WO2020000853A1 - 一种自驱动行走机器人及其控制方法 - Google Patents

一种自驱动行走机器人及其控制方法 Download PDF

Info

Publication number
WO2020000853A1
WO2020000853A1 PCT/CN2018/114120 CN2018114120W WO2020000853A1 WO 2020000853 A1 WO2020000853 A1 WO 2020000853A1 CN 2018114120 W CN2018114120 W CN 2018114120W WO 2020000853 A1 WO2020000853 A1 WO 2020000853A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical
robot
self
gravity
outer shell
Prior art date
Application number
PCT/CN2018/114120
Other languages
English (en)
French (fr)
Inventor
王子羲
李德才
郭飞
贾晓红
黄伟峰
索双富
李永健
刘向锋
刘莹
郭越红
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2020000853A1 publication Critical patent/WO2020000853A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle

Definitions

  • the invention relates to the field of robots, in particular to a self-driven walking robot and a control method thereof.
  • friction type driving which uses friction to move tools forward, such as wheels, tracks, etc .
  • electromagnetic driving the principle of which is based on the characteristics of current-carrying conductors that can generate motion in a magnetic field , Using alternating electromagnetic force to advance the object in the desired direction, such as magnetic levitation trains
  • propulsion drive which uses Newton's third law to use reactive forces to advance tools, such as jet planes, propellers, ship paddles, rockets, etc.
  • the above several driving methods usually cannot achieve the lateral movement of the carried device, which easily limits the flexibility of the movement.
  • the invention aims to propose a self-driving walking robot and a control method thereof to ensure the stability of the structure of the self-moving driving robot and improve the control efficiency.
  • the invention relates to a self-propelled walking robot, including:
  • a spherical inner compartment which is located inside the spherical outer casing and is arranged concentrically with the spherical outer casing;
  • An electric control system which is located inside the spherical inner cabin, and the center of gravity is located at the center of the spherical outer casing;
  • a driving system the driving system being arranged on the inner wall of the spherical outer shell, the center of gravity of which is located in the center of the spherical outer shell;
  • a gravity bias system which is located between the inner wall of the spherical shell and the outer wall of the spherical inner cabin, and can be in a sealed cavity between the inner wall of the spherical shell and the outer wall of the spherical inner cabin. Free movement
  • the gravity bias system can generate a gravity vector in a vertical direction under the action of the driving system, and the gravity vector provides a sufficient bias to change the center of gravity of the self-propelled walking robot so that the self-propelled walking Robot movement.
  • the gravity bias system includes a magnetic fluid; the driving system includes more than one electromagnet; and when the electromagnet is energized, the magnetic fluid is attracted to form the gravity vector.
  • the electronic control system includes a control system for providing a control signal to the drive system.
  • control system is fixed inside the spherical inner cabin.
  • control system includes at least: a processor module, a sensor module, and / or a communication module.
  • the electronic control system further includes a power supply system coupled to the drive system to provide power to the control system and the drive system.
  • the power supply system is fixed inside the spherical inner cabin.
  • the power system includes at least one battery and / or a charge and discharge management module.
  • the charge and discharge management module includes an inductive charging port, and the inductive charging port can perform inductive charging for the one or more batteries.
  • a support structure is included, the support structure is located between the outer wall of the spherical inner cabin and the inside of the spherical outer shell for supporting and fixing the spherical inner cabin at a concentric position inside the spherical outer shell .
  • the supporting mechanism includes a wiring tube, which is used to lead a signal line of the electronic control system to the driving system.
  • the spherical shell has sealability
  • the instruction accepting module receives an instruction signal from outside the robot and sends the instruction signal to the electronic control system.
  • the electronic control system executes the instruction signal as a command loaded to the driving system to control the self-propelled walking robot.
  • the present invention also relates to a method for controlling the walking of the self-propelled walking robot.
  • the method is executed by one or more processors at a user end, and the method includes:
  • the posture information includes quaternion posture information of the self-driven walking robot.
  • calculating the pose data of the robot includes calculating a Euler angle of the pose of the robot.
  • the confirming the position of the driving system below the robot includes: judging an electromagnet directly below the robot according to the rotation angles of the Y axis and X axis of the coordinate system where the robot is located; and according to the coordinate system Z where the robot is located
  • the rotation angle of the axis updates the positional relationship between the electromagnet directly below the robot and the adjacent electromagnet.
  • the coordinate system is an absolute coordinate system of the earth or a relative coordinate system of a local map where the robot is located.
  • obtaining the direction instruction includes: judging whether the user terminal instruction is updated, if it is, obtaining the user direction instruction; if not, using the original direction instruction.
  • the self-propelled walking robot and its control method of the invention can achieve reasonable structural design and stable operation, improve maneuverability, extend service life, and expand application scenarios.
  • FIG. 1 is a schematic diagram of a specific embodiment of a self-propelled walking robot of the present invention.
  • FIG. 2 is a schematic diagram of a spherical outer shell of a specific embodiment of the self-propelled walking robot of the present invention.
  • FIG. 3 is a schematic diagram of an internal ball cabin of a specific embodiment of the self-propelled walking robot of the present invention, in which an electronic control module is installed.
  • FIG. 4 is a schematic diagram of an internal ball cabin of a specific embodiment of the self-propelled walking robot of the present invention.
  • FIG. 5 is a schematic diagram of an electromagnet arrangement of a specific embodiment of the self-propelled walking robot of the present invention.
  • FIG. 6 is a schematic flowchart of a specific embodiment of a method for controlling a self-propelled walking robot of the present invention.
  • FIG. 1 to FIG. 5 it is a specific embodiment of a self-propelled walking robot according to the present invention.
  • a self-driving spherical walking robot may also have a spherical shape in other embodiments, such as a polyhedron, an ellipsoid, and the like. It includes a spherical outer casing 1; and a spherical inner compartment 2, as shown in FIG. 1, which is located inside the spherical outer casing 1 and is arranged concentrically with the spherical outer casing; in the spherical outer casing 1 An inner cavity 3 is formed between the inner wall of the inner wall and the outer wall of the spherical inner compartment 2.
  • the surfaces of the spherical inner wall 3-1 and the spherical outer wall 3-2 forming the inner cavity 3 are kept smooth, and it is suitable that a flowing medium with a certain weight can freely flow in the space between the inner cavity 3 and ignore the influence of friction.
  • a gravity bias system 4 is placed in the inner cavity 3, and the gravity bias system 4 should have a certain weight to be able to generate a gravity vector in a vertical direction relative to the ground, so that the gravity vector can change the driving body's The center of gravity to force the driving body to move.
  • the gravity biasing system 4 includes a magnetic fluid, which is capable of flowing in the inner cavity 3 under the action of a magnetic force, thereby generating a gravity vector.
  • the method of driving the magnetic fluid can be divided into two types: external driving and internal driving.
  • the external drive Compared with the internal self-drive, the external drive has poor efficiency and stability, and is greatly affected by objective factors. Therefore, in order to ensure stability and efficiency, the driving method used in this embodiment is internal drive, that is, by using the self-driving walking ball
  • the electromagnet 5 is provided inside to drive the magnetic fluid.
  • more than one electromagnet 5 is arranged in the wall of the spherical outer casing. For ease of control, the center of gravity of the electromagnet 5 is optimally located at the center of the spherical outer casing.
  • the electromagnets 5 used for control will be evenly distributed on the inner surface of the spherical shell.
  • the number of electromagnets should be as large as possible.
  • a regular dodecahedron distribution is used. As shown in FIG. 5, the regular dodecahedron 5-1 has a regular pentagon shape with five adjacent control surfaces, so the control accuracy is 36 °.
  • the regular dodecahedron is relatively easy to implement in terms of structural design, hardware, and software design because of its small number of faces. Therefore, a regular dodecahedron type electromagnet is used in the preferred embodiment.
  • the number of faces of a regular polyhedron is not limited to this.
  • the ball housing 1 includes 12 electromagnet slots, 4 wire routing slots, and several support holes.
  • the electromagnet slot is used to place the electromagnet 5, and the three adjacent electromagnetic irons are grouped into a group, and the electric signal is transmitted through the hole connected to their central wiring slot.
  • the cable trough is connected to the ball cabin 2 for transmitting control signals and required voltages from the ball cabin to each electromagnet 5.
  • the outer surface diameter of the spherical shell 1 is 138.00 mm
  • the inner surface diameter is 114.00 mm
  • the wall thickness is 1.20 mm.
  • the design depth of the electromagnet groove is 8.5mm and the diameter is 39.00mm; and the size of the electromagnet 5 is 8.00mm in thickness and 38.00mm in diameter.
  • the reserved space is used for routing and filling filler.
  • the inner surface is filled with a quick-drying object to make it smoother; at the same time, it is filled into the electromagnet groove to fix the electromagnet 5 .
  • the minimum design depth of the cable trough is 5mm and the diameter is 5mm. It is connected to the hollow wiring tube 2-1 on the surface of the ball cage for cable routing.
  • the design depth of the wiring tube 2-1 is 5mm and the diameter is 5mm.
  • the spherical shell 1 is 3D printed.
  • the material is ABS, which is divided into upper and lower spherical shells for printing, and the positioning holes are coordinated with the positioning keys to complete the installation.
  • the self-propelled walking robot in this embodiment further includes an electronic control system for providing power and control signals.
  • the electronic control system is located inside the spherical inner compartment 2, and the center of gravity of the arrangement is located at the center of the spherical outer casing 1.
  • the structure includes four wiring ducts 2-1 that cooperate with the spherical shell wiring grooves.
  • the wiring ducts also support and fix the spherical inner compartment 2 inside the spherical outer casing 1.
  • the battery holder 2-2 is designed separately because the battery is the largest part of the hardware components to be placed inside the ball compartment, so the ball compartment size is designed according to the battery size, and the battery is preferentially positioned, and other hardware parts are fixed.
  • the four connecting pipes 2-1 are matched with the wiring grooves of the spherical shell, and three small grooves 2-1-1 are opened at the ends of the connecting pipes for wiring.
  • the 2-2 part of the battery holder is designed according to the size of the battery. After finding a suitable positioning surface inside the ball compartment, design a flat positioning surface with an inner surface, and design a protrusion at the top to fix the battery.
  • the inner surface used to fix each hardware module is based on the premise that sufficient space for installation and wiring is reserved, and a sufficient size plane is designed on each of the front and back to install the fixed hardware.
  • the above hardware includes, but is not limited to, a charge and discharge management module, an instruction acceptance module, a processor module, a sensor module, and the like.
  • the ball cabin 2 is 3D printed, using ABS material, which is divided into upper and lower ball shells for printing.
  • the positioning holes are used to complete the installation.
  • the upper and lower parts have raised keys to fix the installation.
  • the assembly scheme inside the ball cabin is to install two photoelectric coupling modules on the inner plane below the battery; in the two side planes, one surface is installed with the photoelectric coupling module and one surface is installed with the step-down module;
  • a single-chip sensor module is installed on the larger inner plane above; a Bluetooth and / or WIFI module is installed in the gap between the battery and the single-chip sensor module.
  • control method is described in detail below with reference to FIG. 6.
  • the overall logic of the control system is to input the attitude information measured by the sensor and the user's direction instruction, calculate the control signal, and activate the corresponding electromagnet to control the self-propelled walking ball. Specifically: first initialize the system; read the attitude information of the robot; confirm the position of the magnet below the robot; obtain the direction instruction; calculate the instantaneous speed direction based on the two adjacent attitude information; couple the speed direction and the direction instruction, Obtaining the control amount determines that the control coil needs to be activated at this time; the coil is activated for control.
  • the attitude information includes quaternion attitude information of the self-driven walking robot.
  • the calculating the pose data of the robot includes calculating a Euler angle of the pose of the robot.
  • the confirming the position of the magnet below the robot includes: judging the electromagnet directly below the robot according to the rotation angles of the Y and X axes of the coordinate system where the robot is located; and updating the robot according to the rotation angle of the Z axis of the coordinate system where the robot is located.
  • the positional relationship between the electromagnet directly below and the adjacent electromagnet is an absolute coordinate system of the earth or a relative coordinate system of a local map where the robot is located.
  • Obtaining the direction instruction includes: judging whether the user terminal instruction is updated, if it is, obtaining the user direction instruction; if not, using the original direction instruction.
  • the control amount N is obtained by coupling the attitude information with the target instruction and performing a PID calculation using a software method. Different from the linear motor, the control quantity N cannot be directly output by a PWM digital quantity, and it can be controlled as the motor speed. Because in the electromagnetic direct drive, there are a limited number of electromagnets that perform a control function, twelve electromagnets are used in this embodiment.
  • the control amount N After the control amount N is obtained, it needs to be screened by conditional statements, and the control scheme is recorded in advance in the microcontroller.
  • the obtained attitude information is obtained by the MPU6050 sensor (internally packaged DMP digital motion processing chip), and the heading angle is input to the microcontroller sensor, and the heading angle is input to the microcontroller. DMP directly outputs quaternions commonly used in aviation attitude solution. Quaternion is a kind of super complex number, which is defined as follows:
  • a quaternion can be constructed from a rotation axis and the angle around it:
  • is the angle of rotation around the rotation axis
  • cos ⁇ x, cos ⁇ y, and cos ⁇ z are the components of a rotation axis in the x, y, and z directions (the rotation axis is determined according to this).
  • the quaternion itself cannot express the attitude of the system very intuitively, and the Euler angle needs to be used to present the attitude of the system and facilitate the subsequent control solution.
  • Euler angle rotation is a relatively common rotation method.
  • Euler angles represent rotation angles around the Z axis, Y axis, and X axis, respectively. If they are represented by Tait-Bryan angle, they are Yaw, Pitch, Roll, which are the three directions of inclination in the absolute coordinate system of the earth. After the quaternion of attitude rotation is obtained, the conversion from quaternion to Euler angle can be realized. Therefore, writing this conversion method into a single-chip microcomputer can solve the system attitude after obtaining the quaternion.
  • the direction control after the posture information is calculated, first, the coil Qi immediately below is determined according to the conditional sentence.
  • the pitch angle Yaw determines the absolute rotation angle of the smart ball. Yaw needs to be used to determine the five electromagnets adjacent to Qi.
  • the instantaneous speed direction of the ball can be calculated from the two adjacent ball attitudes.
  • the speed direction ⁇ and the command direction ⁇ are used as the output and input respectively for discrete PID control.
  • N (k) After introducing the parameters of PID control, N (k) can be expressed as:
  • N (k) K p ⁇ (err (k) + K i ⁇ ⁇ err (j) + K d ⁇ [err (k) -err (k-1)] ⁇
  • the present invention attracts the magnetic fluid 4 to different positions by adjusting the power of the electromagnet 5 on and off, and even by the strength of the current, so as to change the position of the center of gravity and make it move; when attracted, the magnetic fluid follows the inside of the spherical shell. The surfaces move together, the excitation is cancelled when the equilibrium position is reached, and the next set of electromagnets is activated to achieve continuous control of the self-propelled walking ball.
  • the direction signal is provided by an external user, and the on-off timing and activation sequence of the electromagnet are completed by sensors, single-chip computers and other hardware systems and software calculations in the ball cabin.
  • the movement of magnetic fluid is based on electromagnetic theory. A magnetic field is generated around a conducting conductor, a steady current generates a stable magnetic field, and an alternating current generates a changing magnetic field.
  • the movement of the sphere is produced by continuous fine adjustment of the center of gravity.

Abstract

本发明涉及一种自驱动行走机器人包括:球形外壳体;球形内舱,其位于球形外壳体内部;电控系统,其位于球形内舱内部,其重心位于球形外壳中心;驱动系统,驱动系统布置在球形外壳体内壁,其重心位于球形外壳体中心;重力偏置系统,位于球形外壳体内壁和球形内舱外壁之间,且能在球形壳体内壁和球形内舱外壁之间的密封腔体内自由移动;重力偏置系统能够在驱动系统的作用下,产生垂直方向上的重力向量,该重力向量提供足够的偏置来改变自驱动行走机器人的重心,以使自驱动行走机器人运动。本发明还涉及上述机器人的控制方法。本发明能实现结构设计的合理和运行的稳定,提高可操控性,扩展了应用场景。

Description

一种自驱动行走机器人及其控制方法 技术领域
本发明涉及机器人领域,特别是一种自驱动行走机器人及其控制方法。
背景技术
被承载装置的多种类型的驱动方式业已存在,例如摩擦式驱动,其利用摩擦力让工具前进,如车轮、履带等;电磁式驱动,其原理是依照通电导体能在磁场中产生运动的特点,利用交变之电磁力让物体向所需方向前进,比如磁悬浮列车等;推进式驱动,其根据牛顿第三定律,利用反作用力让工具前进,如喷气式飞机、螺旋桨、船桨、火箭等。但上述几种驱动方式,通常不能实现被承载装置的横移,这容易限制移动的灵活性。
针对上述不足,近年来又出现了一种重心调整式驱动:根据平衡的特点,利用重心位置的连续微小改变实现运动,如ORBOTIX公司推出的一种自驱动智能球,其能实现外部对其控制,其运动的多方向性、不用转向、不怕翻转的特点,实现了移动的灵活性。但是其零部件众多,内部结构复杂,各个模块的尺寸重量,配比计算困难,工作量过大,不易调节。目前应用范围也仅适用于娱乐,其在军事、医疗、运输、交通、观光等应用场景上受限制。
发明内容
本发明旨在提出一种自驱动行走机器人及其控制方法,确保自移动驱动机器人结构的稳定和提高控制的效率。
本发明涉及一种自驱动行走机器人,包括:
球形外壳体;
球形内舱,其位于所述球形外壳体内部,且与所述球形外壳体同 心布置;
电控系统,其位于所述球形内舱内部,其重心位于所述球形外壳体中心;
驱动系统,所述驱动系统布置在所述球形外壳体内壁,其重心位于所述球形外壳体中心;
重力偏置系统,所述重力偏置系统位于所述球形外壳体内壁和所述球形内舱外壁之间,且能在所述球形壳体内壁和所述球形内舱外壁之间的密封腔体内自由移动;
所述重力偏置系统能够在所述驱动系统的作用下,产生垂直方向上的重力向量,该重力向量提供足够的偏置来改变所述自驱动行走机器人的重心,以使所述自驱动行走机器人运动。
进一步地,所述重力偏置系统包括磁性流动体;所述驱动系统,包括一个以上的电磁铁;在所述电磁铁通电状态下,所述磁性流动体被吸引,形成所述重力向量。
进一步地,所述电控系统包括控制系统,为所述驱动系统提供控制信号。
进一步地,所述控制系统固定于所述球形内舱的内部。
进一步地,所述控制系统至少包括:处理器模块、传感器模块和/或通信模块。
进一步地,所述电控系统还包括耦合至所述驱动系统的电源系统,为所述控制系统和所述驱动系统提供电源。
进一步地,所述电源系统固定于所述球形内舱的内部。
进一步地,所述电源系统至少包括:一个以上的电池和/或充放电管理模块。
进一步地,所述充放电管理模块包括电感性充电端口,所述电感性充电端口能为所述一个或多个电池进行电感性充电。
进一步地,包括支撑结构,所述支撑结构位于所述球形内舱外壁和所述球形外壳体内部之间,以用于将所述球形内舱支撑且固定于所述球形外壳体内部的同心位置。
进一步地,所述支撑机构包括接线管,所述接线管用于将所述电控系统的信号线路引至所述驱动系统。
进一步地,所述球形壳体具有可密封性,
进一步地,还包括指令接受模块,所述指令接受模块与所述电控系统相耦合,所述指令接受模块接收来自所述机器人外部的指令信号,并且将该指令信号发送到所述电控系统,所述电控系统执行所述指令信号,作为加载到所述驱动系统的命令来操控所述自驱动行走机器人。
本发明还涉及一种控制上述自驱动行走机器人的行走的方法,所述方法由用户端的一个或多个处理器执行,所述方法包括:
初始化;
读取所述机器人的姿态信息;
计算所述机器人的姿态数据;
确认位于机器人下方的驱动系统的位置;
获取方向指令;
根据相邻两次的姿态信息计算瞬时速度方向;
耦合所述速度方向与所述方向指令,得到控制量;
判断此时需要激活控制的线圈;
激活该线圈进行控制。
进一步地,所述姿态信息包括所述自驱动行走机器人的四元数姿态信息。
进一步地,所述计算所述机器人的姿态数据包括计算所述机器人的姿态欧拉角。
进一步地,所述确认机器人下方的驱动系统的位置,包括:根据所述机器人所在坐标系Y轴、X轴的旋转角度判断所述机器人正下方的电磁铁;以及根据所述机器人所在坐标系Z轴的旋转角度更新机器人正下方的电磁铁和相邻电磁铁的位置关系。
进一步地,所述坐标系为地球绝对坐标系或者所述机器人所在局部地图的相对坐标系。
进一步地,获取方向指令包括:判断用户端指令是否更新,如果 是获得用户方向指令;如果否,则使用原始方向指令。
本发明的一种自驱动行走机器人及其控制方法,能实现结构设计的合理和运行的稳定,提高可操控性,延长使用寿命,扩展了应用场景。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的自驱动行走机器人的一个具体实施例的示意图。
图2为本发明的自驱动行走机器人的一个具体实施例的球形外壳体的示意图。
图3为本发明的自驱动行走机器人的一个具体实施例的内部球舱的示意图,其内部安装了电控模块。
图4本发明的自驱动行走机器人的一个具体实施例的内部球舱的示意图。
图5为本发明的自驱动行走机器人的一个具体实施例的电磁铁布置示意图。
图6为本发明的自驱动行走机器人控制方法的一个具体实施例的流程示意图。
具体实施方式
下面结合附图,对本发明的技术方案做进一步的详细描述。
如图1-图5所示,为本发明一种自驱动行走机器人的一个具体实施例。
本发明涉及一种自驱动行走机器人,具体在本实施例中,一种自驱动球形行走机器人,在其他实施例中也可以为类似球状的外形,例如多面体、椭圆体等。其包括球形外壳体1;以及球形内舱2,如图1所示,该球形内舱2其位于所述球形外壳体1的内部,且与所述球形外 壳体同心布置;在球形外壳体1的内壁和球形内舱2的外壁之间形成一个内腔3。
形成该内腔3的球形内壁3-1和球形外壁3-2的表面保持光滑,适合具有一定重量的流动介质能在该内腔3之间的空间内自由流动而忽略摩擦力的影响。
在内腔3中放置重力偏置系统4,该重力偏置系统4应当具有一定的重量,以能够在相对于地面的竖直方向上产生重力向量,以使得该重力向量能够改变该驱动体的重心,来迫使驱动体发生移动动作。在一个具体实施例中,该重力偏置系统4包括磁性流体,该磁性流体能够在磁力的作用下发生在内腔3的流动,从而产生重力向量。
驱动上述磁性流体的方式可分为外部驱动和内部驱动两种方式。外部驱动相对于内部自驱动效率和稳定性都较差,受到客观因素影响较大,因此为了确保稳定性和效率,本实施例中采用的驱动方式是内部驱动,即通过在该自驱动行走球内部设置电磁铁5的方式来驱动磁性流体流动。在一个实施例中,一个以上的电磁铁5布置在所述球形外壳体的壁中,为了便于控制,最优地,电磁铁5的重心设计为位于所述球形外壳体中心。
因此,控制所用的电磁铁5将均匀分布在球壳内表面上,为了获得更高的控制精度,电磁铁的数量要尽量多。在一个具体实施例中,采用正十二面体分布。如图5所示,正十二面体5-1,每个面的形状为正五边形,有5个相邻控制面,所以控制精度为36°。而且正十二面体由于其面数较少,无论在结构设计还是硬件、软件设计方面都相对更加容易实现,故优选实施例中采用正十二面体式电磁铁分布。当然,正多面体的面数不限于此。把每个区域视为曲面正五边形,将电磁铁5逐个布置在正五边形之内,并将其分别编号。确定每个电磁铁5的空间角度范围之后,在单片机中用条件短语可以解算出此时系统的姿态。
在一个实施例中,球壳1括了12个电磁铁槽、4个走线槽和若干支承孔。其中电磁铁槽用于放置电磁铁5,并将相邻的3个电磁 铁编为一组,通过连接到它们中心走线槽的孔传输电信号。而走线槽则与球舱2相连,用以将控制信号与需要的电压从球仓传递给各个电磁铁5。
尺寸设计上尽量保持合理,在一个实施例中,球壳1外表面直径为138.00mm,内表面直径为114.00mm,壁厚1.20mm。电磁铁槽的设计深度为8.5mm,直径39.00mm;而电磁铁5的尺寸为厚度8.00mm,直径38.00mm。其中预留的空间用以走线及填充填充物。在电磁铁5都放置好后,为了减少磁流体与内表面3-1的摩擦损耗,将在内表面填涂速干物体使其更加光滑;同时填充到电磁铁槽中对电磁铁5实现固定。走线槽的最小设计深度为5mm,直径5mm,与球仓表面的空心接线管2-1相连,用以走线。接线管2-1的设计深度为5mm,直径5mm。
如图2所示,球壳1采用3D打印,使用材料为ABS,将其分为上下球壳进行打印,将定位孔与定位键配合完成安装。
本实施例中的自驱动行走机器人还包括电控系统,用于提供动力和控制信号。在一个实施例中,如图2所示,电控系统位于所述球形内舱2内部,其排布的重心位于所述球形外壳1的中心。
下面先对球形内舱2的结构进行说明。在一个实施例中,其结构包括与球壳走线槽相配合的4个接线管2-1,该接线管同时也起到将球形内舱2支撑且固定于所述球形外壳体1内部的同心位置的作用;用来固定电控系统中电池位置的电池座2-2,以及用来固定电控系统中各个硬件模块的球仓内壁2-3。其中,电池座2-2单独设计,是因为球仓内部需要放置的硬件器件中,电池是最大的部分,所以按照电池尺寸来设计球仓尺寸,并优先定位电池,再固定其他硬件部分。4个连线管2-1与球壳的走线槽相配合,并在连线管的末端开了3个小槽2-1-1用以走线。电池座2-2部分按照电池的尺寸进行设计,在球仓内部寻找到合适定位面之后设计内表面平整的定位面,并在顶端设计凸起,用以固定电池。用来固定各个硬件模块的内表面以预留足够安装、走线空间为前提,在前后上下各设计一个足够大小的平面,用以安装 固定硬件。上述硬件包括但不限于充放电管理模块、指令接受模块、处理器模块、传感器模块等。
如图3和4所示,球舱2采用3D打印,使用材料为ABS,将其分为上下球壳进行打印,配合定位孔完成安装,上下部分有凸起键固定于安装。在一个实施例中,球仓内部的装配方案为,在电池下方的内平面上安装两个光电耦合模块;在两个侧平面中,一个面安装光电耦合模块,一个面安装降压模块;在上方较大的内平面上安装单片机传感器模块;在电池与单片机传感器模块之间的空隙安装蓝牙和/或WIFI模块。
下面结合图6对其控制方法进行详细说明。
控制系统的总逻辑是通过输入传感器测量到的姿态信息和用户的方向指令,解算出控制信号,激活相应的电磁铁,以实现对于自驱动行走球的控制。具体为:首先初始化系统;读取所述机器人的姿态信息;确认机器人下方磁铁位置;获取方向指令;根据相邻两次的姿态信息计算瞬时速度方向;耦合所述速度方向与所述方向指令,得到控制量判断此时需要激活控制的线圈;激活该线圈进行控制。所述姿态信息包括所述自驱动行走机器人的四元数姿态信息。所述计算所述机器人的姿态数据包括计算所述机器人的姿态欧拉角。所述确认机器人下方磁铁位置,包括:根据所述机器人所在坐标系Y轴和X轴的旋转角度判断所述机器人正下方的电磁铁;以及根据所述机器人所在坐标系Z轴的旋转角度更新机器人正下方的电磁铁和相邻电磁铁的位置关系。所述坐标系为地球绝对坐标系或者所述机器人所在局部地图的相对坐标系。获取方向指令包括:判断用户端指令是否更新,如果是获得用户方向指令;如果否,则使用原始方向指令。
具体来说,通过将姿态信息和目标指令耦合,用软件的方法进行PID计算得到控制量N。与直线电机所不同的是,控制量N不可以直接PWM数字量输出,作为电机转速实现控制。因为电磁直接驱动中,作为执行控制功能的电磁铁是有限量,本实施例中使用了12个电磁铁。获得控制量N之后,需要通过条件语句进行筛选,对应在单片机 中预先记录好控制方案。获得的姿态信息由MPU6050传感器(内部封装DMP数字运动处理芯片)获得,将航向角输入给单片机传感器获得,将航向角输入给单片机。DMP直接输出的是航空姿态解算中常用的四元数。四元数是一种超复数,其定义如下:
q=[w x y z] T
|q| 2=w 2+x 2+y 2+z 2=1
通过一旋转轴以及绕该轴旋转之角度就完全可以以此构造出一个四元数:
Figure PCTCN2018114120-appb-000001
Figure PCTCN2018114120-appb-000002
Figure PCTCN2018114120-appb-000003
Figure PCTCN2018114120-appb-000004
这其中α是绕着旋转轴旋转的角度,cosβx、cosβy和cosβz分别是一旋转轴在x、y和z方向所拥有的分量(依此来确定旋转轴)。但是,四元数本身无法很直观地表示系统的姿态,需要借助欧拉角来呈现系统姿态,以及方便之后的控制解算。
在姿态融合解算中,欧拉角旋转是比较常用的旋转方法,欧拉角分别表示出一绕Z轴、Y轴、X轴的旋转角度,如果用Tait-Bryan angle表示,分别为Yaw、Pitch、Roll,即在地球绝对坐标系中的三个方向倾角。当获得姿态旋转的四元数之后,可以实现四元数到欧拉角的转换。故将此转换方法写入单片机中,即可在获得四元数之后解算出系统姿态。在方向控制中,解算出姿态信息之后,首先根据条件语句判断正下方的线圈Qi。由于欧拉角是对于地球坐标系而言,则正下方的线圈只由Pitch和Row就可以判断得到。而俯仰角Yaw则决定了智能小球的绝对转角,需要通过Yaw来判断与Qi相邻的5个电磁铁。由相邻两次的小球姿态可以计算出小球的瞬时速度方向,将速度方向δ与指令方向β分别作为输出量与输入量进行离散PID控制,在软件中
解算出控制量,记为N。再由N通过条件语句判断此时需要激活控制的线圈。
PID控制的方程如下:
Figure PCTCN2018114120-appb-000005
其中err(t)为偏差量,
err(r)=β(t)-δ(t)
Figure PCTCN2018114120-appb-000006
此处要将其离散化以放到软件中进行程序化处理,假设采样时间为T,那么在第KT时刻,偏差记为:
Figure PCTCN2018114120-appb-000007
引入PID控制之参数之后,N(k)可表示为:
N(k)=K p·{err(k)+K i·∑err(j)+K d·[err(k)-err(k-1)]}
在参数整定的过程中,可以通过改变Kp、Ki和Kd的数值来调节控制参数、优化控制。
而在停车控制中,采用较为简单的反向励磁,配合重力摆动的不倒翁效应来实现系统的停止控制。具体到N(k)量,则是当N(k)超过某一数值时,都要激活与此时瞬时速度相反的电磁铁组。
因此,本发明通过调节电磁铁5通断电,甚至通过电流的强度,吸引磁流体4到不同的位置,从而改变重心的位置,使其运动;当吸合之后,磁流体随着球壳内表面一同运动,到达平衡位置时取消励磁,再激活下一组电磁铁,实现对于自驱动行走球的连续控制。其中方向信号由外部用户提供,而对于电磁铁的通断时机、激活次序则是由球仓内安置的传感器、单片机等硬件系统及软件运算解算完成的。使用的理论中,磁流体的运动方式基于电磁学理论,通电导体周围产生磁 场,恒稳电流产生稳定磁场,交变电流产生变化磁场。球体的运动由重心的连续细微调整产生。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (10)

  1. 一种自驱动行走机器人,其特征在于,
    包括:
    球形外壳体;
    球形内舱,其位于所述球形外壳体内部,且与所述球形外壳体同心布置;
    电控系统,其位于所述球形内舱内部,其重心位于所述球形外壳中心;
    驱动系统,所述驱动系统布置在所述球形外壳体内壁,其重心位于所述球形外壳体中心;
    重力偏置系统,所述重力偏置系统位于所述球形外壳体内壁和所述球形内舱外壁之间,且能在所述球形壳体内壁和所述球形内舱外壁之间的密封腔体内自由移动;
    所述重力偏置系统能够在所述驱动系统的作用下,产生垂直方向上的重力向量,该重力向量提供足够的偏置来改变所述自驱动行走机器人的重心,以使所述自驱动行走机器人运动。
  2. 如权利要求1所述的自驱动行走机器人,其特征在于,所述重力偏置系统包括磁性流动体;所述驱动系统,包括一个以上的电磁铁;在所述电磁铁通电状态下,所述磁性流动体被吸引,形成所述重力向量。
  3. 如权利要求1所述的自驱动行走机器人,其特征在于,包括支撑结构,所述支撑结构位于所述球形内舱外壁和所述球形外壳体内部之间,以用于将所述球形内舱支撑且固定于所述球形外壳体内部的同心位置。
  4. 如权利要求10所述的自驱动行走机器人,其特征在于,所述支撑机构包括接线管,所述接线管用于将所述电控系统的信号线路引至所述驱动系统。
  5. 如权利要求1所述的自驱动行走机器人,其特征在于,还还包括指令接受模块,所述指令接受模块与所述电控系统相耦合,所述指令接受模块接收来自所述机器人外部的指令信号,并且将该指令信号发送到所述电控系统,所述电控系统执行所述指令信号,作为加载到所述驱动系统的命令来操控所述自驱动行走机器人。
  6. 一种控制如权利要求1-5任一所述的自驱动行走机器人的行走的方法,所述方法由用户端的一个或多个处理器执行,其特征在于,所述方法包括:
    初始化;
    读取所述机器人的姿态信息;
    计算所述机器人的姿态数据;
    确认位于机器人下方的驱动系统的位置;
    获取方向指令;
    根据相邻两次的姿态信息计算瞬时速度方向;
    耦合所述速度方向与所述方向指令,得到控制量;
    判断此时需要激活控制的驱动系统;
    激活该驱动系统进行控制。
  7. 如权利要求6所述的方法,其特征在于,所述驱动系统包括一个以上的电磁铁。
  8. 如权利要求7所述的方法,其特征在于,所述确认位于机器人下方的驱动系统的位置,包括:根据所述机器人所在坐标系的Y轴、X轴的旋转角度判断所述机器人正下方的电磁铁;以及根据所述机器人所在坐标系Z轴的旋转角度更新机器人正下方的电磁铁和相邻电磁铁的位置关系。
  9. 如权利要求8所述的方法,其特征在于,所述坐标系为地球绝对坐 标系或者所述机器人所在局部地图的相对坐标系。
  10. 如权利要求6所述的方法,其特征在于,获取方向指令包括:判断用户端指令是否更新,如果是获得用户方向指令;如果否,则使用原始方向指令。
PCT/CN2018/114120 2018-06-26 2018-11-06 一种自驱动行走机器人及其控制方法 WO2020000853A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810706000.1A CN108897320B (zh) 2018-06-26 2018-06-26 一种自驱动行走机器人及其控制方法
CN201810706000.1 2018-06-26

Publications (1)

Publication Number Publication Date
WO2020000853A1 true WO2020000853A1 (zh) 2020-01-02

Family

ID=64347318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114120 WO2020000853A1 (zh) 2018-06-26 2018-11-06 一种自驱动行走机器人及其控制方法

Country Status (2)

Country Link
CN (1) CN108897320B (zh)
WO (1) WO2020000853A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110341821B (zh) * 2019-07-24 2020-06-19 上海大学 一种基于巨电流变液的软壳球形机器人及控制方法
CN110877643A (zh) * 2019-11-19 2020-03-13 贵州电网有限责任公司 一种电磁铁和铁砂配合驱动的球形机器人结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005049A (ja) * 2002-05-30 2004-01-08 Thk Co Ltd クロソイドスプラインを用いたコーナ補間方法及び軌跡制御方法
CN102642573A (zh) * 2011-03-24 2012-08-22 泰山学院 流体驱动球形机器人
CN105479463A (zh) * 2016-01-26 2016-04-13 清华大学 一种基于液态金属电磁致动的可变形柔性机器人
CN107891416A (zh) * 2017-11-06 2018-04-10 长安大学 一种电磁驱动式球形机器人及其控制方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045362A (ja) * 2002-07-10 2004-02-12 Shozo Hirayama 蓄圧室を備えた磁性流体式三軸加速度計
CN101982304B (zh) * 2010-09-18 2012-09-12 中北大学 内驱动球形机器人
US8316970B1 (en) * 2011-02-07 2012-11-27 The United States Of America As Represented By The Secretary Of The Navy Hydraulic-based spherical robot
US8788130B1 (en) * 2012-05-29 2014-07-22 The United States Of America As Represented By The Secretary Of The Navy Electromagnet-based rolling robot
CN103387016B (zh) * 2013-08-01 2015-09-30 哈尔滨工程大学 半球差动可伸缩式球形机器人
CN103612687B (zh) * 2013-12-12 2015-12-02 昆山市工业技术研究院有限责任公司 利用轴径向反力驱动的自平衡摇摆行走机器人
US9457471B2 (en) * 2014-01-10 2016-10-04 Irobot Corporation Autonomous mobile robot
CN103895725B (zh) * 2014-03-14 2016-02-17 上海大学 一种电磁内部驱动式球形机器人
CN104155975A (zh) * 2014-06-23 2014-11-19 浙江亚特电器有限公司 一种机器人的控制系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005049A (ja) * 2002-05-30 2004-01-08 Thk Co Ltd クロソイドスプラインを用いたコーナ補間方法及び軌跡制御方法
CN102642573A (zh) * 2011-03-24 2012-08-22 泰山学院 流体驱动球形机器人
CN105479463A (zh) * 2016-01-26 2016-04-13 清华大学 一种基于液态金属电磁致动的可变形柔性机器人
CN107891416A (zh) * 2017-11-06 2018-04-10 长安大学 一种电磁驱动式球形机器人及其控制方法

Also Published As

Publication number Publication date
CN108897320A (zh) 2018-11-27
CN108897320B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US9211920B1 (en) Magnetically coupled accessory for a self-propelled device
CN205229799U (zh) 自推进设备
EP3210818A1 (en) Support assembly for a vehicle comprising magnetically coupled spherical tires
US11926414B2 (en) Underwater and aerial vehicle
JP2003145469A (ja) 群ロボットシステムならびにそれに用いられるセンシングロボットおよびベースステーション
WO2020000853A1 (zh) 一种自驱动行走机器人及其控制方法
CN107891416B (zh) 一种电磁驱动式球形机器人及其控制方法
An et al. Task planning and collaboration of jellyfish-inspired multiple spherical underwater robots
CN105388903A (zh) 一种快速聚装的模块动量球姿态控制执行机构
Tao et al. Modeling and control of swing oscillation of underactuated indoor miniature autonomous blimps
He et al. Study on formation control system for underwater spherical multi-robot
JP4540639B2 (ja) 離着陸補助装置
CN113359866B (zh) 一种分布式多栖球形无人系统的协同控制架构
JP2003127995A (ja) 離着陸補助機構、離着陸補助装置、および、離着陸補助される浮上装置
Zhang et al. Multi-sensory motion estimation and control of a mini-quadrotor in an air-ground multi-robot system
Tan et al. Underwater stability of a morphable aerial-aquatic quadrotor with variable thruster angles
CN115352603A (zh) 一种可实现海空切换的仿企鹅型水下机器人
Dong et al. Self-assembling wireless autonomously reconfigurable module design concept
An et al. Underwater Motion Characteristics Evaluation of a Bio-inspired Father-son Robot
Bangura et al. Non-linear velocity aided attitude estimation and velocity control for quadrotors
CN106914902A (zh) 一种无线充电的全封闭球型机器人
Firlej Design, construction and control of a spherical rolling robot with internal two-wheel cart
Zhang et al. Residual Reinforcement Learning for Motion Control of a Bionic Exploration Robot-RoboDact
JP2003162326A (ja) 群ロボットシステム、それに用いられるセンシングロボット、ベースステーションおよびフェロモンロボット
Das et al. Design considerations in the development of a spherical mobile robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924521

Country of ref document: EP

Kind code of ref document: A1