるDCIの探索と第2系列によるDCIの探索との何れによりDCIの探索に成功したかに少なくとも部分的に基づいて、無線アクセス方式を判断してもよい。例えば、S307Cにおける判定結果が第1系列によるDCIの探索に成功したことを示す場合(S307CでNO)、無線端末10は、DCIに示される無線アクセス方式は第1方式であると判定してもよい(S302CでYES)。一方、S309Cにおける判定結果が第2系列によるDCIの探索に成功したことを示す場合(S309CでYES)、無線端末10は、DCIに示される無線アクセス方式は第1方式でないと判定してもよい(S302CでNO)。
 S302Cにおいて、DCIに示される無線アクセス方式は第1方式であると判定された場合(S302CでYES)、無線端末10は、上りリンクのデータ伝送に適用する無線アクセス方式を第1方式に変更する(S303)。図14におけるS303の詳細は、図10に示されるS303と同様であるため、説明を省略する。
 一方、S302Cにおいて、DCIに示される無線アクセス方式は第1方式でないと判定された場合(S302CでNO)、無線端末10は、上りリンクのデータ伝送に適用する無線アクセス方式を第2方式に変更する(S304)。図14におけるS304の詳細は、図10に示されるS304と同等であるため、説明を省略する。
 上述のS309Cにおいて、第2系列によるDCIの探索に失敗したと判定された場合(S309CでNO)、無線端末10は、S302ないしS304をスキップして、上りリンクのデータ伝送に適用される無線アクセス方式を変更しなくてもよい(S305)。別言すると、無線端末10は、第1系列によるDCIの探索と第2系列によるDCIの探索との両方に失敗した場合、無線端末10宛てのDCIがPDCCHの無線リソースに格納されていないと判断してもよい。なお、このような場合でも、PDCCHの無線リソースには、他の無線端末10宛てのDCIが格納され得る。
 以上が、図14に示される実施例4に係る無線端末10における処理の流れの一例である。なお、図14に例示される処理の流れのうち、図10と同様の箇所についての説明は省略される。適宜、実施例3における図10の説明を参照されたい。
 以上に開示される実施例4の一側面によれば、レイヤ1の制御情報(DCI)により、上りリンクのデータ伝送に適用されるべき無線アクセス方式が無線端末10に通知される。これにより、レイヤ3の制御メッセージであるRRCメッセージによる通知と比較して、上りリンクのデータ伝送の無線アクセス方式の変更を、迅速に無線端末10に適用することができる。その結果、無線アクセス方式の動的な変更における処理遅延を短縮することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 以上に開示される実施例4の他の一側面によれば、判定回数に応じて無線アクセス方式の通知方法が選択される。例えば、無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定された回数(判定回数)が閾値未満であれば、上りリンクのデータ伝送に適用されるべき無線アクセス方式(変更後の無線アクセス方式とも称され得る)が、レイヤ1の制御情報(DCI)により無線端末10に通知される。例えば、無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定された回数(判定回数)が閾値以上であれば、上りリンクのデータ伝送に適用されるべき無線アクセス方式(変更後の無線アクセス方式とも称され得る)が、レイヤ3のRRCメッセージ(第1制御メッセージ)により無線端末10に通知される。これにより、レイヤ1の制御情報による迅速な通知・変更の適用を可能としつつ、レイヤ1の制御情報による通知の過度な繰り返しによる無線リソースの利用効率の低下を効果的に防止することができる。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 以上に開示される実施例4の更なる他の一側面によれば、上りリンクのデータ伝送に適用されるべき新たな無線アクセス方式を無線基地局20から無線端末10へ通知するために、レイヤ1の制御情報(DCI)に情報フィールドを追加しなくてもよい。そのため、実施例3と比較して、実施例4に係る制御情報は、その情報量を削減できるかもしれない。別言すると、実施例4に係る無線通信システム1では、無線リソースの利用効率を向上させることが期待される。上述の一連の作用により、無線通信システム1における無線端末10と無線基地局20とは、上りリンクの無線アクセス方式の動的な変更を、より適切に実行することができる。この様な作用は、5Gシステムにおいて、上りリンクの運用形態を柔軟に変更し、多様な無線サービスを実現する上で有用である。
 <変形例1> 上述の実施例4では、第1系列と第2系列との2種類の信号系列の何れかを用いて、制御情報(DCI)をスクランブリング又はデ・スクランブリングする例を示したが、実施例4はこれに限定されない。例えば、第1系列と第2系列と第3系列との3種類の信号系列の何れかを用いて、制御情報(DCI)をスクランブリング又はデ・スクランブリングしてもよい。
 この場合、第1系列の用途と第2系列の用途は、実施例4と同様に、無線アクセス方式が第1方式であるか第2方式であるかを通知するためであってもよい。一方、第3系列の用途は、上りリンクのデータ伝送に適用される無線アクセス方式を変更しないことを通知するためであってもよい。
 別言すると、実施例3では、制御情報(DCI)のフォーマットの種類に応じて、上りリンクのデータ伝送に適用される無線アクセス方式を変更するか否かが判定される。一方、実施例4の変形例1では、制御情報(DCI)の探索に成功する信号系列の種類に応じて、上りリンクのデータ伝送に適用される無線アクセス方式を変更するか否かが判定され得る。この様な第3系列は、例えば、DCIの宛先である無線端末10に対して割当てられた識別情報(C-RNTI(16bit))と所定長の信号系列(例えば8bitの信号系列(00000000))とを連結した信号系列(00000000+[C-RNTI])であってもい。別言すると、第3系列は、第1系列及び第2系列の何れとも区別し得る内容であればよい。
 <変形例2> 上述の実施例3及び実施例4では、上りリンクのデータ伝送に適用すべき新たな無線アクセス方式に関する情報が、レイヤ1の制御情報(DCI)により無線基地局20から無線端末10に伝送される。その様な制御情報(DCI)により、無線端末10からの上りリンクのデータ伝送に適用される無線アクセス方式が変更される。しかし、上りリンクのデータ伝送に適用される無線アクセス方式が変更された後に、当該変更に応じた通知が無線端末10から無線基地局20へ伝送されるか否かについて、実施例3及び実施例4では明記されていない。別言すると、実施例3及び実施例4において、上りリンクのデータ伝送に適用される無線アクセス方式が変更されたことに応じて、無線端末10から無線基地局20へ通知が伝送されてもよいし、その様な通知が伝送されなくてもよい。
 実施例3及び実施例4において、上りリンクのデータ伝送に適用される無線アクセス方式が変更されたことに応じて、無線端末10から無線基地局20へ通知が伝送されることで、レイヤ1の制御情報(DCI)により新たな無線アクセス方式への変更が迅速に適用されること実現しつつ、無線基地局20は、無線端末10からの上りリンクのデータ伝送に適用される無線アクセス方式を適切に把握することができる。
 <変形例3> 図3では、無線基地局20における処理の流れの一例において、選択結果が管理テーブルの内容と異なるかが判定される(S105)。しかし、無線基地局20における処理の流れはこれに限定されない。
 例えば、図3に示される処理の流れにおいて、S105における判定は省略されてもよい。別言すると、S102乃至S104による無線アクセス方式の選択後、無線基地局20は、S105をスキップして、S106を実行してもよい。この様な変形例3は、実施例1乃至実施例4の何れにおいても適用され得る。
 例えば、実施例3又は実施例4に変形例3を適用することで、無線基地局20における処理遅延を削減でき、S102乃至S104により無線アクセス方式の選択が実行されてから、選択された無線アクセス方式が無線端末10からの上りリンクのデータ伝送に適用されるまでの遅延時間を、より短縮することができる。
 また、変形例3に係る無線端末10は、無線基地局20からのレイヤ1の制御情報(DCI)により示される無線アクセス方式が、以前の通知(例えばRRCメッセージ)により示される無線アクセス方式と異なるかを判定してもよい。無線端末10は、無線基地局20からのレイヤ1の制御情報(DCI)により示される無線アクセス方式が以前の通知(例えばRRCメッセージ)により示される無線アクセス方式と異なる場合、無線基地局20に通知を送信してもよい。別言すると、変形例3に係る無線端末10は、レイヤ1の制御情報(DCI)により示される無線アクセス方式が、それよりも前の通知(例えばRRCメッセージ)により示される無線アクセス方式と異なることを検知したことに応じて、異なる無線アクセス方式に関する情報を受信したことを示す通知を、無線基地局20へ送信してもよい。さらに別言すると、無線端末10から送信される通知は、レイヤ1の制御情報(DCI)により示される無線アクセス方式が、それ以前に受信されたRRCメッセージにより示される無線アクセス方式と整合しない旨を示す通知であってもよい。これにより、無線基地局20は、無線端末10が新たな無線アクセス方式を示す制御情報(DCI)を受信したことを把握することができる。
 <変形例4> 上述の実施例3及び4では、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する情報を無線基地局20から無線端末10へ伝送する手法として、レイヤ3のRRCメッセージによる伝送方法(第1の伝送方法と称されてもよい)と、レイヤ1のDCIによる伝送方法(第2の伝送方法と称されてもよい)との2種類の手法を組合せた例が説明された。変形例4として、これらの手法の何れが用いられるかについて、適宜選択されてもよい。例えば、無線基地局20は、ネットワーク上の他の装置(コアノード、情報処理装置、制御装置、管理装置などと称されてもよい)からの設定情報に従って、レイヤ3のRRCメッセージによる伝送方法と、レイヤ1のDCIによる伝送方法との何れかを、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する情報の伝送手段として選択してもよい。別言すると、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する情報の伝送手段として、第1の伝送方法と、第2の伝送方法との何れを用いるべきかは、オプショナルな事項として無線端末10及び無線基地局20において実装されてもよい。さらに別言すると、無線端末10及び無線基地局20は、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する情報の伝送手段として、第1の伝送方法と、第2の伝送方法との何れにも対処可能なように構成されていればよく、動作時に何れの伝送方法が用いられるかはオプショナルな事項とされてもよい。
 <ハードウェア構成> 最後に、以上に開示する各実施例に用いられる無線端末10と無線基地局20とのハードウェア構成について、簡単に説明する。
 図15は、無線通信システム1における無線端末(UE)10と無線基地局(gNB)20とのハードウェア構成の一例を示す図である。
 図15におけるUE10は、無線通信回路101(無線通信部、第2無線通信部、第2無線通信回路と称されてもよい)、処理回路102(処理部、第2処理部、第2処理回路と称されてもよい)、メモリ103を有する。なお、図15におけるUE10では、アンテナなどの一部の構成について、図示を省略している。また、UE10は、液晶ディスプレイなどの表示装置や、タッチパネルなどの入力装置や、リチウムイオン二次電池(lithium-ion rechargeable battery)などのバッテリなどを備えてもよい。
 無線通信回路101は、処理回路102からベースバンド信号(無線信号、デジタル無線信号と称されてもよい)の供給を受けて、当該ベースバンド信号から所定の出力レベルの無線信号(第2の無線信号、アナログ無線信号と称されてもよい)を生成し、アンテナを介して無線信号を空間に放射するように構成される。これにより、UE10は、gNB20に無線信号を送信することができる。また、無線通信回路101は、アンテナから入力される無線信号を受信し、無線信号をベースバンド信号に変換し、処理回路102にベースバンド信号を供給するように構成される。これにより、UE10は、gNB20からの無線信号を受信することができる。上述のように、無線通信回路101は、無線信号の送受信が可能となるように構成され、gNB20との無線通信を行う機能を有する。別言すると、無線通信回路101は、第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを送信可能であり、gNB20からの無線信号を受信可能であるように構成され得る。
 無線通信回路101は、UE10内部に実装された伝送回路を介して処理回路102と通信可能に接続され得る。この様な伝送回路としては、例えば、M-PHY、Dig-RFなどの規格に準拠した伝送回路が挙げられる。
 処理回路102(プロセッサ回路、演算回路と称されてもよい)は、ベースバンド信号処理を行うように構成される回路である。処理回路102は、無線通信システム1における無線通信プロトコルスタックに基づいてベースバンド信号(無線信号、デジタル無線信号と称されてもよい)を生成し、無線通信回路101にベースバンド信号を出力するように構成される。また、処理回路102は、無線通信回路101から入力されたベースバンド信号に対して、無線通信システム1における無線通信プロトコルスタックに基づいて復調・復号などの受信処理を行うように構成される。別言すれば、上りリンクにおいて、処理回路102は、無線通信の機能を複数のレイヤに分割した無線通信プロトコルスタックの手順に従って、gNB20宛ての第1データを上位レイヤから下位レイヤへと送信データを順次処理して得られた第2データに少なくとも部分的に基づいて、無線通信回路101に無線信号を送信させる回路としての側面を有する。また、処理回路102は、無線通信の機能を複数のレイヤに分割した無線通信プロトコルスタックの手順に従って、無線通信回路101を介して受信した無線信号を、下位レイヤから上位レイヤへと順次処理する回路としての側面を有する。ここで、無線通信回路101から伝送回路を介してベースバンド信号の入力を受けることは、無線通信回路101を介してgNB20からの無線信号を受信するという側面を有する。また、無線通信回路101へ伝送回路を介してベースバンド信号を出力することは、無線通信回路101を介してgNB20に無線信号を送信するという側面を有する。
 処理回路102は、例えば、メモリ103に格納されたプログラムを読みだして実行することで、上述の各実施例に係るUE10の動作を実現する演算装置であってもよい。別言すると、処理回路102は、上述の各実施例に係る無線端末10の動作(例えば、図5、図8、図10、図14に示される動作)における、処理の流れを実行する主体(演算装置とも称され得る)としての側面を有する。処理回路102として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、これらの組合せなどが挙げられる。なお、処理回路102は、二以上のコアを含むマルチコアプロセッサであっても良い。また、処理回路102は、無線通信システム1の無線通信プロトコルスタックにおける各レイヤに応じて、二以上の処理回路102を実装してもよい。
 処理回路102は、C-CPUと称されてもよい。UE10は、処理回路102の他に、アプリケーションを実行するA-CPUとも称され得るプロセッサ回路を実装してもよい。なお、処理回路102は、A-CPUとも称され得るプロセッサ回路とともに1チップで実装してもよいし、A-CPUとは別のチップとして実装してもよい。処理回路102は、UE10の動作を制御する機能を有する制御部としての側面を有してもよい。また、処理回路102は、無線基地局20と無線端末10との無線接続の再構成に関する第1制御メッセージを、無線基地局20から、無線通信回路102により受信するように構成された処理部としての側面を有してもよい。
 メモリ103は、処理回路102で実行されるベースバンド信号処理に係るデータやプログラムを記憶保持するように構成される回路である。メモリ103は、不揮発性記憶装置と揮発性記憶装置の両方あるいは一方を少なくとも含んで構成される。たとえば、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)、HDD(Hard Disk Drive)などが挙げられる。図15において、メモリ103は、主記憶装置及び補助記憶装置などの各種記憶装置を総称したものである。なお、メモリ103は、処理回路102と同様に、無線通信システム1の無線通信プロトコルスタックにおける各レイヤに応じて、二以上のメモリ103を実装してもよい。
 図15に例示されるgNB20は、無線通信回路201(無線通信部、第1無線通信部、第1無線通信回路と称されてもい)、処理回路202(処理部、第1処理部、第1処理回路と称されてもよい)、メモリ203、有線通信回路204、を有する。
 無線通信回路201は、下りリンクにおいて、処理回路202からのベースバンド信号を受けて、ベースバンド信号から所定の出力レベルの無線信号を生成し、アンテナを介して無線信号を空間に放射するように構成される。また、無線通信回路201は、上りリンクにおいて、アンテナから入力される無線信号を受信し、無線信号をベースバンド信号に変換し、処理回路202へベースバンド信号を供給するように構成される。無線通信回路201は、CPRI(Common Public Radio Interface)などの伝送路を介して処理回路202と通信可能に接続させることも可能であり、RRH(Remote Radio Head)、RRE(Remote Radio Equipment)とも称され得る。また、無線通信回路201と処理回路202との組み合わせは、一対一に限定されるものではなく、一つの無線通信回路201に複数の処理回路202を対応付けたり、複数の無線通信回路201を一つの処理回路202に対応付けたり、複数の無線通信回路201を複数の処理回路202に対応付けることも可能である。上述のように、無線通信回路201は、UE10との無線通信を行う機能を有する通信部(送受信部、第2の送受信部とも称され得る)としての側面を有する。別言すると、無線通信回路201は、第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを受信可能であり、U10に対する無線信号を送信可能であるように構成され得る。
 処理回路202は、ベースバンド信号処理を行うように構成される回路である。処理回路202は、下りリンクにおいて、無線通信システム1における無線通信プロトコルスタックに基づいてベースバンド信号を生成し、無線通信回路201にベースバンド信号を出力するように構成される。また、処理回路202は、上りリンクにおいて、無線通信回路201から入力されたベースバンド信号に対して、無線通信システム1における無線通信プロトコルスタックに基づいて復調・復号などの受信処理を行うように構成される。別言すると、下りリンクにおいて、処理回路202は、無線通信の機能を複数のレイヤに分割した無線通信プロトコルスタックの手順に従って、受信装置としてのUE10宛ての送信データを、上位レイヤから下位レイヤへと順次処理して、無線通信回路201を介して送信する回路としての側面を有する。また、上りリンクにおいて、処理回路202は、無線通信の機能を複数のレイヤに分割した無線通信プロトコルスタックの手順に従って、無線通信回路201を介して受信した無線信号を、下位レイヤから上位レイヤへと順次処理する回路としての側面を有する。ここで、上りリンクにおいて、無線通信回路201からベースバンド信号の入力を受けることは、無線通信回路201を介してUE10からの無線信号を受信するという側面を有する。また、処理回路202の一部の機能は、上述の無線通信回路201において実装されてもよい。例えば、無線通信プロトコルスタックにおける物理レイヤ(レイヤ1とも称され得る)に関する機能を、無線通信回路201が備えてもよい。この様に、無線通信プロトコルスタックにおけるレイヤ(又はサブレイヤ)の処理に関する実装の配置は、無線通信回路201と処理回路202との間で設計変更が可能であってもよい。
 処理回路202は、例えば、メモリ203に格納されたプログラムを読みだして実行することで、上述の各実施例に係る無線基地局20の動作(例えば、図3、図7、図9、図12に示される動作)における、処理の流れを実行する主体(演算装置と称されてもよい)としての側面を有する。処理回路202として、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などが挙げられる。なお、処理回路202は、二以上のコアを含むマルチコアプロセッサであっても良い。また、処理回路202は、無線通信システム1の無線通信プロトコルスタックにおける各レイヤに応じて、二以上の処理回路202を実装してもよい。例えば、MACレイヤに属するMACエンティティとしての処理を実行する処理回路202と、RLCレイヤに属するRLCエンティティとしての処理を実行する処理回路202と、PDCPレイヤに属するPDCPエンティティとしての処理を実行する処理回路202とを、個別に実装してもよい。上述のように、処理回路202は、gNB20の動作を制御する機能を有する制御部(UE10の制御部と区別するために、第2の制御部と称されてもよい)としての側面を有する。例えば、処理回路202は、各種の設定情報(例えば第1の設定情報、第2の設定情報)をUE10に送信する処理を実行する。なお、各種の設定情報は、制御信号と称されてもよい。
 メモリ203は、処理回路202で実行されるベースバンド信号処理に係るデータやプログラムを記憶保持するように構成される回路である。メモリ203は、不揮発性記憶装置と揮発性記憶装置の両方あるいは一方を少なくとも含んで構成される。たとえば、RAM(Random Access Memory)、ROM(Read Only Memory)、SSD(Solid State Drive)、HDD(Hard Disk Drive)などが挙げられる。図15において、メモリ203は、主記憶装置及び補助記憶装置などの各種記憶装置を総称したものである。なお、メモリ203は、処理回路202と同様に、無線通信システム1の無線通信プロトコルスタックにおける各レイヤに応じて、二以上のメモリ203を実装してもよい。例えば、MACレイヤに属するMACエンティティとしての処理に用いられるメモリ203と、RLCレイヤに属するRLCエンティティとしての処理に用いられるメモリ203と、PDCPレイヤに属するPDCPエンティティとしての処理に用いられるメモリ203とを、個別に実装してもよい。
 有線通信回路204は、他の装置へ出力可能なフォーマットのパケットデータに変換して他の装置へ送信したり、他の装置から受信したパケットデータからデータなどを抽出して、メモリ203や処理回路202などに出力したりする。他の装置の例としては、他の無線基地局やMME(Mobility Management Entity)やSGW(Serving Gateway)などがあり得る。MMEやSGWはコアノードとも称され、コアノードとの通信に用いられる論理的な通信インタフェースはS1インタフェースとも称され得る。他の無線基地局との通信に用いられる論理的な通信インタフェースはX2インタフェースとも称され得る。なお、上述の各種装置の名称は、5Gの仕様策定において、名称変更され得ることに留意されたい。
 以上の詳細な説明により、本開示の特徴点及び利点は明らかになるであろう。これは、請求の範囲がその精神及び権利範囲を逸脱しない範囲で前述のような本開示の特徴点及び利点にまで及ぶことを意図するものである。また、当該技術分野において通常の知識を有する者であれば、あらゆる改良及び変更に容易に想到できるはずである。したがって、発明性を有する開示の範囲を前述したものに限定する意図はなく、本明細書に開示された範囲に含まれる適当な改良物及び均等物に拠ることも可能である。例えば、本明細書に開示の各工程は、必ずしも処理の流れの一例として説明された順序に沿って時系列に処理する必要はなく、請求の範囲に記載された本発明の要旨の範囲内において、工程の順序を入れ替えてもよく、あるいは複数の工程を並列的に実行してもよい。なお、以上の詳細な説明で明らかにされる5Gシステムに生じ得る事情は、5Gシステムを一側面から検討した場合に見出し得るものであり、他の側面から検討した場合には、他の事情が見出され得ることに留意されたい。別言すると、本発明の特徴点及び利点は、以上の詳細な説明に明記された事情を解決する用途に限定されるものではない。
 最後に、本開示における各実施例及び変形例の構成は、本発明の技術的思想を具体化するための一例を示したものであり、本発明をこれら各実施例及び変形例の構成に限定することを意図するものではなく、請求の範囲に含まれるその他の実施形態にも等しく適用し得るものである。例えば、本開示における用語は、今後の5Gシステムの仕様策定において、名称が変更され得ることに留意されたい。また、本開示における用語に対して列挙される一以上の別称は、相互に同義であり得ることに留意されたい。
1 無線通信システム
10 無線端末(UE)
101 無線通信回路
102 処理回路
103 メモリ
20 無線基地局(gNB)
201 無線通信回路
202 処理回路
203 メモリ
204 有線通信回路
 

Claims (14)

  1. 無線基地局との無線通信が可能な無線端末であって、
     第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを送信可能であり、前記無線基地局からの無線信号を受信可能な無線通信部と、
     前記無線基地局との無線接続が確立された状態で、前記無線基地局と前記無線端末との無線接続の再構成に関する第1制御メッセージを、前記無線基地局から、前記無線通信部により受信する処理部と、
    を備え、
     前記第1制御メッセージは、前記無線基地局への再同期を指示する第1情報と、前記無線基地局との上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する第2情報と、を含むように構成されており、
     前記第2情報は、前記第1の無線アクセス方式と前記第2の無線アクセス方式との何れかに関する情報であり、
     前記処理部は、前記第1制御メッセージにおいて前記第1情報を検知した場合、前記無線基地局への上りリンクのデータ伝送を中断し、前記第2情報に従った前記無線アクセス方式について、前記無線基地局との再同期を行う、
    ことを特徴とする無線端末。
  2. 請求項1に記載の無線端末であって、
     前記第1情報は、前記無線端末の移動性に関する制御情報であり、
     前記第1制御メッセージは、さらに、前記第1情報に基づくハンドオーバ処理の一部の実行を前記無線端末に省略させることを指示する第3情報を含み、
     前記処理部は、前記第1制御メッセージに前記第3情報が含まれる場合、第2レイヤの少なくとも一部のサブレイヤにおける上りリンクの処理エンティティについて、前記第1制御メッセージの受信前に確立済みの状態を、前記無線基地局に対する再同期後も継続して使用する、
    ことを特徴とする無線端末。
  3. 請求項2に記載の無線端末であって、
     前記第2レイヤの少なくとも一部のサブレイヤにおける上りリンクの処理エンティティは、パケットデータ収束プロトコル(PDCP)エンティティを含み、
     前記処理部は、前記第1制御メッセージに前記第3情報が含まれる場合、PDCPサービスデータユニット(SDU)の処理に用いられるパラメータの一部又は全部を、前記第1制御メッセージによる前記無線基地局への再同期後も、前記PDCPエンティティに継続して使用させる、
    ことを特徴とする無線端末。
  4. 請求項2又は3に記載の無線端末であって、
     前記第2レイヤの少なくとも一部のサブレイヤにおける上りリンクの処理エンティティは、無線リンク制御(RLC)エンティティを含み、
     前記処理部は、前記第1制御メッセージに前記第3情報が含まれる場合、RLCサービスデータユニット(SDU)の処理に用いられるパラメータの一部又は全部を、前記第1制御メッセージによる前記無線基地局への再同期後も、RLCエンティティに継続して使用させる、
    ことを特徴とする無線端末。
  5. 請求項1乃至4の何れか一項に記載の無線端末であって、
     前記処理部は、上りリンクの無線リソースの割当てに関する制御情報が、前記無線基地局から前記無線通信部により受信された場合、前記制御情報に示される上りリンクの無線リソースの割当てに従って、上りリンクのデータ伝送を実行し、
     前記制御情報は、さらに、前記上りリンクのデータ伝送における無線アクセス方式を示しており、
     前記処理部は、前記制御情報により示される前記無線アクセス方式に従って、前記上りリンクのデータ伝送を実行する、
    ことを特徴とする無線端末。
  6. 請求項1乃至5の何れか一項に記載の無線端末であって、
     前記第2情報は、前記無線端末から前記無線基地局への上りリンクの無線信号に適用されるべき無線アクセス方式の種類、上りリンクの無線信号に適用されるべき波形の種類、上りリンクの無線信号が生成される過程において所定の信号処理が適用されるか否かを示す情報の何れかである、
    ことを特徴とする無線端末。
  7. 無線端末との無線通信が可能な無線基地局であって、
     第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを受信可能であり、前記無線端末に対する無線信号を送信可能な無線通信部と、
     前記無線端末との無線接続が確立された状態で、前記無線端末と前記無線基地局との無線接続の再構成に関する第1制御メッセージを、前記無線通信部により、前記無線端末に送信する処理部と、
    を備え、
     前記第1制御メッセージは、前記無線基地局への再同期を指示する第1情報と、上りリンクのデータ伝送に適用されるべき無線アクセス方式に関する第2情報と、を含むように構成されており、
     前記第2情報は、前記第1の無線アクセス方式と前記第2の無線アクセス方式との何れかに関する情報であり、
     前記処理部は、前記第1制御メッセージに含まれる前記第2情報に従った前記無線アクセス方式について前記無線基地局との再同期後の前記無線端末からの上りリンクのデータ伝送を、前記第2情報に従った前記無線アクセス方式により受信する、
    ことを特徴とする無線基地局。
  8. 請求項7に記載の無線基地局であって、
     前記第1情報は、前記無線端末の移動性に関する制御情報であり、
     前記第1制御メッセージは、さらに、前記第1情報に基づくハンドオーバ処理の一部の実行を前記無線端末に省略させることを指示する第3情報を含み、
     前記処理部は、前記無線端末に送信された前記第1制御メッセージに前記第3情報が含まれる場合、第2レイヤの少なくとも一部のサブレイヤにおける上りリンクの処理エンティティについて、前記第1制御メッセージの送信前に確立済みの状態を、前記無線端末との再同期後も継続して使用する、
    ことを特徴とする無線基地局。
  9. 請求項8に記載の無線基地局であって、
     前記第2レイヤの少なくとも一部のサブレイヤにおける上りリンクの処理エンティティは、パケットデータ収束プロトコル(PDCP)エンティティを含み、
     前記処理部は、前記無線端末に送信された前記第1制御メッセージに前記第3情報が含まれる場合、PDCPサービスデータユニット(SDU)の処理に用いられるパラメータの一部又は全部を、前記第1制御メッセージによる前記無線端末との再同期後も継続して使用する、
    ことを特徴とする無線基地局。
  10. 請求項8又は9に記載の無線基地局であって、
     前記第2レイヤの少なくとも一部のサブレイヤにおける上りリンクの処理エンティティは、無線リンク制御(RLC)エンティティを含み、
     前記処理部は、前記無線端末に送信された前記第1制御メッセージに前記第3情報が含まれる場合、RLCサービスデータユニット(SDU)の処理に用いられるパラメータの一部又は全部を、前記第1制御メッセージによる前記無線端末との再同期後も継続して使用する、
    ことを特徴とする無線基地局。
  11. 請求項7乃至10の何れか一項に記載の無線基地局であって、
     前記処理部は、上りリンクの無線リソースの割当てに関する制御情報を、前記無線通信部を介して前記無線端末に送信した後、前記制御情報に示される上りリンクの無線リソースの割当てに従って、前記無線端末から上りリンクのデータ伝送を受信し、
     前記制御情報は、さらに、前記上りリンクのデータ伝送における無線アクセス方式を示しており、
     前記処理部は、前記制御情報により示される前記無線アクセス方式に従って、前記無線端末からの前記上りリンクのデータ伝送を受信する、
    ことを特徴とする無線基地局。
  12.  請求項11に記載の無線基地局であって、
     前記処理部は、
      前記無線基地局と前記無線端末との間の無線信号の品質に関する測定結果報告を、前記処理部を介して前記無線端末から受信し、
      前記測定結果報告に基づいて、前記無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定した場合であって、
       前記無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定した回数が閾値未満であれば、変更後の前記無線アクセス方式を、前記制御情報により前記無線端末に送信し、
       前記無線端末からの上りリンクの無線アクセス方式を変更すべきであると判定した回数が閾値以上であれば、変更後の前記無線アクセス方式を、前記第1制御メッセージにより前記無線端末に送信する、
    ことを特徴とする無線基地局。
  13. 請求項7乃至12の何れか一項に記載の無線基地局であって、
     前記第2情報は、前記無線端末から前記無線基地局への上りリンクの無線信号に適用されるべき無線アクセス方式の種類、上りリンクの無線信号に適用されるべき波形の種類、上りリンクの無線信号が生成される過程において所定の信号処理が適用されるか否かを示す情報の何れかである、
    ことを特徴とする無線基地局。
  14. 無線通信システムであって、
     無線基地局と、
     前記無線基地局との無線通信が可能な無線端末と、
    を備え、
     前記無線基地局は、
     第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを受信可能であり、前記無線端末に対して無線信号を送信可能な第1無線通信部と、
     前記無線端末との無線接続が確立された状態で、前記無線端末と前記無線基地局との無線接続の再構成に関する第1制御メッセージを、前記第1無線通信部により、前記無線端末に送信する第1処理部と、
    を備え、
     前記第1制御メッセージは、前記無線基地局への再同期を指示する第1情報と、上りリンクのデータ伝送に用いられる無線アクセス方式に関する第2情報と、を含むように構成されており、
     前記第2情報は、前記第1の無線アクセス方式と前記第2の無線アクセス方式との何れかに関する情報であり、
     前記第1処理部は、前記第1制御メッセージに含まれる前記第2情報に従って前記無線基地局との再同期後の前記無線端末からの上りリンクのデータ伝送を、前記第2情報に従った無線アクセス方式により受信するように構成され、
     前記無線端末は、
     前記第1の無線アクセス方式により生成された無線信号と、第2の無線アクセス方式により生成された無線信号とを送信可能であり、前記無線基地局からの無線信号を受信可能な第2無線通信部と、
     前記無線基地局との無線接続が確立された状態で、前記第1制御メッセージを、前記無線基地局から、前記第2無線通信部により受信する第2処理部と、
    を備え、
     前記第2処理部は、前記第1制御メッセージにおいて前記第1情報を検知した場合、前記無線基地局への上りリンクのデータ伝送を中断し、前記第2情報に従った無線アクセス方式について、前記無線基地局との再同期を行うように構成される、
    ことを特徴とする無線通信システム。
     
PCT/JP2018/024772 2018-06-29 2018-06-29 無線端末、無線基地局、及び無線通信システム WO2020003486A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024772 WO2020003486A1 (ja) 2018-06-29 2018-06-29 無線端末、無線基地局、及び無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024772 WO2020003486A1 (ja) 2018-06-29 2018-06-29 無線端末、無線基地局、及び無線通信システム

Publications (1)

Publication Number Publication Date
WO2020003486A1 true WO2020003486A1 (ja) 2020-01-02

Family

ID=68986817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024772 WO2020003486A1 (ja) 2018-06-29 2018-06-29 無線端末、無線基地局、及び無線通信システム

Country Status (1)

Country Link
WO (1) WO2020003486A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022100A1 (ja) * 2021-08-20 2023-02-23 株式会社デンソー 端末及び無線通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123115A (ja) * 2009-03-17 2016-07-07 宏達國際電子股▲ふん▼有限公司 多重コンポーネント・キャリアで多重リンクを設立する方法及び関連する通信装置
JP2017526281A (ja) * 2014-09-24 2017-09-07 インテル コーポレイション 免許付与共有アクセスのためのスペクトラム解放時のハンドオーバー

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123115A (ja) * 2009-03-17 2016-07-07 宏達國際電子股▲ふん▼有限公司 多重コンポーネント・キャリアで多重リンクを設立する方法及び関連する通信装置
JP2017526281A (ja) * 2014-09-24 2017-09-07 インテル コーポレイション 免許付与共有アクセスのためのスペクトラム解放時のハンドオーバー

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On UL Waveform Type Signaling", 3GPP TSG-RAN WG1#90 R1-1714450, vol. RAN WG1, 25 August 2017 (2017-08-25), Prague, Czech Republic, pages 1 - 2, XP051317228 *
GUANGDONG OPPO MOBILE TELECOM: "Discussion on the waveform indication", 3GPP TSG-RAN WG1#90 R1-1713295, vol. RAN WG1, 20 August 2017 (2017-08-20), Prague, Czech Republic, pages 1 - 2, XP051316102 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022100A1 (ja) * 2021-08-20 2023-02-23 株式会社デンソー 端末及び無線通信方法

Similar Documents

Publication Publication Date Title
US11057814B2 (en) Seamless mobility for 5G and LTE systems and devices
JP6583746B2 (ja) アンライセンスバンドでのlteライセンス補助アクセス(laa)における同期
WO2016182052A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7443467B2 (ja) 改良された2段階トリガー手順
JP2021029057A (ja) 端末、基地局、無線通信方法及びシステム
TWI673977B (zh) 窄頻ack/nack傳輸
KR20230070061A (ko) 스케줄링 요청 및 ack/nack의 우선 순위화
WO2019092859A1 (ja) ユーザ端末及び無線通信方法
JP2020109883A (ja) 端末装置、基地局装置、通信方法、および、集積回路
JP2017508361A (ja) マシンタイプ通信についてのランダムアクセスのためのユーザ機器及び進化型ノードb及び方法
EP3346754B1 (en) User terminal, radio base station and radio communication method
JP2014513504A (ja) ランダムアクセス応答のためのクロススケジューリング
US20190349144A1 (en) Transmission mode switching method and apparatus
US9894697B2 (en) Method for estimating communication in a direct link
US9107118B2 (en) Method for signaling a mobile wireless device to switch to a preset carrier in a multi-carrier 4G network
KR20190113472A (ko) 무선 통신 시스템에서 측정을 위한 장치 및 방법
JP7187314B2 (ja) 端末装置、基地局装置、通信方法、および、集積回路
US20190021060A1 (en) Radio base station and communication control method
WO2020003486A1 (ja) 無線端末、無線基地局、及び無線通信システム
WO2020166031A1 (ja) 端末装置、基地局装置、及び無線通信方法
JP7169874B2 (ja) 無線基地局及び通信制御方法
WO2023068356A1 (ja) 通信装置、基地局、及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP