WO2020002821A1 - Commande cyclique de cellules d'un circuit integre - Google Patents

Commande cyclique de cellules d'un circuit integre Download PDF

Info

Publication number
WO2020002821A1
WO2020002821A1 PCT/FR2019/051553 FR2019051553W WO2020002821A1 WO 2020002821 A1 WO2020002821 A1 WO 2020002821A1 FR 2019051553 W FR2019051553 W FR 2019051553W WO 2020002821 A1 WO2020002821 A1 WO 2020002821A1
Authority
WO
WIPO (PCT)
Prior art keywords
function
circuit
voltage
comparator
capacitive element
Prior art date
Application number
PCT/FR2019/051553
Other languages
English (en)
Inventor
Alexandre Tramoni
Jimmy Fort
Original Assignee
Stmicroelectronics (Rousset) Sas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stmicroelectronics (Rousset) Sas filed Critical Stmicroelectronics (Rousset) Sas
Publication of WO2020002821A1 publication Critical patent/WO2020002821A1/fr
Priority to US17/119,865 priority Critical patent/US11838024B2/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/023Generators characterised by the type of circuit or by the means used for producing pulses by the use of differential amplifiers or comparators, with internal or external positive feedback
    • H03K3/0233Bistable circuits
    • H03K3/02337Bistables with hysteresis, e.g. Schmitt trigger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3287Power saving characterised by the action undertaken by switching off individual functional units in the computer system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the present description relates generally to electronic circuits and, more particularly, circuits containing selectively activatable hardware functions.
  • some electronic circuits include hardware functions that can be selectively activated in order to cut their power when they are not in use. Some of these functions are activated cyclically (periodically) in order to simplify the order and reduce consumption, or because it is imposed by the application.
  • Document JP2003-188693 describes an oscillating circuit used for a PWM control.
  • the circuit uses a two-threshold comparator, associated with a capacitor, to generate a ramp and control the duty cycle of the PWM control signal.
  • Document US2016 / 036327 describes a step-down converter using a variable pulse, comprising a switching unit for converting a supply voltage supplied by an external device into an internal voltage, and a pulse controller configured to control so variable unit driving time switching according to a result obtained by detecting a difference between the supply voltage and an output voltage which is the internal voltage.
  • Document CN102097934 describes a step-down DC / DC hysteresis converter.
  • An embodiment overcomes all or part of the disadvantages of known circuits for periodic activation of electronic functions.
  • One embodiment provides a cyclic activation circuit of an electronic function comprising a hysteresis comparator for controlling the charge of a capacitive element supplying said function.
  • said function is an at least partially digital function.
  • said function is an at least partially analog function.
  • the capacitive element constitutes an energy reservoir intended for supplying said function.
  • said comparator regulates the consumption of said function.
  • said function is activated according to the result of the comparison provided by the comparator.
  • the circuit includes a constant current source for charging the capacitor.
  • a switch is interposed between the current source and the capacitive element.
  • the comparator is supplied by a voltage distinct from the voltage of the capacitive element.
  • the ramp is generated by the charging and discharging of the capacitive element.
  • At least one activation circuit At least one activation circuit.
  • Figure 1 shows, very schematically and in the form of blocks, an embodiment of a cyclic activation circuit
  • FIG. 2 illustrates, in the form of timing diagrams, the operation of the circuit of FIG. 1.
  • the expressions “approximately”, “approximately”, “substantially”, and “of the order of” mean to within 10%, preferably to within 5%.
  • a circuit to be activated cyclically receives an activation signal from a state machine associated with a clock.
  • the role of the state machine (for example a counter) is to count a determined number of clock cycles in order to activate periodically and with a given duty cycle the controlled circuit.
  • the circuit generating the clock frequency and the state machine must be permanently supplied to play their role. The consumption then generated may not be negligible.
  • the cyclically activated function is generally permanently supplied by the same supply voltage as that of the state machine which activates it. According to the embodiments described, provision is made to supply the function which can be activated selectively from a periodic supply signal. In addition, provision is made to generate the periodic activation signal from this periodic supply signal. Thus, provision is preferably made to modify not only the way in which the function activation signal is generated but also to modify the way in which the function is supplied.
  • a function of an cyclically activatable electronic circuit is a portion of this circuit, designated by block, cell or function, capable of being supplied selectively with respect to other parts of the electric circuit.
  • Such a circuit portion is preferably a digital and / or analog function of several active components, for example logic gates, as opposed to passive components, of the resistance, capacitor, inductance type.
  • the function is not limited to a simple switch but is a more complex function than a simple switch.
  • Figure 1 shows, very schematically and in the form of blocks, an embodiment of a circuit 1 for cyclic activation of a hardware electronic function
  • the hardware function 2 is symbolized by a block or cell 2 (CELL) and can be any function compatible with a cyclic activation.
  • Cell 2 has two supply terminals 21 and 23 and an activation terminal 25.
  • Cell 2 has other terminals, including input / output, not shown which depend on the application.
  • the activation circuit 1 is based on the generation of a voltage ramp, made periodic by the alternation of charge and discharge cycles of a capacitive element C, for example a capacitor.
  • the capacitor C is connected, by a switch K, controllable in all or nothing, to a source 12 of current I, preferably constant.
  • the source 12, the switch K and the capacitor C are in series between terminals 15 and 17 for applying a supply voltage Valim, the terminal 17 defining a reference potential, typically the ground.
  • the Valim voltage is a supply voltage extracted from the supply of the electronic circuit integrating function 2 and its activation circuit 1, or the supply voltage of this circuit.
  • the switch K is controlled by a signal CT supplied by a comparator 14 with hysteresis of the voltage Vc across the capacitor C with respect to a reference voltage Vref.
  • the node 16 between the switch K and the capacitor C is connected, preferably connected, to an input of the comparator 14, the other input of the comparator 14 receiving the voltage Vref.
  • the hysteresis of the comparator 14 is defined by two thresholds THH and THL, respectively higher and lower than the voltage Vref and conditioning the tilting of the output 141 of the comparator 14.
  • THH and THL respectively higher and lower than the voltage Vref and conditioning the tilting of the output 141 of the comparator 14.
  • the voltage Vref is applied to the positive input (+) of comparator 14 while the voltage Vc is applied to its negative input ().
  • the output of comparator 14 switches to a low state as soon as the increasing voltage Vc reaches the threshold THH and switches to a high state as soon as the decreasing voltage Vc reaches the threshold THL
  • the output 141 is connected, preferably connected, to a control terminal of this switch K (for example, the gate of a MOS transistor constituting the switch K). Terminal 141 is also connected, in the example shown, to terminal 25 for activating cell 2 by means of an inverter 18.
  • the inverter 18 provides a signal EN for activating the cell, assumed to be arbitrarily active in the high state. The reverse is possible depending on the constitution of cell 2. For example, for activation in the low state of cell 2, the inverter 18 is omitted.
  • the comparator 14 (and the inverter 18 if it is present) are supplied by the voltage Valim.
  • cell 2 is supplied by the voltage Vc across the capacitor C.
  • its terminal 21 is connected, preferably connected, to node 16 and its terminal 23 is connected , preferably connected, to terminal 17.
  • FIG. 2 illustrates, by timing diagrams (a), (b),
  • the timing diagrams (a), (b), (c) and (d) respectively illustrate examples of patterns of the voltage Vc present on the node 16, of the control signal CT in closing of the switch K, of the cell 2 activation signal EN and of the active (ON) and inactive (OFF) states of cell 2.
  • the operation is cyclical.
  • the voltage Vc alternates increasing ramps when the switch K is closed (the current source 12 then charging the capacitor C) and decreasing ramps when the switch K is open (the capacitor C discharging for supply function 2).
  • the power duty cycle of the activated function is modified. The more the function or cell consumes, the faster the capacitor C discharges and the less the cell is active for a long time. The average consumption is constant but the duty cycle is modified so as to activate the cell more or less long.
  • the hysteresis comparator preferably performs two actions. It controls the activation of the digital function (signal EN) and it controls the charge of the capacitor C supplying this function (signal CT).
  • the duration of the on or off periods of function 2 depends on the hysteresis of the comparator and the capacity of the capacitor C.
  • the duration of the periods of extinction of the function 2 depends on the intensity of the current I and on the capacity of the capacitor C.
  • a current source 12 of the VBG / R type in a MOS technology, that is to say depending on the bandgap voltage (band height prohibited) or in Vbe / R in a bipolar technology.
  • the voltage Vref is for example, in MOS technology, the bandgap voltage. More generally, it is sought to have a voltage stable in temperature and any voltage of this type is suitable.
  • the comparator 12 and the optional inverter 18 represent the only two elements which need to be internal to the circuit 1 and are considerably less bulky than a state machine.
  • the capacitor C is or is not integrated into the circuit. It can therefore be outside the electronic circuit integrating the cell 2 and the activation circuit 1, which makes it possible to further reduce the size of the integrated circuit carrying the cyclically activated function.

Abstract

La présente description concerne un circuit (1) d'activation cyclique d'une fonction électronique (2) comportant un comparateur à hystérésis (14) de commande de la charge d'un élément capacitif (C) d'alimentation de ladite fonction.

Description

DESCRIPTION
Commande cyclique de cellules d'un circuit intégré
Domaine technique
[0001] La présente description concerne de façon générale les circuits électroniques et, plus particulièrement, les circuits contenant des fonctions matérielles activables sélectivement .
[0002] La présente description s'applique en particulier à des fonctions (blocs, cellules, circuits, portions de circuits, etc.) activables cycliquement.
Technique antérieure
[0003] Pour des raisons de consommation, certains circuits électroniques comportent des fonctions matérielles activables sélectivement afin de couper leur alimentation lorsqu'elles ne sont pas utilisées. Certaines de ces fonctions sont activées cycliquement (périodiquement) afin de simplifier la commande et d'en réduire la consommation ou parce que c'est imposé par l'application.
[0004] Il peut s'agir de fonctions de test, de calculs périodiques, etc.
[0005] Le document JP2003-188693 décrit un circuit oscillant utilisé pour une commande PWM. Le circuit utilise un comparateur à deux seuils, associé à un condensateur, pour générer une rampe et contrôler le rapport cyclique du signal de commande PWM.
[0006] Le document US2016/036327 décrit un convertisseur abaisseur utilisant une impulsion variable, comprenant une unité de commutation pour convertir une tension d'alimentation fournie par un dispositif externe en une tension interne, et un contrôleur d'impulsion configuré pour contrôler de façon variable un temps de pilotage de l'unité de commutation en fonction d'un résultat obtenu en détectant une différence entre la tension d'alimentation et une tension de sortie qui est la tension interne.
[0007] Le document CN102097934 décrit un convertisseur abaisseur DC/DC à hystérésis.
Résumé de 1 ' invention
[0008] Un mode de réalisation pallie tout ou partie des inconvénients des circuits connus d'activation périodique de fonctions électroniques.
[0009] Un mode de réalisation prévoit un circuit d'activation cyclique d'une fonction électronique comportant un comparateur à hystérésis de commande de la charge d'un élément capacitif d'alimentation de ladite fonction.
[0010] Selon un mode de réalisation, ladite fonction est une fonction au moins partiellement numérique.
[0011] Selon un mode de réalisation, ladite fonction est une fonction au moins partiellement analogique.
[0012] Selon un mode de réalisation, l'élément capacitif constitue un réservoir d'énergie destiné à l'alimentation de ladite fonction.
[0013] Selon un mode de réalisation, ledit comparateur régule la consommation de ladite fonction.
[0014] Selon un mode de réalisation, ladite fonction est activée en fonction du résultat de la comparaison fournie par le comparateur.
[0015] Selon un mode de réalisation, le circuit comporte une source de courant constant de charge du condensateur.
[0016] Selon un mode de réalisation, un interrupteur est intercalé entre la source de courant et l'élément capacitif. [0017] Selon un mode de réalisation, le comparateur est alimenté par une tension distincte de la tension de l'élément capacitif .
[0018] Un mode de réalisation prévoit un procédé d'activation cyclique d'une fonction électronique comportant les étapes suivantes :
générer une rampe de tension ; et activer, respectivement désactiver, la fonction à chaque changement de sens de la rampe, ladite fonction étant alimentée par un élément capacitif.
[0019] Selon un mode de réalisation, la rampe est générée par la charge et la décharge de l'élément capacitif.
[0020] Un mode de réalisation prévoit un circuit comportant :
au moins une fonction électronique ; et
au moins un circuit d'activation.
Brève description des dessins
[0021] Ces caractéristiques et avantages, ainsi que d'autres, seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
[0022] la figure 1 représente, de façon très schématique et sous forme de blocs, un mode de réalisation d'un circuit d'activation cyclique ; et
[0023] la figure 2 illustre, sous forme de chronogrammes, le fonctionnement du circuit de la figure 1.
Description des modes de réalisation
[0024] De mêmes éléments ont été désignés par de mêmes références dans les différentes figures. En particulier, les éléments structurels et/ou fonctionnels communs aux différents modes de réalisation peuvent présenter les mêmes références et peuvent disposer de propriétés structurelles, dimensionnelles et matérielles identiques.
[0025] Par souci de clarté, seuls les étapes et éléments utiles à la compréhension des modes de réalisation décrits ont été représentés et sont détaillés. En particulier, la fonction activable, remplie par un élément, bloc, cellule ou circuit matériel, n'a pas été détaillée, les modes de réalisation décrits étant compatibles avec toute fonction usuelle activable cycliquement.
[0026] Sauf précision contraire, lorsque l'on fait référence à deux éléments connectés entre eux, cela signifie directement connectés sans éléments intermédiaires autres que des conducteurs, et lorsque l'on fait référence à deux éléments reliés ou couplés entre eux, cela signifie que ces deux éléments peuvent être connectés ou être reliés ou couplés par l'intermédiaire d'un ou plusieurs autres éléments.
[0027] Sauf précision contraire, les expressions "environ", "approximativement", "sensiblement", et "de l'ordre de" signifient à 10 % près, de préférence à 5 % près.
[0028] Généralement, un circuit à activer cycliquement reçoit un signal d'activation provenant d'une machine d'états associée à une horloge. Le rôle de la machine d'états (par exemple un compteur) est de compter un nombre déterminé de cycles d'horloge afin d'activer périodiquement et avec un rapport cyclique donné le circuit commandé. Toutefois, le circuit générant la fréquence d'horloge et la machine d'états doivent être alimentés en permanence pour jouer leur rôle. La consommation alors engendrée peut ne pas être négligeable. De plus, la fonction activée cycliquement est généralement en permanence alimentée par la même tension d'alimentation que celle de la machine d'états qui l'active. [0029] Selon les modes de réalisation décrits, on prévoit d'alimenter la fonction activable sélectivement à partir d'un signal d'alimentation périodique. De plus, on prévoit de générer le signal d'activation périodique à partir de ce signal d'alimentation périodique. Ainsi, on prévoit de préférence de modifier non seulement la façon dont est généré le signal d'activation de la fonction mais également de modifier la façon dont la fonction est alimentée.
[0030] Ainsi, à la différence de circuits contrôlant le le rapport cyclique d'une fonction telle qu'un oscillateur, on prévoit de modifier le rapport cyclique d'alimentation de la fonction elle-même.
[0031] Dans les applications visées par la présente description, une fonction d'un circuit électronique activable cycliquement est une portion de ce circuit, désignée par bloc, cellule ou fonction, susceptible d'être alimentée sélectivement par rapport à d'autres parties du circuit électronique. Une telle portion de circuit est, de préférence, une fonction numérique et/ou analogique de plusieurs composants actifs, par exemple des portes logiques, par opposition à des composants passifs, de type résistance, condensateur, inductance. De préférence, la fonction ne se limite pas à un simple interrupteur mais est une fonction plus complexe qu'un simple interrupteur.
[0032] La figure 1 représente, de façon très schématique et sous forme de blocs, un mode de réalisation d'un circuit 1 d'activation cyclique d'une fonction électronique matérielle
2.
[0033] La fonction matérielle 2 est symbolisée par un bloc ou cellule 2 (CELL) et peut être n'importe quelle fonction compatible avec une activation cyclique. La cellule 2 comporte deux bornes 21 et 23 d'alimentation et une borne 25 d'activation. La cellule 2 comporte d'autres bornes, notamment d'entrée/sortie, non représentées qui dépendent de 1 ' application .
[0034] Le circuit d'activation 1 est basé sur la génération d'une rampe de tension, rendue périodique par l'alternance de cycles de charge et décharge d'un élément capacitif C, par exemple un condensateur. Le condensateur C est relié, par un interrupteur K, commandable en tout ou rien, à une source 12 de courant I, de préférence constant. Ainsi, la source 12, l'interrupteur K et le condensateur C sont en série entre des bornes 15 et 17 d'application d'une tension d'alimentation Valim, la borne 17 définissant un potentiel de référence, typiquement la masse. La tension Valim est une tension d'alimentation extraite de l'alimentation du circuit électronique intégrant la fonction 2 et son circuit d'activation 1, ou la tension d'alimentation de ce circuit.
[0035] L'interrupteur K est commandé par un signal CT fourni par un comparateur 14 à hystérésis de la tension Vc aux bornes du condensateur C par rapport à une tension de référence Vref. Ainsi, le noeud 16 entre l'interrupteur K et le condensateur C est relié, de préférence connecté, à une entrée du comparateur 14, l'autre entrée du comparateur 14 recevant la tension Vref. L'hystérésis du comparateur 14 est définie par deux seuils THH et THL, respectivement supérieur et inférieur à la tension Vref et conditionnant le basculement de la sortie 141 du comparateur 14. Dans l'exemple représenté, on suppose que la tension Vref est appliquée sur l'entrée positive (+) du comparateur 14 tandis que la tension Vc est appliquée sur son entrée négative ( ) . Dans ce cas, la sortie du comparateur 14 bascule vers un état bas dès que la tension Vc croissante atteint le seuil THH et bascule vers un état haut dès que la tension Vc décroissante atteint le seuil THL.
[0036] La sortie 141 est reliée, de préférence connectée, à une borne de commande de cet interrupteur K (par exemple, la grille d'un transistor MOS constituant l'interrupteur K). La borne 141 est par ailleurs reliée, dans l'exemple représenté, à la borne 25 d'activation de la cellule 2 par l'intermédiaire d'un inverseur 18. L'inverseur 18 fournit un signal EN d'activation de la cellule, supposé arbitrairement actif à l'état haut. L'inverse est possible selon la constitution de la cellule 2. Par exemple, pour une activation à l'état bas de la cellule 2, l'inverseur 18 est omis.
[0037] Le comparateur 14 (et l'inverseur 18 s'il est présent) sont alimentés par la tension Valim.
[0038] Afin de combiner alimentation et activation de la cellule 2, la cellule 2 est alimentée par la tension Vc aux bornes du condensateur C. Ainsi, sa borne 21 est reliée, de préférence connectée, au noeud 16 et sa borne 23 est reliée, de préférence connectée, à la borne 17.
[0039] La figure 2 illustre, par des chronogrammes (a), (b),
(c) et (d) , le fonctionnement du circuit de la figure 1.
[0040] Les chronogrammes (a), (b), (c) et (d) illustrent respectivement des exemples d'allures de la tension Vc présente sur le noeud 16, du signal de commande CT en fermeture de l'interrupteur K, du signal EN d'activation de la cellule 2 et des états actif (ON) et inactif (OFF) de la cellule 2.
[0041] Grâce au comparateur à hystérésis 14 et à l'alimentation de la cellule 2 par le condensateur C, le fonctionnement est cyclique. En d'autres termes, la tension Vc alterne des rampes croissantes lorsque l'interrupteur K est fermé (la source de courant 12 chargeant alors le condensateur C) et des rampes décroissantes lorsque l'interrupteur K est ouvert (le condensateur C se déchargeant pour alimenter la fonction 2) . En d'autres termes, on modifie le rapport cyclique d'alimentation de la fonction activée. Plus la fonction ou cellule consomme, plus le condensateur C se décharge rapidement et moins la cellule est active longtemps. La consommation moyenne est constante mais le rapport cyclique est modifié de façon à activer la cellule plus ou moins longtemps.
[0042] Comme cela ressort de la figure 1, le comparateur à hystérésis effectue de préférence deux actions. Il commande l'activation de la fonction numérique (signal EN) et il commande la charge du condensateur C d'alimentation de cette fonction (signal CT) .
[0043] L'inversion du signal de sortie du comparateur 14 pour activer la fonction 2 permet d'éviter que la fonction ne consomme en permanence. Il peut subsister des courants de fuite mais ils sont inférieurs à ceux qui existeraient si la fonction 2 était en permanence alimentée (par la tension Valim) .
[0044] La durée des périodes d'allumage ou d'extinction de la fonction 2 dépend de l' hystérésis du comparateur et de la capacité du condensateur C.
[0045] La durée des périodes d'extinction de la fonction 2 dépend de l'intensité du courant I et de la capacité du condensateur C.
[0046] A titre d'exemple particulier de réalisation, on pourra réaliser une source de courant 12 du type en VBG/R dans une technologie MOS, c'est-à-dire fonction de la tension de bandgap (hauteur de bande interdite) ou en Vbe/R dans une technologie bipolaire. La tension Vref est par exemple, en technologie MOS, la tension de bandgap. Plus généralement, on cherche à disposer d'une tension stable en température et toute tension de ce type convient.
[0047] Un avantage des modes de réalisation décrits est que l'on réduit considérablement la consommation en dehors des périodes d'activation. La source de courant 12, le comparateur 14 et l'inverseur 18 représentent les seuls éléments ayant besoin d'être alimentés en permanence par la tension Valim. Pour le reste, le condensateur C accumule de l'énergie qui est restituée et qui n'est donc pas perdue.
[0048] Un autre avantage est que la solution proposée est moins encombrante à l'intérieur du circuit. Le comparateur 12 et l'inverseur optionnel 18 représentent les deux seuls éléments ayant besoin d'être internes au circuit 1 et sont nettement moins encombrants qu'une machine d'états. Selon l'application, le condensateur C est ou non intégré au circuit Il peut donc être à l'extérieur du circuit électronique intégrant la cellule 2 et le circuit d'activation 1, ce qui permet de réduire encore la taille du circuit intégré portant la fonction activable cycliquement.
[0049] Divers modes de réalisation et variantes ont été décrits. L'homme de l'art comprendra que certaines caractéristiques de ces divers modes de réalisation et variantes pourraient être combinées, et d'autres variantes apparaitront à l'homme de l'art. En particulier, le choix des valeurs à donner aux différents composants et tensions dépend de l'application.
[0050] Enfin, la mise en oeuvre pratique des modes de réalisation et variantes décrits est à la portée de l'homme du métier à partir des indications fonctionnelles données ci- dessus, en particulier pour ce qui est de la réalisation de la source de courant 12 et des différents éléments en fonction des composants disponibles dans l'application.

Claims

REVENDICATIONS
1. Circuit (1) d'activation cyclique d'une fonction électronique (2) comportant un comparateur à hystérésis (14) de commande de la charge d'un élément capacitif (C) d'alimentation de ladite fonction.
2. Circuit selon la revendication 1, dans lequel ladite fonction (2) est une fonction au moins partiellement numérique .
3. Circuit selon la revendication 1 ou 2, dans lequel ladite fonction (2) est une fonction au moins partiellement analogique .
4. Circuit selon l'une quelconque des revendications 1 à 3, dans lequel l'élément capacitif (C) constitue un réservoir d'énergie destiné à l'alimentation de ladite fonction (1).
5. Circuit selon l'une quelconque des revendications 1 à 4, dans lequel ledit comparateur (14) régule la consommation de ladite fonction (2) .
6. Circuit selon l'une quelconque des revendications 1 à 5, dans lequel ladite fonction (2) est activée en fonction du résultat de la comparaison fournie par le comparateur (14) .
7. Circuit selon l'une quelconque des revendications 1 à 6, comportant une source (12) de courant constant de charge du condensateur.
8. Circuit selon la revendication 7, dans lequel un interrupteur (K) est intercalé entre la source de courant (12) et l'élément capacitif (C) .
9. Circuit selon l'une quelconque des revendications 1 à 8, dans lequel le comparateur (14) est alimenté par une tension (Valim) distincte de la tension de l'élément capacitif (C) .
10. Procédé d'activation cyclique d'une fonction électronique (2) comportant les étapes suivantes :
générer une rampe de tension ; et
activer, respectivement désactiver, la fonction à chaque changement de sens de la rampe, ladite fonction étant alimentée par un élément capacitif (C) .
11. Procédé selon la revendication 10, dans lequel la rampe est générée par la charge et la décharge de l'élément capacitif (C) .
12. Circuit comportant :
au moins une fonction électronique (2) ; et au moins un circuit d'activation (1) selon l'une quelconque des revendications 1 à 9.
PCT/FR2019/051553 2018-06-26 2019-06-25 Commande cyclique de cellules d'un circuit integre WO2020002821A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/119,865 US11838024B2 (en) 2018-06-26 2020-12-11 Circuit and method for cyclic activation of an electronic function

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855722 2018-06-26
FR1855722A FR3082959A1 (fr) 2018-06-26 2018-06-26 Commande cyclique de cellules d'un circuit integre

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/119,865 Continuation-In-Part US11838024B2 (en) 2018-06-26 2020-12-11 Circuit and method for cyclic activation of an electronic function

Publications (1)

Publication Number Publication Date
WO2020002821A1 true WO2020002821A1 (fr) 2020-01-02

Family

ID=65031296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051553 WO2020002821A1 (fr) 2018-06-26 2019-06-25 Commande cyclique de cellules d'un circuit integre

Country Status (3)

Country Link
US (2) US11626862B2 (fr)
FR (1) FR3082959A1 (fr)
WO (1) WO2020002821A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020104891A1 (fr) 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 Dispositif à semi-conducteur, dispositif de stockage d'énergie et dispositif électronique
KR20210104682A (ko) * 2018-12-19 2021-08-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 히스테리시스 콤퍼레이터, 반도체 장치, 및 축전 장치
FR3133681A1 (fr) * 2022-03-16 2023-09-22 Stmicroelectronics Sa Alimentation d'un module NFC

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157626A (ja) * 1991-12-05 1993-06-25 Nikko Kyodo Co Ltd 測光装置
JP2003188693A (ja) 2001-12-20 2003-07-04 Nec Kansai Ltd 発振回路
CN102097934A (zh) 2011-02-25 2011-06-15 浙江大学 迟滞模式降压型dc/dc开关变换器
US20160036327A1 (en) 2014-08-04 2016-02-04 Samsung Electronics Co., Ltd. Buck converter using variable pulse
US9935618B1 (en) * 2016-09-30 2018-04-03 Tower Semiconductor Ltd. Schmitt trigger circuit with hysteresis determined by modified polysilicon gate dopants

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69514090T2 (de) * 1995-03-31 2000-05-25 St Microelectronics Srl Oszillatorschaltung mit einer versorgungsspannungsunabhängigen Oszillatorfrequenz
US5818207A (en) * 1996-12-11 1998-10-06 Micro Linear Corporation Three-pin buck converter and four-pin power amplifier having closed loop output voltage control
US5914591A (en) * 1996-12-25 1999-06-22 Matsushita Electric Industrial Co., Ltd. Switching power supply
JP3593261B2 (ja) * 1998-06-22 2004-11-24 株式会社リコー ヒステリシスコンパレータ回路、及び波形発生回路
US6147478A (en) * 1999-09-17 2000-11-14 Texas Instruments Incorporated Hysteretic regulator and control method having switching frequency independent from output filter
US6922044B2 (en) * 2002-09-06 2005-07-26 Intersil Americas Inc. Synchronization of multiphase synthetic ripple voltage regulator
AU2003291888A1 (en) * 2002-12-13 2004-07-09 Yan-Fei Liu Digital programmable pulse modulator with digital frequency control
DE10335905B4 (de) * 2003-08-06 2018-07-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur bidirektionalen Eindraht-Datenübertragung
JP2005086931A (ja) * 2003-09-10 2005-03-31 Renesas Technology Corp スイッチング電源装置とそれに用いられる半導体集積回路
TWI234059B (en) * 2004-01-07 2005-06-11 Leadtrend Tech Corp Adaptive dead-time controller capable of adjusting dead-time
US8018704B2 (en) * 2006-08-23 2011-09-13 Micrel, Inc. Parallel analog and digital timers in power controller circuit breaker
TW200849792A (en) * 2007-06-01 2008-12-16 Richtek Technology Corp Apparatus and method for reducing the die area of a PWM controller
US20090102408A1 (en) * 2007-10-18 2009-04-23 Matsushita Electric Industrial Co., Ltd. Backward pedaling detection circuit for e-bike motor driver
US7615974B1 (en) * 2007-11-08 2009-11-10 National Semiconductor Corporation High dimming ratio LED drive circuit
FR2929780A1 (fr) * 2008-04-08 2009-10-09 St Microelectronics Rousset Detection de donnees recues par un dispositif maitre dans un protocole de communication unifilaire
US7834608B2 (en) * 2008-11-18 2010-11-16 Texas Instruments Incorporated Feed-forward compensation for a hysteretic switching regulator
CN101615846B (zh) * 2009-07-30 2011-09-28 旭丽电子(广州)有限公司 直流/直流转换装置与跳频控制模块及跳频控制方法
CN102315773B (zh) * 2010-07-02 2014-02-12 成都芯源系统有限公司 一种开关变换器的装置和方法
US8488338B2 (en) * 2010-10-01 2013-07-16 System General Corporation Controller with valley switching and limited maximum frequency for quasi-resonant power converters
JP5616768B2 (ja) * 2010-12-08 2014-10-29 ローム株式会社 発光素子の駆動回路、それを用いた発光装置および電子機器
US8970192B2 (en) * 2011-05-20 2015-03-03 Analog Devices, Inc. Buck converter with comparator output signal modification circuit
TWI481169B (zh) * 2011-05-27 2015-04-11 Leadtrend Tech Corp 控制切換式電源轉換器之功率開關跨壓之方法及其電路
CN103947092B (zh) * 2011-10-26 2017-02-08 美高森美公司 用于降压dc/dc转换器的滞后控制
JP5966503B2 (ja) * 2012-03-28 2016-08-10 富士通株式会社 昇降圧型dc−dcコンバータおよび携帯機器
JP6106390B2 (ja) * 2012-09-13 2017-03-29 ローム株式会社 スイッチングレギュレータおよびその制御回路、制御方法、ならびに電子機器
CN103066823B (zh) * 2012-12-12 2015-07-08 矽力杰半导体技术(杭州)有限公司 一种开关电源控制器和控制方法
JP2015012694A (ja) * 2013-06-28 2015-01-19 株式会社東芝 電源回路
US9716435B2 (en) * 2014-05-07 2017-07-25 Texas Instruments Incorporated Minimum on-time control for low load DC/DC converter
US9929651B2 (en) * 2015-11-18 2018-03-27 Microsemi Corporation Converter with hysteretic control
DE102018115460B4 (de) * 2018-06-27 2020-12-31 Infineon Technologies Ag Sensoranordnung für die voltammetrie
US11362543B2 (en) * 2018-06-29 2022-06-14 Etherdyne Technologies, Inc. Wireless power receiver circuits that provide constant voltage or current to an electrical load, and methods
FR3089723A1 (fr) * 2018-12-11 2020-06-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives Circuit retardateur
US11264897B2 (en) * 2019-01-14 2022-03-01 Texas Instruments Incorporated Pulse width modulator delay control circuit
TWI760023B (zh) * 2020-12-22 2022-04-01 新唐科技股份有限公司 參考電壓電路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157626A (ja) * 1991-12-05 1993-06-25 Nikko Kyodo Co Ltd 測光装置
JP2003188693A (ja) 2001-12-20 2003-07-04 Nec Kansai Ltd 発振回路
CN102097934A (zh) 2011-02-25 2011-06-15 浙江大学 迟滞模式降压型dc/dc开关变换器
US20160036327A1 (en) 2014-08-04 2016-02-04 Samsung Electronics Co., Ltd. Buck converter using variable pulse
US9935618B1 (en) * 2016-09-30 2018-04-03 Tower Semiconductor Ltd. Schmitt trigger circuit with hysteresis determined by modified polysilicon gate dopants

Also Published As

Publication number Publication date
US20210157392A1 (en) 2021-05-27
US20210099162A1 (en) 2021-04-01
US11838024B2 (en) 2023-12-05
US11626862B2 (en) 2023-04-11
FR3082959A1 (fr) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2020002821A1 (fr) Commande cyclique de cellules d'un circuit integre
EP1468484B1 (fr) Convertisseur de tension dc/dc multicellule a interrupteurs de protection
EP2882087B1 (fr) Convertisseur DC-DC à fonctionnement en mode discontinu
FR2928506A1 (fr) Circuit electronique et modulateur delta-sigma en temps continu
FR2848356A1 (fr) Procede de commande d'une alimentation a decoupage a un seul element inductif et plusieurs sorties, et alimentation correspondante, en particulier pour un telephone mobile cellulaire
EP2932588B1 (fr) Circuit de comparaison d'une tension a un seuil et conversion d'energie electrique
WO2005074109A1 (fr) Gestion du court-circuit dans une inductance d'un convertisseur elevateur de tension
FR2783650A1 (fr) Circuit de commutation de source de courant
FR2938388A1 (fr) Circuit integre avec polarisation de grille de transistor de puissance controlee par le courant de fuite
EP0798838A1 (fr) Circuit d'amélioration du facteur de puissance à double décharge
EP3654534A1 (fr) Cellule logique capacitive
FR2971379A1 (fr) Commande a hysteresis d'un dispositif electronique par un signal module en largeur d'impulsion
EP2544345A1 (fr) Circuit multiplicateur de tension
FR2969864A1 (fr) Circuit d'alimentation a faibles pertes en mode veille
EP3050187B1 (fr) Circuit de pompe de charge de generation d'une tension negative
EP0690575B1 (fr) Dispositif de mise en veille d'une source de polarisation
EP2792073B1 (fr) Generateur de signal a largeur d'impulsion variable
FR2819123A1 (fr) Pompe de charge a faible bruit pour boucle a verrouillage de phase
FR2872354A1 (fr) Variateur de puissance
CH705950B1 (fr) Générateur de signal à largeur d'impulsion variable.
EP1124314B1 (fr) Dispositif électronique de pompe de charge
WO2022117481A1 (fr) Convertisseur de puissance
FR3068189A1 (fr) Oscillateur rc
FR3035280A1 (fr) Circuit de commande d'un convertisseur dc-dc
FR2507839A1 (fr) Circuit pour le pilotage de l'interrupteur de decoupage present dans les convertisseurs de tension

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19744769

Country of ref document: EP

Kind code of ref document: A1