WO2020001626A1 - 光纤故障定位的方法、设备和存储介质 - Google Patents
光纤故障定位的方法、设备和存储介质 Download PDFInfo
- Publication number
- WO2020001626A1 WO2020001626A1 PCT/CN2019/093727 CN2019093727W WO2020001626A1 WO 2020001626 A1 WO2020001626 A1 WO 2020001626A1 CN 2019093727 W CN2019093727 W CN 2019093727W WO 2020001626 A1 WO2020001626 A1 WO 2020001626A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- event
- fault
- test
- otdr
- optical fiber
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
- H04B10/0771—Fault location on the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/077—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0791—Fault location on the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0079—Operation or maintenance aspects
Definitions
- the present disclosure relates to, but is not limited to, the technical field of optical fiber fault location.
- the fiber-to-the-home (FTTH) broadband access solution uses passive optical network (xPON) technology. Compared with other technologies, it has high bandwidth, anti-interference, easy expansion, and long access distance. It is widely used. As a result, the problem of service assurance for FTTH broadband access systems has also become increasingly prominent.
- Some optical fiber basic network providers have high requirements for optical fiber fault location, and need to accurately locate the fault point on a branch fiber of the FTTH network.
- a method for locating an optical fiber fault includes: deploying an optical time domain reflectometer (OTDR) optical test link, and obtaining a normal test event list of the OTDR optical test link Performing device type labeling for each event in the normal test event list, and generating a two-dimensional topology information table according to the subordinate relationship between each device and a higher-level device; performing the OTDR fiber test link A fault test is performed to obtain a fault event list; and the fault event list is compared with the normal test event list, and the two-dimensional topology information table is searched to obtain a branch where each fault point is located.
- OTDR optical time domain reflectometer
- a device for locating an optical fiber fault includes a memory and a processor.
- a computer program is stored on the memory.
- the processor executes the method according to the present invention. Disclosed method for optical fiber fault location.
- a computer-readable storage medium on which one or more computer programs are stored, and when the one or more computer programs are executed by one or more processors, the one or more The processor performs a method for locating a fiber optic fault according to the present disclosure.
- FIG. 1 is a flowchart of a method for locating an optical fiber fault according to an embodiment of the present disclosure.
- FIG. 2 is a structural block diagram of a device for locating an optical fiber fault according to an embodiment of the present disclosure.
- FIG. 3 is a flowchart of step S110 of the method for locating an optical fiber fault shown in FIG. 1.
- FIG. 4 is a schematic layout of an OTDR fiber test link according to an embodiment of the present disclosure.
- FIG. 5 is a flowchart of step S120 of the method for locating an optical fiber fault shown in FIG. 1.
- FIG. 6 is a flowchart of step S130 of the method for locating an optical fiber fault shown in FIG. 1.
- FIG. 7 is a flowchart of step S140 of the method for locating an optical fiber fault shown in FIG. 1.
- FIG. 8 is another flowchart of a method for locating an optical fiber fault according to an embodiment of the present disclosure.
- FIG. 9 is a structural block diagram of a device for locating an optical fiber fault according to an embodiment of the present disclosure.
- Traditional OTDR fault location methods include: when a fiber link is normal, using a set of test parameters for OTDR testing and building a normal test library; and when the link fails, then using the same test parameters for OTDR testing to obtain a fault test The results are compared with normal test libraries.
- this traditional OTDR fault location method if there are new or disappearing events, or certain attributes (reflection peaks, insertion loss) of events at the same location are greater than the threshold, the location of the fault point can be obtained.
- the traditional fault location method has the following problems. The obtained breakpoint is only a location information, and it is impossible to locate which branch the breakpoint belongs to, which is not conducive to maintenance personnel to troubleshoot and locate the problem.
- FIG. 1 is a flowchart of a method for locating an optical fiber fault according to an embodiment of the present disclosure
- FIG. 2 is a structural block diagram of an apparatus for locating an optical fiber fault according to an embodiment of the present disclosure.
- the method for locating an optical fiber fault includes steps S110 to S140.
- step S110 an OTDR optical fiber test link is deployed, and a normal test event list of the OTDR optical fiber test link is obtained.
- step S120 the device type is marked for each event in the normal test event list, and a two-dimensional topology information table is generated according to the subordinate relationship between each device and the upper-level device.
- step S130 a fault test is performed on the OTDR fiber test link to obtain a fault event list.
- step S140 the fault event list is compared with the normal test event list, and a two-dimensional topology information table is searched to obtain the branch where each fault point is located.
- the optical fiber fault location device 100 shown in FIG. 2 includes a normal test library test module 110, a test result data processing module 120, a device type identification module 130, a two-dimensional optical fiber link topology map building module 140, a fault test module 150, and a branch fault. Locating module 160.
- the normal test library test module 110 is used to test the optical fiber link using appropriate test parameters (optical wavelength, pulse width, test distance, optical refractive index, test duration, etc.) when the optical fiber network is normal, to obtain a normal test result file.
- appropriate test parameters optical wavelength, pulse width, test distance, optical refractive index, test duration, etc.
- the test result data processing module 120 is used to parse the test result file (including the normal test result file and the fault test result file) to obtain an event list and performance index parameters of each event, such as event type, event location, event insertion loss value, and Event reflection peaks, etc.
- the device type identification module 130 is configured to identify the event as a device such as a first-level optical splitter, a second-level optical splitter, or an ONU according to attribute values such as an event type, an event insertion loss value, and an event reflection peak value of each event in the normal test library.
- the two-dimensional optical fiber link topology diagram building module 140 may mark the subordinate relationship between each device in the normal test library and the upper-level device (such as the subordinates of the ONU and the second-level optical splitter) according to the actual optical fiber resource data. Relationship between the two-level optical splitter and the first-level optical splitter, etc.), so as to construct a two-dimensional optical fiber link topology diagram.
- the fault test module 150 is configured to test a faulty link using an appropriate test parameter when an optical fiber network is abnormal, and obtain a fault test result file.
- the branch fault location module 160 is used to compare the fault test results with the normal test library, and then combine the two-dimensional fiber link topology information to accurately perform branch fault location.
- FIG. 3 is a flowchart of step S110 of the method for locating an optical fiber fault shown in FIG. 1.
- step S110 may include steps S111 to S113.
- step S111 an OTDR optical fiber test link is deployed, and a terminal reflection sheet is deployed at each ONU of the OTDR optical fiber test link.
- FIG. 4 is a schematic layout of an OTDR fiber test link according to an embodiment of the present disclosure.
- each test port can be connected to an ODN fiber link.
- the OTDR device is connected to the first optical splitter (9 km), the first optical splitter is connected to the second optical splitter 1 (10 km) and the second optical splitter 2 (11 km), and the second optical splitter 1 (10 km) ) Connect ONU1 (15 kilometers) and ONU2 (16 kilometers), and the second optical splitter 2 (11 kilometers) connects ONU3 (17 kilometers) and ONU4 (18 kilometers). Deploy the terminal reflectors on the four ONU sides.
- step S112 when the OTDR optical fiber test link is normal, the OTDR optical fiber test link is tested using preset test parameters to obtain a normal test result file.
- the normal test library can be constructed through the normal test library test module 110 and the test result data processing module 120.
- the normal test library test module 110 can first test the OTDR fiber test link using preset test parameters (optical wavelength, pulse width, test distance, optical refractive index, test duration, etc.) to obtain a normal test result file.
- step S113 the normal test result file is parsed to obtain a normal test event list of the OTDR fiber test link.
- the normal test result file may be parsed by the test result data processing module 120 to obtain a normal test event list of the OTDR fiber test link, as shown in Table 1 below.
- the normal test event list includes multiple events, and the list information of each event includes event type, location information, event insertion loss value, and event reflection peak.
- Event ID Location Event type Insertion loss (dB) Peak reflection (dB) 1 0 Start event - - 2 9 Reflection event 3.357 5.365 3 10 Reflection event 2.365 4.538 4 11 Reflection event 2.568 3.965 5 15 Reflection event 0.589 1.568 6 16 Reflection event 0.462 1.753 7 17 Reflection event 0.651 1.845 8 18 Reflection event 0.661 1.432
- FIG. 5 is a flowchart of step S120 of the method for locating an optical fiber fault shown in FIG. 1.
- step S120 may include steps S121 to S122.
- step S121 the device type is marked for each event, and the device type includes a primary optical splitter, a secondary optical splitter, and an ONU.
- Device type identification is performed for each event in the normal test event list through the device type identification module 130 to mark the event device type as a primary optical splitter or a secondary optical splitter or an ONU, and the event description information may be labeled.
- the threshold range of the first-level optical splitter is: splitting ratio 1: 2, event insertion loss is greater than 2dB and less than or equal to 3.5dB; splitting ratio 1: 4, event insertion loss is greater than 3.5dB and less than or equal to 6.5dB; splitting ratio 1: 8, The event insertion loss is greater than 6.5dB and less than or equal to 9.5dB; the split ratio is 1:16, and the event insertion loss is greater than 9.5dB and less than or equal to 12.5dB; the split ratio is 1:32, and the event insertion loss is greater than 12.5dB and less than or equal to 15.5dB.
- the second-level optical splitter and ONU identify the second-level optical splitter and ONU, and sequentially read other events except for the device type marked as the first-level optical splitter. If the event type of the event is a reflection event, the peak value of the event reflection meets the threshold of the second-level optical splitter. The device type of the event is marked as a secondary splitter, and the device type of the event whose peak reflection of the event meets the ONU threshold range is marked as ONU.
- the threshold range of the two-level beam splitter is: splitting ratio 1: 2, event reflection peak is greater than 3dB and less than or equal to 5dB; splitting ratio 1: 4, event reflection peak is greater than 5dB and less than or equal to 7dB; splitting ratio 1: 8, event reflection peak Greater than 7dB and less than or equal to 10dB; splitting ratio 1:16, event reflection peak value greater than 10dB and less than or equal to 13dB; splitting ratio 1:32, event reflection peak value greater than 13dB and less than or equal to 16dB; splitting ratio 1:64, event reflection peak value greater than 16dB It is less than or equal to 19dB; the splitting ratio is 1: 128, and the event reflection peak is greater than 19dB and less than or equal to 22dB.
- the threshold range of the ONU is: the peak event reflection is less than or equal to 3dB.
- the deployed OTDR fiber test link multiple times to generate event data, and compare the actual fiber link device position with the event data to find the parameters of the event data at the corresponding position and calculate the parameter range empirical value, that is, To generate a threshold range. It is worth noting that the threshold range data can be modified in different environments to be as accurate as possible.
- step S122 the layout resource data of the OTDR optical fiber test link is imported, the subordinate relationship between each device and the upper-level device is marked, and a two-dimensional topology information table is generated.
- OTDR fiber test link layout resource data can be imported through the two-dimensional fiber link topology map building module 140 and matched according to the distance position to mark the subordinate relationship between each device and the upper-level device, and finally generate a two-dimensional
- the topology information table is shown in Table 3 below:
- Event ID position Device type Description belong 1 0 - Zh Zh 2 9KM Primary beam splitter Zh Zh 3 10KM Two-level beam splitter Secondary splitter 1 Zh 4 11KM Two-level beam splitter Secondary splitter 2 Zh 5 15KM ONU ONU1 Secondary splitter 1 (10KM) 6 16KM ONU ONU2 Secondary splitter 1 (10KM) 7 17KM ONU ONU3 Secondary splitter 2 (11KM) 8 18KM ONU ONU4 Secondary splitter 2 (11KM)
- FIG. 6 is a flowchart of step S130 of the method for locating an optical fiber fault shown in FIG. 1.
- step S130 may include steps S131 and S132.
- step S131 when the OTDR optical fiber test link is abnormal, the OTDR optical fiber test link is tested by using preset test parameters to obtain a fault result file.
- the fault test module 150 can use the same preset test parameters (light wavelength, pulse width, test distance, light refraction) as in the normal test. Rate, test duration, etc.) Perform a fault test on the OTDR fiber test link to obtain a fault test result file.
- step S132 the failure result file is parsed to obtain a list of failure events of the OTDR fiber test link.
- the fault result file can be parsed by the test result data processing module 120 to obtain a list of fault events of the OTDR fiber test link, as shown in Table 4 below.
- the composition of the fault event list is basically the same as that of the normal test event list described above.
- Event ID Location (KM) Event type Insertion loss (dB) Peak reflection (dB) 1 0 Start event - -
- FIG. 7 is a flowchart of step S140 of the method for locating an optical fiber fault shown in FIG. 1.
- step S140 may include steps S141 to S142.
- step S141 the fault event list is compared with the normal test event list to find all abnormal events in the fault event list.
- Anomalous events include new events, disappearing events, or events at the same location with certain attributes (peak reflection, insertion loss) that are greater than the threshold.
- step S142 the location of each fault point is obtained according to all abnormal events, and then the two-dimensional topology information table is searched to obtain the branch where each fault point is located.
- the abnormal event in the fault event list is "the event disappeared at 15 kilometers”.
- the traditional fault location method a conclusion of "fiber break at 15 kilometers” can be drawn.
- this method by further searching the two-dimensional topology information table shown in Table 3, it can be found that the device matching the breakpoint 15 kilometers is ONU1 (15 kilometers), and ONU1 belongs to the second-level beam splitting 1 (10 kilometers), so that It can be further concluded that the ONU1 (15 km) fiber break of the secondary optical splitter 1 (10 km).
- FIG. 8 is another flowchart of a method for locating an optical fiber fault according to an embodiment of the present disclosure.
- the method for locating an optical fiber fault may further include step S150.
- step S150 the information of the branch where each fault point is located is analyzed to obtain the fault results of all branches of the OTDR fiber test link.
- the branch fault location module 160 can analyze the information of the branch where each fault point is located to obtain the fault results of all branches of the OTDR fiber test link, thereby reducing maintenance workload and network maintenance. Complexity to assist maintenance personnel to quickly troubleshoot optical networks.
- the fiber breaks at ONU1 (15 km) and ONU2 (16 km), and a fault test is performed.
- the test result file is analyzed to obtain the fault event list shown in Table 5.
- Event ID Location (KM) Event type Insertion loss (dB) Peak reflection (dB) 1 0KM Start event - - 2 9KM Reflection event 3.357 5.365 3 10KM Reflection event 2.365 4.538 4 11KM Reflection event 2.568 3.965 5 17KM Reflection event 0.651 1.845 6 18KM Reflection event 0.661 1.432
- the devices matching the breakpoints of 15 kilometers and 16 kilometers are ONU1 (15 kilometers) and ONU2 (16 kilometers), which belong to the second level Optical splitter 1 (10 km), and there are only two ONUs under the secondary optical splitter 1 (10 km), so that we can further draw the conclusion that "the optical splitter at the secondary optical splitter 1 (10 km)".
- FIG. 9 is a structural block diagram of a device for locating an optical fiber fault according to an embodiment of the present disclosure.
- a device 20 for locating an optical fiber fault includes a memory 21 and a processor 22.
- a computer program is stored on the memory 21.
- the processor 21 and the memory 22 are connected through a data bus 23.
- the processor 22 executes a method for locating an optical fiber fault according to various embodiments of the present disclosure.
- An embodiment of the present disclosure further provides a computer-readable storage medium on which one or more programs are stored.
- the one or more processors execute Method for locating optical fiber fault according to various embodiments of the present disclosure.
- the method, device, and storage medium for locating optical fiber faults can solve the problems of using traditional OTDR fault locating during FTTH broadband access, and can locate branch information of each fault point, reducing maintenance work. Volume and complexity of network maintenance.
- the division between functional modules / units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical
- the components execute cooperatively.
- Some or all physical components can be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
- Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media).
- computer storage medium includes both volatile and nonvolatile implementations in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
- Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or Any other medium used to store desired information and which can be accessed by a computer.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本公开公开一种光纤故障定位的方法、设备和存储介质。该方法包括:部署光时域反射仪光纤测试链路,并获取光时域反射仪光纤测试链路的正常测试事件列表;对正常测试事件列表中的每个事件进行器件类型标注,并根据每个器件与上一级器件之间的从属关系,生成二维拓扑信息表;对光时域反射仪光纤测试链路进行故障测试,得到故障事件列表;以及比对故障事件列表与正常测试事件列表,并查找二维拓扑信息表,得出每个故障点所在分支。
Description
本公开涉及(但不限于)光纤故障定位技术领域。
近年来,随着宽带增值类业务日益增多,用户对带宽的需求越来越高。光纤直接到家(Fiber To The Home,FTTH)宽带接入方案采用无源光网络(xPON)技术,较其他技术具有高带宽、抗干扰、易拓展、接入距离长等特点,被广泛应用。随之而来的,FTTH宽带接入系统的服务保障问题也日益突显。某些光纤基础网络提供商,对光纤故障定位的要求很高,需要将故障点精确定位到FTTH网络某一个分支光纤上。
发明内容
根据本公开实施例,提供一种光纤故障定位的方法,包括:部署光时域反射仪(Optical Time Domain Reflectometer,OTDR)光纤测试链路,并获取所述OTDR光纤测试链路的正常测试事件列表;对所述正常测试事件列表中的每个事件进行器件类型标注,并根据每个器件与上一级器件之间的从属关系,生成二维拓扑信息表;对所述OTDR光纤测试链路进行故障测试,得到故障事件列表;以及比对所述故障事件列表与所述正常测试事件列表,并查找所述二维拓扑信息表,得出每个故障点所在分支。
根据本公开实施例,提供一种光纤故障定位的设备,包括存储器和处理器,在所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,所述处理器执行根据本公开的光纤故障定位的方法。
根据本公开实施例,提供一种计算机可读存储介质,其上存储有一个或者多个计算机程序,所述一个或者多个计算机程序被一个或者多个处理器执行时,所述一个或者多个处理器执行根据本公开的光 纤故障定位的方法。
图1是根据本公开实施例的光纤故障定位的方法的流程图。
图2是根据本公开实施例的光纤故障定位的装置的结构框图。
图3是图1所示光纤故障定位的方法的步骤S110的流程图。
图4是根据本公开实施例的OTDR光纤测试链路的布局示意图。
图5是图1所示光纤故障定位的方法的步骤S120的流程图。
图6是图1所示光纤故障定位的方法的步骤S130的流程图。
图7是图1所示光纤故障定位的方法的步骤S140的流程图。
图8是根据本公开实施例的光纤故障定位的方法的又一流程图。
图9是根据本公开实施例的光纤故障定位的设备的结构框图。
本公开目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本公开的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
传统的OTDR故障定位的方法包括:在光纤链路正常时,使用一组测试参数做OTDR测试,构建正常测试库;以及当链路发生故障时,再使用相同测试参数做OTDR测试,得到故障测试结果,并将其与正常测试库作对比。使用这种传统OTDR故障定位的方法,若有新增、消失事件,或相同位置的事件的某些属性(反射峰值,插损)大于阈值,则可以得出故障点位置。但是传统的故障定位的方法存在以下问题。得到的断点仅仅是一个位置信息,无法定位断点属于哪个分支,不利于维护人员排查定位问题。例如,利用传统的故障定位的方法可以给出“断点位置为15.5公里”的结论,这仅说明故障点位于距离 OTDR设备15.5公里处,但是维护人员仍然不知道“15.5公里”在光网络上关联到哪个光网络单元(Optical Network Unit,ONU),以及“15.5公里”处于哪个二级分支。此外,缺少对多个断点的整合和分析,例如,若某个二级分光器下的所有ONU都断了,传统的故障定位算法将给出多个断点位置,但无法对这些断点进行分析整合和归并。
图1是根据本公开实施例的光纤故障定位的方法的流程图,图2是根据本公开实施例的光纤故障定位的装置的结构框图。
如图1所示,根据本公开实施例的光纤故障定位的方法包括步骤S110至S140。
在步骤S110,部署OTDR光纤测试链路,并获取OTDR光纤测试链路的正常测试事件列表。
在步骤S120,对正常测试事件列表中的每个事件进行器件类型标注,并根据每个器件与上一级器件之间的从属关系,生成二维拓扑信息表。
在步骤S130,对OTDR光纤测试链路进行故障测试,得到故障事件列表。
在步骤S140,比对故障事件列表与正常测试事件列表,并查找二维拓扑信息表,得出每个故障点所在分支。
图2所示的光纤故障定位的装置100包括正常测试库测试模块110、测试结果数据处理模块120、器件类型识别模块130、二维光纤链路拓扑图构建模块140、故障测试模块150以及分支故障定位模块160。
正常测试库测试模块110用于在光纤网络正常时,使用合适的测试参数(光波长,脉宽,测试距离,光折射率,测试时长等)对光纤链路进行测试,得到正常测试结果文件。
测试结果数据处理模块120用于解析测试结果文件(包括正常测试结果文件及故障测试结果文件),得到事件列表及每个事件的性能指标参数,例如,事件类型、事件位置、事件插损值以及事件反射峰值等。
器件类型识别模块130用于根据正常测试库中的每个事件的事件类型、事件插损值、事件反射峰值等属性值将事件识别为一级分光器,二级分光器或ONU等器件。
虽然通过正常测试库的测试结果可以得到每个器件的位置信息,但却无法得知器件之间的从属关系。二维光纤链路拓扑图构建模块140可根据真实的光纤链路的资源数据,标注正常测试库中的每个器件与上一级器件之间的从属关系(如ONU与二级分光器的从属关系、二级分光器与一级分光器的从属关系等),从而构建二维光纤链路拓扑图。
故障测试模块150用于在光纤网络异常时,使用合适的测试参数对故障链路进行测试,得到故障测试结果文件。
分支故障定位模块160用于将故障测试结果与正常测试库进行对比,再结合二维光纤链路拓扑信息,精确进行分支故障定位。
图3是图1所示光纤故障定位的方法的步骤S110的流程图。
如图3所示,步骤S110可以包括步骤S111至S113。
在步骤S111,部署OTDR光纤测试链路,在OTDR光纤测试链路的每个光网络单元ONU处部署终端反射片。
图4是根据本公开实施例的OTDR光纤测试链路的布局示意图。
如图4所示,OTDR设备上有多个测试端口,每个测试端口可连接ODN光纤链路。如图所示,OTDR设备连接一级分光器(9公里),一级分光器连接二级分光器1(10公里)和二级分光器2(11公里),二级分光器1(10公里)连接ONU1(15公里)和ONU2(16公里),并且二级分光器2(11公里)连接ONU3(17公里)和ONU4(18公里)。将终端反射片分别部署在4个ONU侧。
在步骤S112,在OTDR光纤测试链路正常时,使用预设测试参数对OTDR光纤测试链路进行测试,以得到正常测试结果文件。
在OTDR光纤测试链路正常时,可以通过正常测试库测试模块110和测试结果数据处理模块120来构建正常测试库。可先通过正常测试库测试模块110使用预设测试参数(光波长,脉宽,测试距离,光折射率,测试时长等)对OTDR光纤测试链路进行测试,以得到正常 测试结果文件。
在步骤S113,解析正常测试结果文件,以得到OTDR光纤测试链路的正常测试事件列表。
当通过上述步骤得到正常测试结果文件后,可以通过测试结果数据处理模块120来解析正常测试结果文件,以得到OTDR光纤测试链路的正常测试事件列表,如下表一所示。正常测试事件列表包括多个事件,并且每个事件的列表信息包括事件类型、位置信息、事件插损值以及事件反射峰值。
表一 正常测试事件列表
事件ID | 位置(KM) | 事件类型 | 插损(dB) | 反射峰值(dB) |
1 | 0 | 开始事件 | -- | -- |
2 | 9 | 反射事件 | 3.357 | 5.365 |
3 | 10 | 反射事件 | 2.365 | 4.538 |
4 | 11 | 反射事件 | 2.568 | 3.965 |
5 | 15 | 反射事件 | 0.589 | 1.568 |
6 | 16 | 反射事件 | 0.462 | 1.753 |
7 | 17 | 反射事件 | 0.651 | 1.845 |
8 | 18 | 反射事件 | 0.661 | 1.432 |
图5是图1所示光纤故障定位的方法的步骤S120的流程图。
如图5所示,步骤S120可以包括步骤S121至S122。
在步骤S121,对每个事件进行器件类型标注,器件类型包括一级分光器、二级分光器以及ONU。
通过器件类型识别模块130对正常测试事件列表中的每个事件进行器件类型标注,以将事件器件类型标定为一级分光器或二级分光器或ONU,并且可以标注事件的描述信息。
首先,进行一级分光器的识别,依次读取正常测试事件列表的所有事件,若事件的事件类型为反射事件或衰减事件,则将事件插损值符合一级分光器阈值范围的事件的器件类型标注为一级分光器。一级分光器的阈值范围为:分光比1:2,事件插损大于2dB并小于等于3.5dB;分光比1:4,事件插损大于3.5dB并小于等于6.5dB;分光比1:8,事件插损大于6.5dB并小于等于9.5dB;分光比1:16,事件插 损大于9.5dB并小于等于12.5dB;分光比1:32,事件插损大于12.5dB并小于等于15.5dB。
其次,进行二级分光器和ONU的识别,依次读取除器件类型标注为一级分光器以外的其他事件,若事件的事件类型为反射事件,则将事件反射峰值符合二级分光器阈值范围的事件的器件类型标注为二级分光器,并且将事件反射峰值符合ONU阈值范围的事件的器件类型标注为ONU。二级分光器的阈值范围为:分光比1:2,事件反射峰值大于3dB并小于等于5dB;分光比1:4,事件反射峰值大于5dB并小于等于7dB;分光比1:8,事件反射峰值大于7dB并小于等于10dB;分光比1:16,事件反射峰值大于10dB并小于等于13dB;分光比1:32,事件反射峰值大于13dB并小于等于16dB;分光比1:64,事件反射峰值大于16dB并小于等于19dB;分光比1:128,事件反射峰值大于19dB并小于等于22dB。ONU的阈值范围为:事件反射峰值小于等于3dB。
多次测试部署好的OTDR光纤测试链路,以产生事件数据,并将实际光纤链路器件位置与事件数据进行对比,以找出相应位置的事件数据的参数,计算出参数范围经验值,即,生成阈值范围。值得注意的是,阈值范围数据可以在不同环境下加以修正,以尽可能达到准确。
通过上述方法对上述表一所示的正常测试事件列表中的每个事件进行器件类型标注,结果如下表二所示:
表二
事件ID | 位置 | 器件类型 | 描述信息 |
1 | 0 | -- | |
2 | 9KM | 一级分光器 | |
3 | 10KM | 二级分光器 | 二级分光器1 |
4 | 11KM | 二级分光器 | 二级分光器2 |
5 | 15KM | ONU | ONU1 |
6 | 16KM | ONU | ONU2 |
7 | 17KM | ONU | ONU3 |
8 | 18KM | ONU | ONU4 |
在步骤S122,导入OTDR光纤测试链路的布局资源数据,标注每个器件与上一级器件之间的从属关系,生成二维拓扑信息表。
可以通过二维光纤链路拓扑图构建模块140导入OTDR光纤测试链路的布局资源数据,并根据距离位置进行匹配,以标注每个器件与上一级器件之间的从属关系,最终生成二维拓扑信息表,如下表三所示:
表三 二维拓扑信息表
事件ID | 位置 | 器件类型 | 描述信息 | 从属关系 |
1 | 0 | -- | ||
2 | 9KM | 一级分光器 | ||
3 | 10KM | 二级分光器 | 二级分光器1 | |
4 | 11KM | 二级分光器 | 二级分光器2 | |
5 | 15KM | ONU | ONU1 | 二级分光器1(10KM) |
6 | 16KM | ONU | ONU2 | 二级分光器1(10KM) |
7 | 17KM | ONU | ONU3 | 二级分光器2(11KM) |
8 | 18KM | ONU | ONU4 | 二级分光器2(11KM) |
图6是图1所示光纤故障定位的方法的步骤S130的流程图。
如图6所示,步骤S130可以包括步骤S131和S132。
在步骤S131,在OTDR光纤测试链路异常时,使用预设测试参数对OTDR光纤测试链路进行测试,以得到故障结果文件。
在OTDR光纤测试链路异常时,例如,在ONU1(15公里)处断开,可以通过故障测试模块150使用与正常测试时相同的预设测试参数(光波长,脉宽,测试距离,光折射率,测试时长等)对OTDR光纤测试链路进行故障测试,以得到故障测试结果文件。
在步骤S132,解析故障结果文件,以得到OTDR光纤测试链路的故障事件列表。
当通过上述步骤得到故障测试结果文件后,可以通过测试结果数据处理模块120来解析故障结果文件,以得到OTDR光纤测试链路的故障事件列表,如下表四所示。故障事件列表的组成与上述的正常测试事件列表的组成基本相同。
表四 故障事件列表
事件ID | 位置(KM) | 事件类型 | 插损(dB) | 反射峰值(dB) |
1 | 0 | 开始事件 | -- | -- |
2 | 9KM | 反射事件 | 3.357 | 5.365 |
3 | 10KM | 反射事件 | 2.365 | 4.538 |
4 | 11KM | 反射事件 | 2.568 | 3.965 |
5 | 16KM | 反射事件 | 0.462 | 1.753 |
6 | 17KM | 反射事件 | 0.651 | 1.845 |
7 | 18KM | 反射事件 | 0.661 | 1.432 |
图7是图1所示光纤故障定位的方法的步骤S140的流程图。
如图7所示,步骤S140可以包括步骤S141至S142。
在步骤S141,比对故障事件列表与正常测试事件列表,找出故障事件列表中的所有异常事件。
异常事件包括新增事件、消失事件或相同位置的事件的某些属性(反射峰值,插损)大于阈值。通过比对表四的故障事件列表与表一的正常测试事件列表,可发现在15公里处的事件消失了,即,故障事件列表中的异常事件为“在15公里处的事件消失”。
在步骤S142,根据所有异常事件,得出每个故障点的所在位置,再查找该二维拓扑信息表,得出每个故障点所在分支。
通过上述步骤找出故障事件列表中的异常事件为“在15公里处的事件消失”,按照传统的故障定位方法可得出“15公里处断纤”的结论。而根据本方法,可以通过进一步查找表三所示的二维拓扑信息表,找到与断点15公里匹配的器件为ONU1(15公里),并且ONU1从属于二级分光1(10公里),从而可以进一步得出“二级分光器1(10公里)的ONU1(15公里)断纤”的结论。
图8是根据本公开实施例的光纤故障定位的方法的又一流程图。
如图8所示,根据本公开实施例的光纤故障定位的方法还可包括步骤S150。
在步骤S150,分析每个故障点所在分支的信息,得出OTDR光纤测试链路的所有分支故障结果。
当发生故障的故障点多于一处时,可通过分支故障定位模块160分析每个故障点所在分支的信息,得出OTDR光纤测试链路的所有分支故障结果,从而降低维护工作量和网络维护的复杂度,以协助维护人员快速排除光网络故障。
例如,ONU1(15公里)和ONU2(16公里)处断纤,进行故障测试,解析测试结果文件得到表五所示的故障事件列表:
表五 故障事件列表
事件ID | 位置(KM) | 事件类型 | 插损(dB) | 反射峰值(dB) |
1 | 0KM | 开始事件 | -- | -- |
2 | 9KM | 反射事件 | 3.357 | 5.365 |
3 | 10KM | 反射事件 | 2.365 | 4.538 |
4 | 11KM | 反射事件 | 2.568 | 3.965 |
5 | 17KM | 反射事件 | 0.651 | 1.845 |
6 | 18KM | 反射事件 | 0.661 | 1.432 |
由于ONU1和ONU2断纤,故障测试结果中ONU1和ONU2处将不会产生反射事件,通过比对表五的故障事件列表与表一的正常测试事件列表,可发现在15公里和16公里处的事件消失了,即,故障事件列表中的异常事件为“在15公里处的事件消失”和“在16公里处的事件消失”,按照传统的故障定位方法仅得出“在15公里和16公里处断纤”的结论。而根据本方法,可以通过查找表三所示的二维拓扑信息表,找到与断点15公里和16公里匹配的器件分别为ONU1(15公里)和ONU2(16公里),它们从属于二级分光器1(10公里),并且二级分光器1(10公里)下面仅有这两个ONU,从而可以进一步得出“二级分光器1(10公里)处断纤”的结论。
图9是根据本公开实施例的光纤故障定位的设备的结构框图。
如图9所示,根据本公开实施例的光纤故障定位的设备20包括存储器21和处理器22,在存储器21上存储有计算机程序,处理器21和存储器22通过数据总线23连接,计算机程序被处理器22执行时,处理器22执行根据本公开各实施例的光纤故障定位的方法。
本公开实施例还提供一种计算机可读存储介质,其上存储有一个或者多个程序,所述一个或者多个程序被一个或者多个处理器执行时,所述一个或者多个处理器执行根据本公开各实施例的光纤故障定位的方法。
根据本公开实施例的光纤故障定位的方法、设备和存储介质,可解决在FTTH宽带接入时使用传统的OTDR故障定位存在的问题,并 且能够定位出每个故障点的分支信息,降低维护工作量和网络维护的复杂度。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。
以上参照附图说明了本公开的优选实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。
Claims (10)
- 一种光纤故障定位的方法,包括:部署光时域反射仪OTDR光纤测试链路,并获取所述OTDR光纤测试链路的正常测试事件列表;对所述正常测试事件列表中的每个事件进行器件类型标注,并根据每个器件与上一级器件之间的从属关系,生成二维拓扑信息表;对所述OTDR光纤测试链路进行故障测试,得到故障事件列表;以及比对所述故障事件列表与所述正常测试事件列表,并查找所述二维拓扑信息表,得出每个故障点所在分支。
- 根据权利要求1所述的光纤故障定位的方法,其中,部署OTDR光纤测试链路,并获取所述OTDR光纤测试链路的正常测试事件列表的步骤包括:部署OTDR光纤测试链路,在所述OTDR光纤测试链路的每个光网络单元ONU处部署终端反射片;在所述OTDR光纤测试链路正常时,使用预设测试参数对所述OTDR光纤测试链路进行测试,以得到正常测试结果文件;以及解析所述正常测试结果文件,以得到所述OTDR光纤测试链路的正常测试事件列表。
- 根据权利要求2所述的光纤故障定位的方法,其中,所述正常测试事件列表包括多个事件,并且每个事件的列表信息包括事件类型、位置信息、事件插损值以及事件反射峰值。
- 根据权利要求1所述的光纤故障定位的方法,其中,对所述正常测试事件列表中的每个事件进行器件类型标注,并根据每个器件与上一级器件之间的从属关系,生成二维拓扑信息表的步骤包括:对每个事件进行器件类型标注,所述器件类型包括一级分光器、 二级分光器以及光网络单元ONU;以及导入所述OTDR光纤测试链路的布局资源数据,标注每个器件与上一级器件之间的从属关系,生成所述二维拓扑信息表。
- 根据权利要求4所述的光纤故障定位的方法,其中,对每个事件进行器件类型标注的步骤包括:依次读取所述正常测试事件列表的各个事件;响应于所述事件的事件类型为反射事件或衰减事件,将事件插损值符合一级分光器阈值范围的事件的器件类型标注为一级分光器;依次读取除器件类型标注为一级分光器以外的其他事件;以及响应于所述事件的事件类型为反射事件,将事件反射峰值符合二级分光器阈值范围的事件的器件类型标注为二级分光器,并且将事件反射峰值符合ONU阈值范围的事件的器件类型标注为ONU。
- 根据权利要求1所述的光纤故障定位的方法,其中,对所述OTDR光纤测试链路进行故障测试,得到故障事件列表的步骤包括:在所述OTDR光纤测试链路异常时,使用预设测试参数对所述OTDR光纤测试链路进行测试,以得到故障结果文件;以及解析所述故障结果文件,以得到所述OTDR光纤测试链路的故障事件列表。
- 根据权利要求1所述的光纤故障定位的方法,其中,比对所述故障事件列表与所述正常测试事件列表,并查找所述二维拓扑信息表,得出每个故障点所在分支的步骤包括:比对所述故障事件列表与所述正常测试事件列表,找出所述故障事件列表中的所有异常事件;以及根据所有所述异常事件,得出每个故障点的所在位置,并查找所述二维拓扑信息表,得出每个故障点所在分支。
- 根据权利要求1-7中任一所述的光纤故障定位的方法,其中, 在比对所述故障事件列表与所述正常测试事件列表,并查找所述二维拓扑信息表,得出每个故障点所在分支的步骤之后,所述方法还包括:分析每个故障点所在分支的信息,得出所述OTDR光纤测试链路的所有分支故障结果。
- 一种光纤故障定位的设备,包括存储器和处理器,在所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,所述处理器执行根据权利要求1-8中任一项所述的光纤故障定位的方法。
- 一种计算机可读存储介质,其上存储有一个或者多个计算机程序,所述一个或者多个计算机程序被一个或者多个处理器执行时,所述一个或者多个处理器执行根据权利要求1至8中任一项所述的光纤故障定位的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810688613.7A CN110661569B (zh) | 2018-06-28 | 2018-06-28 | 光纤故障定位的方法、设备和存储介质 |
CN201810688613.7 | 2018-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020001626A1 true WO2020001626A1 (zh) | 2020-01-02 |
Family
ID=68985421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/093727 WO2020001626A1 (zh) | 2018-06-28 | 2019-06-28 | 光纤故障定位的方法、设备和存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110661569B (zh) |
WO (1) | WO2020001626A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111814954A (zh) * | 2020-06-19 | 2020-10-23 | 武汉光迅科技股份有限公司 | 一种光纤质量分析方法、装置、电子设备及存储介质 |
CN114205689A (zh) * | 2021-12-02 | 2022-03-18 | 浪潮通信信息系统有限公司 | 一种家客资源清查方法及系统 |
CN115987380A (zh) * | 2022-11-03 | 2023-04-18 | 中国电信股份有限公司 | 光时域反射仪的测试结果分析方法及系统 |
WO2023071326A1 (zh) * | 2021-10-26 | 2023-05-04 | 华为技术有限公司 | 故障定位方法、设备及光网络系统 |
CN116681993A (zh) * | 2023-08-03 | 2023-09-01 | 江苏泽宇智能电力股份有限公司 | 智能光纤配线调度管理系统及其方法 |
WO2024140508A1 (zh) * | 2022-12-26 | 2024-07-04 | 中兴通讯股份有限公司 | 网络维护方法、通信装置、及存储介质 |
US12119868B2 (en) | 2021-10-26 | 2024-10-15 | Huawei Technologies Co., Ltd. | Optical network system, management device, optical transmission apparatus, and communications device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112422183B (zh) * | 2020-12-08 | 2022-03-15 | 中国联合网络通信集团有限公司 | 网络故障定位方法和装置 |
CN115133982A (zh) * | 2021-03-26 | 2022-09-30 | 华为技术有限公司 | 分光装置、分光系统、无源光网络和光纤故障检测方法 |
CN113365164B (zh) * | 2021-05-26 | 2023-02-10 | 中盈优创资讯科技有限公司 | 一种基于大数据分析的主动识别二级分光断方法及装置 |
WO2024113235A1 (zh) * | 2022-11-30 | 2024-06-06 | 华为技术有限公司 | 一种信号处理方法及相关设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100150546A1 (en) * | 2008-12-15 | 2010-06-17 | Kapil Shrikhande | Management system for GPON based services |
CN102204127A (zh) * | 2011-05-11 | 2011-09-28 | 华为技术有限公司 | 检测网络设备类型的方法、装置和系统 |
CN103427898A (zh) * | 2012-05-25 | 2013-12-04 | 中兴通讯股份有限公司 | 一种确定无源光纤网络分支故障点的方法及系统 |
CN104780000A (zh) * | 2015-03-23 | 2015-07-15 | 北京千禧维讯科技有限公司 | 一种纤芯故障快速定位的方法 |
CN106301830A (zh) * | 2015-05-21 | 2017-01-04 | 中兴通讯股份有限公司 | 光网络拓扑图的部署方法及装置 |
CN107231188A (zh) * | 2017-07-26 | 2017-10-03 | 国网福建省电力有限公司 | 一种智能站光纤断链点快速识别方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE518622C2 (sv) * | 1992-07-03 | 2002-10-29 | Ericsson Telefon Ab L M | Förfarande och anordning för övervakning av förgrenade optiska ledningsnät |
JP3439323B2 (ja) * | 1997-06-18 | 2003-08-25 | 安藤電気株式会社 | 多段多分岐光線路の試験装置 |
JP2001021445A (ja) * | 1999-07-09 | 2001-01-26 | Ando Electric Co Ltd | 多分岐光線路試験装置 |
CN101232328B (zh) * | 2007-01-26 | 2011-09-14 | 华为技术有限公司 | 一种定位分支光纤的事件点的方法、光网络及网络设备 |
CN102055523A (zh) * | 2009-11-09 | 2011-05-11 | 中国移动通信集团江苏有限公司 | 一种诊断无源光网络故障的方法、设备及系统 |
CN102244539B (zh) * | 2010-05-11 | 2014-09-17 | 华为技术有限公司 | 分支光纤检测方法及系统、无源光网络和分光器 |
US8661295B1 (en) * | 2011-03-31 | 2014-02-25 | Amazon Technologies, Inc. | Monitoring and detecting causes of failures of network paths |
WO2013002692A1 (en) * | 2011-06-30 | 2013-01-03 | Telefonaktiebolaget Lm Ericsson (Publ) | Otdr trace analysis in pon systems |
JP5606405B2 (ja) * | 2011-07-19 | 2014-10-15 | 日本電信電話株式会社 | 分岐形光線路網の故障位置探査装置及びその探査方法 |
US8693866B1 (en) * | 2012-01-20 | 2014-04-08 | Google Inc. | Fiber diagnosis system for WDM optical access networks |
JP5693783B2 (ja) * | 2012-02-23 | 2015-04-01 | 三菱電機株式会社 | ネットワークシステム及びトポロジーマップ生成方法 |
WO2013176505A1 (en) * | 2012-05-25 | 2013-11-28 | Ls Cable & System Ltd. | Optical line monitoring device, optical line monitoring system including the optical line monitoring device, and method of controlling the optical line monitoring system |
CN102739306B (zh) * | 2012-06-11 | 2015-07-01 | 烽火通信科技股份有限公司 | 无源光网络中光链路自动测试的方法 |
JP6024634B2 (ja) * | 2013-09-27 | 2016-11-16 | 日本電気株式会社 | 光線路障害検知装置および光線路障害検知方法 |
CN105530046B (zh) * | 2014-09-30 | 2018-06-12 | 中国电信股份有限公司 | 实现光功率和分支衰减故障自动测试的方法和系统 |
CN105187119B (zh) * | 2015-08-17 | 2017-08-25 | 东南大学 | 基于光时域反射仪的无源光网络链路等距故障识别方法 |
CN107465451A (zh) * | 2016-06-02 | 2017-12-12 | 中兴通讯股份有限公司 | 一种光时域反射仪的健康库更新方法及装置 |
-
2018
- 2018-06-28 CN CN201810688613.7A patent/CN110661569B/zh active Active
-
2019
- 2019-06-28 WO PCT/CN2019/093727 patent/WO2020001626A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100150546A1 (en) * | 2008-12-15 | 2010-06-17 | Kapil Shrikhande | Management system for GPON based services |
CN102204127A (zh) * | 2011-05-11 | 2011-09-28 | 华为技术有限公司 | 检测网络设备类型的方法、装置和系统 |
CN103427898A (zh) * | 2012-05-25 | 2013-12-04 | 中兴通讯股份有限公司 | 一种确定无源光纤网络分支故障点的方法及系统 |
CN104780000A (zh) * | 2015-03-23 | 2015-07-15 | 北京千禧维讯科技有限公司 | 一种纤芯故障快速定位的方法 |
CN106301830A (zh) * | 2015-05-21 | 2017-01-04 | 中兴通讯股份有限公司 | 光网络拓扑图的部署方法及装置 |
CN107231188A (zh) * | 2017-07-26 | 2017-10-03 | 国网福建省电力有限公司 | 一种智能站光纤断链点快速识别方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111814954A (zh) * | 2020-06-19 | 2020-10-23 | 武汉光迅科技股份有限公司 | 一种光纤质量分析方法、装置、电子设备及存储介质 |
CN111814954B (zh) * | 2020-06-19 | 2023-09-08 | 武汉光迅科技股份有限公司 | 一种光纤质量分析方法、装置、电子设备及存储介质 |
WO2023071326A1 (zh) * | 2021-10-26 | 2023-05-04 | 华为技术有限公司 | 故障定位方法、设备及光网络系统 |
US12119868B2 (en) | 2021-10-26 | 2024-10-15 | Huawei Technologies Co., Ltd. | Optical network system, management device, optical transmission apparatus, and communications device |
CN114205689A (zh) * | 2021-12-02 | 2022-03-18 | 浪潮通信信息系统有限公司 | 一种家客资源清查方法及系统 |
CN115987380A (zh) * | 2022-11-03 | 2023-04-18 | 中国电信股份有限公司 | 光时域反射仪的测试结果分析方法及系统 |
CN115987380B (zh) * | 2022-11-03 | 2024-04-30 | 中国电信股份有限公司 | 光时域反射仪的测试结果分析方法及系统 |
WO2024140508A1 (zh) * | 2022-12-26 | 2024-07-04 | 中兴通讯股份有限公司 | 网络维护方法、通信装置、及存储介质 |
CN116681993A (zh) * | 2023-08-03 | 2023-09-01 | 江苏泽宇智能电力股份有限公司 | 智能光纤配线调度管理系统及其方法 |
CN116681993B (zh) * | 2023-08-03 | 2023-10-27 | 江苏泽宇智能电力股份有限公司 | 智能光纤配线调度管理系统及其方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110661569B (zh) | 2022-08-02 |
CN110661569A (zh) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020001626A1 (zh) | 光纤故障定位的方法、设备和存储介质 | |
US8687957B2 (en) | Method and apparatus for deriving parameters of optical paths in optical networks using two-wavelength OTDR and a wavelength-dependent reflective element | |
US8655167B1 (en) | Fiber diagnosis system for point-to-point optical access networks | |
CN102386974B (zh) | Pon网络故障检测方法和装置 | |
US8270828B2 (en) | Optical line monitoring apparatus and optical line monitoring method | |
EP3029853B1 (en) | Method, device, and system for optical fiber link identification | |
WO2015196496A1 (zh) | 在线模式下检测otdr曲线末端事件定位光纤断点的方法 | |
TW201312954A (zh) | 一種光分配網的故障檢測方法、裝置和光網路系統 | |
CN104144013A (zh) | Pon网络故障诊断方法、装置和系统 | |
JP2015537200A (ja) | パッシブ光ネットワーク損失解析システム | |
CN106301830B (zh) | 光网络拓扑图的部署方法及装置 | |
CN103905112B (zh) | 无源光网络故障检测方法、装置和系统 | |
WO2017206371A1 (zh) | 光纤网络故障检测方法、装置和系统 | |
CN105530046A (zh) | 实现光功率和分支衰减故障自动测试的方法和系统 | |
US20230344720A1 (en) | High-resolution optical backscatter method to discover physical topology of complex, interconnected fiber optic network and automatically monitor and troubleshoot its performance | |
JP2023523080A (ja) | 障害特定方法、装置、およびシステム | |
US20140226152A1 (en) | Otdr mapping method | |
WO2016202044A1 (zh) | 一种检测光纤故障点的方法和装置 | |
US20240022323A1 (en) | Optical time-domain reflectometer (otdr) event detection and light power level measurement-based fiber optic link certification | |
KR20110061254A (ko) | 수동형 광가입자 망에서의 광선로 감시장치 및 감시방법 | |
RU2628767C2 (ru) | Способ и устройство для конфигурирования набора параметров тестирования с использованием оптического временного рефлектометра (otdr) | |
WO2024002267A1 (zh) | 光网络拓扑的生成方法、设备和系统 | |
JP2010038882A (ja) | 光線路特性の解析方法、解析装置およびプログラム | |
CN115776623A (zh) | 一种光传送网物理同路由检测方法和装置 | |
Song et al. | Cluster-based Method for Eavesdropping Identification and Localization in Optical Links |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19826552 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19826552 Country of ref document: EP Kind code of ref document: A1 |