WO2020002185A1 - Membrane composite de nanofiltration stable en milieu alcalin et son procédé de fabrication - Google Patents

Membrane composite de nanofiltration stable en milieu alcalin et son procédé de fabrication Download PDF

Info

Publication number
WO2020002185A1
WO2020002185A1 PCT/EP2019/066585 EP2019066585W WO2020002185A1 WO 2020002185 A1 WO2020002185 A1 WO 2020002185A1 EP 2019066585 W EP2019066585 W EP 2019066585W WO 2020002185 A1 WO2020002185 A1 WO 2020002185A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
process according
weight
woven fabric
mol
Prior art date
Application number
PCT/EP2019/066585
Other languages
English (en)
Inventor
Zedda KARINA
Carsten Schellenberg
Judith RICHTER
Original Assignee
Lanxess Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland Gmbh filed Critical Lanxess Deutschland Gmbh
Priority to KR1020217002230A priority Critical patent/KR20210024074A/ko
Priority to JP2020572719A priority patent/JP7128913B2/ja
Priority to US17/253,653 priority patent/US20210252458A1/en
Priority to EP19732365.2A priority patent/EP3813990A1/fr
Priority to CN201980043446.3A priority patent/CN112334218B/zh
Publication of WO2020002185A1 publication Critical patent/WO2020002185A1/fr
Priority to IL279666A priority patent/IL279666A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0016Coagulation
    • B01D67/00165Composition of the coagulation baths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0018Thermally induced processes [TIPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21839Polymeric additives
    • B01D2323/2187Polyvinylpyrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • B01D2323/22Specific non-solvents or non-solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2339/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Derivatives of such polymers
    • C08J2339/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C08J2339/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones

Definitions

  • Embodiments of the present invention relate to a nanofiltration composite membrane for use to purify water, the methods for preparing said nanofiltration composite membranes and to the nanofiltration composite membranes prepared accordingly.
  • Membrane filtration is a well-known technique in water treatment for removing contaminants due to their selective permeability.
  • the contaminants could be present in the form of suspended, colloids, or dissolved, down to the size of ions.
  • Porous semipermeable membranes include microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF). Their mechanism in removing contaminants relies highly on steric hindrance.
  • Reverse osmosis (RO) membrane is considered as dense membrane, characterized with its capabilities of removing substances down to the size of monovalent ion.
  • Nanofiltration defined as a process with characteristics between those of ultrafiltration and reverse osmosis, is a known technology in drinking water treatment and wastewater reclamation. This technology has been employed to remove impurities such as salts, hardness, pathogens, turbidity, disinfection-byproduct precursors, pesticides and other potable water contaminants.
  • impurities such as salts, hardness, pathogens, turbidity, disinfection-byproduct precursors, pesticides and other potable water contaminants.
  • the use of polymeric membrane in mining applications where the feed water pH and temperature are out of the standard operating conditions for water treatment, have been gaining attention in the last decade. These membranes are applied mainly for separation of metals and recovery of acid or alkali.
  • In industrial wastewater treatment for example for treating acid mine drainage, both reverse osmosis and nanofiltration are well established methods for metal removal. They are highly efficient, cost effective and easily to operate processes.
  • Nanofiltration can be used to concentrate and recover metals which can be exploited as an invaluable resource commodity. While standard polymeric membranes are often used in the treatment process, they are operated beyond their chemical and mechanical stability limits, and thus have a very short lifetime. It is not uncommon that these nanofiltration membranes are degraded after 600 hours of operation or after 30 days under such extreme conditions.
  • Nanofiltration membranes are considered as membrane with a molecular weight cutoff (MWCO) of approximately between 200 g/mol to 1000 g/mol.
  • MWCO molecular weight cutoff
  • Compounds smaller than 1000 g/mol, which are commonly salts, can be fractionated by nanofiltration membranes; nanofiltration membranes are capable to retain divalent ions, while permeating monovalent ions.
  • US-B 5,814,372 discloses an ultrafiltration composite porous membrane based on a first polyolefin polymer and a second self-crosslinkable polymer which has been prepared by impregnating the polyolefin polymer with a solution of an uncrosslinked, self-crosslinkable polymer composition in the presence of a free radical polymerization initiator and heating and washing this membrane.
  • the prepared ultrafiltration composite porous membrane does not show any nanofiltration properties and is not stable in highly alkaline solutions.
  • US-B 5,762,798 discloses an asymmetrical, microporous hollow fiber membrane based on a polymeric solution comprising a fiber-forming polysulfone polymer, a polyvinyl pyrrolidone and an aprotic solvent.
  • This membrane does not exhibit nanofiltration properties as the molecular weight cutoff lies between 17000 and 65000 g/mol, and is therefore not usable in mining processes for the recovery of metal salts such as copper, gold and uranium.
  • nanofiltration membranes are generally composed of two or more asymmetrical layers, denoted as composite membrane.
  • the layers include a nonwoven support, onto which a microporous membrane made of polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile or cellulose acetate is coated.
  • the top layer is usually a thin layer produced via interfacial polymerization.
  • US-B 5,922,293 discloses the manufacture of a composite nanofiltration membrane, with a microporous support membrane such as polysulfone or polyethersulfone.
  • a monomeric bipiperidine reactant and an amine-reactive polyfunctional aromatic or cycloaliphatic acyl halide are interfacially polymerized on top of the support membrane.
  • US-B 4,758,343 discloses the manufacture of a composite filtration membrane with nanofiltration or reverse osmosis characteristics, comprises of a microporous polysulfone substrate, covered by an ultra-thin membrane comprises of a crosslinked piperazine polyamide.
  • US-B 4,277,344 discloses the manufacture of a composite filtration membrane with reverse osmosis characteristics, of which an aromatic polyamine is reacted interfacially with an aromatic acyl halide on a porous polysulfone support membrane. All three processes comprise the same disadvantage namely that the active layer of the composites nanofiltration membrane or reverse osmosis membrane furthermore does not exhibit alkali nor acid stability, and thus cannot be used in mining processes for the recovery of metal salts in highly alkaline liquor.
  • US-A 201 1/0147308 describes the preparation of a charged ultrafiltration and microfiltration polymeric membranes.
  • the preparation process is based on polyvinylidene difluoride and positively charged polyvinyl pyrrolidone copolymers.
  • the prepared membrane has furthermore disadvantage in view of filtration properties due to their large pore size and inability to separate metal salts from the bulk solution, and is therefore not employable in mining processes for the recovery of metal salts such as copper, gold and uranium.
  • Another important aspect for a composite nanofiltration membrane to be economically viable to manufacture is the production steps, whether they involved difficult chemical reactions and whether they are suitable for a continuous roll-to-roll production.
  • WO-A 2010/082194 discloses the manufacturing process of solvent and acid stable nanofiltration membrane.
  • a polyacrylonitrile (PAN) based UF support membrane is modified using polyethylenimine (PEI) solution, followed by heat-treatment in a reactor at 90°C for 17 to 32 hours, then cured for 1 hour in an oven at 90°C, and finally washed. Due to the long treatments needed in each manufacturing step, this manufacturing method is only suitable for batch process and hence the membrane is economically less viable to manufacture.
  • the chemical process involved is an ozonation reaction or chlorosulfonation reaction.
  • the manufacturing process of the composite nanofiltration membrane is economically disadvantaged since further improvement such as shortening the heat-treatment and curing steps are required to make the membrane described in WO-A 2010/082194 suitable for a continuous roll-to-roll production. Furthermore, toxic compounds as ozone and chlorosulfonic acid has to be used, making the manufacturing process of said membrane toxicologically disadvantaged. Moreover, the membrane described in WO-A 2010/082194 is not sufficiently alkali stable. There accordingly continued to be a need for a process for preparing a composite nanofiltration membrane, having nanofiltration properties inexpensively and overcoming known technological disadvantage.
  • the process of the present invention provides a composite nanofiltration membrane which exhibits alkali stability at pH 12 or above, having a high magnesium sulfate rejection and a high permeate water flux after being subjected to extreme conditions and which solves the known disadvantages of the state of the art.
  • the invention accordingly provides a process for preparation of nanofiltration composite membranes, wherein, in a step a.) at least one polymer selected from the group consisting of polysulfone polymer, polyether polymer and mixtures thereof and at least one polyvinyl pyrrolidone polymer is solved in at least one aprotic solvent to prepare a casting solution and in a step b.) the casting solution of step a.) is casted on a non-woven fabric and in a step c.) the casted non-woven fabric of step b.) will be brought into contact with a polar non- solvent to coagulate the membrane and in a step d.) the casted non-woven fabric membrane of step c.) will be brought into contact with at least one radical polymerization initiator and in a step e.) the casted non-woven fabric membrane of step d.) will be brought into contact with a non-solvent for washing and in a step f.) the casted non-woven fabric membrane of step e.
  • the nanofiltration composite membranes have an average molecular weight cut-off between 200 g/mol to 1000 g/mol, meaning that the membranes exhibit nanofiltration properties. More preferably, the nanofiltration composite membranes have an average molecular weight cut-off of 500 g/mol to 1000 g/mol.
  • the average molecular weight cut-off is the upper molecular weight limit of transport of compounds, above which less than 10% transport of compounds through the membrane occurs. The determination of the average molecular weight cut-off is described in the methods.
  • the polysulfone polymer according to this invention is preferred, polysulfone, polyethersulfone or polyarylene sulfone or mixtures of such polymers. More preferably, the polysulfone polymer is a polysulfone containing the following unit (I):
  • n is preferably 45 to 230, most preferably 120 to 150.
  • the polysulfone polymer preferably have an average molecular weight of 20,000 g/mol to 100,000 g/mol. More preferably, the average molecular weight is 55,000 g/mol to 65,000 g/mol..
  • the polyether polymer according to this invention is preferred polyethylene glycol and polypropylene glycol or mixtures of such polymers.
  • the polyether polymer preferably have an average molecular weight of 106 g/mol to 100,000 g/mol. More preferably, the average molecular weight is 106 g/mol to 12,000 g/mol and most preferably, the average molecular weight is 200 g/mol to 1 ,000 g/mol.
  • the polyvinyl pyrrolidone polymer contains preferably the following chemical unit (II)
  • m is preferably 1 10 to 1 100, most preferably 1 10 to 700.
  • the polyvinyl pyrrolidone polymer in this present invention has preferably an average molecular weight of 10,000 to 100,000 g/mol, preferably of 10,000 to 60,000 g/mol.
  • polyvinyl pyrrolidone polymer is preferably vinyl pyrrolidone/vinylacetate copolymers, vinyl pyrrolidone/styrene copolymers, vinyl pyrrolidone/dimethylaminoethyl methacrylate copolymers, or mixtures thereof.
  • the aprotic solvent used in the present invention is chosen so as to be a suitable solvent for each of the polysulfone polymer or polyether polymer and the polyvinyl pyrrolidone polymer.
  • the aprotic solvent is preferably N-methyl pyrrolidone, dimethyl formamide, dimethyl sulfoxide and dimethyl acetamide or mixtures thereof. In highly preferred embodiments, dimethyl formamide is used as aprotic solvent.
  • the total amount of polymer used in step a.) is preferably 10 weight % to 22 weight %, and more preferably 17 weight % to 21 weight % based on the amount of the casting solution.
  • the amount of polysulfone and/or polyether polymer is preferably 9 weight % to 21 weight % based on the amount of the casting solution.
  • the amount of polyvinyl pyrrolidone polymer used in the casting solution is preferably 1 weight % to 10 weight % based upon the weight of the solution, more preferably at is 2 weight % to 5 weight % based upon the weight of the casting solution.
  • the amount of aprotic solvent is preferably 68 weight % to 89 weight % based on the amount of the casting solution, more preferably 74 weight % to 87 weight %. Most preferably, the amount of aprotic solvent is 78 weight % to 90 weight % based on the amount of the casting solution.
  • the non-woven fabric is preferably a polyolefin polymer. More preferably, the non-woven fabric is selected from the group of polyethylene, polypropylene and polymethylpenten and mixtures thereof. Much more preferably, the non-woven fabric is a mixture of polyethylene and polypropylene.
  • the weight per unit area of the non-woven fabric is 70 g/m 2 to 100 g/m 2 , preferably 80 g/m 2 to 90 g/m 2 .
  • the thickness of the non-woven fabric is preferably 50 pm to 250 pm, preferably 100 pm to 200 pm.
  • the casting solution of step a.) can be casted using any conventional methods.
  • the casting solution of step a.) is casted on top of a non-woven fabric.
  • the cast process can be performed with the use of but not limited to spreading knives, doctor blade, spray coater, die coater, or slot coater.
  • the membrane can be cast manually, in which the casting solution is poured, spread and cast by hand, semi-automatically, in which the casting solution is poured by hand and cast by a moving knife, and automatically, in which the casting solution is poured and/or cast into a moving bed.
  • the casting solution is casted semi-automatically, more preferably the casting solution is casted automatically.
  • the non-solvent in step c.) is in general miscible with the aprotic solvent but does not dissolve the polysulfone polymer and the polyether polymer.
  • the non-solvent is preferably water or alcohols or mixtures thereof.
  • the alcohols used as non-solvent are preferably monohydric alcohols, e.g.
  • methanol ethanol, 1 -propanol, 2-propanol, n-butanol, i-butanol, t- butanol, 1 -pentanol, 2-pentanol, 3-pentanol, hexanol, heptanol, octanol, nonanol, 2-methyl-1 - propanol, 2-methyl-2-propanol, 2-pentanol, 3-pentanol, 2-methyl-1 -butanol, 3-methyl-1 - butanol, 2-methyl-2-butanol, 3-methyl-2-butanol, 2, 2-dimethyl-1 -propanol or dihydric alcohols, e.g.
  • the non-solvent is water.
  • the amount of water in the polar non-solvent is preferably more than 90 weight % based on the amount of the polar non solvent.
  • step c.) the phase separation is induced.
  • the time between step b.) and step c.) is less than 20 seconds, most preferably less than 10 seconds.
  • step c.) the phase separation is accomplished by bringing the casted nonwoven fabric into the contact with at least one polar non-solvent.
  • the casted nonwoven fabric of step b.) will be brought into a bath of polar non-solvent.
  • Other common techniques are known as, for example, spraying the polar non-solvent on the casted non-woven fabric.
  • step c.) is conducted at a temperature of 1 °C to 7 °C, more preferably at 3°C to 6°C.
  • the radical polymerization initiator used in step d.) is selected from the group consisting of persulfate, peroxide or azo compounds.
  • the radical polymerization initiator is preferably ammonium persulfate, potassium persulfate, sodium persulfate, 4,4’-azobis(4- cyanovalericacid)2,2’-azobis(2-amidinopropane)hydrochloride, and potassium hydrogen persulfate, benzoyl peroxide, 2,2’-azobisisobutyronitrile, 2,2’-azobis(2- methylpropionamidine)dihydrochloride, 2,2’-Azobis[2-(2-imidazolin-2-yl)propane] and dimethyl 2,2’-azobis(2-methylpropionate) or mixtures thereof.
  • the radical polymerization initiator is ammonium persulfate.
  • the radical polymerization initiator is preferably used in liquid form. If the radical polymerization initiator is used in a liquid form then the radical polymerization initiator is usually solved in a solvent.
  • the solvent which can be used in step d.) for solving the radical polymerization initiator is preferably any organic or inorganic polar solvent.
  • the radical polymerization initiator will be solved in water.
  • the radical polymerization initiator is preferably used in an amount of 0.3 weight % to 6 weight % based upon the weight of the solvent used in step d.). More preferably, the radical polymerization initiator is preferably used in an amount of 1 weight % and 2.5 weight % based upon the weight of the solvent used in step d.).
  • the dissolved radical polymerization initiator will be brought into contact with the membrane over its entire surface.
  • the contact can be accomplished through several means such as dipping, showering, spraying, or pouring.
  • step d.) the preferred contact time of the radical polymerization initiator with the casted non-woven fabric membrane of step c.) in the present invention is about 30 seconds to 5 minutes, highly preferably the preferred contact time is 1 minute to 3 minutes.
  • step e. the casted non-woven fabric membrane from step d.) will be brought into contact with a non-solvent for washing.
  • the same non-solvents can be used as in step c.)
  • the non-solvent which is used in step e.) is water.
  • the casted non-woven fabric membrane is brought into contact with the non-solvent at a temperature of 15°C to 80°C, highly preferably at a temperature of 25°C to 65°C.
  • the casted non-woven fabric membrane of step d.) can be brought into contact with the non-solvent by dipping, showering, spraying or pouring.
  • the casted non-woven fabric membrane of step d.) will be brought into contact with the non-solvent for 1 to 30 minutes, most preferably for 5 to 15 minutes.
  • step e.) before performing of step f.) is important to remove the rest of solvent from the casting solution which may alter the macroporous structure of the membrane.
  • step f.) crosslinking of the casted non-woven fabric membrane prepared in step e.) can be initiated by exposure to heat or exposure to radiation, such as ultraviolet (UV) and electron beam. Alternatively, a combination of heat or radiation may also be used. Preferably, crosslinking is initiated by exposure to heat. Therefore, step f.) shall be preferably performed at a temperature of 75°C to 130°C, most preferably of 80°C to 1 10°C.
  • the time need for cross-linking in step f.) is preferably 1 to 20 minutes, more preferably 5 to 10 minutes.
  • the irradiation dosage is 100 to 300 kGy, highly preferably is 150 to 200 kGy.
  • cross-linking is initiated by heat and continued by electron beam radiation.
  • the nanofiltration composite membranes comprise a non-woven fabric which is coated by a cross-linked nanofiltration membrane comprising at least one polysulfone polymer or at least one polyolefin polymer or mixtures thereof and at least one polyvinyl pyrrolidone.
  • the nanofiltration composite membranes of the present invention are prepared according to the inventive process.
  • the nanofiltration composite membranes obtained as per the process of the present invention are particularly suitable for purifying of water, especially of surface water, groundwater, borehole water, brackish water, seawater, and for reclamation of municipal or industrial wastewater.
  • the nanofiltration composite membrane in the present invention are particularly suitable for concentration, demineralization and reuse of various industrial water.
  • the nanofiltration composite membrane in the present invention are particularly suitable for metal salts recovery and purification of alkaline water.
  • the nanofiltration composite membranes of the present invention exhibit high magnesium sulfate rejection.
  • the magnesium sulfate rejection of a feed concentration of 2000 mg/I at 25°C and 10 bar is between 60% to 99%, with a permeate flux of 1 to 6 L.m 2 .h 1 .bar 1 measured in accordance to ASTM D4194-03.
  • the nanofiltration composite membrane of the present invention exhibit a magnesium sulfate rejection of a feed concentration of 2000 mg/I at 25°C and 10 bar of more than 80% and a permeate flux of at least 1 L.m 2 .h 1 .bar 1 measured in accordance to ASTM D4194-03.
  • the nanofiltration composite membranes according to this invention exhibit a change in magnesium sulfate rejection measured according to the description in the methods section of less than 10% for at least 60 days at pH values of 12 and higher. Therefore, the nanofiltration composites membranes according to this invention shows high stability at pH values 12 or higher. Moreover, the nanofiltration composite membranes can be easily applied in a roll-to- roll manufacturing process for membrane elements. The cost for the manufacturing of the membrane elements can be reduced. In addition, formerly required preparation steps can be avoided making the process much more economical and more efficient. The use of toxic chemical compounds such as ozone and chlorosulfonic acid can be avoided and the safety of the manufacturing process can be increased.
  • c(Feed) where c denotes the concentration of the solutes.
  • the rejection is then described as the amount of solute removed by measuring the concentration left in the permeate relative to the initial concentration in the feed.
  • the rejection experiments are conducted under strictly controlled conditions and following the procedures described in the ASTM D4194-03, in particular for Test Method B: Nanofiltration devices. These experiments are conducted in a pilot-scale coupon tester, using coupons cut from sheets of membrane with a diameter of 9.6 cm, and placed in twelve, parallel connected filtration cells in a closed- loop, cross-flow configuration. The cells are fed with 60 L of feed water coming from a 100L tank, which is connected to a high pressure, 4-pole pump (Danfoss, Offenbach am Main, Germany).
  • Permeate is collected from a tap on each cell, whereas the concentrate flows back into the feed tank.
  • the tester is equipped with a UV lamp to prevent any bacterial growth, a cooling system to control the feed water temperature and various pressure gauges to regulate the flow.
  • the coupon tester cells are designed to have a high cross flow velocity and very low permeate recovery ratio such that concentration polarization can be minimized.
  • the crossflow velocity in the rejection experiment was 6.67 x 10 5 m 3 /s (4 L/min).
  • membrane coupons were conditioned with the feed water inside the coupon test cells for at least 1 hour before sampling was performed. Permeate from each cell was collected for rejection analysis and the permeate flux was determined. The measurement was repeated 2 hours after start-up and hourly thereafter until three successive permeate flow rates and salt passages agree within 5%.
  • Rejection experiments at standard test conditions i.e. 2,000 mg/L MgS0 4 , pH 7, 25 °C) were conducted prior to and after every set of treatment (for e.g.
  • the concentration of magnesium sulfate in the feed and permeate water was determined using a Prolab 4000 conductivity meter (SCHOTT, Mainz, Germany). In order to calculate the membrane rejection, a calibration curve was constructed to establish a relationship between the concentration of magnesium sulfate and conductivity.
  • permeate flux defined as the rate of permeate flow per unit of membrane area, shown by the following equation: where J is the rate of permeate flux in L.h -1 m -2 (gal.d 1 .ft 2 ), Q p is the rate of filtrate through the membrane in L.h 1 (gal.d -1 ), and A m is the membrane surface area in m 2 (ft 2 ).
  • the permeate flux depends not only from the intrinsic property of the membrane and the feed solution, but also depends on the transmembrane pressure (TMP).
  • Transmembrane pressure is defined as the pressure gradient of the membrane, calculated by subtracting the operating pressure with the osmotic pressure of the feed solution and the permeate pressure.
  • the average molecular weight cut-off (MWCO) of the membrane in the present invention is determined empirically using a retention-solute size curve. This method was first described by Jonsson Desalination, 53, (1985), 3 -10, to measure the pore size of ultrafiltration membrane. A standard method for evaluation of MWCO in a flat sheet ultrafiltration membrane is also described in ASTM E1343-90(2001 ), which can be expanded to molecular weight from 100 to 2 000 000 g/mol. As nanofiltration membrane is also considered as porous membrane with a molecular weight cutoff between 200 to 1000 g/mol, an adapted method for pore size measurement has been applied in this invention.
  • MWCO is described as the upper molecular weight limit of transport of compound, above which less than 10% transport of compound through the membrane occurs.
  • non-ionic compounds of known molecular weights are chosen. These compounds typically include polyethylene glycol (PEG) for molecular weight between 100 g/mol to 30,000 g/mol, dextran for molecular weight between 40,000 g/mol to 70,000 g/mol, and polyethylene oxide for molecular weight of 100,000 g/mol and above. At least 6 different molecular weight compounds should be tested for the MWCO determination. The highest chosen molecular weight compound has to be rejected more than 90% by the membrane.
  • PEG polyethylene glycol
  • different PEGs with molecular weight of 1000 g/mol and smaller are chosen for MWCO determination, namely 200 g/mol, 300 g/mol, 400 g/mol, 600 g/mol, 800 g/mol and 1000 g/mol.
  • Feed water containing 200 mg/L PEG is prepared in 60 L volume of solution. The temperature and pH are kept constant at 7 and 25°C, respectively in each rejection experiment. All other conditions such as feed volume, feed crossflow velocity, operating pressure, and permeate recovery were as described in‘Method for determination of salt rejection and permeate flux’. Rejection experiment using at least 4 coupons is conducted for each PEG molecular weight.
  • Permeate water samples are collected from each test cell after the membrane is equilibrated for at least 2 hours in the filtration system.
  • a TOC measurement device (Analytik Jena, multi N/C 3100, Jena, Germany) was used to measure PEG concentrations in the feed and permeate water under Non-Purgeable Organic Carbon (NPOC) mode according to the DIN EN1484. Dilutions were performed for the feed samples before measurement. Rejection of the compound is determined by calculating the PEG concentration in the permeate relative to the PEG concentration in the feed.
  • NPOC Non-Purgeable Organic Carbon
  • Rejection experiments at standard test conditions i.e. 2,000 mg/L MgS0 4 , pH 7, 25 °C
  • rejection experiments i.e. each variation of PEG molecular weight
  • the same membrane coupons were used as long as defects were not observed.
  • the coupons were carefully conserved and the coupon tester (feed tank and all piping) were thoroughly cleaned, until the feed and permeate analysis showed a conductivity of less than 5 pS/cm and/or total organic compound (TOC) value less than 1 mg/L.
  • a retention-solute size curve is plotted using the rejection data obtained from the TOC measurement.
  • the membrane MWCO is empirically determined using the plot as the molecular weight at which the membrane rejects 90% of the solute.
  • a nanofiltration composite membrane was prepared and casted from a homogeneous solution of polysulfone and polyvinyl pyrrolidone in dimethyl formamide as follows: A homogeneous casting solution was prepared from 18 weight % of a polysulfone of the formula (I) having an average molecular weight of 60.000 g/mol (Ultrason® S 6010, BASF GmbH ), 2 weight % of a polyvinyl pyrrolidone of the formula (II) having an average molecular weight of 40.000 g/mol (Povidon K-30 (Sigma Aldrich GmbH )) and 80 weight % dimethyl formamide.
  • a homogeneous casting solution was prepared from 18 weight % of a polysulfone of the formula (I) having an average molecular weight of 60.000 g/mol (Ultrason® S 6010, BASF GmbH ), 2 weight % of a polyvinyl pyrrolidone of the formula (II) having an average molecular weight
  • the casting solution was maintained at room temperature and membranes were casted on a polypropylene-based non-woven fabric with a weight per unit area of 85 g/m 2 .
  • the casted membranes were coagulated immediately in a 5 °C water bath to form microporous membranes. After coagulation, the membranes were soaked in 1 weight % ammonium persulfate solution for 1 minute. Following this, membrane 1 B was washed in a water bath at 60°C for 5 minutes, while Membrane 1 A did not receive any washing treatment. Membranes 1 A and 1 B were then crosslinked in an oven at 90 °C for 10 minutes.
  • the resulting membranes were tested for their salt rejection and permeation flux in a crossflow filtration system, containing a feed solution of 2000 mg/L MgS0 4 at an operating pressure of 10 3 kPa and a volumetric crossflow of 4 L/h (see‘Method for the determination of salt rejection and permeate flux’ for details, measured according to ASTM D4194-03).
  • the feed water pH and temperature was kept at 7 and 25°C, respectively.
  • Table 1 shows the result of the permeate flux and salt rejection measurement after 4 hours of filtration, in order to ensure that equilibrium has been reached.
  • Membrane 1 B has an average molecular weight cut-off of 620 g/mol determined according to modified ASTM E1343-90(2001 ) as described under “Method for the determination of average molecular weight cut-off”.
  • the membrane 1A does not have nanofiltration properties and exhibit an average molecular weight cut-off higher than 1000 g/mol.
  • nanofiltration composite membranes with high rejection performance and high alkaline stability can be prepared.
  • a nanofiltration composite membrane was prepared and casted from a homogeneous solution of polysulfone and polyvinyl pyrrolidone in dimethyl formamide as the solvent as follows:
  • a homogeneous casting solution was prepared from 17.5 weight % of a polysulfone of the formula (I) having an average molecular weight of 60.000 g/mol (Ultrason® S 6010, BASF GmbH), 2.5 weight % of a polyvinyl pyrrolidone of the formula (II) having an average molecular weight of 40.000 g/mol (Povidon K-30 (Sigma Aldrich GmbH)) and 80 weight % dimethyl formamide.
  • the casting solution was maintained at room temperature and membranes were casted on a polypropylene-based non-woven fabric with a weight per unit area of 85 g/m 2 . The casted membranes were coagulated immediately in a 5 °C water bath to form a microporous membrane.
  • a nanofiltration composite membrane was prepared and casted from a homogeneous solution of polysulfone and polyvinyl pyrrolidone in dimethyl formamide as follows: A homogeneous casting solution was prepared from 18 weight % polysulfone (Ultrason® S 6010, BASF GmbH (average molecular weight is 60.000 g/mol), 2.5 weight % polyvinyl pyrrolidone (Povidon K-30 (Sigma Aldrich GmbH (average molecular weight is 40.000 g/mol)) and 79.5 weight % dimethyl formamide. The casting solution was maintained at room temperature and membranes were casted on a polypropylene-based non-woven fabric with a weight per unit area of 85 g/m 2 .
  • the casted membranes were coagulated immediately in a 5 °C water bath to form microporous membranes.
  • Membrane 4A was soaked in 1 weight % ammonium persulfate solution for 1 minute, then washed in a water bath at 60°C for 5 minutes, whereas Membrane 4B was first washed in a water bath at 60°C for 5 minutes, and then soaked in 1 weight % ammonium persulfate solution for 1 minute.
  • Membranes 4A and 4B were then crosslinked in an oven at 100 °C for 5 minutes.
  • the resulting membranes were tested for their salt rejection and permeation flux in a crossflow filtration system, containing a feed solution of 2000 mg/L MgS0 4 at an operating pressure of 10 3 kPa and a volumetric crossflow of 4 L/h (see‘Method for the determination of salt rejection and permeate flux’ for details, measured according to ASTM D4194-03).
  • the feed water pH and temperature was kept at 7 and 25°C, respectively.
  • Table 3 shows the result of the permeate flux and salt rejection measurement after 4 hours of filtration, in order to ensure that equilibrium has been reached.
  • This example shows that the order of catalyst and washing step is important to achieve nanofiltration performance of the membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Des modes de réalisation de la présente invention concernent une membrane composite de nanofiltration destinée à être utilisée pour purifier de l'eau, les procédés de préparation desdites membranes composites de nanofiltration et les membranes composites de nanofiltration ainsi préparées.
PCT/EP2019/066585 2018-06-27 2019-06-24 Membrane composite de nanofiltration stable en milieu alcalin et son procédé de fabrication WO2020002185A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217002230A KR20210024074A (ko) 2018-06-27 2019-06-24 알칼리-안정성 나노여과 복합 멤브레인 및 그의 제조 방법
JP2020572719A JP7128913B2 (ja) 2018-06-27 2019-06-24 アルカリ安定性のナノ濾過複合膜及びそれらの製造方法
US17/253,653 US20210252458A1 (en) 2018-06-27 2019-06-24 Alkali-Stable Nanofiltration Composite Membrane and Method of Manufacture Thereof
EP19732365.2A EP3813990A1 (fr) 2018-06-27 2019-06-24 Membrane composite de nanofiltration stable en milieu alcalin et son procédé de fabrication
CN201980043446.3A CN112334218B (zh) 2018-06-27 2019-06-24 碱稳定的纳滤复合膜及其制造方法
IL279666A IL279666A (en) 2018-06-27 2020-12-22 Composite membrane with stable-base nanofiltration and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18180001 2018-06-27
EP18180001.2 2018-06-27

Publications (1)

Publication Number Publication Date
WO2020002185A1 true WO2020002185A1 (fr) 2020-01-02

Family

ID=62791670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/066585 WO2020002185A1 (fr) 2018-06-27 2019-06-24 Membrane composite de nanofiltration stable en milieu alcalin et son procédé de fabrication

Country Status (7)

Country Link
US (1) US20210252458A1 (fr)
EP (1) EP3813990A1 (fr)
JP (1) JP7128913B2 (fr)
KR (1) KR20210024074A (fr)
CN (1) CN112334218B (fr)
IL (1) IL279666A (fr)
WO (1) WO2020002185A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632502A (zh) * 2020-06-05 2020-09-08 上海恩捷新材料科技有限公司 一种无纺布基底担载聚乙烯纳滤膜

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
JPS6238205A (ja) * 1985-08-12 1987-02-19 Daicel Chem Ind Ltd 分離用半透膜
US4720343A (en) * 1981-12-17 1988-01-19 Hoechst Aktiengesellschaft Macroporous asymmetrical hydrophilic membrane made of a synthetic polymer
US4758343A (en) 1985-09-20 1988-07-19 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
EP0615778A1 (fr) * 1993-03-19 1994-09-21 GAMBRO DIALYSATOREN GMBH & CO. KG Procédé de fabrication de membranes hydrophiles
US5762798A (en) 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
US5814372A (en) 1995-10-19 1998-09-29 Millipore Corporation Process for forming porous composite membrane
US5922293A (en) 1993-11-17 1999-07-13 Toyota Jidosha Kabushiki Kaisha Process for purifying exhaust gases
US20060228483A1 (en) * 2003-01-29 2006-10-12 Aquasource Method of producing membranes for filtration modules which are intended, for example, for water treatment
US20080214687A1 (en) * 2005-06-20 2008-09-04 Heinz-Joachim Muller Cross Linking Treatment of Polymer Membranes
WO2010082194A2 (fr) 2009-01-13 2010-07-22 B.P.T. Bio Pure Technology Ltd. Membranes stables aux solvants et aux acides, leurs procédés de fabrication et leurs procédés d'utilisation entre autres pour séparer des ions métalliques de courants de traitement liquides
US20110147308A1 (en) 2009-12-21 2011-06-23 Siemens Water Technologies Corp. Charged Porous Polymeric Membranes and Their Preparation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100542659C (zh) * 2004-07-05 2009-09-23 西门子水技术公司 亲水性膜
AU2006261581B2 (en) * 2005-06-20 2012-03-15 Evoqua Water Technologies Llc Cross linking treatment of polymer membranes
WO2011118808A1 (fr) * 2010-03-26 2011-09-29 千代田化工建設株式会社 Procédé de traitement d'eaux usées contenant des matières persistantes
US10441925B2 (en) 2014-08-12 2019-10-15 Basf Se Process for making membranes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US4720343A (en) * 1981-12-17 1988-01-19 Hoechst Aktiengesellschaft Macroporous asymmetrical hydrophilic membrane made of a synthetic polymer
JPS6238205A (ja) * 1985-08-12 1987-02-19 Daicel Chem Ind Ltd 分離用半透膜
US4758343A (en) 1985-09-20 1988-07-19 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
US5762798A (en) 1991-04-12 1998-06-09 Minntech Corporation Hollow fiber membranes and method of manufacture
EP0615778A1 (fr) * 1993-03-19 1994-09-21 GAMBRO DIALYSATOREN GMBH & CO. KG Procédé de fabrication de membranes hydrophiles
US5922293A (en) 1993-11-17 1999-07-13 Toyota Jidosha Kabushiki Kaisha Process for purifying exhaust gases
US5814372A (en) 1995-10-19 1998-09-29 Millipore Corporation Process for forming porous composite membrane
US20060228483A1 (en) * 2003-01-29 2006-10-12 Aquasource Method of producing membranes for filtration modules which are intended, for example, for water treatment
US20080214687A1 (en) * 2005-06-20 2008-09-04 Heinz-Joachim Muller Cross Linking Treatment of Polymer Membranes
WO2010082194A2 (fr) 2009-01-13 2010-07-22 B.P.T. Bio Pure Technology Ltd. Membranes stables aux solvants et aux acides, leurs procédés de fabrication et leurs procédés d'utilisation entre autres pour séparer des ions métalliques de courants de traitement liquides
US20110147308A1 (en) 2009-12-21 2011-06-23 Siemens Water Technologies Corp. Charged Porous Polymeric Membranes and Their Preparation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JONSSON, DESALINATION, vol. 53, 1985, pages 3 - 10
PEROXYCHEM: "Persulfates Technical Information", 24 February 2017 (2017-02-24), XP055621730, Retrieved from the Internet <URL:http://www.peroxychem.com/media/241528/pxc089_persulfates_brochure_pdf_fnl.pdf> [retrieved on 20190912] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111632502A (zh) * 2020-06-05 2020-09-08 上海恩捷新材料科技有限公司 一种无纺布基底担载聚乙烯纳滤膜
WO2021244162A1 (fr) * 2020-06-05 2021-12-09 上海恩捷新材料科技有限公司 Membrane de nanofiltration de polyéthylène portée par un substrat en non-tissé

Also Published As

Publication number Publication date
US20210252458A1 (en) 2021-08-19
KR20210024074A (ko) 2021-03-04
JP2021528241A (ja) 2021-10-21
CN112334218B (zh) 2022-11-01
JP7128913B2 (ja) 2022-08-31
EP3813990A1 (fr) 2021-05-05
CN112334218A (zh) 2021-02-05
IL279666A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
Aryanti1a et al. Performance and characterization of PEG400 modified PVC ultrafiltration membrane
WO2012105397A1 (fr) Membrane de séparation pour traitement d&#39;eau et son procédé de production
JP2005524521A (ja) 水性流体を処理するための混合ポリマー濾過材
Guan et al. Preparation and properties of novel sulfonated copoly (phthalazinone biphenyl ether sulfone) composite nanofiltration membrane
Bernstein et al. Tuning the nanofiltration performance of thin film strong polyelectrolyte hydrogel composite membranes by photo-grafting conditions
Gullinkala et al. Desalination: reverse osmosis and membrane distillation
JP6343470B2 (ja) Nf膜の製造方法
JP7128913B2 (ja) アルカリ安定性のナノ濾過複合膜及びそれらの製造方法
Grinic et al. Maximizing the degree of Sulfonation of Polysulfone supports in TFC membranes for osmotically driven processes
WO2016111370A1 (fr) Procédé de traitement d&#39;eau
WO2016111372A1 (fr) Procédé d&#39;amélioration de la capacité de blocage d&#39;une membrane semi-perméable, membrane semi-perméable et appareil de dessalement à membrane semi-perméable
CN108430612B (zh) 复合半透膜
JP2009078218A (ja) 複合半透膜の製造方法
CN111201078B (zh) 水处理分离膜、包括其的水处理模块及其制造方法
KR102206809B1 (ko) 수처리 분리막의 제조방법 및 이에 의하여 제조된 수처리 분리막
KR20150033424A (ko) 폴리케톤 평막형 분리막의 제조방법 및 그에 의하여 제조된 폴리케톤 평막형 분리막
CN112739448B (zh) 膜用水处理药品及膜处理方法
JP2001000970A (ja) 膜モジュールを利用した排水の高度処理方法
KR20050074166A (ko) 고유량 나노필트레이션 복합막의 제조방법
JP4470472B2 (ja) 複合半透膜及びそれを用いた水の製造方法
JP4400123B2 (ja) 液体分離膜および液体処理方法
KR102280869B1 (ko) 수처리 분리막의 제조 방법 및 이에 의하여 제조된 수처리 분리막
KR0129703B1 (ko) 역삼투 복합 반투막의 제조방법
JP2005246263A (ja) ポリイオンコンプレックス膜及び水処理装置
JP3228588B2 (ja) 浄水化処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572719

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217002230

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019732365

Country of ref document: EP

Effective date: 20210127