WO2020001436A1 - 一种聚焦头及放疗设备 - Google Patents

一种聚焦头及放疗设备 Download PDF

Info

Publication number
WO2020001436A1
WO2020001436A1 PCT/CN2019/092802 CN2019092802W WO2020001436A1 WO 2020001436 A1 WO2020001436 A1 WO 2020001436A1 CN 2019092802 W CN2019092802 W CN 2019092802W WO 2020001436 A1 WO2020001436 A1 WO 2020001436A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
focusing head
shielding
roller
drive
Prior art date
Application number
PCT/CN2019/092802
Other languages
English (en)
French (fr)
Inventor
陈方正
杨华
Original Assignee
西安大医集团有限公司
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司, 深圳市奥沃医学新技术发展有限公司 filed Critical 西安大医集团有限公司
Priority to US17/256,967 priority Critical patent/US20210178186A1/en
Publication of WO2020001436A1 publication Critical patent/WO2020001436A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/08Auxiliary means for directing the radiation beam to a particular spot, e.g. using light beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1007Arrangements or means for the introduction of sources into the body
    • A61N2005/101Magazines or cartridges for seeds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy

Definitions

  • the present application relates to the technical field of medical devices, and in particular, to a focusing head and radiotherapy equipment.
  • Gamma Knife is a large medical device mainly for the treatment of craniocerebral diseases.
  • the Gamma Knife selectively determines normal or diseased tissue in the skull as a target according to the principle of stereo geometric orientation.
  • the gamma rays generated by cobalt-60 are used to focus and irradiate the target in a large dose at a time. Produce focal necrosis or functional changes to achieve the purpose of treating disease.
  • the focusing head is the main component of the gamma knife.
  • the focusing head may include: a cobalt source box, a tungsten roller, a tungsten roller driving assembly, a collimator, a shield, and the like.
  • a plurality of radiation sources are arranged in the cobalt source box, and the cobalt source box is located in a tungsten drum and is connected to the tungsten drum.
  • the tungsten roller driving component is connected with the tungsten roller, and is used for driving the tungsten roller and the cobalt source box inside the tungsten roller to rotate.
  • the focusing head usually has an open source status and a closed source status.
  • the focusing head When the focusing head is in the open source state, the rays emitted by multiple radioactive sources in the cobalt source box need to pass through the collimator; when the focusing head is in the off state, the rays emitted by multiple radioactive sources in the cobalt source box Need to be shielded by the shield.
  • the focusing head can simultaneously drive the tungsten roller and the cobalt source box located in the tungsten roller to rotate through a tungsten roller driving component, and its driving quality is large, which causes the focusing head to open source.
  • the switching time between the state and the source-off state is longer, which leads to a lower treatment efficiency of the focusing head.
  • the present application provides a focusing head and radiotherapy equipment, which can solve the problem of low treatment efficiency of the focusing head.
  • the technical solution is as follows:
  • a focusing head includes:
  • a shielding roller, the box is located in the shielding roller
  • a first driving component the first driving component being connected to the box body and configured to drive the box body to rotate;
  • a second driving component which is connected to the shielding roller and is configured to drive the shielding roller to rotate.
  • the first driving component includes a first driving motor and a first driving structure connected to the case.
  • the first driving motor is configured to drive the case through the first driving structure.
  • the second driving component includes a second driving motor and a second driving structure connected to the shielding roller.
  • the second driving motor is configured to drive the shielding roller to rotate through the second driving structure.
  • the first driving structure includes: a box driving gear set
  • the cassette driving gear set includes a first motor driving gear connected to the first driving motor, and a cassette driving gear connected to the cassette.
  • the box driving gear set further includes: a first transition gear, the first transition gear meshes with the first driving gear, and the first transition gear also meshes with the box gear.
  • the second driving structure includes: a drum driving gear set
  • the roller driving gear set includes a second motor driving gear connected to the second driving motor, and a roller driving gear connected to the shielding roller.
  • the drum driving gear set further includes a second transition gear, the second transition gear meshes with the second driving gear, and the second transition gear also meshes with the drum driving gear.
  • the outer surface of the box is tangent to the inner surface of the shielding roller, and the plurality of radiation sources are disposed on a side of the box that is tangent to the shielding roller.
  • the shielding drum includes a drum body and a plurality of ray channels provided on a side wall of the drum body;
  • the focusing head when the multiple radioactive sources are in one-to-one correspondence with the multiple ray channels, the focusing head is in an open source state; when the multiple radioactive sources are staggered from the multiple ray channels, the focusing is performed Head is off.
  • the first driving component is configured to drive the box body to rotate.
  • the second driving component is configured to drive the shielding roller to rotate.
  • the first driving component is configured to drive the box to rotate in a first direction
  • the second driving component is configured to drive The shielding roller rotates around a second direction, the first direction being opposite to the second direction.
  • the relative rotation angle between the box body and the shielding roller is an acute angle.
  • the first drive component is configured to drive the box body to rotate 180 degrees
  • the second drive component is configured to drive the shield drum to rotate 90 degrees.
  • the outer diameter of the box is smaller than the inner diameter of the shielding roller.
  • the box body is rotated about the central axis of the shielding roller under the driving of the first driving component, and the shielding roller is driven around the central axis of the shielding roller under the driving of the second driving component.
  • the distance between the central axis of the box and the central axis of the shielded roller is 22 mm.
  • the focusing head further includes: a shielding layer for covering the shielding roller.
  • the focusing head further includes: a collimator, the collimator is provided with a plurality of collimating channels, and when the focusing head is in an open source state, the multiple ray channels and the multiple Collimation channels are connected one-to-one.
  • the material of the shielding roller includes a tungsten alloy.
  • a radiotherapy apparatus including: a rotating frame and a focusing head connected to the rotating frame, the focusing head including:
  • a shielding roller, the box is located in the shielding roller
  • a first driving component the first driving component being connected to the box body and configured to drive the box body to rotate;
  • a second driving component which is connected to the shielding roller and is configured to drive the shielding roller to rotate.
  • a first driving component in the focusing head is connected to the box body, the first driving component is configured to drive the box body to rotate, the second driving component is connected to the shielding drum, and the second driving component is configured to drive the shielding drum to rotate, effectively
  • the driving quality of each driving component is reduced, thereby reducing the time for focusing to switch between the open source state and the closed source state, which effectively improves the treatment efficiency of the focusing head.
  • the time required for fast turning off the source of the focusing head can be reduced, and the treatment efficiency of the focusing head can be further improved.
  • FIG. 1 is a schematic structural diagram of a focusing head provided by the related art
  • FIG. 2 is an effect diagram when the focusing head shown in FIG. 1 is in an open source state
  • FIG. 3 is an effect diagram when the focusing head shown in FIG. 1 is in a source-off state
  • FIG. 4 is an effect diagram of the focusing head shown in FIG. 1 after the source is quickly turned off;
  • FIG. 5 is a schematic structural diagram of a focusing head according to an embodiment of the present application.
  • Figure 6 is a side view of the focusing head shown in Figure 5;
  • FIG. 7 is a structural block diagram of a focusing head according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another focusing head according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of still another focusing head according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of still another focusing head according to an embodiment of the present application.
  • FIG. 11 is an effect diagram of FIG. 9 when the focusing head is in an open source state
  • FIG. 12 is an effect diagram of FIG. 9 when the focusing head is in a source-off state
  • FIG. 13 is an effect diagram of the focus head after the source is quickly turned off in FIG. 9.
  • the focusing head may include: a cobalt source box 01, a tungsten roller 02, a tungsten roller driving assembly 03, a collimator 04, a shield 05, and the like.
  • a plurality of radiation sources 011 are disposed in the cobalt source box 01.
  • the cobalt source box 01 is located inside the tungsten drum 02 and is connected to the tungsten drum 02, so that the cobalt source box 01 and the tungsten drum 02 can move synchronously.
  • the tungsten roller driving assembly 03 may include: a tungsten roller driving gear 031, a transition gear 032, a motor driving gear 033, and a driving motor (not labeled in the figure).
  • the tungsten roller driving gear 031, the transition gear 032, and the motor driving gear 033 are sequentially meshed.
  • the tungsten roller driving gear 031 is connected to the tungsten roller 02, and the motor driving gear 033 is connected to the driving motor.
  • the driving motor can drive the motor driving gear 033 to rotate, so as to drive the transition gear 032 and the tungsten roller driving gear 031 to rotate.
  • the tungsten roller driving gear 031 can drive the tungsten roller 02 to rotate. Therefore, the driving motor can drive the tungsten roller 02 and the tungsten roller. 02 inside the cobalt source box 01 rotates.
  • the rays emitted by the multiple radiation sources 011 in the cobalt source box 01 need to pass through the multiple collimation holes 041 in the collimator 04 to be emitted.
  • the shield body 05 when the focusing head is in a source-off state, the radiation emitted by the plurality of radiation sources 011 in the cobalt source box 01 needs to be shielded by the shield body 05.
  • the driving motor needs to drive the tungsten drum and the cobalt source box located in the tungsten drum to rotate at the same time.
  • the driving quality is large, which causes the focusing head to switch between the open source state and the closed source state. The longer the duration, the lower the efficiency of the treatment of the focusing head.
  • the driving motor needs to drive the tungsten drum 02 and the cobalt source box located in the tungsten drum 02 01 is rotated by a specified angle ⁇ so that the shield 05 located outside the tungsten drum 01 can shield the radiation emitted by the radiation source 011. Because the mass of the tungsten roller and the cobalt source box located in the tungsten roller required by the driving motor is relatively large, it takes a long time for the driving motor to drive the tungsten roller and the cobalt source box located in the tungsten roller to rotate to a specified angle.
  • FIG. 5 is a schematic structural diagram of a focusing head according to an embodiment of the present application.
  • FIG. 6 is a side view of the focusing head shown in FIG. 5.
  • the focusing head may include:
  • the casing 10 The casing 10, the shielding roller 20, the first driving assembly 30 and the second driving assembly 40.
  • the box 10 is used to carry multiple radiation sources 11.
  • the radiation source 11 may be a cobalt-60 radiation source.
  • the box body 10 is located inside the shielding drum 20.
  • the box body 10 is connected to a first drive unit 30.
  • the first drive unit 30 is configured to drive the box body 10 to rotate.
  • the shield roller 20 is connected to a second drive unit 40.
  • the second drive unit 40 is configured to drive a shield.
  • the drum 20 rotates.
  • the focusing head in the embodiment of the present application drives the box body 10 and the first driving member 30 and the second driving member 40 respectively.
  • the rotation of the shielding roller 20 effectively reduces the driving quality of each driving component, thereby reducing the time for the focusing head to switch between the open source state and the closed source state, and improving the treatment efficiency of the focusing head.
  • the focusing head At present, international standards require the focusing head to complete a quick turn-off of the focusing head within 0.2 seconds.
  • the driving motor needs to drive the tungsten drum and the cobalt source box in the tungsten drum to rotate at the same time, the driving quality is relatively large. Therefore, in the related art, it is difficult for the focusing head to complete the quick turning off of the focusing head in 0.2 seconds. .
  • the first driving component 30 and the second driving component 40 respectively drive the box body 10 and the shielding roller 20 to rotate, the driving quality of each driving component is small, thereby reducing the speed of the focusing head.
  • the time required for turning off the source the focusing head in the embodiment of the present application is relatively easy to quickly close the source in 0.2 seconds, which further improves the treatment efficiency of the focusing head.
  • the first driving component is connected to the casing, the first driving component is configured to drive the casing to rotate, the second driving component is connected to the shielding roller, and the second driving component It is configured to drive the shielding drum to rotate, which effectively reduces the driving quality of each driving component, thereby reducing the time it takes to focus to switch between the open source state and the closed source state, and effectively improves the treatment efficiency of the focusing head.
  • the time required for fast turning off the source of the focusing head can be reduced, and the treatment efficiency of the focusing head can be further improved.
  • FIG. 7 is a structural block diagram of a focusing head according to an embodiment of the present application.
  • the first driving assembly in the focusing head may include a first driving motor 32 and a first driving structure 31 connected to the casing 10.
  • the first driving motor 32 is configured to drive the casing 10 to rotate through the first driving structure 31.
  • the second driving assembly in the focusing head includes a second driving motor 42 and a second driving structure 41 connected to the shielding roller 20.
  • the second driving motor 42 is configured to drive the shielding roller 20 to rotate through the second driving structure 41.
  • first driving structure 32 and the second driving structure 42 may be the same or different.
  • first driving structure 32 and the second driving structure 42 may both be a gear set; or; both are a mating structure of a gear and a rack; or; one of the first driving structure 32 and the second driving structure 42 is a gear set , The other is the matching structure of gears and racks.
  • first driving structure 32 and the second driving structure 42 are both gear sets as an example for schematic description.
  • FIG. 8 is a schematic structural diagram of another focusing head according to an embodiment of the present application.
  • the first driving structure 31 in the first driving assembly 30 may include a box driving gear set.
  • the box driving gear set may include a first motor driving gear 311 and a box driving gear 313.
  • the first motor driving gear 311 may be connected to the first driving motor 32.
  • the box driving gear 313 may be connected to the box 10.
  • the box driving gear set may further include a first transition gear 312.
  • the first transition gear 312 meshes with a first driving gear, and the first transition gear 312 also meshes with a box driving gear 313.
  • the first driving motor 32 can drive the first motor driving gear 311 to rotate to drive the first transition gear 312 and the box driving gear 313 to rotate.
  • the box driving gear 313 can drive the box 10 to rotate. Therefore, the first driving motor 32 can drive the box body 10 to rotate.
  • the second driving structure 41 in the second driving assembly 40 may include a roller driving gear set.
  • the drum driving gear set may include a second motor driving gear 411 and a drum driving gear 413.
  • the second motor driving gear 411 may be connected to the second driving motor 42.
  • the drum driving gear 413 may be connected to the shielding drum 20.
  • the drum driving gear set may further include a second transition gear 412.
  • the second transition gear 412 meshes with a second driving gear 411, and the second transition gear 412 also meshes with a drum driving gear 413.
  • the second driving motor 42 can drive the second motor driving gear 411 to rotate to drive the second transition gear 412 and the drum driving gear 413 to rotate.
  • the drum driving gear 313 can drive the shielding drum 20 to rotate. Therefore, the second driving motor 42 can The shielding roller 20 is driven to rotate.
  • FIG. 9 is a schematic structural diagram of another focusing head provided in the embodiment of the present application.
  • a casing 10 carries a plurality of radiation sources 11.
  • the shielding roller 20 includes a roller body 22 and A plurality of ray channels 21 are provided on a side wall of the drum body 22. It should be noted that, in the shielding roller 20 in the embodiment of the present application, the areas where the ray channel 21 is not provided on the roller body 22 are all shielding areas.
  • the focusing head may further include a collimator 50.
  • the collimator 50 is provided with a plurality of collimation channels 51.
  • the plurality of collimation channels 51 can be divided into a plurality of collimation hole groups 52. The number of the collimation channels 51 in each collimation hole group 52 is different from that of the radiation source 11 carried in the box 10. The number is the same.
  • FIG. 10 is a schematic structural diagram of another focusing head according to an embodiment of the present application.
  • the outer surface of the box body 10 needs to be tangent to the inner surface of the shielding drum 20, and a plurality of radiation sources 11 in the box body 10 are disposed on a side of the box body 10 that is tangent to the shielding drum 20. At this time, the radiation emitted from the radiation source 11 can be directly shielded by the side of the shielding drum 20 that is tangent to the box.
  • the outer diameter of the box body 10 may be smaller than the inner diameter of the shielding drum 20.
  • the box body 10 rotates around the central axis of the shielding drum 20 under the driving of the first driving assembly, and the shielding drum 20 also rotates about the central axis of the shielding drum 20 under the driving of the second driving assembly. That is, the rotation axis of the first driving component driving the box body 10 and the rotation axis of the second driving component driving the shielding drum 20 coincide.
  • the center axis of the box body 10 does not coincide with the rotation axis of the box body 10, and there is an offset A between the center axis of the box body 10 and the rotation axis of the box body 10.
  • the offset amount A may be 22 Mm. That is, the distance between the central axis of the box 10 and the central axis of the shielding drum is 22 mm.
  • the focusing head may further include a shielding layer 60 for wrapping the shielding drum 20.
  • a shielding layer 60 for wrapping the shielding drum 20.
  • International standards require that the radiation dose measured at 5 cm from the surface of the focusing head cannot be greater than 200 uSv / h (micro-Sievert per hour). If the radiation source 11 is a cobalt-60 radiation source, when the material of the shielding roller 11 includes a tungsten alloy, the shielding layer When the material of 60 includes an alloy of steel and lead, the thickness of the shielding roller 11 and the shielding layer 60 must not be less than 180 mm.
  • the box body 10 is driven by the first driving component 30 and / or the shielding roller 20 is driven by the second driving component 40, so that the focusing head can be in an open source state and a closed source state.
  • FIG. 11 is an effect diagram of FIG. 9 when the focusing head is in an open source state.
  • the multiple radiation sources 10 are in one-to-one correspondence with the multiple ray channels 21, and the multiple ray channels 21 are also in one-to-one correspondence with the multiple collimation channels 51 in a collimation hole group 52 on the collimator 50
  • the focusing head was open source.
  • the rays emitted by the multiple radiation sources 11 in the box 10 pass through in sequence: the corresponding ray channel 21 in the shielding drum 20 and the corresponding collimation channel 51 in one of the collimation hole groups 52 in the collimator 50 are emitted after bundle.
  • FIG. 12 is a view showing the effect of the focus head in the off-state in FIG. 9.
  • the focusing head is in a source-off state.
  • the rays emitted from the plurality of radiation sources 11 in the box body 10 are shielded by the shield area of the shield drum 20.
  • the first driving component 30 is configured to drive the casing 10 to rotate, so that the focusing head switches between an open source state and a closed source state.
  • the second driving assembly 40 may be inactive, that is, the shielding drum 20 remains stationary.
  • the focusing head can realize the open source state shown in FIG. 11 and switch to the off-source state shown in FIG. 12; State, switch to the open source state shown in FIG. 11.
  • the second driving component 40 is configured to drive the shielding roller 20 to rotate, so that the focusing head switches between an open source state and a closed source state.
  • the first driving assembly 30 may be inactive, that is, the box body 10 remains stationary.
  • the second driving component 40 driving the rotation of the shielding drum 20
  • the focusing head can realize the open source state shown in FIG. 11 and switch to the off-source state shown in FIG. 12; State, switch to the open source state shown in FIG. 11.
  • the first driving component 30 is configured to drive the box body 10 to rotate in the first direction
  • the second driving component 40 is configured to drive the shielding drum 20 to rotate in the second direction, so that the focusing head is in an open source state With the switch off the source state.
  • the first direction is opposite to the second direction.
  • the first driving assembly 30 drives the rotation of the casing 10
  • the second driving assembly 40 drives the rotation of the shielding drum 20
  • the focusing head can realize the open source state shown in FIG. 11 and switch to the closed state shown in FIG. Source state; or, the source-off state shown in FIG. 12 may be implemented and switched to the open source state shown in FIG. 11.
  • first direction and the second direction may be the same, but it is necessary to ensure that the angle that the first driving component 30 drives the casing 10 to rotate and the second driving component 40 to drive the shield The rotation angle of the drum 20 is different.
  • the first driving component may drive the box body 10 to rotate in a first direction, so that multiple radiation sources 11 in the box body 10
  • the emitted rays are shielded by the shielding area in the shielding drum 20
  • the second driving component can drive the shielding drum 20 to rotate around the second direction, so that multiple ray channels 21 in the shielding drum 20 are shielded by the shielding layer 60, thereby avoiding the box
  • the radiation emitted from the radiation source 11 in the body 10 is transmitted through the plurality of radiation channels 21.
  • the angle at which the first driving component drives the rotating shaft of the box body may be different from the angle at which the second driving component drives the shielding roller.
  • the first driving component can drive the box body to rotate 180 degrees
  • the second driving component can drive the shielding drum to rotate 90 degrees.
  • the focusing head provided in the embodiment of the present application is in a source-off state, the radiation emitted by the radiation source is shielded by the shielding area of the shielding roller 20, so the thickness of the shielding layer in the focusing head can be reduced, thereby effectively reducing The size of the focusing head is reduced.
  • the above-mentioned three achievable methods can also be used to quickly turn the focus head off source.
  • the focusing head needs to ensure that the box 10 and the shielding roller 20 rotate relative to each other by a certain angle, usually an acute angle, in order to switch the focusing head from an open source state to a source off state.
  • the driving motor needs to simultaneously drive the tungsten drum 02 and the cobalt source box 01 located in the tungsten drum 02 to rotate a specified angle ⁇ .
  • the radiation emitted by the radiation source 011 in the cobalt source box 01 is shielded by the shield body 05 located at the periphery of the tungsten drum 02 and the shield area in the collimator 04.
  • the radiation source 011 is a cobalt-60 radiation source
  • the driving motor needs to drive the tungsten drum 02 to rotate at a certain angle ⁇ , and the angle of the specified angle ⁇ is usually large.
  • FIG. 13 is an effect diagram of the focusing head after the source is quickly turned off. After the quick closing of the focusing head is completed by the driving of the first driving combination and / or the second driving assembly, the plurality of radiation sources 11 in the casing 10 are shielded by the shielding area in the shielding roller 20. If the radiation source 11 in the box 10 is a cobalt-60 radiation source, when the shielding roller 20 is manufactured using a tungsten alloy, in order to make the shielding area in the shielding roller 20 better shield the radiation emitted by the radiation source 11, The thickness of the shielding drum 20 needs to be 65 mm.
  • the shielding area on the shielding roller 20 can directly shield the radiation emitted by the radiation source 11. Therefore, it is only necessary to ensure that the direction of radiation emitted by the radiation source 11 is staggered with the extension direction of the corresponding ray channel in the shielding drum 20, and the designation formed by the direction of the radiation emitted by each radiation source 11 and the extension direction of the corresponding ray channel 21
  • the angle of the included angle ⁇ is small. That is, when the focusing head is fast-closing the source, the relative rotation angle ⁇ between the casing 10 and the shielding roller 20 is relatively small, which further reduces the time required for the fast-closing source of the focusing head.
  • the shielding area on the shielding roller 20 can directly shield the radiation emitted by the radiation source 11, there is no need to shield the shielding layer 60 and the shielding area on the collimator 50, so that the collimator 50 no longer participates in the rapidity of the focusing head.
  • the collimator 50 can be provided with more collimating hole groups, which effectively improves the treatment range of the focusing head.
  • the first driving component is connected to the casing, the first driving component is configured to drive the casing to rotate, the second driving component is connected to the shielding roller, and the second driving component It is configured to drive the shielding drum to rotate, which effectively reduces the driving quality of each driving component, thereby reducing the time it takes to focus to switch between the open source state and the closed source state, and effectively improves the treatment efficiency of the focusing head.
  • the time required for fast turning off the source of the focusing head can be reduced, and the treatment efficiency of the focusing head can be further improved.
  • the focusing head when the focusing head is in the source-off state, the radiation emitted by the radiation source is shielded by the shielding area of the shielding roller, and the thickness of the shielding layer in the focusing head can be reduced to make the focusing head smaller in volume.
  • the collimator in the focusing head does not participate in the fast source closing process of the focusing head.
  • the collimator can be provided with more collimating hole groups, which effectively improves the treatment range of the focusing head.
  • the radiotherapy apparatus may include a rotating frame and a focusing head connected to the rotating frame.
  • the focusing head may include a box, a shielding roller, a first driving component, and a second driving component.
  • the box is used to carry multiple radioactive sources and is located in a shielding drum.
  • the first driving component is connected to the box body and is configured to drive the box body to rotate; the second driving component is connected to the shield roller and is configured to drive the shield roller to rotate.
  • the focusing head may include the focusing head shown in FIG. 5, FIG. 7, FIG. 8, FIG. 9, or FIG. 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种聚焦头及放疗设备,属于医疗器械技术领域。该聚焦头包括:匣体(10),匣体(10)用于承载多个放射源(11);屏蔽滚筒(20),该匣体(10)位于屏蔽滚筒(20)内;第一驱动组件(30),该第一驱动组件(30)与该匣体(10)连接,被配置为带动匣体(10)转动;第二驱动组件(40),第二驱动组件(40)与屏蔽滚筒(20)连接,被配置为带动屏蔽滚筒(20)转动。本申请通过第一驱动组件(30)带动匣体(10)转动,该第二驱动组件(40)带动屏蔽滚筒(20)转动,有效的减小了每个驱动组件的驱动质量,因此减小了聚焦头的快速关源所需时间。

Description

一种聚焦头及放疗设备
本申请要求于2018年06月29日提交的申请号为201821046013.2、申请名称为“一种聚焦头及放疗设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械技术领域,特别涉及一种聚焦头及放疗设备。
背景技术
伽玛刀是一种以治疗颅脑疾病为主的大型医疗设备。伽玛刀是根据立体几何定向原理,将颅内的正常组织或病变组织选择性地确定为靶点,使用钴-60产生的伽玛射线进行一次性大剂量地聚焦照射该靶点,使之产生局灶性的坏死或功能改变而达到治疗疾病的目的。
其中,聚焦头是伽玛刀的主要部件。该聚焦头可以包括:钴源匣、钨滚筒、钨滚筒驱动组件、准直器和屏蔽体等。该钴源匣内设置有多个放射源,该钴源匣位于钨滚筒内,且与钨滚筒连接。该钨滚筒驱动组件与钨滚筒连接,其用于驱动钨滚筒以及位于钨滚内的钴源匣转动。
聚焦头通常具有开源状态和关源状态。当聚焦头处于开源状态时,钴源匣内的多个放射源发出的射线需要经过准直器后出束;当聚焦头处于关源状态时,钴源匣内的多个放射源发出的射线需要被屏蔽体屏蔽。
目前的聚焦头在进行开源状态和关源状态的切换时,聚焦头可以通过钨滚筒驱动组件同时驱动钨滚筒以及位于钨滚内的钴源匣转动,其驱动质量较大,导致聚焦头进行开源状态和关源状态的切换的时长较长,进而导致聚焦头的治疗效率较低。
发明内容
本申请提供了一种聚焦头及放疗设备,可以解决了聚焦头的治疗效率较低的问题。所述技术方案如下:
第一方面,提供了一种聚焦头,所述聚焦头包括:
匣体,所述匣体用于承载多个放射源;
屏蔽滚筒,所述匣体位于所述屏蔽滚筒内;
第一驱动组件,所述第一驱动组件与所述匣体连接,被配置为带动所述匣体转动;
第二驱动组件,所述第二驱动组件与所述屏蔽滚筒连接,被配置为带动所述屏蔽滚筒转动。
可选的,所述第一驱动组件包括:第一驱动电机以及与所述匣体连接的第一驱动结构,所述第一驱动电机被配置为通过所述第一驱动结构带动所述匣体转动;
所述第二驱动组件包括:第二驱动电机以及与所述屏蔽滚筒连接的第二驱动结构,所述第二驱动电机被配置为通过所述第二驱动结构带动所述屏蔽滚筒转动。
可选的,所述第一驱动结构包括:匣体驱动齿轮组;
所述匣体驱动齿轮组包括:与所述第一驱动电机连接的第一电机驱动齿轮,以及,与所述匣体连接的匣体驱动齿轮。
可选的,所述匣体驱动齿轮组还包括:第一过渡齿轮,所述第一过渡齿轮与所述第一驱动齿轮啮合,所述第一过渡齿轮还与所述匣体齿轮啮合。
可选的,所述第二驱动结构包括:滚筒驱动齿轮组;
所述滚筒驱动齿轮组包括:与所述第二驱动电机连接的第二电机驱动齿轮,以及,与所述屏蔽滚筒连接的滚筒驱动齿轮。
可选的,所述滚筒驱动齿轮组还包括:第二过渡齿轮,所述第二过渡齿轮与所述第二驱动齿轮啮合,所述第二过渡齿轮还与所述滚筒驱动齿轮啮合。
可选的,所述匣体的外表面与所述屏蔽滚筒的内表面相切,所述多个放射源设置在所述匣体中与所述屏蔽滚筒相切的一侧。
可选的,所述屏蔽滚筒包括:滚筒本体以及在所述滚筒本体的侧壁上设置的多个射线通道;
其中,当所述多个放射源与所述多个射线通道一一对应连通时,所述聚焦头处于开源状态;当所述多个放射源与所述多个射线通道错开时,所述聚焦头处于关源状态。
可选的,当所述聚焦头进行开源状态与关源状态的切换时,所述第一驱动组件被配置为带动所述匣体转动。
可选的,当所述聚焦头进行开源状态与关源状态的切换时,所述第二驱动组件被配置为带动所述屏蔽滚筒转动。
可选的,当所述聚焦头进行开源状态与关源状态的切换时,所述第一驱动组件被配置为带动所述匣体绕第一方向转动,所述第二驱动组件被配置为带动所述屏蔽滚筒绕第二方向转动,所述第一方向与所述第二方向相反。
可选的,所述匣体与所述屏蔽滚筒相对转动的角度为锐角。
可选的,所述第一驱动组件被配置为带动所述匣体旋转180度,所述第二驱动组件被配置为带动所述屏蔽滚筒旋转90度。
可选的,所述匣体的外径小于所述屏蔽滚筒的内径。
可选的,所述匣体在所述第一驱动组件的驱动下绕所述屏蔽滚筒的中心轴旋转,所述屏蔽滚筒在所述第二驱动组件的驱动下绕所述屏蔽滚筒的中心轴旋转。
可选的,所述匣体的中心轴与所屏蔽滚筒的中心轴之间的距离为22毫米。
可选的,所述聚焦头还包括:用于包覆所述屏蔽滚筒的屏蔽层。
可选的,所述聚焦头还包括:准直器,所述准直器上设置有多个准直通道,当所述聚焦头处于开源状态时,所述多个射线通道与所述多个准直通道一一对应连通。
可选的,所述屏蔽滚筒的材料包括钨合金。
第二方面,提供了一种放疗设备,包括:旋转机架以及与所述旋转机架连接的聚焦头,所述聚焦头包括:
匣体,所述匣体用于承载多个放射源;
屏蔽滚筒,所述匣体位于所述屏蔽滚筒内;
第一驱动组件,所述第一驱动组件与所述匣体连接,被配置为带动所述匣体转动;
第二驱动组件,所述第二驱动组件与所述屏蔽滚筒连接,被配置为带动所述屏蔽滚筒转动。
本申请实施例提供的技术方案带来的有益效果至少包括:
该聚焦头中的第一驱动组件与匣体连接,该第一驱动组件被配置为带动匣 体转动,第二驱动组件与屏蔽滚筒连接,该第二驱动组件被配置为带动屏蔽滚筒转动,有效的减小了每个驱动组件的驱动质量,进而减小了聚焦到进行开源状态和关源状态的切换的时长,有效的提高了聚焦头的治疗效率。并且,可以减小了聚焦头的快速关源所需时间,进一步的提高了聚焦头的治疗效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术提供的一种聚焦头的结构示意图;
图2是图1示出的聚焦头处于开源状态时的效果图;
图3是图1示出的聚焦头处于关源状态时的效果图;
图4是图1示出的聚焦头进行快速关源后的效果图;
图5是本申请实施例提供的一种聚焦头的结构示意图;
图6是图5示出的聚焦头的侧视图;
图7是本申请实施例提供的一种聚焦头的结构框图;
图8是本申请实施例提供的另一种聚焦头的结构示意图;
图9是本申请实施例提供的又一种聚焦头的结构示意图;
图10是本申请实施例提供的再一种聚焦头的结构示意图;
图11是图9示出聚焦头处于开源状态时的效果图;
图12是图9示出聚焦头处于关源状态时的效果图
图13是图9示出聚焦头进行快速关源后的效果图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在相关技术中,请参考图1、图2和图3,该聚焦头可以包括:钴源匣01、钨滚筒02、钨滚筒驱动组件03、准直器04和屏蔽体05等。该钴源匣01内设置有多个放射源011。
该钴源匣01位于钨滚筒02内部,且与钨滚筒02连接,使得钴源匣01与钨滚筒02能够同步运动。
钨滚筒驱动组件03可以包括:钨滚筒驱动齿轮031、过渡齿轮032、电机驱动齿轮033和驱动电机(图中未标注)。该钨滚筒驱动齿轮031、过渡齿轮032和电机驱动齿轮033依次啮合,该钨滚筒驱动齿轮031与钨滚筒02连接,电机驱动齿轮033与驱动电机连接。该驱动电机能够带动电机驱动齿轮033转动,以带动过渡齿轮032和钨滚筒驱动齿轮031转动,通过钨滚筒驱动齿轮031可以带动钨滚筒02转动,因此该驱动电机能够带动钨滚筒02以及该钨滚筒02内部的钴源匣01转动。
如图2所示,当聚焦头处于开源状态时,钴源匣01中的多个放射源011发出的射线需要经过准直器04中的多个准直孔041后出束。
如图3所示,当聚焦头处于关源状态时,钴源匣01中的多个放射源011发出的射线需要被屏蔽体05屏蔽。
在聚焦头进行开源状态与关源状态的切换时,驱动电机需要同时驱动钨滚筒以及位于钨滚筒内的钴源匣转动,其驱动质量较大,导致聚焦头进行开源状态和关源状态的切换的时长较长,进而导致聚焦头的治疗效率较低。
如图4所示,当聚焦头需要快速的从开源状态切换至关源状态(也即聚焦头需要快速关源)时,驱动电机需要驱动钨滚筒02以及位于该钨滚筒02中的钴源匣01转动指定角度α,以使位于钨滚筒01外部的屏蔽体05能够对放射源011发出的射线进行屏蔽。由于驱动电机所要求驱动的钨滚筒以及位于钨滚内的钴源匣的质量较大,因此,驱动电机驱动钨滚筒以及位于钨滚内的钴源匣转动至指定角度的所需时间较长。
请参考图5和图6,图5是本申请实施例提供的一种聚焦头的结构示意图,图6是图5示出的聚焦头的侧视图,该聚焦头可以包括:
匣体10、屏蔽滚筒20、第一驱动组件30和第二驱动组件40。
该匣体10用于承载多个放射源11,该放射源11可以为钴-60放射源。该匣体10位于屏蔽滚筒20内。
该匣体10与第一驱动组件30连接,该第一驱动组件30被配置为带动匣体10转动;该屏蔽滚筒20与第二驱动组件40连接,该第二驱动组件40被配置为 带动屏蔽滚筒20转动。
相对于传统聚焦头中采用一个驱动组件同时带动钴源匣与钨滚筒转动的方案,在本申请实施例中的聚焦头,通过第一驱动组件30与第二驱动组件40分别带动匣体10与屏蔽滚筒20转动,有效的减小了每个驱动组件的驱动质量,进而减小了聚焦头进行开源状态和关源状态的切换的时长,提高了聚焦头的治疗效率。
目前,国际标准要求聚焦头在0.2秒的时间内完成对聚焦头的快速关源。在相关技术中,由于驱动电机需要同时驱动钨滚筒与该钨滚筒内的钴源匣转动,其驱动质量较大,因此相关技术中聚焦头很难在0.2秒内完成对聚焦头的快速关源。而在本申请实施例中,由于第一驱动组件30与第二驱动组件40分别带动匣体10与屏蔽滚筒20转动,使得每个驱动组件的驱动质量较小,因此减小了聚焦头的快速关源所需时间,本申请实施例中的聚焦头比较容易实现在0.2秒内完成对聚焦头的快速关源,进一步的提高了聚焦头的治疗效率。
综上所示,本申请实施例提供的聚焦头,第一驱动组件与匣体连接,该第一驱动组件被配置为带动匣体转动,第二驱动组件与屏蔽滚筒连接,该第二驱动组件被配置为带动屏蔽滚筒转动,有效的减小了每个驱动组件的驱动质量,进而减小了聚焦到进行开源状态和关源状态的切换的时长,有效的提高了聚焦头的治疗效率。并且,可以减小了聚焦头的快速关源所需时间,进一步的提高了聚焦头的治疗效率。
可选的,请参考图7,图7是本申请实施例提供的一种聚焦头的结构框图。该聚焦头中的第一驱动组件可以包括:第一驱动电机32以及与匣体10连接的第一驱动结构31,该第一驱动电机32被配置为通过第一驱动结构31带动匣体10转动。该聚焦头中的第二驱动组件包括:第二驱动电机42以及与屏蔽滚筒20连接的第二驱动结构41,该第二驱动电机42被配置为通过第二驱动结构41带动屏蔽滚筒20转动。
需要说明的是,第一驱动结构32与第二驱动结构42可以相同也可以不同。例如,第一驱动结构32与第二驱动结构42可以均为齿轮组;或者;均为齿轮和齿条的配合结构;或者;第一驱动结构32与第二驱动结构42中的一个为齿轮组,另一个为齿轮和齿条的配合结构。以下实施例以第一驱动结构32与第二驱动结构42均为齿轮组为例进行示意性说明。
示例的,请参考图7和图8,图8是本申请实施例提供的另一种聚焦头的结构示意图,第一驱动组件30中的第一驱动结构31可以包括:匣体驱动齿轮组。该匣体驱动齿轮组可以包括:第一电机驱动齿轮311和匣体驱动齿轮313,该第一电机驱动齿轮311可以与第一驱动电机32连接,该匣体驱动齿轮313可以与匣体10连接。可选的,该匣体驱动齿轮组还可以包括:第一过渡齿轮312。该第一过渡齿轮312与第一驱动齿轮啮合,该第一过渡齿轮312还与匣体驱动齿轮313啮合。第一驱动电机32可以带动第一电机驱动齿轮311转动,以带动第一过渡齿轮312和匣体驱动齿轮313转动,通过该匣体驱动齿轮313可以带动匣体10转动,因此通过第一驱动电机32能够带动匣体10转动。
第二驱动组件40中的第二驱动结构41可以包括:滚筒驱动齿轮组。该滚筒驱动齿轮组可以包括:第二电机驱动齿轮411和滚筒驱动齿轮413,该第二电机驱动齿轮411可以与第二驱动电机42连接,该滚筒驱动齿轮413可以与屏蔽滚筒20连接。可选的,该滚筒驱动齿轮组还可以包括:第二过渡齿轮412。该第二过渡齿轮412与第二驱动齿轮411啮合,该第二过渡齿轮412还与滚筒驱动齿轮413啮合。第二驱动电机42可以带动第二电机驱动齿轮411转动,以带动第二过渡齿轮412和滚筒驱动齿轮413转动,通过该滚筒驱动齿轮313可以带动屏蔽滚筒20转动,因此通过第二驱动电机42能够带动屏蔽滚筒20转动。
在本申请实施例中,请参考图9,图9是本申请实施例提供的又一种聚焦头的结构示意图,匣体10中承载了多个放射源11,屏蔽滚筒20包括滚筒本体22以及在滚筒本体22的侧壁上设置的多个射线通道21。需要说明的是,本申请实施例中的屏蔽滚筒20中的滚筒本体22上不设置射线通道21的区域均为屏蔽区域。该聚焦头还可以包括:准直器50,该准直器50上设置有多个准直通道51。需要说明的是,该多个准直通道51能够划分为多个准直孔组52,每个准直孔组52中的准直通道51的个数与匣体10中承载的放射源11的个数相同。
在一种可选的实现方式中,请参考图10,图10是本申请实施例提供的再一种聚焦头的结构示意图,为了保证屏蔽滚筒20中的屏蔽区域能够屏蔽放射源11发出的射线,该匣体10的外表面需要与屏蔽滚筒20的内表面相切,且匣体10内的多个放射源11设置在匣体10中与屏蔽滚筒20相切的一侧。此时,放射源11发出的射线能够直接被屏蔽滚筒20中与匣体相切的一侧屏蔽。
可选的,匣体10的外径可以小于屏蔽滚筒20的内径。匣体10在第一驱动 组件的驱动下绕屏蔽滚筒20的中心轴旋转,屏蔽滚筒20在第二驱动组件的驱动下绕也绕屏蔽滚筒20的中心轴旋转。也即是,第一驱动组件带动匣体10转动的旋转轴线与第二驱动组件带动屏蔽滚筒20转动的旋转轴线重合。此时,该匣体10的中心轴与匣体10的旋转轴不重合,该匣体10的中心轴与匣体10的旋转轴之间存在偏移量A,该偏移量A可以为22毫米。也即是,匣体10的中心轴与屏蔽滚筒的中心轴之间的距离为22毫米。
可选的。该聚焦头还可以包括:用于包裹屏蔽滚筒20的屏蔽层60。国际标准要求聚焦头表面5厘米处测量出的辐射剂量不能大于200uSv/h(微西弗每小时),若放射源11为钴-60放射源,当屏蔽滚筒11的材料包括钨合金,屏蔽层60的材料包括钢和铅的合金时,屏蔽滚筒11以及屏蔽层60的厚度和不能低于180毫米。
在本申请实施例中,匣体10在第一驱动组件30驱动下,和/或,屏蔽滚筒20在第二驱动组件40的驱动下,可以使聚集头处于开源状态和关源状态。
如图11所示,图11是图9示出聚焦头处于开源状态时的效果图。当多个放射源10与多个射线通道21一一对应连通,且该多个射线通道21还与准直器50上的一个准直孔组52中的多个准直通道51一一对应连通时,该聚焦头处于开源状态。此时,匣体10中的多个放射源11发出的射线依次经过:屏蔽滚筒20中对应的射线通道21和准直器50中的一个准直孔组52中对应的准直通道51后出束。
如图12所示,图12是图9示出聚焦头处于关源状态时的效果图。当多个放射源10与多个射线通道21错开时,该聚焦头处于关源状态。此时,匣体10中的多个放射源11发出的射线均被屏蔽滚筒20的屏蔽区域屏蔽。
在本申请实施例中,当聚焦头进行开源状态与关源状态的切换时,有多种可实现方式,本申请实施例以以下三种可实现方式为例进行示意性说明:
第一种可实现方式,第一驱动组件30被配置为带动匣体10转动,以使聚焦头进行开源状态与关源状态的切换。此时,第二驱动组件40可以不进行工作,也即是,屏蔽滚筒20保持不动。示例的,通过第一驱动组件30驱动匣体10的转动,聚焦头可以实现图11示出的开源状态,切换至图12示出的关源状态;或者,可以实现图12示出的关源状态,切换至图11示出的开源状态。
第二种可实现方式,第二驱动组件40被配置为带动屏蔽滚筒20转动,以 使聚焦头进行开源状态与关源状态的切换。此时,第一驱动组件30可以不进行工作,也即是,匣体10保持不动。示例的,通过第二驱动组件40驱动屏蔽滚筒20的转动,聚焦头可以实现图11示出的开源状态,切换至图12示出的关源状态;或者,可以实现图12示出的关源状态,切换至图11示出的开源状态。
第三种可实现方式,第一驱动组件30被配置为带动匣体10绕第一方向转动,第二驱动组件40被配置为带动屏蔽滚筒20绕第二方向转动,以使聚焦头进行开源状态与关源状态的切换。该第一方向与第二方向相反。示例的,通过第一驱动组件30驱动匣体10的转动,以及通过第二驱动组件40驱动屏蔽滚筒20的转动,聚焦头可以实现图11示出的开源状态,切换至图12示出的关源状态;或者,可以实现图12示出的关源状态,切换至图11示出的开源状态。
需要说明的是,在另一种可实现方式中,该第一方向与第二方向还可以相同,但需要保证第一驱动组件30带动匣体10转动的角度,与第二驱动组件40带动屏蔽滚筒20转动的角度不同。
示例的,当将聚焦头从开源状态切换为关源状态时,如图10所示,第一驱动组件可以带动匣体10绕第一方向转动,以使匣体10中的多个放射源11发出的射线被屏蔽滚筒20中的屏蔽区域屏蔽;第二驱动组件可以带动屏蔽滚筒20绕第二方向转动,以使该屏蔽滚筒20中的多个射线通道21被屏蔽层60屏蔽,避免了匣体10中的放射源11发出的射线从多个射线通道21中透过。在本本申请实施例中,第一驱动组件带动匣体转轴的角度,与第二驱动组件带动屏蔽滚筒旋转的角度可以不同。例如,该第一驱动组件可以带动匣体旋转180度,第二驱动组件可以带动屏蔽滚筒旋转90度。
由于本申请实施例提供的聚焦头在处于关源状态时,放射源发出的射线是被屏蔽滚筒20的屏蔽区域屏蔽的,因此可以减小该聚焦头中的屏蔽层的厚度,进而有效的减小了该聚焦头的体积。
在本申请实施例中,当聚焦头需要快速的从开源状态切换至关源状态(也即聚焦头需要快速关源)时,也可以通过上述三种可实现方式来实现对聚焦头的快速关源。通常情况下,当聚焦头进行快速关源时,聚焦头需要保证在0.2秒匣体10与屏蔽滚筒20相对转动一定的角度,通常为锐角,以使聚焦头从开源状态切换为关源状态。
在相关技术中,当聚焦头需要进行快速关源时,如图4所示,驱动电机需 要同时驱动钨滚筒02以及位于该钨滚筒02中的钴源匣01转动指定角度α。钴源匣01中的放射源011发出的射线被位于钨滚筒02外围的屏蔽体05以及准直器04中的屏蔽区屏蔽。若该放射源011为钴-60放射源,为了使得屏蔽体05以及准直器04中的屏蔽区能够更好的对放射源011发出的射线进行屏蔽,需要保证屏蔽体05以及准直器04中的屏蔽区组成的厚度不小于65毫米。因此,驱动电机需要驱动钨滚筒02转动指定角度α的角度大小有一定要求,通常该指定角度α的角度较大。
而在本申请实施例中,请参考图13,图13是图9示出聚焦头进行快速关源后的效果图。在通过第一驱动组合和/或第二驱动组件的驱动下完成对聚焦头的快速关源后,匣体10中的多个放射源11被屏蔽滚筒20中的屏蔽区域屏蔽。若匣体10中放射源11为钴-60放射源,当屏蔽滚筒20采用钨合金进行制造时,为了使得屏蔽滚筒20中的屏蔽区域能够更好的对放射源11发出的射线进行屏蔽,该屏蔽滚筒20的厚度需要为65毫米。在聚焦头完成快速关源后,屏蔽滚筒20上的屏蔽区域能够直接对放射源11发出的射线进行屏蔽。因此,只需要保证放射源11发出射线的方向与屏蔽滚筒20中对应的射线通道的延伸方向错开即可,每个放射源11发出的射线方向与对应的射线通道21的延伸方向所形成的指定夹角β的角度较小。也即是,在聚焦头进行快速关源时,匣体10与屏蔽滚筒20相对转动的角度β较小,进一步的减小了聚焦头的快速关源所需时间。
并且,由于屏蔽滚筒20上的屏蔽区域能够直接对放射源11发出的射线进行屏蔽,因此无需屏蔽层60以及准直器50上的屏蔽区屏蔽,使得准直器50不再参与聚焦头的快速关源过程,该准直器50可以设置更多的准直孔组,有效的提高了该聚焦头的治疗范围。
综上所示,本申请实施例提供的聚焦头,第一驱动组件与匣体连接,该第一驱动组件被配置为带动匣体转动,第二驱动组件与屏蔽滚筒连接,该第二驱动组件被配置为带动屏蔽滚筒转动,有效的减小了每个驱动组件的驱动质量,进而减小了聚焦到进行开源状态和关源状态的切换的时长,有效的提高了聚焦头的治疗效率。并且,可以减小了聚焦头的快速关源所需时间,进一步的提高了聚焦头的治疗效率。同时,在该聚焦头在处于关源状态时,放射源发出的射线是被屏蔽滚筒的屏蔽区域屏蔽的,可以减小该聚焦头中屏蔽层的厚度,使得该聚焦头的体积较小。该聚焦头中的准直器不参与聚焦头的快速关源过程,该 准直器可以设置更多的准直孔组,有效的提高了该聚焦头的治疗范围。
本申请实施例还提供了一种放疗设备,该放疗设备可以包括:旋转机架以及与该旋转机架连接的聚焦头。该聚焦头可以包括:匣体、屏蔽滚筒、第一驱动组件和第二驱动组件。该匣体用于承载多个放射源,且位于屏蔽滚筒内。该第一驱动组件与匣体连接,被配置为带动匣体转动;该第二驱动组件与屏蔽滚筒连接,被配置为带动屏蔽滚筒转动。示例的,该聚焦头可以包括:图5、图7、图8、图9或图10示出的聚焦头。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种聚焦头,其特征在于,包括:
    匣体,所述匣体用于承载多个放射源;
    屏蔽滚筒,所述匣体位于所述屏蔽滚筒内;
    第一驱动组件,所述第一驱动组件与所述匣体连接,被配置为带动所述匣体转动;
    第二驱动组件,所述第二驱动组件与所述屏蔽滚筒连接,被配置为带动所述屏蔽滚筒转动。
  2. 根据权利要求1所述的聚焦头,其特征在于,
    所述第一驱动组件包括:第一驱动电机以及与所述匣体连接的第一驱动结构,所述第一驱动电机被配置为通过所述第一驱动结构带动所述匣体转动;
    所述第二驱动组件包括:第二驱动电机以及与所述屏蔽滚筒连接的第二驱动结构,所述第二驱动电机被配置为通过所述第二驱动结构带动所述屏蔽滚筒转动。
  3. 根据权利要求2所述的聚焦头,其特征在于,
    所述第一驱动结构包括:匣体驱动齿轮组;
    所述匣体驱动齿轮组包括:与所述第一驱动电机连接的第一电机驱动齿轮,以及,与所述匣体连接的匣体驱动齿轮。
  4. 根据权利要求3所述的聚焦头,其特征在于,
    所述匣体驱动齿轮组还包括:第一过渡齿轮,所述第一过渡齿轮与所述第一驱动齿轮啮合,所述第一过渡齿轮还与所述匣体齿轮啮合。
  5. 根据权利要求2所述的聚焦头,其特征在于,
    所述第二驱动结构包括:滚筒驱动齿轮组;
    所述滚筒驱动齿轮组包括:与所述第二驱动电机连接的第二电机驱动齿轮,以及,与所述屏蔽滚筒连接的滚筒驱动齿轮。
  6. 根据权利要求5所述的聚焦头,其特征在于,
    所述滚筒驱动齿轮组还包括:第二过渡齿轮,所述第二过渡齿轮与所述第二驱动齿轮啮合,所述第二过渡齿轮还与所述滚筒驱动齿轮啮合。
  7. 根据权利要求1所述的聚焦头,其特征在于,
    所述匣体的外表面与所述屏蔽滚筒的内表面相切,所述多个放射源设置在所述匣体中与所述屏蔽滚筒相切的一侧。
  8. 根据权利要求7所述的聚焦头,其特征在于,
    所述屏蔽滚筒包括:滚筒本体以及在所述滚筒本体的侧壁上设置的多个射线通道;
    其中,当所述多个放射源与所述多个射线通道一一对应连通时,所述聚焦头处于开源状态;当所述多个放射源与所述多个射线通道错开时,所述聚焦头处于关源状态。
  9. 根据权利要求8所述的聚焦头,其特征在于,
    当所述聚焦头进行开源状态与关源状态的切换时,所述第一驱动组件被配置为带动所述匣体转动。
  10. 根据权利要求8所述的聚焦头,其特征在于,
    当所述聚焦头进行开源状态与关源状态的切换时,所述第二驱动组件被配置为带动所述屏蔽滚筒转动。
  11. 根据权利要求8所述的聚焦头,其特征在于,
    当所述聚焦头进行开源状态与关源状态的切换时,所述第一驱动组件被配置为带动所述匣体绕第一方向转动,所述第二驱动组件被配置为带动所述屏蔽滚筒绕第二方向转动,所述第一方向与所述第二方向相反。
  12. 根据权利要求10所述的聚焦头,其特征在于,
    所述匣体与所述屏蔽滚筒相对转动的角度为锐角。
  13. 根据权利要求11所述的聚焦头,其特征在于,
    所述第一驱动组件被配置为带动所述匣体旋转180度,所述第二驱动组件被配置为带动所述屏蔽滚筒旋转90度。
  14. 根据权利要求8所述的聚焦头,其特征在于,
    所述匣体的外径小于所述屏蔽滚筒的内径。
  15. 根据权利要求14所述的聚焦头,其特征在于,
    所述匣体在所述第一驱动组件的驱动下绕所述屏蔽滚筒的中心轴旋转,所述屏蔽滚筒在所述第二驱动组件的驱动下绕所述屏蔽滚筒的中心轴旋转。
  16. 根据权利要求15所述的聚焦头,其特征在于,
    所述匣体的中心轴与所屏蔽滚筒的中心轴之间的距离为22毫米。
  17. 根据权利要求1所述的聚焦头,其特征在于,
    所述聚焦头还包括:用于包覆所述屏蔽滚筒的屏蔽层。
  18. 根据权利要求7所述的聚焦头,其特征在于,
    所述聚焦头还包括:准直器,所述准直器上设置有多个准直通道,当所述聚焦头处于开源状态时,所述多个射线通道与所述多个准直通道一一对应连通。
  19. 根据权利要求1所述的聚焦头,其特征在于,
    所述屏蔽滚筒的材料包括钨合金。
  20. 一种放疗设备,其特征在于,包括:旋转机架以及与所述旋转机架连接的聚焦头,所述聚焦头包括:
    匣体,所述匣体用于承载多个放射源;
    屏蔽滚筒,所述匣体位于所述屏蔽滚筒内;
    第一驱动组件,所述第一驱动组件与所述匣体连接,被配置为带动所述匣体转动;
    第二驱动组件,所述第二驱动组件与所述屏蔽滚筒连接,被配置为带动所述屏蔽滚筒转动。
PCT/CN2019/092802 2018-06-29 2019-06-25 一种聚焦头及放疗设备 WO2020001436A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/256,967 US20210178186A1 (en) 2018-06-29 2019-06-25 Focusing head and radiotherapy equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821046013.2U CN208990092U (zh) 2018-06-29 2018-06-29 一种聚焦头及放疗设备
CN201821046013.2 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020001436A1 true WO2020001436A1 (zh) 2020-01-02

Family

ID=66796302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092802 WO2020001436A1 (zh) 2018-06-29 2019-06-25 一种聚焦头及放疗设备

Country Status (3)

Country Link
US (1) US20210178186A1 (zh)
CN (1) CN208990092U (zh)
WO (1) WO2020001436A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114306958A (zh) * 2021-12-31 2022-04-12 西安大医集团股份有限公司 射源控制系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239224A (zh) * 2007-07-16 2008-08-13 深圳市海博科技有限公司 放射治疗驱动装置
WO2012089535A1 (en) * 2010-12-29 2012-07-05 Deutsches Krebsforschungszentrum Multi-leaf collimator with leaf drive
CN102698374A (zh) * 2012-05-29 2012-10-03 深圳市奥沃医学新技术发展有限公司 一种图像引导放射治疗设备
CN202620506U (zh) * 2012-05-29 2012-12-26 深圳市奥沃医学新技术发展有限公司 一种多源放射源装置及放射治疗设备
CN107890612A (zh) * 2017-12-05 2018-04-10 西安大医数码科技有限公司 一种聚焦放疗装置及设备
CN108175958A (zh) * 2018-03-16 2018-06-19 西安大医数码科技有限公司 聚焦头、准直器及伽玛刀

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789324B (zh) * 2016-04-15 2019-05-03 京东方科技集团股份有限公司 传感器及其制造方法、电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101239224A (zh) * 2007-07-16 2008-08-13 深圳市海博科技有限公司 放射治疗驱动装置
WO2012089535A1 (en) * 2010-12-29 2012-07-05 Deutsches Krebsforschungszentrum Multi-leaf collimator with leaf drive
CN102698374A (zh) * 2012-05-29 2012-10-03 深圳市奥沃医学新技术发展有限公司 一种图像引导放射治疗设备
CN202620506U (zh) * 2012-05-29 2012-12-26 深圳市奥沃医学新技术发展有限公司 一种多源放射源装置及放射治疗设备
CN107890612A (zh) * 2017-12-05 2018-04-10 西安大医数码科技有限公司 一种聚焦放疗装置及设备
CN108175958A (zh) * 2018-03-16 2018-06-19 西安大医数码科技有限公司 聚焦头、准直器及伽玛刀

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114306958A (zh) * 2021-12-31 2022-04-12 西安大医集团股份有限公司 射源控制系统及方法

Also Published As

Publication number Publication date
US20210178186A1 (en) 2021-06-17
CN208990092U (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
US8306189B2 (en) X-ray apparatus
CN109432613B (zh) 多源聚焦治疗和适形调强治疗放疗设备及其准直器组合
WO2012040964A1 (zh) 放射治疗装置、辐射装置及准直装置
WO2020038093A1 (zh) 放射治疗设备、控制驱动方法及设备、系统
WO2020038225A1 (zh) 准直体、放疗设备及其驱动控制方法
CN113082558B (zh) 一种载源体、射源装置及放射治疗系统
WO2017032345A1 (zh) 适形调强放疗装置
US20210196987A1 (en) Radiotherapy device, control driving method thereof, and radiotherapy system
US20200338368A1 (en) Radiotherapy equipment
JP2002136612A (ja) 放射線源から治療エリアへ放射線を供給する方法および装置
US10953243B2 (en) Radiation treatment device
WO2020001436A1 (zh) 一种聚焦头及放疗设备
WO2020038224A1 (zh) 载源体、放疗设备及其控制驱动方法
US20120314840A1 (en) Radiation therapy device and method for generating a resolution enhancement in irradiated radiation-exposure fields
WO2018176473A1 (zh) 多源聚焦放射治疗头及治疗设备
CN218248157U (zh) 钴源治疗头以及双头放射治疗设备
WO2012041127A1 (zh) 一种自聚焦放射源装置及其辐射装置
CN218871080U (zh) 放疗设备
CN218280334U (zh) 一种放疗系统
CN218220835U (zh) 一种伽玛刀放疗系统
JP2013520255A (ja) X線で動作する医療機器並びに当該医療機器の作動方法
US20170194124A1 (en) X-ray delivery
WO2019174461A1 (zh) 聚焦头、准直器及伽玛刀
JPH06160597A (ja) 放射線治療装置
JPH0316156B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19824757

Country of ref document: EP

Kind code of ref document: A1