WO2015196496A1 - 在线模式下检测otdr曲线末端事件定位光纤断点的方法 - Google Patents
在线模式下检测otdr曲线末端事件定位光纤断点的方法 Download PDFInfo
- Publication number
- WO2015196496A1 WO2015196496A1 PCT/CN2014/081105 CN2014081105W WO2015196496A1 WO 2015196496 A1 WO2015196496 A1 WO 2015196496A1 CN 2014081105 W CN2014081105 W CN 2014081105W WO 2015196496 A1 WO2015196496 A1 WO 2015196496A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- point
- reflection
- end event
- sampling
- event
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/071—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0791—Fault location on the transmission path
Definitions
- the present invention relates to the field of optical network technologies, and in particular, to applying light to an online mode scenario.
- the OTDR is an optical time domain reflectometer. By emitting a light pulse into the fiber, then on the OTDR port The returned curve information is monitored for link status. When the light pulse is transmitted within the fiber, it will be Scattering due to the nature of the fiber itself, connectors, joints, bends, or other similar events, reflection. In the OTDR, mainly Rayleigh scattering and Fresnel reflection, part of the scattering and reflection will Return to the OTDR. The following formula shows how the OTDR measures distance:
- d is the distance to be measured (fiber length)
- c is the speed of light in vacuum
- IOR is the refractive index of the fiber
- t is the total time from the time the signal is transmitted to the time the signal is received (two-way).
- Cable monitoring system through integrated OTDR, optical switch, light source, optical power meter, optical coupler, etc.
- Hardware devices using typical network and database technologies, enable operators to easily perform system operations tasks. View a series of test results.
- the system automatically manages OTDR equipment, monitors fiber optic cable networks, and feeds back real-time Alarm analysis and cable performance degradation analysis. All cable test data and results are stored in the database In, convenient for query analysis.
- the online monitoring mode is the most commonly used mode for cable monitoring, that is, the cable monitoring system and the business system are the same.
- the detection light emitted by the OTDR is coupled with the service light and transmitted together in the line.
- Cable monitoring The most important function is to detect the line where the fiber is faulty and provide accurate fault location information. The maintenance personnel rushed to the site for repairs in time.
- SDH networks were single-wave systems with low output power;
- the WDM system is adopted, the output power is high, and it cannot be completely isolated, resulting in OTDR acquisition.
- the reflected light appears to be dithered.
- it is generally used to increase the dynamic range and increase the averaged time.
- U.S. Patent Application US005442434 uses a template The matching method matches the end reflection event, and the fiber needs to be tested first to build a matching template.
- the template matches the reflection event.
- the template matching process needs to perform matching calculation matching for each point one by one. Design different templates for each curve. This method is time consuming and requires a lot of memory. Different templates How to establish is also difficult, the overall implementation is more complicated, and only the reflection end mode is mentioned in the literature.
- the board matching method does not consider the case of non-reflective ends.
- European patent application EP0468412 uses the difference method to transform the OTDR curve and increases the data. The magnitude of the reflection peak. Using the characteristics of the end of the transformed curve to set the threshold judgment rule, the end of the reflection End events and non-reflective end events. Although this method considers two cases of end events, this The transformation makes the noise amplitude larger, even higher than the end reflection amplitude, because the end event is near the tail Part of the noise, it is obvious that this method is prone to tail end misjudgment.
- U.S. Patent Application US006674518 utilizes a differential method and a filtering method to determine fiber breakpoints. This method only considers the non-reflective end condition. After the differentiation, there will be a sudden change in the position of the breakpoint, and the reflection point will also have Mutation, design filter to filter out the reflection mutation point, locate the terminal mutation position. However, online noise will A large amplitude mutation occurs, the filter cannot be completely filtered, so this method cannot resist noise. influences.
- the general OTDR detection end event method can not filter noise and points very well. Identify various end conditions and detect various end events in the online situation, thus affecting the cable monitoring system System reliability. Therefore, there is a need for a new detection method that can accurately locate multiple ends Events, and implementation is simple, do not need to spend a lot of time and memory space, in order to practical use.
- the present invention provides an online mode detection
- the method of locating the fiber breakpoint at the end event of the OTDR curve detects both end events.
- This hair The OTDR curve end event detection method designed for online mode is also applicable to general OTDR. End event detection.
- an end event of detecting an OTDR curve in an online mode includes the following steps: Step 1.
- the OTDR sends a link to the fiber service link. Test the light and receive the reflected light to form a reflected sample point data curve containing the end event; step 2 Find the head-end reflection point (is) in the reflected sample point data curve; Step 3.
- the reflection sample point data On the curve, traversing from the head end reflection point (is), finding the sample value reaches the first predetermined threshold The first sample point of the value as the end of the search interval (EndP); step 4, the data at the reflection sample point The segmentation line is fitted inversely in the interval of the [search interval end point, head end reflection point] of the curve, when fitting When a certain straight line satisfies a predetermined condition, the starting point of the straight line is used as the starting point of the search interval (es); Step 5.
- the end event is determined to be a reflection end event, otherwise The end event is determined to be a non-reflective end event.
- the beneficial effects of the present invention are mainly that the present invention increases the end event compared to the prior art. Detect multi-case judgment mechanism, reduce the influence of noise and business signals, and improve the detection of OTDR curves The accuracy of the end event method enables accurate detection of end event positions in the online mode, positioning light Fibrillation point.
- FIG. 1 is a block diagram of an optical cable monitoring system in an online mode, in accordance with an embodiment of the present invention, a broken line die
- the block is the implementation platform of the invention - a network management system for managing the test process and analyzing the test results, Store results and display results;
- Figure 2b shows the non-reflective end curve of OTDR in online mode and the non-reflection rule using the maximum distance Schematic diagram of the end point of the reflection end event
- FIG. 3 is a method for detecting an origin and end point of an OTDR curve end event according to an embodiment of the present invention.
- 3a-3f are specific flowcharts of a method for detecting an origin and end point of an OTDR curve end event according to an embodiment of the present invention
- 4a, 4c, 4e are diagrams for detecting an origin of an OTDR curve end event, according to an embodiment of the present invention, Result graph of the end point;
- Figures 4b, 4d, 4f are existing OTDRs in the same curve as Figures 4a, 4c, 4e, respectively.
- the product detects the result map of the start and end points of the end event of the OTDR curve.
- a method for detecting an optical fiber breakpoint at an end event of an OTDR curve in an online mode, which is directed to The end event is the positioning of the event starting point in the case of a reflection peak and a non-reflection peak, respectively.
- the end event is a non-reflective peak
- Reuse the maximum distance rule to locate the end non-reflective end point determine the falling edge of the non-reflective peak, select the descent Along the upper point, connect the point and the non-reflective starting point to get a straight line; on the starting and falling edges Find the point at which the vertical distance from the line is the largest in the two-point interval, that is, the end non-reflective end point;
- the end event search is completed, and the end event list is output and displayed (the list mainly includes the end Starting point value (km), end point value (km)); comparison to determine whether there is a fiber breakpoint, the alarm knot Output to the network management system display unit.
- the sampling point packet length described in the step (2) is half of the number of sampling points within the unit pulse width.
- the head end reflection point described in the step (2) is the first peak point in the sampling point.
- the result 2 described in the step (4) is the inflection point of the rising edge of the reflection peak.
- the end point of the end reflection described in the step (4) is the inflection point of the falling edge of the reflection peak.
- the piecewise fitting method described in steps (4) and (5) is in a certain interval, with a preset
- the length is fitted to each point in the interval, and the slope of each point fit, the absolute value difference, and the mean square error are obtained, such as If all three values are within the set threshold range, it can be determined that the point is on a straight line.
- step (6) determines whether a fiber breakpoint occurs, and outputs the alarm result to the network.
- the specific method of managing the system display unit is: the end event start position and the reference curve end event The starting position is poor. If the absolute value of the difference does not exceed the set threshold, there is no fiber breakpoint. Raw fiber break alarm.
- FIG. 1 is a block diagram of an optical cable monitoring system in an online mode in accordance with an embodiment of the present invention.
- Figure 1 light
- the power meter 105 measures the traffic light in the transmission system 101 in real time, wherein the optical light is transmitted by the optical splitter 102 The light is split into the optical power meter 105.
- the OLM Cable Monitoring System
- the command triggers the OTDR107 to emit test light, which is coupled into the OSW (optical switch) 106 and WDM104.
- the WDM 104 receives the reflected light (the OSW receives the reflected light and transmits it to the OTDR).
- the positioning interrupt position determines whether the link is interrupted.
- FIG. 3 is a method for detecting an origin and end point of an OTDR curve end event according to an embodiment of the present invention. Overall flow chart.
- OTDR curve data is expressed as ⁇ i,y(i) ⁇
- i represents the sampling point numbers 1, 2, 3, ... along the time axis
- y(i) represents the corresponding sampled value.
- the unit is dB.
- curve 21 is the end of the reflection
- curve 22 in Figure 2b is the non-reflection end.
- Figure 3a is a parameter initialization step (i.e., an expanded description of step a in Figure 3): according to the user Set the parameters, OTDR test and return test data. The required analysis parameters are shown in a3. obtain The three test curves are shown in Figures 4a, 4c, and 4e, respectively, wherein Figures 4a and 4e correspond to the reflection end. In the case of a piece, Figure 4c corresponds to the case of a non-reflective end event.
- Figure 3b is a step of determining the end search interval (i.e., the expanded description of step b in Figure 3).
- sampling points for example, each test curve has 50,000 points
- the group length is half of the number of sampling points per unit pulse width of the test light (for example, sampling points within a unit pulse width)
- the purpose of this grouping is to make each At least one grouping point in the event interval, while improving search efficiency.
- the use of Point comparison method, looking for the first peak point is (head-end reflection point), the direction is as shown by arrow 23 in Figure 2a Show.
- the search interval end point EndP is found in the first peak point is and the last sample point.
- the threshold can be set to 3dB, from The first peak point is started, from left to right, looking for the first value of 8dB (5+3dB) Point, as the end of the search interval EndP (EndP is generally on the end of the falling edge, some cases may be In the noise area, Figure 2 only identifies the general case).
- the attenuation factor per unit length of the fiber is 0.1 to 0.5, so that the slope can be set at -0.1.
- the absolute value difference and the mean square error are less than 1, as a criterion for fitting a straight line. From EndP In the is direction, the line is fitted in a straight line, and the slope and absolute value difference of a certain straight line are obtained.
- the start point (right end point) of the straight line is recorded as the search range. Click es to stop searching. Use the group number to indicate the position of es and EndP, and convert it to the actual point
- the serial number (abscissa value) is the search interval [es, EndP] of the end event.
- Fig. 3c is an end type judging step (i.e., an unfolding description of step c in Fig. 3).
- the maximum point je is found in the search interval [es, EndP], according to the difference between y(je) and y(es), To determine the type of end event. If the value of point je is close to the value of point es, ie, y(je) is different from y(es) If the set threshold is not exceeded, it is determined to be a non-reflective end event, and then step d is performed (see figure). 3d). Otherwise, if y(je) and y(es) do not exceed the set threshold, it is judged as a reflection end event. Next, perform step e (see Figure 3e).
- Fig. 3d is a reflection end positioning step (i.e., an unfolded description of step d in Fig. 3). As shown in the figure As shown, the end event of the curve of Fig. 4a satisfies the above condition c2 (see Fig. 3c), and the operation of Fig. 3d is performed.
- the inverse point-by-point piecewise fitting method is used (ie, the segment length is still 2000, each time a point is moved from right to left for a straight line fit), find the possible starting point of the end event Ps (which is the starting point (right end point) of the line segment that satisfies the above-described determination condition of the fitted straight line, that is, as a candidate
- the result of the selection 1) stop searching. Since the end event is a reflection peak, there is a rising edge.
- [je, es] reverses the value of every two points in reverse, and when y(ps1) is smaller than the value of the adjacent two points, finds the rising edge of the inflection point.
- Ps1 can be achieved by a simple comparison method comparing the difference between two adjacent points as a candidate result 2) Stop the comparison.
- the ps point prevents ps1 from occurring when there are small raised peaks on the rising edge. Judgment error, ps1 point can prevent curve jitter, and the ps point will produce a judgment error when the fitting point is offset.
- the judging principle combines the advantages of both to make up for the shortcomings of both.
- Figure 3e is a non-reflective end event localization step.
- the end event does not satisfy the condition c2, not the reflection peak, but there is also a falling edge.
- EndP Find the falling edge inside, and further find the steepest drop point on the falling edge (by comparing the two adjacent points A simple comparison between the differences is achieved).
- the fitting method finds a point A and shows A in Figure 2b.
- Figure 3f is a detailed illustration of the comparative analysis of the fiber breakpoint step f. Specifically, detecting the end event junction After the beam, the position information (the abscissa value) of the start point ps and the end point pe of the end event and the reference curve Comparison of the line (the data curve measured by the OTDR under normal operating conditions) if the condition f3 is met (ie, If the starting position of the event does not deviate from the threshold of the reference curve, the link is normal and there is no breakpoint. Otherwise, a fiber break alarm is issued, and the interrupt position is the above start and end position of the end event.
- the present invention selects a reflection peak.
- the event front attenuation regions 403, 404 produce an error; from Figure 4c versus the prior art Figure 4d
- the present invention can locate end events (non-reflective end events) without reflection peaks, and the same
- the OTDR detects the slopes 407, 408 in front of the end event, causing errors; from Figure 4e and using It can be seen from the comparison of Fig. 4f of the prior art that the present invention can resist the influence of noise jitter in the online mode, and the same
- the OTDR-like detection of the noise region 411 produces an error.
- the present invention increases the multi-case judging mechanism for end event detection, reducing noise and traffic.
- the influence of the signal improves the accuracy of the method of detecting the end event of the OTDR curve, ensuring various kinds of online end
- the end event analysis results are consistent with the data and events, so that it can accurately locate the fiber break in the online mode. point.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
本申请公开了一种在线模式下检测OTDR曲线末端事件定位光纤断点的方法,包括以下步骤:步骤1、OTDR向光纤业务链路发出测试光,并收到反射光,形成包含末端事件的反射采样点数据;步骤2、找到采样点中的头端反射点;步骤3、从所述头端反射点正向进行遍历,找到采样值达到第一预定阈值的第一个采样点,作为搜索区间终点(EndP);步骤4、在[搜索区间终点,头端反射点]的区间内逆向进行分段直线拟合,当拟合后的某段直线满足预定条件时,将该段直线的起点作为搜索区间起点(es);步骤5、如果所述搜索区间内的最大采样值(je)与搜索区间起点的采样值之间的差的绝对值大于第二预定阈值,则判定末端事件为反射末端事件,否则判定末端事件为非反射末端事件。
Description
本发明涉及光网络技术领域,特别是涉及一种针对在线模式场景应用光
时域反射计末端事件检测定位光纤断点的方法。
OTDR即光时域反射仪。通过发射光脉冲到光纤内,然后在OTDR端口
接收返回的曲线信息对链路状态进行监测。当光脉冲在光纤内传输时,会由
于光纤本身的性质、连接器、接合点、弯曲或其它类似的事件而产生散射、
反射。OTDR中主要是瑞利散射和菲涅尔反射,其中一部分的散射和反射会
返回到OTDR中。以下的公式说明了OTDR是如何测量距离的:
d=(c×t)/2(IOR)
在这个公式里,d是要测量的距离(光纤长度),c是光在真空中的速度,
IOR是光纤的折射率,而t是信号发射后到接收到信号(双程)的总时间。
光缆监测系统通过集成OTDR、光开关、光源、光功率计、光耦合器等
硬件设备,采用典型网络和数据库技术,使操作者能轻松完成系统运行任务,
查看一系列测试结果。系统自动管理OTDR设备,监测光缆网络,反馈实时
告警分析和光缆性能劣化分析。所有的光缆测试数据和结果都储存在数据库
中,方便查询分析。
在线监测模式是光缆监测最常用的模式,即光缆监测系统和业务系统同
时运作,OTDR发出的检测光与业务光耦合,共同在线路中传输。光缆监测
最主要的功能就是检测发生光纤故障的线路,提供准确的故障位置信息,以
便维护人员及时赶赴现场维修。过去的SDH网络都是单波系统,出光功率低;
而现在都采用波分系统,出光功率高,不能被完全隔离,导致OTDR采集到
的反射光出现抖动。对于单波系统,一般采用增大动态范围,增加平均化次
数的方法来提高信噪比;但在波分系统中,继续增大动态范围和平均化次数
延长了分析时间,引入了非线性效应,且需要昂贵的硬件支持。因此,针对
在线监测模式,设计优化算法分析光纤断点,是比较经济实际的方法。
有很多专利涉及对末端事件定位。美国专利申请US005442434运用模板
匹配的方法匹配末端反射事件,需要先对光纤进行测试构建匹配模板,再用
模板匹配反射事件。模板匹配过程需要对每个点一一进行匹配计算匹配度,
针对每一条曲线设计不同模板,该方法耗时大,所需内存也较大,不同模板
如何建立也是难点,总体实现比较复杂,而且该文献中只提到了反射末端模
板匹配方法,没有考虑非反射末端情况。
欧洲专利申请EP0468412用差分法对OTDR曲线进行数据变换,增大了
反射峰的幅度。利用变换后曲线末端的特点设定阈值判断法则,定位反射末
端事件和非反射末端事件。该方法虽然考虑了末端事件的两种情况,但是这
种变换使得噪声幅度变大,甚至比末端反射幅度更高,由于末端事件靠近尾
部噪声,很明显,这种方法容易产生尾端误判。
美国专利申请US006674518利用一次微分法和滤波法来判断光纤断点,
该方法只考虑了非反射末端情况,微分后断点位置会有突变,反射点也会有
突变,设计滤波器滤除反射突变点,定位末端突变位置。但是,在线噪声会
产生幅度很大的突变,滤波器不能完全滤除,因此这种方法不能抵御噪声的
影响。
由上可知,一般的OTDR检测末端事件方法不能很好地滤除噪声、分
辨多种末端情况、检测到在线情况下的各种末端事件,从而影响光缆监测系
统的可靠性。因此,需要一种新的检测方法,这种方法能准确定位多种末端
事件,而且实现简单,不需要花费大量的时间和内存空间,以便于实际运用。
发明内容
为了克服上述现有技术的不足,本发明提供了一种在线模式下检测
OTDR曲线末端事件定位光纤断点的方法,对两种末端事件进行检测。本发
明针对在线模式设计的OTDR曲线末端事件检测方法也适用于一般的OTDR
末端事件检测。
根据本发明的实施例,提出了一种在线模式下检测OTDR曲线末端事件
定位光纤断点的方法,包括以下步骤:步骤1、OTDR向光纤业务链路发出
测试光,并收到反射光,形成包含末端事件的反射采样点数据曲线;步骤2、
找到反射采样点数据曲线中的头端反射点(is);步骤3、在反射采样点数据
曲线上,从所述头端反射点(is)正向进行遍历,找到采样值达到第一预定阈
值的第一个采样点,作为搜索区间终点(EndP);步骤4、在反射采样点数据
曲线的[搜索区间终点,头端反射点]的区间内逆向进行分段直线拟合,当拟合
后的某段直线满足预定条件时,将该段直线的起点作为搜索区间起点(es);
步骤5、如果所述搜索区间内的最大采样值(je)与搜索区间起点的采样值之
间的差的绝对值大于第二预定阈值,则判定末端事件为反射末端事件,否则
判定末端事件为非反射末端事件。
本发明的有益效果主要在于:与现有技术相比,本发明增加了末端事件
检测多情况判断机制,减少噪声和业务信号的影响,提升了检测OTDR曲线
末端事件方法的精度,使之在在线模式下能精确检测末端事件位置,定位光
纤断点。
图1为根据本发明的实施例的在线模式下光缆监测系统框图,虚线下模
块为本发明实现平台——网络管理系统,用于管理测试流程,分析测试结果,
存储结果,显示结果;
图2a为根据本发明的实施例的在线模式下OTDR反射末端曲线及拐点示
意图;
图2b为在线模式下OTDR非反射末端曲线及使用距离最大法则定位非
反射末端事件终点原理示意图;
图3为根据本发明的实施例的检测OTDR曲线末端事件起点、终点方法
总体流程图;
[根据细则91更正 22.07.2014]
图3a-3f为根据本发明的实施例的检测OTDR曲线末端事件起点、终点方法具体流程图;
图3a-3f为根据本发明的实施例的检测OTDR曲线末端事件起点、终点方法具体流程图;
图4a、4c、4e为根据本发明的实施例的检测OTDR曲线末端事件起点、
终点的结果图;
图4b、4d、4f为分别在与图4a、4c、4e相同曲线的情况下,现有的OTDR
产品检测OTDR曲线末端事件起点、终点的结果图。
下面结合附图和具体实施方式对本发明的技术方案作进一步具体说明,
由此,本发明的优点和特点将会随着描述而更为清楚。
本领域的技术人员能够理解,尽管以下的说明涉及到有关本发明的实施
例的很多技术细节,但这仅为用来说明本发明的原理的示例、而不意味着任
何限制。本发明能够适用于不同于以下例举的技术细节之外的场合,只要它
们不背离本发明的原理和精神即可。
另外,为了避免使本说明书的描述限于冗繁,在本说明书中的描述中,
可能对可在现有技术资料中获得的部分技术细节进行了省略、简化、变通等
处理,这对于本领域的技术人员来说是可以理解的,并且这不会影响本说明
书的公开充分性。
首先,概述本发明所采用的技术方案的原理。
一种在线模式下检测OTDR曲线末端事件定位光纤断点的方法,其针对
末端事件为有反射峰和无反射峰两种情况分别进行事件起点的定位,该方法
包括以下步骤:
(1)收集测试曲线采样点,确定分析参数;
(2)将采样点分组,利用逐点比较法确定头端反射点(is),确定末端事
件搜索区间起点(es)、终点(EndP);
(3)判断末端事件类型:寻找搜索区间内最大值点(je),用该最大值点
的值减去搜索区间起点的值,所得差值如果大于设定阈值,则末端事件为反
射峰,否则为非反射峰;
(4)如果末端事件是反射峰,先利用分段拟合法得到末端反射起点结果
1(ps),再利用逐点比较法得到末端反射起点结果2(ps1);判断选取末端反
射起点:如果结果1大于结果2,选取结果2作为末端反射起点,否则,选取
结果1作为末端反射起点;最后利用逐点比较法定位末端反射终点(pe);
(5)如果末端事件是非反射峰,先利用分段拟合法定位末端非反射起点,
再利用距离最大法则定位末端非反射终点:确定非反射峰下降沿,选择下降
沿上的一点,连接该点和非反射起点,得到一段直线;在起点和下降沿上的
两点区间内找到距该直线的垂直距离最大的点,即是末端非反射终点;
(6)末端事件搜索完毕,输出并显示末端事件列表(列表主要包括末端
起点值(km)、末端终点值(km));对比判断是否出现光纤断点,将告警结
果输出到网络管理系统显示单元。
步骤(2)中所述的采样点分组长度为单位脉宽内采样点个数的一半。
步骤(2)中所述的头端反射点为采样点中的第一个峰值点。
步骤(4)中所述的结果2为反射峰上升沿拐点。
步骤(4)中所述的末端反射终点为反射峰下降沿拐点。
步骤(4)、(5)中所述的分段拟合法为在某一区间内,以预先设定的拟
合长度对该区间内每个点拟合,得到每点拟合斜率、绝对值差和均方差,如
果这三个值都在设定的阈值范围内,可以确定该点在一段直线上。
步骤(6)中所述的对比判断是否出现光纤断点,将告警结果输出到网络
管理系统显示单元的具体方法为:将末端事件起点位置与参考曲线末端事件
起点位置作差,如果差值绝对值不超过设定阈值,则没有光纤断点,否则产
生光纤中断告警。
图1为根据本发明的实施例的在线模式下光缆监测系统框图。图1中光
功率计105实时测量传输系统101中业务光,其中由光分路器102将业务光
分光入光功率计105。当光功率计105没有监测到光时,OLM(光缆监测系
统)通知控制计算机108,控制计算机108判定为链路状态可能有异常,发出
命令触发OTDR107发出测试光,经OSW(光开关)106、WDM104耦合进
业务线路中,WDM104通过接收反射光(OSW接收反射光传给OTDR),
定位中断位置判断链路是否中断。
图3为根据本发明的实施例的检测OTDR曲线末端事件起点、终点方法
总体流程图。
下面具体解释图3中每一步的实现方法。OTDR曲线数据表示为{i,y(i)}
的形式,i代表沿时间轴的采样点编号1、2、3……,y(i)表示对应的采样值,
单位为dB。图2a中曲线21为反射末端情况,图2b中曲线22为非反射末端
情况。
图3a为参数初始化步骤(即,图3中的步骤a的展开说明):根据用户
设定的参数,OTDR测试并返回测试数据。所需的分析参数如a3所示。获得
的三个测试曲线分别如图4a、4c、4e所示,其中图4a、4e对应于反射末端事
件的情况,图4c对应于非反射末端事件的情况。
图3b为确定末端搜索区间步骤(即,图3中的步骤b的展开说明)。
假设将采样点(例如,每个测试曲线分别有50000个点)分为N组,分
组长度为测试光的单位脉宽内采样点个数的一半(例如,单位脉宽内采样点
个数为2000个点,一半是1000个点,此时N=50)。这样分组的目的是使每
个事件区间中至少有一个分组点,同时提高搜索效率。在N组点中,运用逐
点比较法,正向寻找第一个峰值点is(头端反射点),方向如图2a箭头23所
示。
具体地,从左向右,比较每组的对应点(例如,每组的第一个点,一共
N个点)的样值大小,找到样值y(is)大于相邻组的对应点的点is,作为第一个
峰值点。
然后,在第一个峰值点is和最后的采样点内寻找搜索区间终点EndP。具
体地,如果所有50000个采样点的最小采样值为5dB,可设置阈值为3dB,从
第一个峰值点is开始,从左向右,寻找搜索到第一个值为8dB(5+3dB)的
点,作为搜索区间终点EndP(EndP一般在末端下降沿上,有些情况可能在
噪声区域中,图2仅标识了一般情况)。
接下来,在[EndP,is]内逆向(图中从右向左)分段直线拟合,方向如图
2a箭头24所示。其中,每段直线拟合的点数可被设置为2000个点(单位脉
宽内采样点个数)。这样,得到每段拟合后的直线的斜率、绝对值差和均方差。
其中,绝对值差是N个采样点中的采样值与拟合曲线对应点之间的差值绝对
值中的最大值。均方差=[(N个采样值与对应拟合曲线y值之间差值)-(差
值的平均值)]的平方除以拟合点个数再开方。
一般光纤的单位长度衰减率为0.1到0.5,这样,可以设定斜率范围在-0.1
到-0.5之间,绝对值差和均方差小于1,作为拟合直线的判定条件。从EndP
到is方向,分段进行直线拟合,当得到拟合后的某段直线的斜率、绝对值差
和均方差都满足上述条件时,记录该直线的起点(右端点)作为搜索区间起
点es,停止搜索。用分组序号来表示es和EndP的位置,将其转换成实际点
序号(横坐标值),即是末端事件的搜索区间[es,EndP]。
图3c为末端类型判断步骤(即,图3中的步骤c的展开说明)。如该图
所示,在搜索区间[es,EndP]内找到最大值点je,根据y(je)与y(es)之间的差,
来判定末端事件的类型。如果点je的值接近点es的值,即,y(je)与y(es)相差
应不超过设定阈值,则判定为非反射末端事件,接下来执行步骤d(参见图
3d)。否则,如果y(je)与y(es)相差不超过设定阈值,则判断为反射末端事件,
接下来执行步骤e(参见图3e)。
图3d为反射末端定位步骤(即,图3中的步骤d的展开说明)。如该图
所示,图4a曲线的末端事件满足上述条件c2(见图3c),执行图3d的操作。
具体地,在[je,es]区间内,再利用逆向逐点分段拟合法(即,分段长度仍为
2000,每次从右向左移动一个点进行一次直线拟合),找到末端事件可能起点
ps(其为满足上述拟合直线的判定条件的线段的起点(右端点),即,作为候
选的结果1),停止搜索。由于末端事件是反射峰,则存在上升沿。进一步在
[je,es]内逆向依次比较每两点值,y(ps1)小于相邻两点值时,找到上升沿拐点
ps1(可通过比较相邻两点之间的差值的简单比较法来实现,作为候选的结果
2),停止比较。
图4a曲线末端事件前端斜坡平坦,没有噪声,因此ps和ps1相等,不满
足条件d3,执行d5,找到末端事件起点ps,显示如图4a中401。
类似地,图4e曲线的末端事件满足条件上述c2(见图3c),执行图3d
的操作。然而,图4e曲线末端事件前段斜坡不平坦,有明显噪声,因此拟合
直线产生下偏(拟合直线的斜率绝对值变大),找到的作为候选的末端事件起
点ps在实际起点前(左侧)。这样,y(ps)大于y(ps1),满足条件d3,则执行
d4,找到另一个作为候选的末端事件起点ps1作为最终的末端事件起点,显
示如图4e中409。总而言之,ps点可防止上升沿上有小的凸起峰时ps1产生
判断误差,ps1点可防止曲线抖动较大拟合点偏移时ps点产生判断误差,此
判断法则综合了两者的优点,弥补了两者的不足。
接下来,继续执行d6,在[je,je+10*Points_Pulsewidth]内(10倍系数仅为
示例,实际上,取je之后的单位脉宽内采样点个数的几倍即可),正向(从左
向右)逐点比较两点值,当某个点pe的样值y(pe)小于等于相邻两点值时,找
到下降沿拐点pe,停止比较,将pe确定为末端事件终点,显示如图4a中402、
图4e中410。
另一方面,图3e为非反射末端事件定位步骤。具体地,在图4c的情况
下,末端事件不满足条件c2,不是反射峰,但也存在下降沿。在[es,EndP]
内寻找下降沿,进一步在下降沿上找到最陡下降点ie(可通过比较相邻两点
之间的差值的简单比较法来实现)。类似地,在[ie,es]内利用逆向分段直线
拟合法找到一点A,显示如图2b中A。
接下来,继续执行e4。如图2b所示,选取下降沿上的某一点B(其可为
上述最陡下降点ie),连接可得直线AB。在[A,B]内搜索得到一点C,其到直
线AB的垂直距离最大,该点C即为末端事件起点ps,显示如图4c中405。
另外,为了简单起见,可将下降沿的终点(右端点)作为末端事件终点pe。
图3f为比较分析光纤断点步骤f的详细说明。具体地,检测末端事件结
束之后,将末端事件的起点ps和终点pe的位置信息(横坐标值)与参考曲
线(OTDR在正常工作状态下测得的数据曲线)对比,如果满足条件f3(即,
事件的起点位置与参考曲线的位置未偏离超出阈值)则链路正常,没有断点。
否则,发出光纤中断告警,中断位置即末端事件的上述起点和终点位置。
从图4a与采用现有技术的图4b对比可以看出,本发明通过选取反射峰
特有的数学特征,能将大衰减与末端反射峰区别,而同类OTDR检测到末端
事件前方衰减区域403、404,产生误差;从图4c与采用现有技术的图4d对
比可以看出,本发明能定位没有反射峰的末端事件(非反射末端事件),而同
类OTDR检测到末端事件前方斜坡407、408,产生误差;从图4e与采用现
有技术的图4f对比可以看出,本发明能抵抗在线模式下噪声抖动影响,而同
类OTDR检测到噪声区域411,产生误差。
因此,本发明增加了末端事件检测的多情况判断机制,减少噪声和业务
信号的影响,提升了检测OTDR曲线末端事件方法的精度,保证各种在线末
端事件分析结果与数据及事件均相符,使之在在线模式下能精确定位光纤断
点。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而
非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术
人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离
本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。
Claims (8)
- 一种在线模式下检测OTDR曲线末端事件定位光纤断点的方法,包 括以下步骤:步骤1、OTDR向光纤业务链路发出测试光,并收到反射光,形成包含 末端事件的反射采样点数据曲线;步骤2、找到反射采样点数据曲线中的头端反射点(is);步骤3、在反射采样点数据曲线上,从所述头端反射点(is)正向进行遍 历,找到采样值达到第一预定阈值的第一个采样点,作为搜索区间终点 (EndP);步骤4、在反射采样点数据曲线的[搜索区间终点,头端反射点]的区间内 逆向进行分段直线拟合,当拟合后的某段直线满足预定条件时,将该段直线 的起点作为搜索区间起点(es);步骤5、如果所述搜索区间内的最大采样值(je)与搜索区间起点的采样 值之间的差的绝对值大于第二预定阈值,则判定末端事件为反射末端事件, 否则判定末端事件为非反射末端事件。
- 根据权利要求1所述的方法,还包括以下步骤:步骤6、如果末端事件是反射末端事件,则进行以下操作:步骤6-1、在反射采样点数据曲线的[搜索区间内的最大采样值点, 搜索区间起点]区间内,逆向逐点分段直线拟合,当拟合后的某段直线满 足所述预定条件时,将该段直线的起点作为末端事件的第一候选起点 (ps);步骤6-2、在反射采样点数据曲线的[搜索区间内的最大采样值点, 搜索区间起点]区间内,正向找到上升沿拐点,作为末端事件的第二候选 起点(ps1);步骤6-3、将第一候选起点和第二候选起点之中的采样值较小的点作 为末端事件的起点。
- 根据权利要求1所述的方法,还包括以下步骤:步骤7、如果末端事件是非反射末端事件,则进行以下操作:步骤7-1、在反射采样点数据曲线的[搜索区间内的最大采样值点, 搜索区间起点]区间内,逆向逐点分段直线拟合,当拟合后的某段直线满 足所述预定条件时,该段直线的起点为点A;步骤7-2、在反射采样点数据曲线的[搜索区间内的最大采样值点, 搜索区间起点]区间内,正向找到下降沿拐点,并在取下降沿上的最陡下 降点B(ie),点A和B连接得线段AB,将在反射采样点数据曲线的[A, B]区间内的到线段AB的垂直距离最大的点C作为末端事件起点(ps)。
- 根据权利要求2或3所述的方法,还包括以下步骤:步骤8、如果末端事件的起点位置(ps、ps1)与参考曲线的末端事件的 起点位置之间的偏差不超过第三预定阈值,则判定没有光纤断点,否则判定 出现光纤断点。
- 根据权利要求2所述的方法,还包括以下步骤:步骤6-4、在搜索区间内的最大采样值点之后的一段区间内,正向找到下 降沿拐点,作为反射末端事件的终点(pe)。
- 根据权利要求3所述的方法,还包括以下步骤:步骤7-3、在反射采样点数据曲线的[搜索区间内的最大采样值点,搜索 区间起点]区间内,正向找到下降沿拐点,作为非反射末端事件的终点(pe)。
- 根据权利要求1至3中的一个所述的方法,其中,所述预定条件为:1)该段直线的斜率在-0.1到-0.5之间;且2)该段直线的绝对值和均方差均小于1。
- 根据权利要求1所述的方法,其中,所述步骤2包括:步骤2-1、将反射采样点数据曲线的采样点分成多组,比较每组的对应点 的采样值大小,找到采样值大于相邻组的对应点的采样值的点(is),作为头 端反射点(is)。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/321,547 US9948385B2 (en) | 2014-06-23 | 2014-06-30 | Method for detecting OTDR curve tail end event to locate optical fibre break point in online mode |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410282774.8A CN104052542B (zh) | 2014-06-23 | 2014-06-23 | 在线模式下检测otdr曲线末端事件定位光纤断点的方法 |
CN201410282774.8 | 2014-06-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015196496A1 true WO2015196496A1 (zh) | 2015-12-30 |
Family
ID=51504941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/081105 WO2015196496A1 (zh) | 2014-06-23 | 2014-06-30 | 在线模式下检测otdr曲线末端事件定位光纤断点的方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9948385B2 (zh) |
CN (1) | CN104052542B (zh) |
WO (1) | WO2015196496A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111507310A (zh) * | 2020-05-21 | 2020-08-07 | 国网湖北省电力有限公司武汉供电公司 | 一种基于φ-otdr的光缆通道内人为触缆作业信号识别方法 |
CN114626404A (zh) * | 2022-01-10 | 2022-06-14 | 国网河北省电力有限公司石家庄供电分公司 | 一种基于极值点的自适应事件检测方法 |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016178188A1 (en) * | 2015-05-07 | 2016-11-10 | Centre For Development Of Telematics | Gis based centralized fiber fault localization system |
CN105784325B (zh) * | 2016-03-01 | 2019-01-04 | 深圳艾瑞斯通技术有限公司 | 一种光纤断点位置检测方法、装置及系统 |
CN105784324B (zh) * | 2016-03-01 | 2019-01-04 | 深圳艾瑞斯通技术有限公司 | 一种光纤断点位置检测方法、装置及系统 |
CN105784326B (zh) * | 2016-03-01 | 2019-01-04 | 深圳艾瑞斯通技术有限公司 | 一种光纤断点位置检测方法、装置及系统 |
CN106559132A (zh) * | 2016-11-22 | 2017-04-05 | 国网山西省电力公司忻州供电公司 | 光纤劣化分析方法 |
CN107782530A (zh) * | 2017-09-11 | 2018-03-09 | 北京航天控制仪器研究所 | 分布式光纤传感系统光纤断裂监测定位方法、装置及介质 |
CN109768826B (zh) * | 2017-11-09 | 2022-01-28 | 中兴通讯股份有限公司 | 数据处理方法、装置及设备、计算机可读存储介质 |
CN108594250B (zh) * | 2018-05-15 | 2022-08-23 | 北京石油化工学院 | 一种点云数据去噪点方法及装置 |
CN112601946A (zh) * | 2018-08-30 | 2021-04-02 | 日本电气株式会社 | 光学时域反射仪、测试光学传输线路的方法以及光学传输线路的测试系统 |
JP7514762B2 (ja) * | 2018-08-30 | 2024-07-11 | エヌイーシー アジア パシフィック ピーティーイー リミテッド | 光パルス試験器、光伝送路の試験方法及び光伝送路の試験システム |
WO2021038648A1 (ja) * | 2019-08-23 | 2021-03-04 | 日本電信電話株式会社 | 光ファイバ試験方法、光ファイバ試験装置、およびプログラム |
CN110503069B (zh) * | 2019-08-28 | 2022-10-18 | 中广核研究院有限公司 | 电流波形波动起点识别方法及电子设备、可读存储介质 |
CN110505011A (zh) * | 2019-09-18 | 2019-11-26 | 四川长虹电器股份有限公司 | 光纤故障检测装置 |
CN110631618B (zh) * | 2019-09-23 | 2021-12-17 | 苏州光格科技股份有限公司 | 一种φ-OTDR分布式光纤传感系统断纤定位方法 |
CN111609996B (zh) * | 2020-05-18 | 2022-08-02 | 昂纳信息技术(深圳)有限公司 | 一种otdr曲线拼接方法及多条otdr曲线拼接方法 |
CN111901034B (zh) * | 2020-06-05 | 2022-07-12 | 国网江苏省电力有限公司南京供电分公司 | 一种实时光缆态势监测系统 |
US11166070B1 (en) * | 2020-10-30 | 2021-11-02 | CSC Holdings, LLC | Distributed analysis of network health |
CN112380242B (zh) * | 2020-11-18 | 2022-10-28 | 中国电子科技集团公司第三十四研究所 | 一种基于otdr的光缆测试主动告警方法 |
CN115001579B (zh) * | 2022-06-01 | 2024-01-19 | 中国电建集团西北勘测设计研究院有限公司 | 一种基于otdr的光纤路径和跳纤端子摸排方法 |
CN114696893B (zh) * | 2022-06-02 | 2022-08-16 | 高勘(广州)技术有限公司 | 基于otdr的事件定位方法、系统、装置及存储介质 |
CN115001573B (zh) * | 2022-06-13 | 2024-09-13 | 中国电信股份有限公司 | 光缆故障定位方法、装置、电子设备及非易失性存储介质 |
CN117705168B (zh) * | 2023-11-16 | 2024-06-07 | 广东交科检测有限公司 | 一种用于边坡细光纤的otdr监测方法及otdr监测系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468412A2 (en) * | 1990-07-25 | 1992-01-29 | Advantest Corporation | Apparatus and method for inspecting optical fibers |
US6310702B1 (en) * | 1997-06-18 | 2001-10-30 | Ando Electric Co., Ltd. | Testing device for multistage multi-branch optical network |
CN101753207A (zh) * | 2008-12-16 | 2010-06-23 | 华为技术有限公司 | 光纤链路故障识别方法、装置及系统 |
CN101895339A (zh) * | 2010-07-21 | 2010-11-24 | 国网电力科学研究院 | 电力光缆网故障预警和定位的实现方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5450191A (en) * | 1993-05-06 | 1995-09-12 | Corning Incorporated | Method for testing optical waveguide fibers to detect reflection type discontinuities |
US5365328A (en) * | 1993-05-21 | 1994-11-15 | Tektronix, Inc. | Locating the position of an event in acquired digital data at sub-sample spacing |
CA2108801A1 (en) * | 1993-10-20 | 1995-04-21 | David D. Liao | Method for finding and measuring optical features using an optical time domain reflectometer |
JPH10274592A (ja) * | 1997-03-31 | 1998-10-13 | Ando Electric Co Ltd | 光ファイバの試験方法 |
US6674518B1 (en) * | 2002-07-01 | 2004-01-06 | At&T Corp. | Method and apparatus for optical time domain reflectometry (OTDR) analysis |
CN102739306B (zh) * | 2012-06-11 | 2015-07-01 | 烽火通信科技股份有限公司 | 无源光网络中光链路自动测试的方法 |
WO2014063034A1 (en) * | 2012-10-18 | 2014-04-24 | Ntest, Inc. | Passive optical network loss analysis system |
CN103617148A (zh) * | 2013-11-27 | 2014-03-05 | 桂林聚联科技有限公司 | 一种提高otdr对数计算速度的方法 |
-
2014
- 2014-06-23 CN CN201410282774.8A patent/CN104052542B/zh active Active
- 2014-06-30 US US15/321,547 patent/US9948385B2/en active Active
- 2014-06-30 WO PCT/CN2014/081105 patent/WO2015196496A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468412A2 (en) * | 1990-07-25 | 1992-01-29 | Advantest Corporation | Apparatus and method for inspecting optical fibers |
US6310702B1 (en) * | 1997-06-18 | 2001-10-30 | Ando Electric Co., Ltd. | Testing device for multistage multi-branch optical network |
CN101753207A (zh) * | 2008-12-16 | 2010-06-23 | 华为技术有限公司 | 光纤链路故障识别方法、装置及系统 |
CN101895339A (zh) * | 2010-07-21 | 2010-11-24 | 国网电力科学研究院 | 电力光缆网故障预警和定位的实现方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111507310A (zh) * | 2020-05-21 | 2020-08-07 | 国网湖北省电力有限公司武汉供电公司 | 一种基于φ-otdr的光缆通道内人为触缆作业信号识别方法 |
CN111507310B (zh) * | 2020-05-21 | 2023-05-23 | 国网湖北省电力有限公司武汉供电公司 | 一种基于φ-otdr的光缆通道内人为触缆作业信号识别方法 |
CN114626404A (zh) * | 2022-01-10 | 2022-06-14 | 国网河北省电力有限公司石家庄供电分公司 | 一种基于极值点的自适应事件检测方法 |
CN114626404B (zh) * | 2022-01-10 | 2023-05-23 | 国网河北省电力有限公司石家庄供电分公司 | 一种基于极值点的自适应用电负荷事件检测方法 |
Also Published As
Publication number | Publication date |
---|---|
US9948385B2 (en) | 2018-04-17 |
CN104052542B (zh) | 2016-06-08 |
CN104052542A (zh) | 2014-09-17 |
US20170180041A1 (en) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015196496A1 (zh) | 在线模式下检测otdr曲线末端事件定位光纤断点的方法 | |
CN101895339B (zh) | 电力光缆网故障预警和定位的实现方法 | |
CN102523037B (zh) | 光缆资源集中监测及管理系统 | |
CN102946270B (zh) | 光频域反射式光纤网络测试方法 | |
KR101751158B1 (ko) | 광 네트워크 검출 방법, 장치 및 시스템 | |
KR20140093515A (ko) | 광 링크 장애 감시장치 및 그 방법 | |
EP3968000A1 (en) | Fiber optic link intermittent fault detection and localization | |
US10944472B2 (en) | System for reporting optical link failures using intelligent small form-factor pluggable optical time domain reflectometer | |
CN102739306A (zh) | 无源光网络中光链路自动测试的方法 | |
WO2017206371A1 (zh) | 光纤网络故障检测方法、装置和系统 | |
CN113595624A (zh) | 光纤运行状态的监测方法 | |
CN110808777B (zh) | 一种光纤通信网络的故障管控系统与方法 | |
CN109818671B (zh) | 一种用于智能光配量测的控制方法及系统 | |
CN114039658A (zh) | 基于相干光的智能光纤监测系统 | |
CN204578539U (zh) | 一种对光缆故障点精确定位的装置 | |
CN108155935B (zh) | 一种光缆网故障检测装置 | |
US9097615B2 (en) | Fiber signal loss event identification | |
EP3309566B1 (en) | Method and device for processing remote power feed line detection | |
CN110034818B (zh) | 一种基于智能光纤配线系统进行光缆监测的装置和系统 | |
CN101958749A (zh) | 一种光缆在线监测的方法 | |
CN112242869A (zh) | 光纤故障检测系统 | |
KR20120110399A (ko) | 다심 광케이블 운용 선로 감시 시스템 및 감시 방법 | |
CN109342021B (zh) | 一种工业以太网交换机光纤在线监测方法 | |
WO2010044350A1 (ja) | 瞬断監視システムおよび瞬断監視プログラム | |
WO2023083112A1 (zh) | 检测方法、检测装置、光纤系统及网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14895860 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15321547 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14895860 Country of ref document: EP Kind code of ref document: A1 |