WO2020001524A1 - 干扰源定位的方法、设备和存储介质 - Google Patents

干扰源定位的方法、设备和存储介质 Download PDF

Info

Publication number
WO2020001524A1
WO2020001524A1 PCT/CN2019/093220 CN2019093220W WO2020001524A1 WO 2020001524 A1 WO2020001524 A1 WO 2020001524A1 CN 2019093220 W CN2019093220 W CN 2019093220W WO 2020001524 A1 WO2020001524 A1 WO 2020001524A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference source
distance
site
locating
symbol
Prior art date
Application number
PCT/CN2019/093220
Other languages
English (en)
French (fr)
Inventor
郝育鹏
张国营
Original Assignee
南京中兴软件有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中兴软件有限责任公司 filed Critical 南京中兴软件有限责任公司
Publication of WO2020001524A1 publication Critical patent/WO2020001524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present disclosure relates to the field of atmospheric waveguide interference technology in a Time Division Duplexing (TDD) system.
  • TDD Time Division Duplexing
  • Time Division Long Term Evolution is an LTE technology in TDD mode.
  • TDD Time Division Long Term Evolution
  • ID Identification for short
  • An aspect of the present disclosure provides a method for locating an interference source, the method comprising: determining an effective feature sequence ID of an interference source site; and finding all associated sites associated with the effective feature sequence ID, when finding out When the number of associated stations is greater than 1, the true interference source site is confirmed according to the distance difference between the symbol distance and the actual latitude and longitude distance between the stations.
  • the device includes a memory, a processor, and a data bus for implementing connection and communication between the processor and the memory.
  • the memory stores a program executable by the processor, and when the program is executed by the processor, implements steps of the foregoing method for locating an interference source.
  • Another aspect of the present disclosure provides a storage medium for computer-readable storage, where the storage medium stores one or more programs, and the one or more programs are executable by one or more processors to Steps of the method for implementing the aforementioned interference source location.
  • FIG. 1 is a flowchart of a method for locating an interference source according to an embodiment of the present disclosure.
  • FIG. 2 is a specific flowchart of step S110 of the method for locating an interference source shown in FIG. 1.
  • FIG. 3 is a detailed flowchart of step S120 of the method for locating an interference source shown in FIG. 1.
  • FIG. 4 is a flowchart of a method for locating an interference source according to another embodiment of the present disclosure.
  • FIG. 5 is a specific flowchart of step S210 of the method for locating an interference source shown in FIG. 4.
  • FIG. 6 is a detailed flowchart of step S220 of the method for locating an interference source shown in FIG. 4.
  • FIG. 7 is a structural block diagram of an interference source positioning device according to an embodiment of the present disclosure.
  • FIG. 8 is a structural block diagram of an interference source positioning device according to another embodiment of the present disclosure.
  • module means such as “module”, “component”, or “unit” used to represent elements are used only for the benefit of the description of the present disclosure, and have no unique meaning per se. Therefore, “modules,” “components,” or “units” can be used in combination.
  • the characteristic sequence ID of the real interference source site may be overlap between the characteristic sequence ID of the real interference source site and the characteristic sequence ID of the non-interference source site. Therefore, how can it be accurately identified in an environment where multiple identical characteristic sequence IDs exist?
  • the actual interference source site has become a technical problem that needs to be solved in the process of locating the atmospheric waveguide interference source.
  • Symbol a time domain symbol defined by the LTE protocol. Generally, one subframe is composed of 14 symbols. 2. Symbol distance, the distance that a wireless signal travels within the duration of a symbol. 3. Latitude and longitude, the latitude and longitude location information of the physical station on the ground. 4. Latitude and longitude distance: The distance between stations is calculated based on the latitude and longitude information of the interference source station and the detection station.
  • FIG. 1 is a flowchart of a method for locating an interference source according to an embodiment of the present disclosure. As shown in FIG. 1, an embodiment of the present disclosure provides a method for locating an interference source. The method includes the following steps.
  • step S110 a valid characteristic sequence ID of the interference source station is determined.
  • the same feature sequence ID may be detected on multiple symbols at the same time. Therefore, the feature sequence ID and symbol of the detected interference source site may be recorded at this time. In the position, the maximum power comparison is required to improve the correct efficiency of the feature sequence ID detection.
  • the number of detections needs to be increased. That is, the interference source site detection is performed multiple times, and at the same time, the statistics of the effective occurrences of each same feature sequence ID are increased. Only when the number of valid occurrences of the feature sequence ID is greater than a certain threshold (the threshold can be configured in the background), is it considered that Credible to further improve the correct efficiency of feature sequence detection.
  • FIG. 2 is a specific flowchart of step S110 of the method for locating an interference source shown in FIG. 1.
  • step S110 specifically includes the following steps.
  • step S111 interference source site detection is performed multiple times, and data statistics are performed on the detected interference source site.
  • the interference source site since there is a certain probability of false detection during a single detection of the interference source site, in order to accurately determine the effective feature sequence ID of the interference source site, it is necessary to increase the number of detections of the interference source site, that is, multiple times Detect interference source sites. At the same time, perform statistics on the detected interference source sites.
  • the data statistics specifically include the feature sequence ID of each detected interference source site, the symbol position of each detected interference source site, and the number of valid occurrences of each feature sequence ID during multiple detections.
  • the same feature sequence ID may be detected on multiple symbols at the same time. At this time, in order to improve the correct efficiency of the feature sequence ID detection, the maximum power ratio can be used. To detect interference sources. That is, each time the interference source site detection is performed, a maximum power comparison is performed, and the symbol position and the feature sequence ID at which the interference power is received are determined as the symbol position and feature sequence ID of the detected interference source site.
  • step S112 the effective feature sequence ID of the interference source station is determined according to the data statistics.
  • the feature sequence ID is determined to be a valid feature sequence ID of the interference source site.
  • step S120 all related stations associated with the valid feature sequence ID are found.
  • the number of found related stations is greater than 1, according to the distance difference between the symbol distance and the actual latitude and longitude distance between the stations To confirm the true interference source site.
  • the step of confirming the true interference source site according to the distance difference between the symbol distance and the actual latitude and longitude distance between the stations may include finding out from the distance difference between the symbol distance for each associated station and the actual latitude and longitude distance between the stations. Confirm the actual interference source site in the associated sites.
  • the associated site related to the effective feature sequence ID can be found in the system engineering parameters.
  • the number of associated sites found is 1.
  • the identified associated site can be confirmed as the real interference source site.
  • the effective feature sequence ID may be related to multiple This site is related to more than one site. The main reason is that there are sites with duplicate eNodeB ID information, that is, the feature sequence ID of the real interference source site and the feature sequence ID of the non-interference source site may be duplicated, as shown in the following table. One shown.
  • the effective feature sequence ID2641 is associated with two eNBs ID305745 and 436817
  • the real interference source station can be confirmed according to the distance difference between the symbol distance and the actual latitude and longitude distance between the stations.
  • FIG. 3 is a detailed flowchart of step S120 of the method for locating an interference source shown in FIG. 1.
  • step S121 the symbol distance is determined according to the symbol position where the valid feature sequence ID is detected.
  • the valid feature sequence ID At which symbol position the valid feature sequence ID is detected, it needs to be determined according to the power of the signal of the received ID, but it is not limited to this method. The final detection can also be considered based on the load where the valid feature sequence ID information is detected first. Symbol, then the method of determining the detection symbol will also affect the conversion of the symbol distance.
  • the transmission delay can be determined, and the symbol distance is converted into a symbol distance according to the position of the symbol where the valid feature sequence ID is detected. As shown in Table 1 above, when the valid feature sequence ID-2641 is detected on the symbol UL0, it is converted into a symbol distance of 128.4825km according to the symbol position of the symbol UL0.
  • step S122 the actual latitude and longitude distance between the associated stations is determined according to the spatial physical location of the associated station and the detection site.
  • step S123 if the distance difference between the symbol distance and the actual latitude and longitude distance between the associated stations is lower than a preset second threshold, it is confirmed that the associated station is confirmed as a true interference source station.
  • the preset second threshold is 20 km.
  • the distance difference between the symbol distance 128.4825km and the actual inter-station latitude and longitude distance 64.27083 of the associated site eNB ID 64.27083 is 64.21165, which is greater than the preset second threshold.
  • the distance between the symbolic distance of 128.4825km and the actual station latitude and longitude distance 117.9771 of the associated site eNB ID 436817 is 10.50537, which is lower than the preset second threshold. It can be seen that the associated site eNB ID 436817 can be identified as the true interference source site, and the associated The site eNB ID 305745 is identified as a non-interference source site.
  • FIG. 4 is a flowchart of a method for locating an interference source according to another embodiment of the present disclosure.
  • step S210 a valid feature sequence ID of the interference source station is determined.
  • the specific process of determining the effective feature ID of the interference source site has been described in detail with reference to FIGS. 1 and 2, and will not be described repeatedly here.
  • the step “determining a valid feature sequence ID of the interference source site” includes: step S211 and step S212.
  • step S211 the interference source site detection is performed multiple times, and data statistics are performed on the detected interference source site.
  • the interference source site since there is a certain probability of false detection during a single detection of the interference source site, in order to accurately determine the effective feature sequence ID of the interference source site, it is necessary to increase the number of detections of the interference source site, that is, multiple times Detect interference source sites. At the same time, perform statistics on the detected interference source sites.
  • the data statistics specifically include the feature sequence ID of each detected interference source site, the symbol position of each detected interference source site, and the number of valid occurrences of each feature sequence ID during multiple detections. Because each time the detection site performs the detection of the interference source site, the same feature sequence ID may be detected on multiple symbols at the same time. At this time, in order to improve the correct efficiency of the feature sequence ID detection, a maximum power comparison is required. That is, each time the interference source site is detected, a maximum power comparison is performed, and the symbol position and the characteristic sequence ID at which the interference power is received at the maximum are the symbol position and the characteristic sequence ID of the detected interference source site.
  • step S212 the effective feature sequence ID of the interference source station is determined according to the data statistics.
  • the threshold can be configured in the background. It is believed to be credible, that is, when it is detected that the current number of occurrences of the current feature sequence ID is greater than the first preset threshold, it is determined that the current feature sequence ID is a valid feature sequence ID of the interference source site.
  • step S220 find all related sites associated with the valid feature sequence ID. When the number of found related sites is greater than 1, confirm the true interference source according to the distance difference between the symbol distance and the actual latitude and longitude distance between the stations. Site.
  • the real interference source station can be confirmed according to the matching degree between the symbol distance and the actual latitude and longitude distance between the actual stations, as shown in Fig. 6.
  • the specific process includes steps S221-S225.
  • step S221 the symbol distance is determined according to the symbol position where the valid feature sequence ID is detected.
  • step S222 the actual latitude and longitude distance between the associated stations is determined according to the spatial physical position of the associated station and the detection site.
  • step S223 the distance difference between the symbol distance and the actual inter-station latitude and longitude distance of the associated station is determined.
  • Steps S221 to S223 are similar to steps S121 to S123 described with reference to FIG. 3, and will not be repeated here.
  • the preset second threshold is 20 km.
  • the distance difference between the symbol distance of 128.4825km and the actual inter-station latitude and longitude distance of 117.9771 of the associated site eNB 817817 is 10.50537, which is lower than the preset second threshold.
  • the associated site eNB ID 436817 is valid once Measurement and interference between stations.
  • step S225 the associated station whose distance difference ratio C is greater than a preset third threshold is identified as a true interference source station.
  • the distance difference ratio C of the associated site can be compared with a preset third threshold. If the distance difference ratio C is greater than the preset third threshold, then Confirm that the associated site is identified as the true source of interference.
  • the device 20 for locating an interference source includes a memory 21, a processor 22, and a data bus 23 for implementing connection and communication between the processor 21 and the memory 22, where the memory stores information that can be stored in the processor.
  • a program running on the processor when the program is executed by the processor, to implement the interference source location method described with reference to FIG. 3 and / or the interference source location method described with reference to FIG. 4.
  • an embodiment of the present disclosure provides a device 30 for locating an interference source.
  • the device 30 includes a memory 31, a processor 32, a program stored on the memory and executable on the processor, and a device for implementing The connection between the processor 31 and the memory 32 communicates with the data bus 33.
  • a computer-readable storage medium stores one or more programs that can be executed by one or more processors to implement the description described with reference to FIG. 1 and / or FIG. 4. Interference source location method.
  • the device and storage medium for locating an interference source after determining the effective feature sequence ID of the interference source site, it can find all associated sites associated with the effective feature sequence ID, and When the number of associated stations is greater than 1, the true interference source station is confirmed according to the distance difference between the symbol distance and the actual latitude and longitude distance between the stations. It can be seen that, by adopting the distance difference scheme, the present technical solution can accurately identify a true interference source site in an environment where multiple identical characteristic sequence IDs exist, so as to effectively improve the accuracy of interference source positioning.
  • the division between functional modules / units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical The components execute cooperatively.
  • Some or all physical components can be implemented as software executed by a processor, such as a central processing unit, digital signal processor, or microprocessor, or as hardware, or as an integrated circuit, such as an application-specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage medium includes both volatile and nonvolatile implementations in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or Any other medium used to store desired information and which can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请公开了一种干扰源定位的方法、设备和存储介质。所述方法包括:确定干扰源站点的有效特征序列ID;以及找出与所述有效特征序列ID相关联的所有关联站点,当找出的关联站点的数目大于1时,根据符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点。

Description

干扰源定位的方法、设备和存储介质 技术领域
本公开涉及时分双工(Time Division Duplexing,TDD)系统中大气波导干扰技术领域。
背景技术
时分长期演进(Time Division Long Term Evolution,TD-LTE)是TDD模式的LTE技术,在实际应用过程中,存在TDD大气波导干扰,TD-LTE大气波导干扰每年大概从3月份开始,12月份消失,全国区域受到影响。目前基于演进型节点B(eNodeB,简称eNB)标识(Identification,ID)的大气波导干扰源定位功能已经在商用,但ID检测精度和规划的重复度会影响干扰定位精度。
发明内容
本公开的一方面提供了一种干扰源定位的方法,所述方法包括:确定干扰源站点的有效特征序列ID;以及找出与所述有效特征序列ID相关联的所有关联站点,当找出的关联站点的数目大于1时,根据符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点。
本公开的另一方面提出了一种干扰源定位的设备,所述设备包括存储器、处理器、以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述存储器中存储有能够由所述处理器执行的程序,所述程序被所述处理器执行时实现前述干扰源定位的方法的步骤。
本公开的另一方面提供了一种存储介质,用于计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现前述干扰源定位的方法的步骤。
附图说明
图1是根据本公开的实施例的干扰源定位的方法的流程图。
图2是图1所示干扰源定位的方法步骤S110的具体流程图。
图3是图1所示干扰源定位的方法步骤S120的具体流程图。
图4是根据本公开的另一实施例的干扰源定位的方法的流程图。
图5是图4所示干扰源定位的方法步骤S210的具体流程图。
图6是图4所示干扰源定位的方法步骤S220的具体流程图。
图7是根据本公开的实施例的干扰源定位的设备的结构框图。
图8是根据本公开另一实施例的干扰源定位的设备的结构框图。
本公开目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的术语仅为了有利于本公开的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
在进行大气波导干扰源定位时,可能会存在真实干扰源站点的特征序列ID和非干扰源站点的特征序列ID重复的可能,因而,如何能够在多个相同特征序列ID存在的环境中准确识别真实干扰源站点,已成为进行大气波导干扰源定位过程中亟需解决的技术问题。
对本公开实施例中干扰源定位的方法步骤中涉及到的一些技术用语说明如下:1、符号,LTE协议定义的时域符号,通常情况下,一个子帧由14个符号构成。2、符号距离,无线信号在一个符号时长里传播的距离。3、经纬度,物理站点在地面所处的经纬度位置信息。4、经纬度距离:根据干扰源站点和检测站点的经纬度信息,计算的站间的距离。
图1是本公开实施例提供的干扰源定位的方法的流程图。如图1所示,本公开实施例提供了一种干扰源定位的方法,该方法包括以下步骤。
在步骤S110,确定干扰源站点的有效特征序列ID。
具体地,在检测站点每次进行干扰源站点的检测过程中,可能存在多个符号上同时检出到相同特征序列ID,因而,在记录该次检测到的干扰源站点的特征序列ID及符号位置时,需进行最大功率比对,以提高特征序列ID检测的正确效率,同时,由于单次进行干扰源站点的检测过程中,会存在有一定误检的概率,因而,还需增加检测次数,即多次进行干扰源站点检测,同时,增加对每个相同特征序列ID的有效出现次数统计,只有该特征序列ID的有效出现次数大于一定门限(该门限值后台可配置),才认为可信,以进一步提高特征序列检测的正确效率。
图2是图1所示干扰源定位的方法步骤S110的具体流程图。
如图2所示,步骤S110具体包括以下步骤。
在步骤S111,多次进行干扰源站点检测,并对检测到的干扰源站点进行数据统计。
具体地,由于单次进行干扰源站点的检测过程中,会存在有一定误检的概率,因而,为了准确确定干扰源站点的有效特征序列ID,需增加干扰源站点的检测次数,即多次进行干扰源站点检测,同时,还需对检测到的干扰源站点进行数据统计。该数据统计具体包括统计每次检测到的干扰源站点的特征序列ID、统计每次检测到的干扰源站点的符号位置以及统计多次检测过程中每一特征序列ID的有效出现次数。此外,由于在检测站点每次进行干扰源站点的检测过程中,可能存在多个符号上同时检出到相同特征序列ID,此时,为了提高特征序列ID检测正确效率,可以通过进行最大功率比对来检测干扰源站点。即,在每次进行干扰源站点检测时,进行最大功率比对,将接收到干扰功率最大处的符号位置及特征序列ID确定为该次检测到的干扰源站点的符号位置及特征序列ID。
在步骤S112,根据该数据统计确定干扰源站点的有效特征序列ID。
具体地,为了进一步提高特征序列检测正确效率,需增加对每个相同特征序列ID的有效出现次数统计,只有该特征序列ID的有效 出现次数大于一定门限(该门限值后台可配置),才认为可信,即当检测到特征序列ID的有效出现次数大于第一预设门限时,判定该特征序列ID为干扰源站点的有效特征序列ID。
再次参照图1,在步骤S120,找出与该有效特征序列ID相关联的所有关联站点,当找出的关联站点的数目大于1时,根据符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点。
所述根据符号距离与实际站间经纬度距离的距离差来确认真实干扰源站点的步骤可以包括根据针对每个关联站点的符号距离与实际站间经纬度距离之间的距离差来从所述找出的关联站点中确认真实干扰源站点。
具体地,当干扰源站点的有效特征序列ID确定时,便可在系统工程参数中找出与该有效特征序列ID相关的关联站点,一般情况下,找出的关联站点的数目为1,此时,可将找出的关联站点确认为真实干扰源站点,然而,由于用来表征eNodeB ID信息的特征序列ID有限,实际情况中,在系统工程参数中,该有效特征序列ID可能关联到多个站点,关联到1个以上站点主要原因是由于存在eNodeB ID的部分信息重复的站点,即可能会存真实干扰源站点的特征序列ID和非干扰源站点的特征序列ID重复的可能,如下表一所示。
在表一中,有效特征序列ID 2641关联到两个eNB ID 305745和436817
Figure PCTCN2019093220-appb-000001
此时,要分析哪个站点才是真实检测到的干扰源站点。具体可根据符号距离与实际站间经纬度距离的距离差来确认真实干扰源站点。
图3是图1所示干扰源定位的方法步骤S120的具体流程图。
如图3所示,在步骤S121,根据检测到该有效特征序列ID的符号位置来确定符号距离。
具体地,在哪个符号位置检测到该有效特征序列ID,需要根据接收ID的信号的功率确定,但不限于该方法,也可考虑根据最先检测到有效特征序列ID信息的负荷作为最终的检测符号,那么检测符号的确定方法也会影响符号距离的换算。当知道检测站点在哪个符号位置检测到了该有效特征序列ID时,便可确定传输时延,根据检测到该有效特征序列ID的符号位置换算成符号距离。如上述表一所示,在符号UL0上检测到该有效特征序列ID-2641,则根据符号UL0的符号位置换算成符号距离128.4825km。
在步骤S122,根据关联站点与检测站点的空间物理位置来确定关联站点的实际站间经纬度距离。
具体地,如上述表一所示,有效特征序列ID-2641的关联站点有两个,一个是eNB ID 305745,另一个是eNB ID 436817。在系统工程参数中进行查找,可找到这两个关联站点及检测站点的空间物理位置,然后根据它们的经纬度计算成经纬度距离。如上述表一所示,关联站点eNB ID 305745与检测站点之间的实际站间经纬度距离为64.27083,关联站点eNB ID 436817与检测站点之间的实际站间经纬度距离为117.9771。
在步骤S123,若符号距离与关联站点的实际站间经纬度距离之间的距离差低于预设第二门限,则确认关联站点确认为真实干扰源站点。
例如,预设第二门限为20km。如上述表一所示,符号距离128.4825km与关联站点eNB ID 305745的实际站间经纬度距离64.27083之间的距离差为64.21165,大于预设第二门限。符号距离128.4825km与关联站点eNB ID 436817的实际站间经纬度距离117.9771之间的距离差为10.50537,低于预设第二门限,可见,关联站点eNB ID 436817可确认为真实干扰源站点,而关联站点eNB ID 305745则确认为非干扰源站点。
图4是根据本公开的另一实施例的干扰源定位的方法的流程图。
如图4所示,在步骤S210,确定干扰源站点的有效特征序列ID。已经参照图1和图2详细描述了确定干扰源站点的有效特征ID的具体过程,在此将不再对其进行重复描述。
如图5所示,该步骤“确定干扰源站点的有效特征序列ID”包括:步骤S211和步骤S212。
在步骤S211,多次进行干扰源站点检测,并对检测到的干扰源站点进行数据统计。
具体地,由于单次进行干扰源站点的检测过程中,会存在有一定误检的概率,因而,为了准确确定干扰源站点的有效特征序列ID,需增加干扰源站点的检测次数,即多次进行干扰源站点检测,同时,还需对检测到的干扰源站点进行数据统计。该数据统计具体包括统计每次检测到的干扰源站点的特征序列ID、统计每次检测到的干扰源站点的符号位置以及统计多次检测过程中每一特征序列ID的有效出现次数。由于在检测站点每次进行干扰源站点的检测过程中,可能存在多个符号上同时检出到相同特征序列ID,此时,为了提高特征序列ID检测正确效率,需进行最大功率比对。即每次进行干扰源站点检测时,进行最大功率比对,统计接收到干扰功率最大处的符号位置及特征序列ID为该次检测到的干扰源站点的符号位置及特征序列ID。
在步骤S212,根据该数据统计确定干扰源站点的有效特征序列ID。
具体地,为了进一步提高特征序列检测正确效率,需增加对每个相同特征序列ID的有效出现次数统计,只有该特征序列ID的有效出现次数大于一定门限(该门限值后台可配置),才认为可信,即当检测到当前特征序列ID的有效出现次数大于第一预设门限时,判定该当前特征序列ID为干扰源站点的有效特征序列ID。
在步骤S220,找出与该有效特征序列ID相关联的所有关联站点,当找出的关联站点的数目大于1时,根据符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点。
要分析哪个站点才是真实检测到的干扰源站点。具体可根据符 号距离与实际站间经纬度距离的匹配度来确认真实干扰源站点,如图6所示,其具体过程包括:步骤S221-S225。
在步骤S221,根据检测到该有效特征序列ID的符号位置来确定符号距离。
在步骤S222,根据关联站点与检测站点的空间物理位置来确定关联站点的实际站间经纬度距离。
在步骤S223,确定符号距离与关联站点的实际站间经纬度距离之间的距离差。
步骤S221至步骤S223与参照图3描述的步骤S121至步骤S123类似,在此将不再进行重复描述。
在步骤S224,确定预设时间间隔内,该距离差低于该预设第二门限的次数A,以及该有效特征序列ID的有效出现次数B,并计算距离差占比C=A/B。
具体地,若符号距离与关联站点的实际站间经纬度距离之间的距离差低于预设第二门限,则认为是一次有效测量和站间干扰关系。例如,预设第二门限为20km。如上述表一所示,符号距离128.4825km与关联站点eNB ID 436817的实际站间经纬度距离117.9771之间的距离差为10.50537,低于预设第二门限,则该关联站点eNB ID 436817为一次有效测量和站间干扰关系。为进一步提高干扰源站点的定位精度,需统计一段时间内,该距离差满足低于预设第二门限要求的次数,以及干扰源站点的有效特征序列ID被检测到的总次数,以计算距离差占比。即统计预设时间间隔内,该距离差满足低于该预设第二门限的要求的次数A,以及该有效特征序列ID的有效出现次数B,并计算距离差占比C=A/B。
在步骤S225,将距离差占比C大于预设第三门限的关联站点确认为真实干扰源站点。
具体地,通过上述统计得到关联站点的距离差占比C后,便可将该距离差占比C与预设第三门限进行比较,若该距离差占比C大于预设第三门限,则确认该关联站点确认为真实干扰源站点。
如图7所示,干扰源定位的设备20包括存储器21、处理器22、 以及用于实现处理器21和存储器22之间的连接通信的数据总线23,其中,存储器中存储有可以在处理器上运行的程序,当该程序被该处理器执行时,以实现参照图3所描述的干扰源定位方法和/或参照图4所描述的干扰源定位方法。如图8所示,本公开实施例提出一种干扰源定位的设备30,该设备30包括存储器31、处理器32、存储在该存储器上并可在该处理器上运行的程序以及用于实现处理器31和存储器32之间的连接通信的数据总线33,该程序被该处理器执行时,如图4中所示的步骤。所述步骤已经在上文中详细描述,在此不再赘述。根据本公开的实施例的一种计算机可读存储介质存储有一个或者多个程序,该一个或者多个程序可被一个或者多个处理器执行,以实现参照图1和/或图4所描述的干扰源定位方法。
根据本公开的实施例的干扰源定位的方法、设备和存储介质,可以在确定干扰源站点的有效特征序列ID后,找出与该有效特征序列ID相关联的所有关联站点,并在找出的关联站点的数目大于1时,根据符号距离与实际站间经纬度距离的之间的距离差来确认真实干扰源站点。可见,本技术方案,其通过采用距离差方案,能够在存在多个相同特征序列ID的环境中准确识别真实干扰源站点,以有效提高干扰源定位精度。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结 构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本公开的示例性实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。

Claims (11)

  1. 一种干扰源定位的方法,所述方法包括:
    确定干扰源站点的有效特征序列标识ID;以及
    找出与所述有效特征序列ID相关联的所有关联站点,当找出的关联站点的数目大于1时,根据符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点。
  2. 根据权利要求1所述的干扰源定位的方法,其中,所述确定干扰源站点的有效特征序列ID的步骤具体包括:
    多次进行干扰源站点检测,并对检测到的干扰源站点进行数据统计;以及
    根据所述数据统计确定干扰源站点的有效特征序列ID。
  3. 根据权利要求2所述的干扰源定位的方法,其中,所述数据统计的步骤包括:统计每次检测到的干扰源站点的特征序列ID、统计每次检测到的干扰源站点的符号位置以及统计多次检测过程中每一个特征序列ID的有效出现次数。
  4. 根据权利要求3所述的干扰源定位的方法,其中,多次进行干扰源站点检测,并对检测到的干扰源站点进行数据统计的步骤包括:
    每次进行干扰源站点检测时,将接收到干扰功率最大处的符号位置及特征序列ID确定为该次检测到的干扰源站点的符号位置及特征序列ID。
  5. 根据权利要求3所述的干扰源定位的方法,其中,根据所述数据统计确定干扰源站点的有效特征序列ID的步骤包括:
    当检测到干扰源站点的特征序列ID的有效出现次数大于第一预设门限时,判定所述特征序列ID为干扰源站点的有效特征序列ID。
  6. 根据权利要求1所述的干扰源定位的方法,其中,所述根据符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点的步骤包括:
    根据针对每个关联站点的符号距离与实际站间经纬度距离之间的距离差来从所述找出的关联站点中确认真实干扰源站点。
  7. 根据权利要求6所述的干扰源定位的方法,其中,根据所述符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点的步骤包括:
    根据检测到所述有效特征序列ID的符号位置来确定所述符号距离;以及
    根据每个关联站点与检测站点的空间物理位置来确定每个关联站点与检测站点之间的实际站间经纬度距离。
  8. 根据权利要求7所述的干扰源定位的方法,其中,根据所述符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点的步骤还包括:
    若所述符号距离与所述实际站间经纬度距离之间的距离差低于预设第二门限,则确认所述关联站点确认为真实干扰源站点。
  9. 根据权利要求7所述的干扰源定位的方法,其中,根据所述符号距离与实际站间经纬度距离之间的距离差来确认真实干扰源站点的步骤还包括:
    确定所述符号距离与所述实际站间经纬度距离之间的距离差;
    确定预设时间间隔内,所述距离差低于所述预设第二门限的次数A,以及所述有效特征序列ID的有效出现次数B,并计算距离差占比C=A/B;以及
    将所述距离差占比C大于预设第三门限的关联站点确认为真实干扰源站点。
  10. 一种干扰源定位的设备,其中,所述设备包括存储器、处理器、以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,其中,所述存储器上存储有能够由所述处理器执行的程序,所述程序被所述处理器执行时实现如权利要求1-9中任一项所述的干扰源定位的方法的步骤。
  11. 一种存储介质,用于计算机可读存储,其中,所述存储介质存储有一个或者多个程序,所述一个或者多个程序能够被一个或者多个处理器执行,以实现权利要求1至9中任一项所述的干扰源定位的方法的步骤。
PCT/CN2019/093220 2018-06-28 2019-06-27 干扰源定位的方法、设备和存储介质 WO2020001524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810688060.5A CN110662239B (zh) 2018-06-28 2018-06-28 一种干扰源定位的方法、设备和存储介质
CN201810688060.5 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020001524A1 true WO2020001524A1 (zh) 2020-01-02

Family

ID=68985946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093220 WO2020001524A1 (zh) 2018-06-28 2019-06-27 干扰源定位的方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN110662239B (zh)
WO (1) WO2020001524A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922897B (zh) * 2021-11-18 2023-06-27 国网湖南省电力有限公司 无线干扰源定位方法及定位装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151057A2 (en) * 2007-05-31 2008-12-11 Sr Telecom Inc. Method of detecting sources of interference in a wireless communication system
CN102595471A (zh) * 2012-01-10 2012-07-18 电信科学技术研究院 一种远端干扰距离的确定方法和设备
CN107018530A (zh) * 2016-01-28 2017-08-04 大唐移动通信设备有限公司 一种干扰源定位方法及装置
CN107819491A (zh) * 2016-09-12 2018-03-20 中兴通讯股份有限公司 一种干扰源定位的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151057A2 (en) * 2007-05-31 2008-12-11 Sr Telecom Inc. Method of detecting sources of interference in a wireless communication system
CN102595471A (zh) * 2012-01-10 2012-07-18 电信科学技术研究院 一种远端干扰距离的确定方法和设备
CN107018530A (zh) * 2016-01-28 2017-08-04 大唐移动通信设备有限公司 一种干扰源定位方法及装置
CN107819491A (zh) * 2016-09-12 2018-03-20 中兴通讯股份有限公司 一种干扰源定位的方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922897B (zh) * 2021-11-18 2023-06-27 国网湖南省电力有限公司 无线干扰源定位方法及定位装置

Also Published As

Publication number Publication date
CN110662239A (zh) 2020-01-07
CN110662239B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
US8965398B2 (en) Bluetooth beacon based location determination
US9435876B2 (en) Autonomous muting indication to enable improved time difference of arrival measurements
US8837316B2 (en) RTT based ranging system and method
CN113194032B (zh) 一种用于路径区分的装置和方法及计算机可读介质
US11303485B2 (en) Signal acquisition method and device
US9395432B2 (en) Method and apparatus for modeling timing relationships between clocks
WO2016192590A1 (en) Method and device for identifying source of interference propagated via atmospheric duct
CN111880145B (zh) 辐射源时差定位方法、装置及电子设备
US9917657B1 (en) Verification of aircraft emitter
CN107171981B (zh) 通道校正方法及装置
WO2020001524A1 (zh) 干扰源定位的方法、设备和存储介质
WO2020220959A1 (zh) 信息传输的方法、装置、节点和服务器
CN107018530B (zh) 一种干扰源定位方法及装置
WO2021196765A1 (zh) 到达时间确定方法、装置、终端设备及存储介质
JP2016017793A (ja) 無線測位装置、無線測位方法、無線測位システム、及び、コンピュータ・プログラム
US9787517B2 (en) Coarse timing
US20140194154A1 (en) RTT Quality Improvement By Compensation Of Artifacts Introduced By AP And STA
CN111372275A (zh) 一种干扰源定位的方法、装置及设备
WO2018113569A1 (zh) 一种无线通信系统中检测特征序列的方法和装置
KR102202950B1 (ko) 핑거프린트 측위 방법 및 이를 위한 장치
US9277527B2 (en) Wireless access node calibration capability for improved mobile wireless device location accuracy
US20150195808A1 (en) Method and apparatus for estimating proximity of femto cell in wireless communication system
US20220029717A1 (en) Interference detection system, interference detection apparatus, interference detection method, and interference detection program
US20210318422A1 (en) Method and apparatus for detecting signal propagation type
Hannotier et al. A geometry-based algorithm for TDoA-based localization in the presence of outliers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19826353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19826353

Country of ref document: EP

Kind code of ref document: A1