WO2012041127A1 - 一种自聚焦放射源装置及其辐射装置 - Google Patents

一种自聚焦放射源装置及其辐射装置 Download PDF

Info

Publication number
WO2012041127A1
WO2012041127A1 PCT/CN2011/078452 CN2011078452W WO2012041127A1 WO 2012041127 A1 WO2012041127 A1 WO 2012041127A1 CN 2011078452 W CN2011078452 W CN 2011078452W WO 2012041127 A1 WO2012041127 A1 WO 2012041127A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
radiation
collimating
holes
self
Prior art date
Application number
PCT/CN2011/078452
Other languages
English (en)
French (fr)
Inventor
王翔宇
Original Assignee
宋世鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宋世鹏 filed Critical 宋世鹏
Priority to US13/877,085 priority Critical patent/US20130240761A1/en
Publication of WO2012041127A1 publication Critical patent/WO2012041127A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/04Irradiation devices with beam-forming means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/04Radioactive sources other than neutron sources
    • G21G4/06Radioactive sources other than neutron sources characterised by constructional features
    • G21G4/08Radioactive sources other than neutron sources characterised by constructional features specially adapted for medical application
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1084Beam delivery systems for delivering multiple intersecting beams at the same time, e.g. gamma knives
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the present invention relates to a focused radiation therapy apparatus, and more particularly to a radiation source apparatus for a focused radiation therapy apparatus and a radiation apparatus therefor.
  • Focused radiotherapy is the mainstream technology in the radiotherapy field.
  • the radiotherapy performance of the focused radiotherapy equipment can be characterized by the following parameters: 1) the size of the penumbra formed by the radiation emitted by the radioactive source; 2) the utilization rate of the radioactive source; 3) Pepi (the ratio of the dose of radiation radiating on the lesion to the dose of radiation radiated on the skin); 4) the size of the source, the complexity of the structure; 5) the size of the focal diameter; 6) automation The level of the level.
  • a good performance focused radiotherapy device should have a small penumbra, high radioactivity rate, high focal length, small focal diameter, small volume and cartridge structure, and automatic configuration. A high degree of treatment system.
  • the number of radioactive source particles in the treatment head of most radiotherapy devices is from ten to several hundred, and the radioactive source particles are dispersed in the source cladding.
  • the energy of the radiation emitted by the radiation source is not concentrated, which may affect the therapeutic effect; or the collimation hole is made larger, so that the minimum focal diameter is necessarily larger, resulting in some need for a small target point (small focus diameter)
  • the irradiated lesion cannot be treated with the radiotherapy device, and the indication range of the radiotherapy device is narrowed.
  • a small focal hole diameter is obtained, only the collimating hole can be made small, so that a considerable part of the radiation emitted by the radiation source cannot form an effective target dose through the collimating hole, so that the utilization rate of the radioactive source is greatly reduced.
  • the target dose is also lowered, so that a better therapeutic effect is not achieved.
  • the company has made the active area of the radioactive source in the radiotherapy device 1 mm in diameter, which can achieve greater utilization of the radioactive source, smaller focal diameter and smaller penumbra. But in order to achieve the above effect
  • the number of particles in the source is as large as several hundred, which makes the structure extremely complicated, the processing is very difficult, the treatment head is large, the weight of the whole device is heavy, and hundreds of sources are sealed in hundreds of source envelopes. Transportation and installation are very cumbersome and costly.
  • the problem to be solved by the present invention is to provide a self-focusing radiation source device and a radiation device to improve the utilization of the radiation source, and to have a smaller penumbra and a single-piece structure and a small volume.
  • the present invention provides a self-focusing radiation source device, comprising: a source cladding; a source cladding includes a source; M radiation sources are arranged in the source, the source The rays of the M sources in the cladding are focused on a common focus, where M is a natural number greater than one.
  • the radioactive sources are arranged in N groups, and the M radioactive sources are arranged in N groups, and the closest radio source center spacing in the group is not greater than the closest radio source center spacing between the groups, wherein N is greater than The natural number of 1.
  • the source body is in a cylindrical shape, and the N sets of radiation sources are uniformly distributed on the end surface of the source body centering on the center of the end face.
  • each set of radioactive sources is uniformly distributed around the center of the circle in an circumscribed circle.
  • the present invention also provides a radiation device, including:
  • a collimating device for collimating the radiation emitted by the self-focusing source.
  • the collimating device has multiple sets of collimating holes with different aperture sizes, and the center line of the collimating holes is focused on a common focus; at least one set of the collimating holes has a number of M, and the distribution rule thereof Matching the distribution law of the M sources of the source body.
  • the number of collimating holes in the collimating device is N, and the distribution law matches the distribution law of the N groups of radioactive sources.
  • the present invention has the following advantages:
  • the self-focusing radiation source device and the radiation device provided by the present invention since the self-focusing radiation source device uses a plurality of radiation sources sealed in one source cladding, and the radiation of the plurality of radiation sources is focused on the focus, not only the radiation source device
  • the installation and transportation process are more compact and more convenient; and the volume of the self-focusing radioactive source device is greatly reduced, and the structural unit is single, so that the weight is also greatly reduced, thereby also greatly reducing the volume of the radiation device. , the weight is also greatly reduced.
  • the radiation device includes a self-focusing radiation source device and a collimating device, wherein the collimating device is provided with a plurality of sets of collimating holes having different aperture sizes, and at least one of the collimating holes includes M collimating holes, and the distribution thereof
  • the law is matched with the distribution law of the M source of the source body, the diameter of the collimating hole is small, a small focal diameter can be realized, and a smaller half can be obtained without reducing the utilization rate of the source.
  • at least one of the collimating holes includes N collimating holes, the collimating holes have a large aperture, and the distribution law matches the distribution law of the N groups of radio sources, so that the diameters can be different.
  • the focus is to achieve a smaller penumbra, and the utilization rate of the radioactive source is not greatly reduced.
  • the coke ratio is increased, the number of radioactive sources is large, and in a radiation device of an equal number of radioactive sources, The volume of the radiation device is much smaller than that of the existing radiation device, and the structure is greatly tubular, which is more conducive to processing and manufacturing; from the perspective of the radiation device as a whole, the weight is greatly reduced, which is very advantageous for installation and movement. System, so that the angle of incidence is very flexible range of applications has been greatly expanded.
  • FIG. 1 is a perspective structural view of a self-focusing radiation source according to an embodiment of the present invention
  • Figure 2 is a plan view of the autofocus source of the embodiment of the present invention shown in Figure 1 on an end surface remote from the common focus;
  • FIG. 3 is a schematic perspective view of a radiation device according to a specific embodiment of the present invention.
  • the self-focusing radiation source and the radiation device provided by the invention have a plurality of radiation sources sealed in a source cladding because of the self-focusing radiation source, so that the source cladding is more simple and convenient during installation and transportation. Since most of the source devices contain a plurality of sources, each of the sources in the prior art is individually sealed in a source enclosure, so that multiple source enclosures are performed multiple times during installation and transportation. Moreover, the volume of the self-focusing radiation source is greatly reduced, and the structural unit is single, so that the weight is also greatly reduced. As a result, the volume of the radiation device is greatly reduced, the structure is simple, and the weight is greatly reduced.
  • the radiation device includes a self-focusing radiation source and a collimating device, and the collimating device is provided with a plurality of sets of collimating holes having different aperture sizes, wherein at least one of the collimating holes with a small aperture includes M collimating holes
  • the distribution law is matched with the distribution law of the M source of the source body to achieve a smaller focal diameter, and a smaller penumbra is obtained without reducing the utilization rate of the source; in addition, at least one group
  • the collimating device with a larger aperture includes N collimating holes, and the distribution law thereof is matched with the distribution law of the N groups of radio sources, so that the focal points of different diameters can be realized, and a small penumbra can be realized, and Can make the utilization rate of the radioactive source not greatly reduced; in addition, because the coke ratio is to be increased,
  • the number of sources is large (generally more than 100).
  • the volume of the radiation device is much smaller than that of the existing radiation device, and the structure is greatly tubular, which is more conducive to processing and manufacturing; As a whole, the radiation device is greatly reduced in weight, which is very advantageous for installation and motion control, making the angle of incidence very flexible.
  • a self-focusing radiation source device includes a source cladding; a source cladding includes a source body; M radiation sources are arranged in the source body, and the M is in the source cladding
  • the radiation of one source is focused on a common focus, and the source can be placed in the source hole, the center line of the source hole is focused on the common focus (in the process of tumor radiotherapy, the lesion is placed at the common focus of the ray), so that M
  • the rays of the source within the source are focused on a common focus, where M is a natural number greater than one.
  • the self-focusing radiation source of the present invention includes: a source cladding 10 placed in a source cladding
  • the source body 20 of 10 the source body 20 includes 154 source holes 22, and 154 radiation sources (i.e., M is 154) are respectively placed in 154 source holes 22, and the extension lines of the source holes 22 are focused on the common focus.
  • the 154 source holes 22 are arranged in 22 groups (ie, N is 22), and the 154 radiation sources placed in the source holes 22 are also 22 groups are arranged (i.e., N is 22), and the closest source center spacing in the group is not greater than the closest source center spacing between the groups.
  • the sources within the group are evenly distributed, ie The center distances of adjacent radioactive sources in the group are equal, and each group of radioactive sources is also hooked, that is, the center spacing of adjacent groups of radioactive sources is equal.
  • the center spacing of the radioactive sources in the group is not Greater than or equal to the center of the source between the groups From the radiation source in the radiation source 154 0 rays focused at a common focus.
  • the source of radiation placed in the source aperture is cobalt-60.
  • the M radioactive sources are arranged in N groups, and the closest radio source center spacing in the group is not greater than the closest radio source center spacing between the groups, wherein N is a natural number greater than 1, such that
  • the radiation sources are grouped and arranged, and when the self-focusing radiation source device is aligned with the collimating device, the grouped radiation sources can be used to form targets of different diameters, wherein the number of collimating holes of M is smaller than the number of collimating holes of N
  • the aperture can form a small target, and the number N of collimated holes corresponds to the N sets of radiation sources, and the radiation emitted by each set of radiation sources can be emitted through a collimated hole to form a large target.
  • the self-focusing source device of the present invention can greatly increase the focus dose and achieve a higher caroten ratio.
  • the radiation source is placed in the source hole, so the distribution law of the source hole can represent the distribution law of the radiation source, so the distribution law of the source hole described below represents the source of the radiation source. Distribution.
  • a source is distributed in each source hole.
  • the number of source holes is not excluded from the number of sources, that is, the source is not placed in some source holes.
  • the source body 20 has a cylindrical shape, and the 22 sets of source holes are uniformly distributed on the end surface of the source body 20 with the center of the end face as a center.
  • the wall thickness between each source hole in each source hole of the source body 20 can be made thin, so that the volume of the source body can be greatly reduced, and the volume of the entire source body can be greatly reduced.
  • the shape of the source body is a cylindrical shape, which is a preferred embodiment of the present invention.
  • the shape of the source body is not limited to a cylindrical shape, and may be other shapes, such as a truncated cone shape.
  • the source body 20 has 22 sets of source holes. 22, each group comprising seven source holes 22, a total of 154, this embodiment is a preferred embodiment of the invention.
  • the number of sets of the source holes 22 of the source body 20 is not limited to 22 sets, and the number of the source holes 22 of each set is not limited to seven, the number of sets of the source holes 22, and each The number of source holes 22 is preferably such that the dose of radiation at the time of radiation therapy can be reached.
  • the twenty-two sets of source holes are evenly distributed on the end face 23 of the source body 20 away from the common focus 0, a set of source holes 22 are distributed in the center of the end face, and six sets of inner rings are centered on the center of the end face.
  • the source holes 22 and the outer ring are distributed with fifteen sets of source holes 22.
  • each set of radiation sources is uniformly distributed around the center of the circle in an circumscribed circle, that is, each set of source holes 22 is included.
  • the plurality of source holes 22 have a common circumscribed circle 21, and the plurality of source holes 22 are uniformly distributed around the center of the tangential circle 21, and a source hole 22 is also distributed at the center thereof, which is specific to the present invention as shown in the drawing. In the embodiment, six source holes 22 are distributed around the center of the circumscribed circle 21.
  • the specific size of the source body, the pore distance of each source, and the size of the source of the present invention can be adjusted according to a plurality of factors such as the active area of the source, the specific activity, and the dose requirement of the treatment target area.
  • the source body 20 has a diameter of 66.5 mm
  • the circumscribed circle 21 has a diameter of 5.5 mm
  • the source hole 22 has a diameter of l mm.
  • the volume of the multi-source source device is much smaller than that of the prior art.
  • the present invention also provides a radiation device
  • the radiation device of the specific embodiment of the present invention will be described in detail with reference to the accompanying drawings.
  • FIG. 3 is a perspective structural view of a radiation device according to a specific embodiment of the present invention, and a radiation device for a radiation therapy device according to an embodiment of the present invention, wherein the collimating device included is correspondingly improved according to the structure of the source body, and the present invention is
  • the radiation device comprises: the self-focusing radiation source device described above, in the embodiment of the invention shown in FIG. 3, being a self-focusing radiation source device 100, the self-focusing radiation source device 100 comprising the source body embodied above 20; a collimating device 30 for collimating the radiation emitted by the source body 20.
  • the collimating device 30 has a plurality of sets of collimating holes having different apertures, the center line of the collimating holes is focused on a common focus; at least one set of the collimating holes is M, and the distribution law and the source are The distribution law of the M radioactive sources of the body is matched.
  • each set of collimating holes includes a plurality of collimating holes, wherein a center line of each set of collimating holes is focused on a common focus; in a specific embodiment of the present invention, a set of collimating holes having the smallest aperture includes There are 154 collimating holes, the distribution law of which matches the distribution law of 154 source holes of the source body 20, and the other group collimating holes include N collimating holes, in a specific embodiment of the present invention, The other group of collimating holes contains 22 collimating holes whose distribution rules match the distribution patterns of the 22 sets of source holes on the source body 20.
  • the collimation device collimates the radiation emitted by the source.
  • the collimation aperture of each set of collimation holes of the number M ( 154 ) is smaller than the collimation aperture of each set of collimation holes of the number N ( 22 ).
  • the number of collimating holes in which the number of collimating holes is M is not limited to one, and may be plural, and is set according to actual application; a group of collimating holes having a number of collimating holes N The number is not limited to one, and may be plural.
  • the collimating device 30 includes five sets of collimating holes, which are a first set of collimating holes 31, a second set of collimating holes 32, and a third set of collimating A hole 33, a fourth set of collimating holes 34, and a fifth set of collimating holes 35, wherein the center line of each set of collimating holes is focused on a common focus.
  • the first set of collimating holes 31 has a minimum aperture, and includes 154 collimating holes, the distribution law of which matches the distribution law of the 154 source holes of the source body 20, and the first group of collimating holes 31 When aligned with the source aperture of the source body 20 of the self-focusing source, a minimum focus diameter can be achieved, which is suitable for a small lesion.
  • the second group of collimating holes 32, the third group of collimating holes 33, the fourth group of collimating holes 34 and the fifth group of collimating holes 35 comprise 22 collimating holes, the distribution law of which is 22 on the source body 20.
  • the distribution law of the group source holes is matched, which is suitable for diseases with large lesions.
  • each set of collimating holes has different apertures, and in practice, a group of collimating holes collimating source 20 having a corresponding aperture may be selected according to the type of the lesion. Rays. It should be noted that the collimating hole of the collimating device 30 The number of groups can be arbitrarily set according to actual needs, and is not limited to five groups. The aperture of each group of collimating holes is also set according to actual needs. The number of collimating holes needs to be based on the number of source holes on the source body 20. Make the appropriate settings.
  • the collimating device 30 is connectable to the self-focusing radioactive source 100 through the rotating member 40, so that the collimating device 30 and the self-focusing radioactive source 100 are relatively rotatable, thereby achieving the purpose of switching collimating holes of different apertures.
  • the collimating device 30 has a cylindrical shape, which is a preferred embodiment of the present invention.
  • shape of the collimating device is not limited to a cylindrical shape, and may be other shapes, such as a truncated cone. Shape, regular polyhedral column, etc.
  • the self-focusing radiation source and the radiation device of the invention can improve the utilization rate of the radiation source; obtain a smaller penumbra, and the volume is greatly reduced compared with the prior art, and the weight is also greatly reduced; the focus with a smaller diameter can be retained, adapted to A variety of lesions of different size.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种自聚焦放射源装置及其辐射装置,其中,自聚焦放射源装置包括:源包壳;源包壳中包含一源体;M个放射源被排布在所述源体中,所述源包壳中所述M个放射源的射线聚焦于公共焦点,其中M为大于1的自然数。本发明的自聚焦放射源及辐射装置可以使源体的体积大大缩小,重量减轻;而且获得小的半影和小的焦点半径,并具有非常灵活的入射角,应用范围广泛。

Description

一种自聚焦放射源装置及其辐射装置 本申请要求于 2010年 9 月 30 日提交中国国家知识产权局、 申请号为 201010503147.4、 发明名称为"一种自聚焦放射源装置及其辐射装置"的中国专 利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种聚焦式放射治疗装置,尤其涉及一种用于聚焦式放射治疗 装置的放射源装置及其辐射装置。
背景技术
聚焦式放疗是放疗界的主流技术,聚焦式放疗设备的放疗性能可以通过以 下参数进行表征: 1 )放射源放射的射线形成的半影的大小; 2 )放射源利用率 的高低; 3 ) 焦皮比 (辐射在病灶上的放射线的剂量与辐射在皮肤上的放射线 的剂量的比率)的高低; 4 )放射源的体积的大小、 结构的繁筒; 5 )焦点直径 的大小; 6 ) 自动化程度的高低。 性能好的聚焦式放疗设备其放射源和辐射装 置应该具有小的半影, 高的放射源利用率, 高的焦皮比, 小的焦点直径, 小的 体积和筒单的结构, 并配置自动化程度高的治疗系统。
目前, 大多数放疗装置的治疗头中的放射源颗粒数量为十几至几百颗,放 射源颗粒在源包壳中发散排布, 在以上诸多参数方面存在不可协调满足的问 题, 如: 为了获得大的放射源利用率, 将每颗放射源颗粒活性面积做的较大, 一般为 3.5mm左右, 这将导致放疗装置的半影较大, 即通常说的 "刀" 不 "锋 利", 也就是说, 放射源放射的放射线的能量不集中, 从而会影响治疗效果; 或者将准直孔做得较大, 这样最小焦点直径就必然较大,从而导致有些需要小 靶点(小焦点直径)照射的病灶无法使用该放疗装置来治疗, 使放疗装置的适 应症范围缩小。 还有如果为了获得较小的焦点直径, 只能将准直孔做得很小, 这样放射源放射的相当一部分放射线不能通过准直孔形成有效靶点剂量,使放 射源的利用率大大降低,同时也使靶点剂量降低,因而达不到较好的治疗效果。
现在己有公司将放疗装置中的放射源的活性面积做到了直径 1mm, 可以 做到较大的放射源利用率、较小的焦点直径和较小的半影。但为了达到以上效 果, 其放射源颗粒数量多达几百颗, 致使其结构极其复杂, 加工难度很大, 治 疗头体积很大,整个装置重量很重;而且几百颗放射源密封在几百个源包壳中, 运输和安装非常麻烦, 成本也高。
发明内容
本发明解决的问题是提供一种自聚焦放射源装置以及辐射装置,以提高放 射源利用率, 并且具有较小的半影以及筒单的结构和较小的体积。
为解决以上技术问题, 本发明提供一种自聚焦放射源装置, 包括: 源包壳; 源包壳中包含一源体; M 个放射源被排布在所述的源体中, 所 述源包壳中所述 M个放射源的射线聚焦于公共焦点, 其中 M为大于 1的自然 数。
可选的, 所述放射源呈 N组排列, 所述 M个放射源呈 N组排列, 组内最 接近的放射源中心间距不大于组间的最接近的放射源中心间距, 其中 N为大 于 1的自然数。
可选的, 所述的源体呈圆柱体状, 所述 N组放射源在源体端面上呈现以 该端面圆心为中心均匀分布。
可选的,在源体端面上,每组放射源在一个外切圆内以其圆心为中心均匀 分布。
为解决以上技术问题, 本发明还提供一种辐射装置, 包括:
以上任一项所述的自聚焦放射源;
一准直装置, 用于准直所述自聚焦放射源放射的射线。
可选的, 所述准直装置具有多组孔径大小不同的准直孔, 所述准直孔的中 心线聚焦于公共焦点; 至少有一组所述准直孔的数量为 M个, 其分布规律与 所述源体的 M个放射源的分布规律相匹配。 所述准直装置中至少有一组准直 孔的数量为 N个, 其分布规律与所述 N组放射源的分布规律相匹配。
与现有技术相比, 本发明具有以下优点:
本发明提供的自聚焦放射源装置及辐射装置,由于自聚焦放射源装置采用 将多个放射源密封在一个源包壳中, 并使多个放射源的射线聚焦在焦点, 不仅 使放射源装置的在安装、运输过程中更筒单、 更便捷; 而且自聚焦放射源装置 的体积大大缩小, 加之结构筒单, 从而重量也大大缩小, 从而也使辐射装置的 体积大大减小, 结构筒单, 重量也大大减小。 进一步地, 包括自聚焦放射源装置以及准直装置的辐射装置, 其准直装置 上设有多组孔径大小不同的准直孔, 至少有一组准直孔中包含 M个准直孔, 其分布规律与源体的 M个放射源的分布规律相匹配,所述准直孔的孔径较小, 可以实现较小的焦点直径,在放射源利用率不降低的情况下, 可以获得较小的 半影; 另外, 至少有一组准直孔中包含有 N个准直孔, 准直孔的孔径较大, 其分布规律与所述 N组放射源的分布规律相匹配, 这样既可以实现直径大小 不同的焦点, 实现较小的半影, 又能使放射源的利用率不大幅度降低; 另外由 于要提高焦皮比, 放射源数量较多, 在等数量的放射源的辐射装置中, 所述辐 射装置体积比现有的辐射装置大大缩小,而且结构大大筒化,更利于加工制造; 从辐射装置整体看, 其重量大大减轻, 非常有利于安装和运动控制, 使入射角 非常灵活, 应用范围得到极大的拓展。
附图说明
图 1为本发明具体实施例的自聚焦放射源的立体结构图;
图 2为图 1所示的本发明具体实施例的自聚焦放射源在远离公共焦点的端 面上的平面图;
图 3为本发明具体实施例的辐射装置的立体结构示意图。
具体实施方式
本发明提供的自聚焦放射源及辐射装置,由于自聚焦放射源采用将多个放 射源密封在一个源包壳中, 使源包壳在安装、 运输过程中更筒单、 更便捷。 因 为大多数放射源装置都包含多个放射源,但是现有技术中每个放射源单独密封 在一个源包壳中, 因此多个源包壳在安装运输中要按多次进行。 而且自聚焦放 射源的体积大大缩小, 加之结构筒单, 从而重量也大大缩小。 从而也使辐射装 置的体积大大减小, 结构筒单, 重量也大大减小。
进一步地, 包括自聚焦放射源以及准直装置的辐射装置, 其准直装置上设 有多组孔径大小不同的准直孔, 其中至少有一组小孔径的准直孔中包含 M个 准直孔, 其分布规律与源体的 M个放射源的分布规律相匹配, 实现较小的焦 点直径, 而且在放射源利用率不降低的情况下, 获得了较小的半影; 另外, 至 少有一组较大孔径的准直装置中包含有 N个准直孔, 其分布规律与所述 N组 放射源的分布规律相匹配, 这样既可以实现直径不同大小的焦点, 实现较小的 半影, 又能使放射源的利用率不大幅度降低; 另外由于要提高焦皮比, 所以放 射源数量较多 (一般在 100多个), 在等数量的放射源的辐射装置中, 所述辐 射装置体积比现有的辐射装置大大缩小,而且结构大大筒化,更利于加工制造; 从辐射装置整体看, 其重量大大减轻, 非常有利于安装和运动控制, 使入射角 非常灵活。
本发明的具体实施方式的自聚焦放射源装置, 包括源包壳; 源包壳中包含 一个源体; M个放射源被排布在所述源体中, 所述源包壳中所述 M个放射源 的射线聚焦于公共焦点,放射源可放置于源孔中, 所述源孔的中心线聚焦于公 共焦点(在肿瘤放射治疗过程中, 病灶置于射线的公共焦点上), 使 M个放射 源内放射源的射线聚焦于公共焦点, 其中 M为大于 1的自然数。
为了使本领域的技术人员可以更好的理解本发明的实质,下面结合附图对 本发明具体实施例做详细说明。
图 1为本发明具体实施例的用于放射治疗装置的源体的立体结构图,参考 图 1 , 结合参考图 2, 本发明的自聚焦放射源包括: 源包壳 10, 置于源包壳 10 中的源体 20; 所述源体 20包含 154个源孔 22, 154个放射源 (即 M为 154 ) 被分别放置于 154个源孔 22内, 源孔 22的延伸线聚焦于公共焦点 0,从而使 154个放射源的射线聚焦于公共焦点 0; 所述 154个源孔 22呈 22组(即 N为 22 )排列, 放置于所述源孔 22内的 154个放射源因此也呈 22组排列 (即 N 为 22 ), 组内最接近的放射源中心间距不大于组间的最接近的放射源中心间 距, 在本发明的具体实施例中, 组内的放射源均匀分布, 即组内相邻的放射源 的中心间距相等,而且每组放射源也均勾分布,即相邻组放射源中心间距相等, 因此在本发明的具体实施例中,组内的放射源中心间距不大于即小于等于组间 的放射源中心间距, 154个放射源内放射源的射线聚焦于公共焦点 0。 在本发 明具体实施例中, 所述源孔中放置的放射源为钴 - 60。
在本发明具体实施例中, 所述 M个放射源呈 N组排列, 组内最接近的放 射源中心间距不大于组间的最接近的放射源中心间距, 其中 N为大于 1的自 然数, 这样将放射源分组排列, 在自聚焦放射源装置与准直装置对准时, 可以 利用分组的放射源形成不同直径的靶点, 其中数量为 M的准直孔的孔径小于 数量为 N的准直孔的孔径, 可以形成小靶点, 数量为 N的准直孔与 N组放射 源对应, 可以将每一组放射源放射的射线通过一个准直孔射出, 形成大靶点。 本发明的自聚焦源装置可以使焦点剂量大大增加, 实现更高的焦皮比。 需要说明的是, 由于图示中没有示出放射源, 放射源置于源孔中, 因此源 孔的分布规律可以代表放射源的分布规律,因此以下描述的源孔的分布规律代 表放射源的分布规律。 在本发明的具体实施例中每一源孔内均分布一个放射 源, 当然在实际中, 不排除源孔的数量大于放射源的数量, 即一些源孔中不放 置放射源的情形。
在本发明的具体实施例中, 所述源体 20呈圆柱体状, 所述 22组源孔在源 体 20端面上呈现以该端面圆心为中心均勾分布。源体 20中每组源孔中各条源 孔之间的壁厚可以很薄,从而可以大大减小源体的体积,使整个源体的体积大 大缩小。 而且经试险证明, 在准直装置的轴向尺寸达到 180mm以上时, 出射 的射线半影很小。 在本发明的具体实施例中, 源体的形状为圆柱状, 此为本发 明的较佳实施例, 当然, 源体的形状并不限于圆柱状, 也可以为其他形状, 例 如圆台状。
图 2为图 1所示的本发明具体实施例的自聚焦放射源在源体 20端面上的 平面图, 结合参考图 2, 在本发明的该具体实施例中, 源体 20具有 22组源孔 22, 每一组包括七个源孔 22, 共 154个, 此实施例为本发明的较佳实施例。 在本发明的其他实施例中, 源体 20具有的源孔 22的组数不限于 22组, 每一 组的源孔 22的个数也不限于七个, 源孔 22的组数以及每一组源孔 22的个数 以可以到达放射治疗时射线的剂量为佳。在该具体实施例中,二十二组源孔在 源体 20远离公共焦点 0的端面 23上均匀分布,端面的中心分布一组源孔 22, 以端面的圆心为中心的内圈分布六组源孔 22, 外圈分布十五组源孔 22。 而且 在本发明的具体实施例中, 在源体远离公共焦点 0的端面 23上, 每组放射源 在一个外切圆内以其圆心为中心均匀分布, 即所述每组源孔 22包括的多个源 孔 22具有一共同的外切圆 21 , 并且多个源孔 22以外切圆 21的圆心为中心均 匀分布, 其中心也分布一个源孔 22, 在图示所示的本发明的具体实施例中, 以外切圆 21的圆心为中心分布了六个源孔 22。
本发明中源体的具体尺寸、每一放射源的孔距以及放射源的大小可以根据 放射源的活性区、 比活度、 治疗靶区的剂量要求等多个因素进行调整设计。 在 本实施例中, 源体 20的直径为 66.5mm, 外切圆 21的直径为 5.5mm, 源孔 22 的直径为 lmm。 比现有技术中的多源放射源装置的体积大大缩小。
根据以上所述的本发明的自聚焦放射源装置, 本发明还提供一种辐射装 置, 结合附图对本发明具体实施方式的辐射装置做详细说明。
图 3为本发明具体实施例的辐射装置的立体结构图,本发明具体实施例的 用于放射治疗装置的辐射装置,其中包括的准直装置根据源体的结构做相应的 改进, 本发明的辐射装置包括: 以上所述的自聚焦放射源装置, 在图 3所示的 本发明的具体实施例中, 为自聚焦放射源装置 100, 该自聚焦放射源装置 100 包括以上具体实施的源体 20;准直装置 30,用于准直所述源体 20放射的射线。
所述准直装置 30具有多组孔径不同的准直孔, 所述准直孔的中心线聚焦 于公共焦点; 至少有一组所述准直孔的数量为 M个, 其分布规律与所述源体 的 M个放射源的分布规律相匹配。 具体为, 每一组准直孔包括多个准直孔, 其中每一组准直孔的中心线聚焦于公共焦点; 在本发明的具体实施例中, 孔径 最小的一组准直孔中包含有 154个准直孔, 其分布规律与所述源体 20的 154 个源孔的分布规律相匹配, 其他组准直孔中包含有 N个准直孔, 在本发明的 具体实施例中, 其他组准直孔中包含有 22个准直孔, 其分布规律与在源体 20 上的 22组源孔的分布规律相匹配。在源体 20上的源孔与其中一组准直孔对准 时, 准直装置准直源体放射的射线。 所述数量为 M ( 154 ) 的每组准直孔的准 直孔孔径小于数量为 N ( 22 ) 的每组准直孔的准直孔孔径。
在本发明的其他实施例中,准直孔数量为 M的准直孔的组数不限于一个, 也可以为多个, 根据实际应用需要设置; 准直孔数量为 N 的准直孔的组数不 限于一个, 也可以为多个。
在图 3所示的本发明的具体实施例中,所述准直装置 30包括 5组准直孔, 分别为第一组准直孔 31、 第二组准直孔 32、 第三组准直孔 33、 第四组准直孔 34和第五组准直孔 35 , 其中每一组准直孔的中心线聚焦于公共焦点。 其中, 第一组准直孔 31具有最小的孔径, 其包括 154个准直孔, 其分布规律与所述 源体 20的 154个源孔的分布规律相匹配,在第一组准直孔 31与所述自聚焦放 射源的源体 20的源孔对准时, 可以实现最小的焦点直径, 适用于小病灶的病 症。 第二组准直孔 32、 第三组准直孔 33、 第四组准直孔 34和第五组准直孔 35包含有 22个准直孔, 其分布规律与在源体 20上的 22组源孔的分布规律相 匹配, 适用于病灶较大的病症。 在本发明的具体实施例中, 所述每组准直孔分 别具有不同的孔径,在实际运用中可以根据病灶的种类, 选择具有相应的孔径 的一组准直孔准直源体 20放射的射线。 需要说明的是, 准直装置 30的准直孔 的组数根据实际的需要可以任意设置, 并不限于五组,每组准直孔的孔径也根 据实际使用的需要进行设置, 准直孔的个数需要根据源体 20上源孔的个数进 行相应的设置。
准直装置 30通过转动部件 40与自聚焦放射源 100可连接, 使准直装置 30与自聚焦放射源 100可相对转动, 从而来达到切换不同孔径的准直孔的目 的。
在本发明的具体实施例中, 所述准直装置 30呈圆柱状, 此为本发明的较 佳实施例, 当然, 准直装置的形状并不限于圆柱状, 也可以为其他形状, 例如 圆台状, 正多面体柱状等。
本发明的自聚焦放射源、辐射装置可以提高放射源的利用率; 获得较小的 半影, 而且体积比现有技术大大缩小, 重量也大大减小; 可以保留直径较小的 焦点, 适应于各种不同病灶大小的病症。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何 本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法 和技术内容对本发明技术方案做出可能的变动和修改, 因此, 凡是未脱离本发 改、 等同变化及修饰, 均属于本发明技术方案的保护范围。

Claims

权 利 要 求
1、 一种自聚焦放射源装置, 包括源包壳; 其特征在于, 源包壳中包含一 源体; M个放射源被排布在所述源体中, 所述源包壳中所述 M个放射源的射 线聚焦于公共焦点, 其中 M为大于 1的自然数。
2、 如权利要求 1所述的自聚焦放射源装置, 其特征在于, 所述 M个放射 源呈 N组排列, 组内最接近的放射源中心间距不大于组间的最接近的放射源 中心间距, 其中 N为大于 1的自然数。
3、 如权利要求 2所述的自聚焦放射源装置, 其特征在于, 所述的源体呈 圆柱体状, 所述 N组放射源在源体端面上呈现以该端面圆心为中心均匀分布。
4、 如权利要求 3所述的自聚焦放射源装置, 其特征在于, 在源体端面上, 所述每组放射源在一个外切圆内以其圆心为中心均匀分布。
5、 一种辐射装置, 其特征在于, 包括:
权利要求 1 ~ 4任一项所述的自聚焦放射源装置;
准直装置, 用于准直所述自聚焦放射源装置放射的射线。
6、 如权利要求 5所述的辐射装置, 其特征在于, 所述准直装置具有多组 孔径大小不同的准直孔, 所述准直孔的中心线聚焦于公共焦点; 至少有一组所 述准直孔的数量为 M个, 其分布规律与所述源体的 M个放射源的分布规律相 匹配。
7、 如权利要求 5或 6所述的辐射装置, 其特征在于, 所述准直装置中至 少有一组准直孔的数量为 N个, 其分布规律与所述 N组放射源的分布规律相 匹配。
8、 如权利要求 7所述的辐射装置, 其特征在于, 所述数量为 M的每组准 直孔的准直孔孔径小于数量为 N的每组准直孔的准直孔孔径。
PCT/CN2011/078452 2010-09-30 2011-08-16 一种自聚焦放射源装置及其辐射装置 WO2012041127A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/877,085 US20130240761A1 (en) 2010-09-30 2011-08-16 Self-focusing radioactive source device and radiating apparatus employing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010503147.4 2010-09-30
CN201010503147.4A CN102446571B (zh) 2010-09-30 2010-09-30 一种自聚焦放射源装置及其辐射装置

Publications (1)

Publication Number Publication Date
WO2012041127A1 true WO2012041127A1 (zh) 2012-04-05

Family

ID=45891901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078452 WO2012041127A1 (zh) 2010-09-30 2011-08-16 一种自聚焦放射源装置及其辐射装置

Country Status (3)

Country Link
US (1) US20130240761A1 (zh)
CN (1) CN102446571B (zh)
WO (1) WO2012041127A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2984596C (en) 2015-05-07 2020-11-10 Illinois Tool Works Inc. Strontium sealed source
US11318326B2 (en) 2015-05-07 2022-05-03 Qsa Global Inc. Strontium sealed source
CN109481853B (zh) * 2018-11-16 2020-10-30 胡逸民 一种用于x射线笔形束扫描调强治疗的蜂窝式准直器

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334040B2 (zh) * 1980-01-11 1991-05-21 Se Je Eeru Mebu
CN1087551A (zh) * 1993-04-13 1994-06-08 宋世鹏 旋转锥面聚焦式伽玛射线辐射单元
CN1355055A (zh) * 2000-11-24 2002-06-26 胡逸民 X(γ)射线调强治疗装置
CN2543542Y (zh) * 2002-04-04 2003-04-09 深圳市世纪互动实业发展有限公司 伽玛射线体部治疗装置
CN1448195A (zh) * 2002-04-04 2003-10-15 深圳市世纪互动实业发展有限公司 伽玛射线体部治疗装置
CN2676951Y (zh) * 2003-12-31 2005-02-09 深圳市尊瑞科技有限公司 放射治疗辐射装置
CN1586671A (zh) * 2004-09-15 2005-03-02 杭州华源伽玛医疗设备投资有限公司 折线排列伽玛射线放射源
CN1634620A (zh) * 2003-12-31 2005-07-06 深圳市尊瑞科技有限公司 放射治疗辐射装置及其辐射方法
CN2736015Y (zh) * 2004-09-15 2005-10-26 杭州华源伽玛医疗设备投资有限公司 折线排列伽玛射线放射源
CN2772541Y (zh) * 2005-03-03 2006-04-19 卢艳 一种伽玛射线放射治疗装置
CN2780247Y (zh) * 2005-04-18 2006-05-17 定锦霞 伽玛射线治疗装置
CN2790509Y (zh) * 2005-01-28 2006-06-28 惠小兵 一种放射治疗的辐射装置
CN1810320A (zh) * 2005-01-28 2006-08-02 惠小兵 一种放射治疗装置
CN100998909A (zh) * 2007-01-04 2007-07-18 吕风华 伽玛射线聚焦辐照单元
CN200994996Y (zh) * 2007-01-04 2007-12-26 吕风华 伽玛射线聚焦辐照单元
CN101195058A (zh) * 2007-11-27 2008-06-11 深圳市海博科技有限公司 多准直体放射治疗装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3889113A (en) * 1973-05-03 1975-06-10 Columbia Scient Ind Inc Radioisotope-excited, energy-dispersive x-ray fluorescence apparatus
US4651012A (en) * 1985-03-21 1987-03-17 Martin Marietta Corporation High brilliance lensless projection system of test patterns
JPH0549707A (ja) * 1991-04-19 1993-03-02 Hitachi Medical Corp 定位法放射線治療装置
FR2706132B1 (fr) * 1993-06-07 1995-09-01 Atea Dispositif de traitement de lésions cérébrales par rayonnement gamma, et appareil de traitement correspondant.
IL118496A0 (en) * 1996-05-30 1996-09-12 Ein Gal Moshe Collimators
SE9803065L (sv) * 1998-09-10 1999-10-11 Elekta Ab Förfarande för framställning av en strålknivskollimator och användning av en strålknivskollimator
WO2000066223A1 (en) * 1999-05-03 2000-11-09 Franz Krispel Rotating stereotactic treatment system
CN1137739C (zh) * 1999-05-31 2004-02-11 深圳市海博科技有限公司 多源放射线全身治疗装置
SE522710C2 (sv) * 2002-07-05 2004-03-02 Elekta Ab Strålterapiapparat med flera uppsättningar hål i kollimatorringen där förskjutbara plattor bestämmer vilka håluppsättningar som strålkällorna ska använda, samt metod att variera strålfältet
DE102005012059A1 (de) * 2005-03-16 2006-09-21 Heinrich-Heine-Universität Düsseldorf Laserbestrahlter Hohlzylinder als Linse für Ionenstrahlen
CN100574827C (zh) * 2005-08-25 2009-12-30 深圳市海博科技有限公司 放射治疗装置
US7627090B2 (en) * 2006-10-08 2009-12-01 Yanxiong Qiu Configuration of a medical radiotherapeutic instrument
US9387342B2 (en) * 2008-07-21 2016-07-12 Varian Medical Systems, Inc. External beam radiotherapy and imaging with radioactive isotope

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334040B2 (zh) * 1980-01-11 1991-05-21 Se Je Eeru Mebu
CN1087551A (zh) * 1993-04-13 1994-06-08 宋世鹏 旋转锥面聚焦式伽玛射线辐射单元
CN1355055A (zh) * 2000-11-24 2002-06-26 胡逸民 X(γ)射线调强治疗装置
CN2543542Y (zh) * 2002-04-04 2003-04-09 深圳市世纪互动实业发展有限公司 伽玛射线体部治疗装置
CN1448195A (zh) * 2002-04-04 2003-10-15 深圳市世纪互动实业发展有限公司 伽玛射线体部治疗装置
CN1634620A (zh) * 2003-12-31 2005-07-06 深圳市尊瑞科技有限公司 放射治疗辐射装置及其辐射方法
CN2676951Y (zh) * 2003-12-31 2005-02-09 深圳市尊瑞科技有限公司 放射治疗辐射装置
CN2736015Y (zh) * 2004-09-15 2005-10-26 杭州华源伽玛医疗设备投资有限公司 折线排列伽玛射线放射源
CN1586671A (zh) * 2004-09-15 2005-03-02 杭州华源伽玛医疗设备投资有限公司 折线排列伽玛射线放射源
CN2790509Y (zh) * 2005-01-28 2006-06-28 惠小兵 一种放射治疗的辐射装置
CN1810320A (zh) * 2005-01-28 2006-08-02 惠小兵 一种放射治疗装置
CN2772541Y (zh) * 2005-03-03 2006-04-19 卢艳 一种伽玛射线放射治疗装置
CN2780247Y (zh) * 2005-04-18 2006-05-17 定锦霞 伽玛射线治疗装置
CN100998909A (zh) * 2007-01-04 2007-07-18 吕风华 伽玛射线聚焦辐照单元
CN200994996Y (zh) * 2007-01-04 2007-12-26 吕风华 伽玛射线聚焦辐照单元
CN101195058A (zh) * 2007-11-27 2008-06-11 深圳市海博科技有限公司 多准直体放射治疗装置

Also Published As

Publication number Publication date
CN102446571A (zh) 2012-05-09
US20130240761A1 (en) 2013-09-19
CN102446571B (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
US9583302B2 (en) Convergent photon and electron beam generator device
CN107485801B (zh) 一种准直体和治疗头
WO2012040964A1 (zh) 放射治疗装置、辐射装置及准直装置
CN109173083A (zh) 一种中子俘获治疗系统
WO1988005321A1 (en) Radiosurgical collimator knife
WO2017177405A1 (zh) 一种可调准直器、治疗头及放射治疗设备
WO2019196137A1 (zh) 放射治疗头及放射治疗装置
CN209405502U (zh) 一种准直器、治疗头及治疗设备
WO2012041127A1 (zh) 一种自聚焦放射源装置及其辐射装置
TWI423738B (zh) A method and apparatus for generating high density hollow electron cloud instantaneously by laser
CN108175958B (zh) 聚焦头、准直器及伽玛刀
WO2019015412A1 (zh) 一种x射线的聚焦方法、装置及放疗设备
CN209253967U (zh) 一种中子俘获治疗系统
CN203436706U (zh) 一种非等距聚焦放射装置
CN209734776U (zh) 准直器组件及放射医疗设备
CN109925606B (zh) 中子捕获治疗系统
CN200994996Y (zh) 伽玛射线聚焦辐照单元
CN208756803U (zh) 一种x射线的聚焦装置及放疗设备
CN100563751C (zh) 伽玛射线聚焦辐照单元
EP3740281B1 (en) Iort device for radiotherapy treatment of cancer patients
CN208464996U (zh) 一种准直体和治疗头
CN208570134U (zh) 微型堆中子治疗装置及医疗系统
WO2019174461A1 (zh) 聚焦头、准直器及伽玛刀
CN214762920U (zh) 一种钴60伽马射线放射治疗装置
WO2024093887A1 (zh) 一种动物照射装置以及动物辐照系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13877085

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.07.2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11828023

Country of ref document: EP

Kind code of ref document: A1