WO2020000714A1 - 阻尼器以及具有该阻尼器的承载围护结构 - Google Patents

阻尼器以及具有该阻尼器的承载围护结构 Download PDF

Info

Publication number
WO2020000714A1
WO2020000714A1 PCT/CN2018/107458 CN2018107458W WO2020000714A1 WO 2020000714 A1 WO2020000714 A1 WO 2020000714A1 CN 2018107458 W CN2018107458 W CN 2018107458W WO 2020000714 A1 WO2020000714 A1 WO 2020000714A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass body
damper
mass
liquid
damping
Prior art date
Application number
PCT/CN2018/107458
Other languages
English (en)
French (fr)
Inventor
马盛骏
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810684760.7A external-priority patent/CN110630680B/zh
Priority claimed from CN201810689683.4A external-priority patent/CN108797829B/zh
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP18923771.2A priority Critical patent/EP3808974A4/en
Priority to AU2018430498A priority patent/AU2018430498B2/en
Priority to US17/043,221 priority patent/US11415109B2/en
Publication of WO2020000714A1 publication Critical patent/WO2020000714A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/1034Vibration-dampers; Shock-absorbers using inertia effect of movement of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/88Arrangement of components within nacelles or towers of mechanical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/112Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on fluid springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2222/00Special physical effects, e.g. nature of damping effects
    • F16F2222/06Magnetic or electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/02Surface features, e.g. notches or protuberances

Definitions

  • the present disclosure relates to the technical field of wind power generation, and more particularly, to a damper for suppressing vibration of a bearing envelope structure and a bearing envelope structure having the damper.
  • Wind turbines are energy conversion devices used to convert wind energy into electrical energy.
  • wind power generation equipment includes a load-bearing maintenance structure (for example, a tower), a nacelle provided on the tower, a generator installed in or outside the nacelle, a wind turbine installed in the wind direction on the head of the nacelle, and the like.
  • the tower In order to facilitate processing and transportation, the tower is usually transported to the installation site after being manufactured in sections. At the installation site, multiple sections of the tower are sequentially hoisted and fixedly connected to form a supporting foundation for the engine room and generator components.
  • the cylinder is connected to the yaw system, the engine room is connected to the generator, and the generator or gear box is connected to the wind turbine.
  • FIG. 1A shows an example in which the tower sloshes under the action of the upwind current.
  • the vortex-induced vibration of the tower 10 is caused, so that the tower 10 generates vibrations in the downwind direction (F1) and the crosswind directions (F3, F2).
  • the site hoisting progress and installation period are obviously limited by local wind conditions.
  • the vibration amplitude of the tower increases, the connection between the tower and the yaw device, the connection between the tower and the nacelle, the nacelle and the impeller are difficult, and a safe and accurate connection.
  • a spiral line is provided around the tower to prevent periodic vortex shedding of the tower 10.
  • the spiral lines 20 are arranged at different pitches, they have different cross-wind direction oscillation suppression effects.
  • the increase in the height of the spiral line 20 is conducive to destroying the periodicity of the vortex distribution, making the vortex phenomenon unable to be generated or making the vortex distribution more irregular, breaking the correlation and consistency of the vortex distribution, and helping to suppress vortex-induced vibration.
  • the present disclosure provides a damper and a load-bearing envelope structure having the damper to achieve at least one of the following purposes: providing a damper for suppressing vibration of the load-bearing envelope structure; and providing a load-bearing envelope A damper capable of suppressing the vibration of the load-bearing envelope structure during the lifting process and / or operation of the structure, and a load-bearing envelope structure having the damper; and providing a method for accelerating the load-bearing envelope by suppressing the vibration of the load-bearing envelope structure.
  • a damper including a housing forming a receiving cavity and a vibration energy dissipation unit located in the housing, the receiving cavity including a liquid storage cavity and the liquid storage
  • the mass body moving cavity at the upper part of the cavity, the vibration energy dissipating unit includes a damping liquid contained in the liquid storage cavity and a plurality of mass bodies located in the mass body moving cavity, and the mass body floats on the mass body
  • a plurality of tooth-shaped protrusions are formed on the outer surface of the mass body.
  • a load-bearing envelope structure in which a damper as described above is installed.
  • a damper is provided which is fixed or installed inside the load-bearing envelope structure.
  • the above technical solution can not only solve the damage and hidden dangers to the foundation connection of the tower caused by the shaking of the tower of the supporting structure during the hoisting process of the wind turbine, but also reduce the tower overturning during the operation of the wind turbine risks of. Therefore, according to the above technical solution of the embodiment of the present disclosure, the construction time of the wind farm can be shortened, and the reliability during the operation of the wind turbine can be improved, which benefits both the wind farm investor and the builder.
  • FIG. 1A shows an example in which the tower sloshes under the action of the upwind flow
  • FIG. 1B is a schematic view showing winding a spiral wire rope or providing a spiral rib on a tower in the prior art
  • FIG. 2 is a perspective perspective view of a damper according to a first embodiment of the present disclosure
  • FIG. 3 is a top view of a damper according to a first embodiment of the present disclosure
  • FIG. 4 is a schematic perspective view of a mass body in a damper according to a first embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a damper according to a first embodiment of the present disclosure provided in a load-bearing envelope structure
  • FIG. 6 is a perspective perspective view of a damper according to a second embodiment of the present disclosure.
  • FIG. 7 is a top view of a damper according to a second embodiment of the present disclosure.
  • FIG. 8 is a perspective perspective view of a damper according to a third embodiment of the present disclosure.
  • FIG. 9 is a plan view of an example of a damper according to a third embodiment of the present disclosure, in which a cross section of a mass body is rectangular;
  • FIG. 10 is a plan view of another example of a damper according to a third embodiment of the present disclosure, in which a cross section of a mass body is circular;
  • FIG. 11 is a plan view of still another example of a damper according to a third embodiment of the present disclosure, in which a cross section of a mass body is circular and a plurality of mass bodies are connected to each other through an elastic connecting member;
  • FIG. 12 illustrates a process in which a mass body in a damper according to a third embodiment of the present disclosure oscillates up and down in a damping liquid.
  • 120 mass body motion cavity
  • 210 damping fluid
  • 220 mass body
  • 231 gas pressure adjustment unit; 240: cavity partition; 224: first magnetic body;
  • F1 vibration direction
  • M1 vibration kinetic energy
  • a protection system for wind turbines is constructed.
  • the inventor has conducted field investigation and research on the construction of high-altitude and high-altitude wind farms, and proposed a method for constructing a vibration energy dissipation structure inside a load-bearing envelope structure and a load-bearing envelope structure having the structure.
  • FIG. 2 to 4 show schematic diagrams of a damper according to a first embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of providing a damper according to the first embodiment of the present disclosure in a tower.
  • the damper 1000 includes a housing 100 forming a receiving cavity and a vibration energy dissipating unit 200 located in the housing 100.
  • the accommodating cavity formed by the housing 100 includes a liquid storage cavity 110 and a mass body moving cavity 120 located at an upper portion of the liquid storage cavity 110.
  • the energy dissipating unit 200 includes a damping liquid 210 contained in the liquid storage chamber 110 and a mass body 220 located in the mass body moving chamber 120. The mass body 220 floats on the liquid surface of the damping liquid 210.
  • the damper 1000 according to the first embodiment of the present disclosure may be installed in a load-bearing envelope structure (for example, a tower of a wind turbine, a television tower, a communication tower, a cylindrical factory chimney or a cooling tower, a pillar of a bridge, etc.) 10 It is used to avoid excessive vibration or excessive amplitude of the load-carrying envelope structure 10 within a predetermined wind speed range.
  • a load-bearing envelope structure for example, a tower of a wind turbine, a television tower, a communication tower, a cylindrical factory chimney or a cooling tower, a pillar of a bridge, etc.
  • the damper 1000 follows the downwind vibration of the tower of the envelope structure to generate a corresponding downwind direction.
  • the vibration causes the damping liquid 210 to oscillate and fluctuate in the cavity.
  • the mass body 220 in the damping liquid 210 is subjected to the action of the liquid.
  • the kinetic energy obtained by the liquid is converted into gravitational potential energy, thermal energy, and other forms of energy. It acts as a damping, thereby consuming the vibrational kinetic energy of the tower of the envelope structure, and suppressing and damping the tower of the envelope structure, transferring the energy carried by the downwind vibration of the envelope structure to the damping liquid and using the damping
  • the liquid is transferred to the mass body, and is transformed into damping liquid and mass body's vertical movement and the energy carried in the vertical direction, and is dissipated during the vertical movement.
  • the energy carried by the vibration is orthogonal. (Or near vertical) directional shift and dissipation.
  • a lower part of the mass body 220 is provided with a wave breaking rake.
  • a plurality of tooth-shaped protrusions 221 are formed on the lower surface of the mass body 220 to form a wave breaking rake.
  • the plurality of tooth-shaped protrusions 221 formed in the lower part of the mass body 220 may be arranged in an orderly or disorderly manner; arranged in a row or in a fork row; the heights of the protrusions 221 may be uniform or staggered, and the protrusions 221 are mutually Connected grooves or grooves; the protrusions 221 may be formed with sharp points or sharp edges.
  • An in-line row means that the plurality of protrusions 221 are arranged in multiple rows or columns, and a cross-row means that the plurality of protrusions 221 are arranged alternately with each other.
  • the surface of the mass body 220 is anti-corrosion or is a corrosion-resistant material, and a convex surface is formed with an anti-corrosion layer.
  • the dentate protrusions on the mass body 220 are arranged in a regular or irregular manner to cross the kinetic energy or momentum carried by the orderly damping liquid and its constant contact with the lower surface of the mass body (the damping liquid submerged under the mass body Surface) and interact with the aid of the sharp toothed protrusions 221 to generate surface forces in all directions on the damping liquid (the force applied by the solid surface on the fluid), and the fluid in contact with the protrusions 221 is decomposed into countless small masses 4.
  • the oscillating liquid impacts the tooth-shaped protrusions 221 of the mass body 220, collides with the tooth-shaped protrusions 221, and decomposes the liquid, thereby being broken and decomposed into multiple Small waves of direction.
  • the crisscross grooves between the protrusions 221 on the lower surface of the mass body 220 cause the large kinetic energy or momentum carried by the liquid in one direction to be broken down into different directions
  • the small kinetic energy or momentum of different directions, and then the small kinetic energy or momentum of different directions collide with each other, weaken or cancel each other, so that the value of the total kinetic energy with directionality and consistency obtained by the liquid is reduced, and the liquid is raised and its
  • the vector sum of the momentum after the groove is shunted is greatly reduced, and the shunted liquid in different directions, the vertical surface force, and the horizontal surface force of 360 degrees are applied to the liquid in contact with the raised liquid to decompose the liquid and shunt the liquid)
  • the momentum mode consumes the vibration energy transmitted by the envelope structure, and avoids the vibration of the bearing envelope structure 10 exceeding a predetermined amplitude.
  • the damper 1000 may be cylindrical, and a plurality of mass body moving cavities 120 may be provided along the circumferential direction, and a corresponding mass body 220 is provided in each mass body moving cavity 120.
  • the plurality of mass body moving cavities 120 may be separated by a cavity partition 240.
  • the cavity partition 240 is provided along the height direction of the damper 1000 so that the mass body 220 moves in the vertical direction.
  • the height of the cavity partition 240 is not strictly limited, as long as it can provide the mass body 220 with a guide function of limiting position and vertical movement.
  • the damping fluids at the lower portions of the plurality of mass bodies 220 are communicated with each other.
  • the mass body movement cavity 120 and the mass body 220 may be formed in a fan shape in cross section, and the number may be an even number.
  • the fan shape may be a pointed fan shape or a blunt fan shape (ie, a fan ring shape).
  • the mass body movement cavity 120 and the mass body 220 are shown in the shape of a blunt-head fan.
  • the receiving cavity formed by the casing 100 may be a ring-shaped cylindrical structure.
  • the housing 100 may be composed of an outer cylinder wall, an inner cylinder wall, a top cover, and a bottom wall.
  • the mass body 220 moves up and down with the waves, thereby converting vibration energy into frictional heat energy and dissipating.
  • the liquid level of the liquid in one direction or one direction in the cavity rises, and the liquid level in the other side or one direction of the center of the horizontal circular cross section decreases, the kinetic energy in the horizontal direction is converted into the kinetic energy in the vertical direction.
  • the mass body 220 moves up and down, so that during the upward and downward movement of the mass body 220 carrying kinetic energy or momentum, the mass body 220 rubs against the liquid, and the mass body 220 and the chamber stand vertically.
  • Straight wall friction, liquid and chamber wall friction damping consume energy to divert (convert to vertical direction) and dissipate vibration energy.
  • the moving liquid performs work and consumes energy during the upward movement of the mass 220. This reduces the downwind and lateral vibration of the load-bearing structure.
  • the damper 1000 may further include a damping coefficient adjustment unit 230 for adjusting a damping coefficient of the vibration kinetic energy dissipation unit 200.
  • the damping coefficient adjusting unit 230 may be disposed on the upper part of the mass body 220. When the mass body 220 moves upward, a downward force is applied to the mass body 220, and when the mass body 220 moves downward, an upward force is applied to the mass body 220. force.
  • the damping coefficient adjustment unit 230 may be an elastic member with adjustable stiffness, for example, a spring member with adjustable stiffness.
  • the damping coefficient adjustment unit 230 is provided on the upper portion of the mass body 220 and applies an elastic force to the mass body 220.
  • an elastic member may be provided between the upper surface of the mass body 220 and the top cover of the case 100.
  • the damping coefficient of the damper 1000 is adjusted by adjusting the elastic coefficient of the elastic member, so that the damper 1000 is suitable for different bearing envelope structures, or the damping coefficient of the damper 1000 is adjusted according to the vibration parameters of the bearing envelope structure. For example, the damping coefficient is adjusted according to the external wind speed and / or the lateral vibration amplitude of the tower.
  • a nodal flow hole 222 may be further formed in the mass body 220.
  • the nodal flow hole 222 penetrates the mass body 220 in the height direction.
  • a part of the damping fluid 210 can be moved from the lower part of the mass body 220 to the upper part of the mass body 220 along the joint flow hole 222, and then flowed into the liquid storage chamber 110 along the outer surface of the mass body 220 or another fluid channel provided, so that The vibration amplitude of the mass body 220 is adjusted to function as a differential controller.
  • the gas through the upper part of the mass body 220 is communicated with the lower part of the liquid through the orifice 222, and the pressure difference between the upper and lower surfaces of the mass body 220 is adjusted to suppress the abrupt change in the pressure difference between the upper and lower surfaces of the mass body 220, thereby suppressing the mass.
  • the rapid movement of the body 220 prevents the upper and lower vibration amplitudes of the mass body 220 from exceeding the limit, hitting the top of the chamber, and losing control.
  • a plurality of joint flow holes 222 may be provided and distributed at different positions.
  • the joint flow hole 222 may be an equal-section through-hole or a variable-section through-hole, and may be a circular through-hole or a polygonal through-hole.
  • the joint flow hole 222 may be formed by forming a through hole in the mass body 222 and then inserting a hollow cylinder into the through hole.
  • the lower end of the nodal flow hole 222 extends into a predetermined depth in the damping liquid 210 to ensure that the lower end inlet communicates with the liquid, and the upper end of the nodal flow hole 222 is higher than the predetermined height of the upper surface of the mass body 220 to avoid the upper part of the mass body 220
  • the liquid on the surface flows back into the nodal flow hole 222 and blocks the nodal flow hole 222.
  • the damper 1000 realizes a vibration reduction function of a load-bearing envelope structure by disordering the ordered vibration energy.
  • the dissipated vibrational energy is eventually converted into other forms of energy such as thermal energy. Therefore, a heat dissipation structure, such as a heat dissipation fin or an external heat sink, may be provided on the casing 100.
  • a cooling fan can also be provided to accelerate the air convection coefficient on the surface of the heat dissipation structure.
  • the heat dissipation structure may be disposed on the inner cylinder wall of the damper 1000.
  • a heater in order to prevent the damping liquid 210 from becoming viscous or freezing when the temperature is low in winter, the damping function of the damper 1000 is invalidated, a heater, a temperature sensor, and other components may be provided in the liquid storage chamber 110 ( (Not shown). When the temperature in the damping liquid 210 is lower than a predetermined temperature, the heater is activated.
  • the damper 1000 may be installed on the inner wall of the tower 10 of the wind turbine, and may be fixedly connected to the tower 10 through the outer wall of the damper 1000.
  • the vibration is transmitted to the damper 1000 according to the embodiment of the present disclosure.
  • the vibration of the damping liquid 210, the mass 220, and the elastic member absorbs vibration energy and dissipates vibration energy.
  • FIG. 6 shows a perspective perspective view of a damper according to a second embodiment of the present disclosure.
  • FIG. 7 illustrates a top view of a damper 2000 according to a second embodiment of the present disclosure.
  • the damper 2000 according to the second embodiment of the present disclosure includes a housing 100 and a vibration kinetic energy dissipation unit 200. Except for the structure of the damping coefficient adjustment unit 230, the structure of the damper 2000 according to the second embodiment of the present disclosure is basically the same as that of the damper 1000 according to the first embodiment of the present disclosure. Therefore, only the structure of the damping coefficient adjustment unit 230 will be described in detail below.
  • the damping coefficient of the damper 2000 is adjusted by filling a gas in the upper space of the mass body 220 and adjusting the pressure of the gas.
  • the gas can be directly charged into the upper space of the mass body 220.
  • a flexible airbag may be provided in the upper space of the mass body 220, and an air inlet and an air outlet are provided on the flexible airbag, and the pressure in the flexible airbag is controlled by the gas pressure adjusting unit 231.
  • the damping coefficient adjustment unit 230 further includes a gas pressure adjustment unit 231, for example, including a compressor and its controller, a pressure measurement sensor, an intake valve, an exhaust valve, and the like.
  • the gas pressure adjustment unit 231 adjusts the damping coefficient of the damper 2000 by changing the pressure of the gas charged into the upper space of the mass body 220 according to the wind speed, the vibration acceleration of the tower, and the amplitude parameters of the tower shaking.
  • the gas in the upper space of the mass body 220 is fluid damping, and the liquid immersed in the lower part of the mass body 220 is also fluid damping, that is, when the mass body 220 moves in the gas or liquid, the damping is generated by the fluid medium.
  • the fluid damping force is always opposite to the moving speed direction of the mass body 220.
  • the pressure of the gas is small, the downward resistance generated by the gas to the mass body 220 and the damping liquid in the later stage is smaller, and the blocking effect is slower.
  • the gas space is easily compressed in a short time, and the compression is faster. In the process, the gas absorbs the kinetic energy (ordered energy, high-quality energy) of the mass body 220 and the damping liquid.
  • the compression function of the gas during the compression process is transformed into the disorder energy (thermal energy, low-quality energy) of the gas.
  • the speed of liquid movement is in the opposite direction, and the size is always proportional to the second power of the speed, as is the mass friction damping of the mass body 220 and the damping liquid, and the mass body 220 and the chamber wall surface.
  • the effect of the gas pressure on the damping mass 220 and the liquid to reach the top is to prevent the mass 220 from hitting the top of the housing; the pressure of the gas has an accelerated return effect on the downward return movement of the mass 220 and the liquid, the greater the gas pressure, The faster the return-to-start phase, the more assist the mass body 220 and the damping liquid return.
  • the damper 2000 After the information obtained by the pressure sensor is processed by the controller, measures are taken to adjust the pressure on the gas: accelerate the up and down movement speed of the liquid and the mass body 220, accelerate the conversion and dissipation rate, so that the damper 2000 can adaptively adapt to the envelope structure
  • the vibration state (the magnitude of the vibration acceleration and the value of the vibration displacement) controls the gas pressure in the chamber or the airbag accordingly to achieve the acceleration of the rate of energy dissipation, suppress the vibration acceleration of the envelope structure, and the vibration displacement.
  • the gas can be charged into the mass body movement cavity 120 after being pressurized, and the gas can be used as an energy storage element to combine the motion of the mass body 220 to form damping and energy dissipation. structure.
  • the mass body 220 may be provided with a joint flow hole 222.
  • the node flow hole 222 functions as a differential controller, and the amplitude of the reciprocating vibration of the mass body 220 is suppressed.
  • the damper 2000 may be installed on a load-bearing envelope structure, for example, on the inner wall of a tower of a wind turbine, to absorb and dissipate the vibrational kinetic energy of the tower.
  • a load-bearing envelope structure for example, on the inner wall of a tower of a wind turbine.
  • the damping coefficient of the damper can be adaptively adjusted according to the change of the wind direction and the magnitude of the wind at the site, so that the damping performance is the best.
  • FIG. 8 illustrates a damper 3000 according to a third embodiment of the present disclosure.
  • a damper 3000 according to a third embodiment of the present disclosure includes a case 100 and a vibration energy dissipation unit 200 located in the case 100.
  • the housing 100 includes an outer cylinder wall, a top cover 101 and a bottom wall, forming a cylindrical receiving cavity.
  • the casing is cylindrical, and the vibration energy dissipating unit 200 is disposed in the cylindrical receiving cavity, and includes a damping liquid 210 and a plurality of mass bodies 220 floating on the damping liquid 210.
  • the difference from the damper of the foregoing embodiment is that a plurality of mass bodies 220 float freely on the liquid surface of the damping liquid 210, and no partition plate is provided between adjacent mass bodies 220.
  • the wave breaking rake is formed on the outer peripheral surface of the mass body 220, and optionally, is formed on the entire outer peripheral surface of the mass body 220.
  • the wave breaking rake is a plurality of tooth-shaped protrusions 221 formed on the outer surface of the mass body 220.
  • the plurality of tooth-shaped protrusions 221 formed on the outer surface of the mass body 220 may be arranged in a row or a fork, the heights of the protrusions 221 may be uniform or staggered, and the protrusions 221 may be criss-crossed and communicate with each other. Grooves or grooves, the protrusions 221 may be formed with sharp points or sharp edges.
  • the surface of the mass body 220 is anti-corrosion or is a corrosion-resistant material, and the surface of the protrusion 221 is formed with an anti-corrosion layer.
  • the toothed protrusions 221 on the mass body 220 are arranged in an intersecting manner, and when the load-bearing maintenance structure vibrates, the orderly and directional fluctuations of the damping liquid carry kinetic energy or momentum to always contact the outer surface of the mass body 220 And interacting, the wave breaking rake uses the sharp toothed protrusions 221 to generate surface forces in various directions on the damping liquid, and breaks the fluid in contact with the protrusions 221 into countless small masses, and the flow direction has components in all directions. Ordered kinetic energy or momentum of a small mass.
  • the oscillating liquid 210 impacts the tooth-shaped protrusions 221 of the mass body 220 and collides with the tooth-shaped protrusions 221, thereby being broken and decomposed into multiple directions along multiple directions. Small waves.
  • the crisscross grooves between the protrusions 221 on the outer surface of the mass body 220 cause the large kinetic energy or momentum carried by the liquid in one direction to be broken down into small kinetic energy or momentum in different directions, and then in different directions.
  • the small kinetic energy or small momentum collides with each other, weakens, or cancels each other, so that the value of the total kinetic energy obtained and carried by the liquid with directionality and coordination is reduced, and the vector of the momentum after the liquid is divided by the protrusion and the groove is increased Slashed. Therefore, the plurality of mass bodies 220 can generate divergent flows in different directions, surface forces in the vertical direction, and 360-degree surface forces in the liquid contacting the protrusion 221, and consume the surroundings by decomposing the liquid and diverting the momentum of the liquid.
  • the vibration energy transmitted by the protection structure prevents the vibration of the load-bearing structure 10 from exceeding a predetermined amplitude. At the same time, due to the collision between the wave breaking rakes, the energy of the contact and collision process is extremely non-conservative and decays rapidly, which is beneficial to the disordered decomposition of the vibration energy.
  • the side receiving the kinetic energy of the vibration first removes the kinetic energy from The solid boundary of the damper 3000 is transmitted to the damping fluid 210.
  • the damping fluid that first receives the vibrational kinetic energy is shaken and fluctuated along the vibration direction transmitted to the liquid by the envelope structure in the initial stage.
  • the distribution of the vibration energy of the damping liquid and the direction of the vibration of the damping liquid are represented by the density of the arrows in the damper 3000 and the direction of the arrows.
  • M1 represents the vibrational kinetic energy or momentum first received by the damping fluid
  • M2 represents the kinetic energy or momentum that is transmitted to the restricted solid boundary along the original vibration direction F1 after passing through the vibration energy dissipation unit 200.
  • the damping fluid When the damping fluid carries the vibrational kinetic energy or momentum and collides with the mass body 220 and flows through the gap between adjacent mass bodies 220, the damping fluid collides with the wave crushing rake and scatters in different directions, causing the fluid momentum direction of the damping fluid to decompose. Is small (liquid micelle) kinetic energy or momentum in multiple different directions. The kinetic energy or momentum is continuously consumed in the process of passing through the energy dissipation gap. When it reaches the opposite side, the kinetic energy or momentum is almost exhausted, and only a small amount of liquid carries the vibrational kinetic energy or momentum along the original shaking direction. . Therefore, after the vibration energy M2 passes through the cross section of the damper, the remaining vibrational kinetic energy or momentum M1 has been greatly reduced or weakened.
  • the dynamic energy dissipation gap of the damper 3000 can adjust the liquid momentum carrying the vibrational kinetic energy of the envelope structure to a large wave amount. Broken into small anisotropic waves, the initial vibration energy transmitted to the damping liquid is scattered and decomposed, and the orderly and directional vibration energy is disordered, thereby achieving the vibration suppression effect.
  • the side wall of the mass body 220 may be formed as a magnetic wall. Adjacent or non-adjacent wall surfaces of the plurality of mass bodies 220 have the same magnetic polarity, and are either magnetic N poles or magnetic S at the same time. pole. Therefore, a non-contact repulsive force is formed between the magnetic walls of the same polarity, and the repulsive force enables a gap to be always formed between two surfaces of two adjacent mass bodies 220 facing each other, or naturally separated after collision.
  • the damping formed by two adjacent mass bodies 220 due to the repulsive force of the magnetic polarity prevents the passing of undulating liquid, prevents the liquid from sloshing, suppresses the fluctuation of the liquid surface, prevents the passing of the damping liquid oscillating energy, and the solid wall surface to the opposite 180 degrees Transmission, reduce the transmission rate, and attenuate the level of liquid level fluctuations.
  • the amount of damping is inversely proportional to the gap distance between the two, and proportional to the magnetic field strength.
  • the formed damping suppresses the rate of fluctuation of the mass body 220 up and down (makes the fluctuation of the mass body 220 smooth), suppresses the mass body 220 from floating up and down, and consumes the energy carried by the liquid fluctuation process.
  • the motion between magnetic rakes of the same polarity is always anisotropic, and it is always in restraint, breaking the periodicity and inertia of the wave reciprocating motion, breaking the relationship between waves and waves, breaking the inertial relationship between waves and rakes .
  • the gap between the adjacent mass bodies 220 can form a fluctuating liquid that shuttles between the surfaces of the two mass bodies 220 up, down, left, and right.
  • the shuttle channel is broken during the shuttle process, and the vibrational momentum obtained by the liquid is broken, decomposed, and disordered.
  • the crushed liquid is dispersed in all directions, and the total momentum (the momentum after the crushing) becomes smaller and smaller, and eventually dissipates.
  • the mass body 220 may be formed with a magnetic wall surface in various ways.
  • the surface of the mass body 220 may be plated with a magnetic material, or the outer surface of the material forming the mass body 220 may be covered or adhered with a layer of magnetic material, and a magnet may be provided on the side wall of the mass body 220. Therefore, the first magnetic body 224 is provided on the mass body 220 so that the wall surface of the mass body 220 is magnetic.
  • a first magnetic body 224 is provided on a side surface of the mass bodies 220, and the first magnetic bodies 224 provided on different mass bodies 220 have the same magnetic properties, so that the adjacent mass bodies 220 are generated.
  • the repulsive force on the one hand, avoids massing and stacking of the mass bodies 220, and on the other hand, when the adjacent mass bodies 220 are close, the mass bodies 220 are separated from each other by the repulsive force, so that the mass bodies 220 run along the liquid surface of the damping liquid.
  • magnetic wall surfaces of the same polarity can also be formed between the mass bodies 220 and the top cover 101 of the housing, with N poles or S at the same time. pole.
  • a non-contact repulsive force is formed between magnetic walls of the same polarity.
  • the repulsive force is inversely proportional to the distance between the mass body 220 and the top cover 101, and the formed damping is inversely proportional to the gap distance and proportional to the magnetic field strength.
  • the formed damping suppresses the mass body from floating up and down, suppresses the damping fluid from fluctuating up and down, and consumes the energy carried by the fluid fluctuation process. Therefore, it is possible to suppress, eliminate, and dissipate the energy carried by the pitch vibration, the lateral vibration, and the downwind vibration existing in the upper part or the top part of the bearing structure.
  • a second magnetic body 225 may be provided on a lower surface of the top cover 101.
  • a magnet or a magnetic material may be attached to the lower surface of the top cover 101 so that the lower surface of the top cover 101 is magnetic.
  • a magnet or a magnetic material may be adhered to the lower surface of the top cover 101, covering or Plating magnetic materials, etc.
  • the second magnetic body 225 formed on the lower surface of the top cover 101 has the same polarity as the first magnetic body 224 on the mass body 220.
  • the mass body 220 is a rectangular parallelepiped, a cube, or a cylinder
  • a first magnetic body 224 is formed on a side surface of the mass body 220.
  • the second magnetic body 225 and the first magnetic body 224 have the same polarity.
  • the mass body 220 and the top cover 101 collide flexibly, and even the mass body 220 is prevented from colliding with the housing 100 Top cover 101.
  • FIG. 12 illustrates a process in which a mass body in a damper oscillates up and down in a damping liquid according to an embodiment of the present disclosure.
  • the top cover 101 is in the process of the mass body 220 oscillating and floating in the damping liquid.
  • a non-contact repulsive force is applied to the mass body 220.
  • the magnitude of the repulsive force is inversely proportional to the distance between the mass body 220 and the top cover 101, and the formed damping is inversely proportional to the gap distance and proportional to the magnetic field strength.
  • the formed damping suppresses the up and down fluctuation of the wave breaking rake, suppresses the mass body 220 from floating up and down, and consumes the energy carried in the liquid fluctuation process.
  • the wave will pass through the gap between the adjacent mass bodies 220 during the upward movement.
  • the directional flowing liquid is cut and divided by the wave breaking rake. And adjust the direction so as to spread out, so as to achieve the effect of restraining the mass body 220 from fluctuating up and down.
  • the undulating waves cause the mass body 220 to be submerged and float out of the liquid during the process of floating up and down, and to continuously collide with the liquid waves during the movement.
  • the liquid climbed up or landed along the gap between the mass bodies 220, it collided with the toothed protrusions 221 on the mass bodies 220 and was squeezed by two adjacent mass bodies 220.
  • the fluid was impacted, cut, Decomposition makes the vibrational kinetic energy fragmented, and reduces the orderly energy and high-quality energy into disordered and low-quality energy.
  • an elastic connecting member 227 may be provided between the plurality of mass bodies 220 to form a rake cluster connected to each other.
  • the plurality of mass bodies 220 and the inner side wall of the damper housing are connected through the elastic connecting member 227, so that the plurality of mass bodies are arranged on the damping liquid surface in a mesh form.
  • the elastic connecting member 227 makes the mass body 220 always have a gap.
  • the mass body 220 is connected to the inner wall of the damper using the elastic connecting member 227 so that the rake clusters will not accumulate on the inner wall of the damper.
  • the movement forms a certain constraint, and the rake clusters connected and distributed in a mesh manner cover the liquid surface as a whole. Due to the elastic constraints of the solid boundary connecting members or the elastic constraints among each other, the process of the liquid level fluctuation will not cause complete liquid level. As a result of the same amplitude fluctuation, on the contrary, it has the effect of suppressing the fluctuation of the liquid around the mass body 220 in contact with it, and the crushing effect of the undulating liquid and the liquid around the rake.
  • the total momentum accelerates the dissipation rate of vibration energy, converges vibration in time, and prevents expansion. That is, the liquid has two directions of crushing effect, the vertical direction and the horizontal direction, forming a three-dimensional dissipation effect
  • the elastic connecting member 227 may be a spring member or a material capable of elastic energy storage and having a self-recovery rebounding ability, such as a rubber band capable of rebounding after being stretched.
  • the mass body 220 may have various shapes such as a cuboid, a cube, a cylinder, a sphere, and a vertebra. Toothed protrusions can be formed on the outer surface of the mass by casting.
  • the surface of the non-magnetic rake (that is, the outer surface of the mass body 220 is non-magnetic) and its protrusions can be the machine tool metal processing surface or the machine tool metal processing die stamping; the magnetic rake (that is, the outer surface of the mass body 220 is magnetic)
  • the surface can be made of ferrite permanent magnet molding material, or it can be obtained by sintered aluminum iron boron material molding and subsequent magnetization.
  • the damper according to the embodiment of the present disclosure may be installed in a tower of a wind turbine.
  • Corresponding dampers can be set for the first-order vibration and second-order vibration of the system, and multiple dampers can be arranged in layers along the height direction of the tower.
  • the outer wall of the damper can be tightly fixed to the inner wall of the tower.
  • a protection system is constructed for a load-bearing envelope structure such as a tower of a wind turbine. During the construction of a wind farm, it is pre-installed on the inner periphery of the upper section of the tower and built inside the tower.
  • the damper according to the embodiment of the present disclosure to a wind turbine, it is possible to suppress pitch vibration and lateral vibration during operation, so as to improve the absorption coefficient of wind energy utilization by the wind turbine, and also improve the wind energy conversion rate and power generation. It can also ensure the structural stability of the wind turbine during the operation and shutdown, and suppress the excessive fatigue caused by the fluid-solid coupling induced vibration in the natural environment during the operation and shutdown of the wind turbine. , Damage, reduce the risk of tower overturning during the operation of the wind turbine, improve the reliability of the operation of the wind turbine, and benefit both the wind farm investor and the builder.
  • the coverage of the spiral on the surface of the tower will affect the lateral oscillation suppression effect.
  • the coverage reaches (or exceeds) 50%, the effect of suppressing lateral vibration is optimal.
  • the wind-induced noise of the helix and air flow will increase accordingly, which will seriously affect the natural environment organisms, especially cause disturbance to animals and birds, and cause damage to the ecological environment.
  • the technical solution of the present disclosure by installing the damper inside the tower, wind-induced noise is not generated like the spiral scheme, and even if there is a certain noise in the process of suppressing vibration, it is blocked by the tower wall. The problem of noise or noise in the traditional vibration suppression device is avoided, and the impact on the ecological environment is avoided.
  • the damper of the embodiment of the present disclosure since it is installed inside the tower, it not only solves the problem of environmental noise caused by the vibration suppression device installed outside the tower, but also has the advantages of not affecting the appearance of the tower and not increasing the wind resistance of the tower. advantage.
  • the damper after the tower is hoisted, the damper can be removed and reused after recycling, or it can be fixed inside the tower to suppress the tower vibration during the operation of the wind turbine.
  • the technical solution of the present disclosure in addition to being applied to the tower of a wind turbine, it can also be applied to various bearing envelope structures such as a cylindrical factory chimney or cooling tower to reduce the Inkamen vortex street of the bearing envelope structure. Risk of collapse due to resonance.

Abstract

一种阻尼器以及具有该阻尼器的承载围护结构。阻尼器(1000、2000、3000)包括形成容纳腔的壳体(100)以及位于壳体(100)内的振动能量耗散单元(200),容纳腔包括储液腔(110)和位于储液腔(110)上部的质量体运动腔(120),振动能量耗散单元(200)包括容纳于储液腔(110)中的阻尼液(210)和位于质量体运动腔(120)中的多个质量体(220),质量体(220)漂浮在阻尼液(210)的液面上,在质量体(220)的外表面上形成多个齿状凸起(221),用于将形成在所述阻尼液中由于振动而形成的波浪破碎为沿不同方向分散。

Description

阻尼器以及具有该阻尼器的承载围护结构 技术领域
本公开涉及风力发电技术领域,更具体地讲,涉及一种用于抑制承载围护结构振动的阻尼器以及具有该阻尼器的承载围护结构。
背景技术
风力发电机组是用于将风能转换成电能的能量转化装置。通常,风力发电设备包括承载维护结构(例如,塔筒)、设置在塔筒上的机舱、安装在机舱中或机舱外的发电机、安装在机舱头部上风向的风轮机等。为了加工和运输方便,塔筒通常是分段制造后运输到安装现场,在安装现场将多段塔筒依次吊装和固定连接,形成对机舱以及发电机部件的支撑基础之后,在塔筒顶部使塔筒与偏航系统连接,机舱与发电机对接,发电机或齿轮箱再与风轮机对接、连接。
这些安装工序都是在对风电场的小地域环境局部风不可测的情况下展开施工的。在这个吊装安装过程会遇到大小变化不定的阵风或持续的小风。风吹过塔筒时,尾流左右两侧产生成对的、交替排列的及旋转方向相反的反对称漩涡,即卡门漩涡。漩涡以一定频率脱离塔筒,使塔筒发生垂直于风向的横向振动。当漩涡的脱离频率接近塔筒固有频率时,塔筒容易发生共振而被破坏。
图1A示出了塔筒在上风向来流的作用下发生晃动的示例。如图1A所示,当风速在预定范围内时,会引起塔筒10的涡激振动,使得塔筒10产生顺风向(F1)振动和横风向(F3、F2)振动。
在风力发电机组的安装过程中,现场吊装进度、安装工期明显受到局部区域风况的限制。尤其是在塔筒安装到上端的几节塔筒段的情况下,塔筒振动幅度增大,塔筒与偏航装置,塔筒与机舱、机舱与叶轮的对接困难,无法实现安全、准确的连接。
在风力发电机组的运行过程中,塔筒晃动也会对塔筒本身以及塔筒基础连接件带来破坏和隐患。在风力发电机组的运行过程中,塔筒受到的载荷除 了顶部零/部件产生的重力和风轮旋转产生的动载荷外,同时还要受到自然风的作用。风绕流塔筒表面时产生的涡街现象会引起使塔筒发生导致共振破坏的横风向振动。风吹动叶轮旋转时会对塔筒产生交变弯矩和交变作用力,这种由顺风向产生的弯矩和力会成为塔筒发生破坏的主要原因,严重时会造成塔筒断裂而发生倾覆。
如图1B所示,现有技术借助围绕塔筒设置螺旋线用来抑制塔筒10的表面发生旋涡的周期性脱落。螺旋线20在不同的螺距布置时,有不同的横风向振荡抑制效果。螺旋线20的高度增加利于破坏涡街发放的周期性,使涡街现象无法生成或使涡街发放更不规则,打破涡街发放的相关性、一致性,利于抑制涡激振动。
然而,在塔筒上缠绕或固定螺旋线的方式仅仅用在吊装阶段,并且螺旋线的特征参数(螺距、高度)还没有做到最佳,难以适应风速的变化。为做到适应空气流的风速变化而变化,并且适用于长期运行,会带来螺旋线制造成本、维护成本的大幅增加。
发明内容
本公开提供了一种阻尼器以及具有该阻尼器的承载围护结构,以达到如下目的中的至少一个:提供一种用于抑制承载围护结构振动的阻尼器;提供一种在承载围护结构的吊装过程和/或运行过程中,均能抑制该承载围护结构振动的阻尼器,以及具有该阻尼器的承载围护结构;提供一种通过抑制承载围护结构振动,来加速承载围护结构的吊装或安装进度,减少吊装或安装所需要的工期,提高吊装或安装效率的阻尼器,以及具有该阻尼器的承载围护结构。
根据本公开的一方面,提供了一种阻尼器,所述阻尼器包括形成容纳腔的壳体以及位于壳体内的振动能量耗散单元,所述容纳腔包括储液腔和位于所述储液腔上部的质量体运动腔,所述振动能量耗散单元包括容纳于所述储液腔中的阻尼液和位于所述质量体运动腔中的多个质量体,所述质量体漂浮在所述阻尼液的液面上,在所述质量体的外表面上形成多个齿状凸起。
根据本公开的另一方面,提供了一种承载围护结构,所述承载围护结构中安装有如上所述的阻尼器。可选地,提供了一种固定在或者安装在承载围护结构内部的阻尼器。
上述技术方案不仅能够解决风力发电机组的吊装过程中承载围护结构塔筒本身的晃动所带来的对塔筒基础连接件的破坏和隐患,还能降低在风力发电机组运行过程中塔筒倾覆的风险。因此,根据本公开的实施例的上述技术方案,能够缩短风电场的建设时间,并提高风力发电机组运行过程中的可靠性,使得风电场投资方和建设者双方受益。
附图说明
通过下面结合附图对实施例进行的描述,本公开的上述和其他目的和特点将会变得更加清楚,其中:
图1A示出了塔筒在上风向来流的作用下发生晃动的示例;
图1B是示出现有技术中在塔筒上缠绕螺旋线绳或设置螺旋肋片的示意图;
图2是根据本公开第一实施例的阻尼器的立体透视图;
图3是根据本公开第一实施例的阻尼器的俯视图;
图4是根据本公开第一实施例的阻尼器中的质量体的立体结构示意图;
图5是在承载围护结构中设置根据本公开第一实施例的阻尼器的示意图;
图6是根据本公开第二实施例的阻尼器的立体透视图;
图7是根据本公开第二实施例的阻尼器的俯视图;
图8是根据本公开第三实施例的阻尼器的立体透视图;
图9是根据本公开第三实施例的阻尼器的一个示例的俯视图,其中质量体的截面为长方形;
图10是根据本公开第三实施例的阻尼器的另一个示例的俯视图,其中质量体的截面为圆形;
图11是根据本公开第三实施例的阻尼器的又一个示例的俯视图,其中质量体的截面为圆形并且多个质量体通过弹性连接件相互连接;
图12示出了根据本公开第三实施例的阻尼器中的质量体在阻尼液中上下震荡的过程。
附图标号:
10:承载围护结构;1000、2000、3000:阻尼器;100、350:壳体;
200、320:振动能量耗散单元;110:储液腔;101:顶盖;
120:质量体运动腔;210:阻尼液;220:质量体;
221:齿状凸起;222:节流通孔;230:阻尼系数调节单元;
231:气体压力调节单元;240:腔体隔板;224:第一磁性体;
225:第二磁性体;227:弹性连接件;
F1:振动方向;M1、M2:振动动能。
具体实施方式
为了解决现有技术中的技术问题,阻止塔筒等承载围护结构上涡街现象发生、阻止塔筒涡激响应过大、抑制塔筒振动,搭建一种对风力发电机组的保护系统。本发明人通过对高海拔、高山地域风电场建设实地调查和研究,提出了一种在承载围护结构内部构建振动能量耗散结构以及具有该结构的承载围护结构。下面,参照附图来详细说明本公开的实施例。
图2-图4示出了根据本公开第一实施例的阻尼器的示意图,图5是在塔筒中设置根据本公开第一实施例的阻尼器的示意图。
根据本公开的第一实施例,阻尼器1000包括形成容纳腔的壳体100以及位于壳体100内的振动能量耗散单元200。
壳体100形成的容纳腔包括储液腔110和位于储液腔110上部的质量体运动腔120。能量耗散单元200包括容纳于储液腔110中的阻尼液210和位于质量体运动腔120中的质量体220。质量体220漂浮在阻尼液210的液面上。
根据本公开第一实施例的阻尼器1000可以安装在承载围护结构(例如,风力发电机组的塔筒、电视塔、通讯塔、柱形的工厂烟囱或冷却塔、桥梁的支柱等)10中,用于避免承载围护结构10在预定风速范围内振动过速或振幅过限。当承载围护结构10振动时,振动携带的动能或振动携带的动量传递给根据本公开第一实施例的阻尼器1000,阻尼器1000跟随围护结构塔筒的顺风向振动产生相应的顺风向振动,使得阻尼液210在腔体内震荡、波动,阻尼液210中的质量体220受到液体的作用,随着波浪上下运动,将液体传递获得的动能转换为重力势能、热能等其它形式的能量,充当阻尼的角色,从而消耗围护结构塔筒的振动动能,起到对围护结构塔筒抑制振动、减振的作用,把围护结构的顺风向振动携带的能量传递到阻尼液体并借助阻尼液体传递到质量体,转化成阻尼液体和质量体的竖直方向的运动以及竖直方向携 带的能量,并在竖直方向运动过程中耗散掉,这里,对振动携带的能量作了正交(或近乎垂直)方向性的转移和耗散。
为了更有效地耗散掉阻尼液体和质量体获得的动能,质量体220的下部设置有波浪破碎犁耙。在质量体220下表面上形成有多个齿状凸起221,从而形成波浪破碎犁耙。在质量体220下部形成的多个齿状凸起221可有顺排列或者无序排列;顺排排列或叉排排列;凸起221的高度可以一致或高低交错起伏,凸起221之间有互相连通的沟或槽;凸起221可以形成有锋利的尖或锋利的棱。顺排是指多个凸起221排列为多行或多列,叉排是指多个凸起221相互交错排列。可选地,质量体220表面做过防腐或本身是耐腐蚀材质,凸起表面形成有防腐层。
质量体220上的齿状凸起以规则方式或不规则方式交叉设置,用于将有序的阻尼液体携带的动能或动量及其在与质量体下表面始终接触(阻尼液浸没质量体的下表面)并相互作用时借助锋利的齿状凸起221对阻尼液体产生各个方向的表面力(流体受到的固体表面给与的作用力),并将凸起221接触的流体分解为无数个小质量、流动方向四面八方都有分量的无序的小质量体的动能或动量。具体地,当阻尼液210由于振动而震荡时,震荡的液体冲击到质量体220的齿状凸起221上,与齿状凸起221发生碰撞、分解液体,从而被破碎、分解为沿多个方向的小波浪。通过将大波浪分解为各向异性的小波浪,质量体220下表面的凸起221之间的纵横交错的沟槽,使得朝一个方向的液体携带的大动能或大动量被分解为沿不同方向的小动能或小动量,继而不同方向的小动能或小动量相互再碰撞、削弱或抵消,使得液体获得并携带的具有方向性协同一致的总动能数值上被减小,液体被凸起及其沟槽分流后的分动量的矢量和大幅度削减,对接触凸起的液体产生不同方向的分流流动和竖直方向的表面力、水平方向360度的表面力作用,以分解液体、分流)液体动量的方式消耗掉围护结构传递的振动能量,避免承载围护结构10的振动超过预定幅度。
如图3所示,阻尼器1000可以为圆筒形,质量体运动腔120可沿着圆周方向设置为多个,并在每个质量体运动腔120中设置相应的质量体220。多个质量体运动腔120之间可通过腔体隔板240被分隔开。腔体隔板240沿着阻尼器1000的高度方向设置,使得质量体220沿着竖直方向运动。腔体隔板240的高度没有严格的限制,只要能够为质量体220提供限位和上下运动的 引导作用即可。可选地,多个质量体220下部的阻尼液之间相互连通。
质量体运动腔120和质量体220的形状可形成为横截面为扇形,数量可以为偶数个。扇形可以为尖头扇形或钝头扇形(即,扇环形)。作为可选实施方式,在附图所示的示例中,质量体运动腔120和质量体220被示出为钝头扇形的形状。在这种情况下,壳体100形成的容纳腔可以为环形筒状结构。壳体100可以由外筒壁、内筒壁、顶盖和底壁构成。
根据本公开的实施例,在阻尼液震荡时,质量体220会随着波浪上下移动,从而将振动能转换成摩擦热能而消散掉。另外,当腔体内一侧或一个方向的液体的液面升高,经过水平圆形截面的圆心的另一侧或一个方向的液面降低时,使水平方向的动能转换为竖直方向的动能。随着液面升高和下降,质量体220上下运动,使携带着动能或动量运动的质量体220在向上和向下运动的过程中,质量体220与液体摩擦、质量体220与腔室竖直壁面摩擦、液体与腔室壁面摩擦各种阻尼消耗能量的方式来转向(转换为竖直方向)并耗散振动能量,同时,运动的液体在推举质量体220向上运动过程做功、耗功,从而减小承载维护结构的顺风向和横向振动过程的幅度。
如图2所示,根据本公开第一实施例的阻尼器1000还可包括阻尼系数调节单元230,用于调节振动动能耗散单元200的阻尼系数。阻尼系数调节单元230可以设置在质量体220的上部,在质量体220向上运动时,对质量体220施加一个向下的力,在质量体220向下运动时,对质量体220施加一个向上的力。
在根据本公开的第一实施例中,阻尼系数调节单元230可以是刚度可调的弹性构件,例如,为刚度可调的弹簧构件。阻尼系数调节单元230设置在质量体220的上部,对质量体220施加弹力。具体地,弹性构件可设置在质量体220的上表面和壳体100的顶盖之间。
通过调节弹性构件的弹性系数,来调节阻尼器1000的阻尼系数,以使阻尼器1000适用于不同的承载围护结构,或者根据承载围护结构的振动参量来相应调整阻尼器1000的阻尼系数,例如,根据外界风速和/或塔筒的横向振动幅度等来调节阻尼系数。
如图2所示,在质量体220中还可形成节流通孔222。节流通孔222沿着高度方向贯穿质量体220。阻尼液210的一部分可以沿着节流通孔222从质量体220的下部运动到质量体220的上部,再沿着质量体220的外表面或 者另外设置的流体通道流到储液腔110中,从而对质量体220的振动幅度进行调节,起到微分控制器的作用。更具体地,通过节流通孔222使得质量体220上部的气体与下部的液体连通,调节质量体220上下的压差,抑制所述质量体220上下表面之间的压差的突变,从而抑制质量体220的快速运动,避免质量体220的上下振动振幅超限、撞击腔室顶部、失控。在每个质量体220上,节流通孔222可以设置为多个,分布在不同位置。
节流通孔222可以为等截面通孔或变截面通孔,可以为圆形通孔或者为多边形通孔。可以通过在质量体222上形成通孔后,再在该通孔中插入空心筒来形成所述节流通孔222。可选地,节流通孔222的下端伸入阻尼液210中预定深度,确保下端入口与液体连通,并且使节流通孔222的上端高于质量体220的上表面预定高度,避免质量体220的上表面的液体回流到节流通孔222中,堵塞节流通孔222。
根据本公开实施例的阻尼器1000通过将有序的振动能量无序化,实现对承载围护结构的减振功能。耗散掉的振动能最终转换成热能等其它形式的能量。因此,在壳体100上还可设置有散热结构,例如,散热翅片或外挂式散热器。为了使热量快速消散,还可设置散热风扇,加速散热结构表面的空气对流系数。在利用壳体100的外壁与承载围护结构固定安装时,可以将散热结构设置在阻尼器1000的内筒壁上。
此外,为了避免冬季温度较低的情况下阻尼液210变得粘稠甚至结冰,导致阻尼器1000的减振功能失效,在储液腔110内还可设置加热器、设置温度传感器等部件(未示出)。当阻尼液210内的温度低于预定温度时,启动加热器。
如图5所示,根据本公开第一实施例的阻尼器1000可安装在风力发电机组的塔筒10的内壁上,可通过阻尼器1000的外筒壁与塔筒10固定连接。当塔筒10由于空气流的作用而振动时,振动传递给根据本公开实施例的阻尼器1000。通过阻尼液210、质量体220以及弹性构件的震荡,来吸收振动能,并把振动能耗散掉。
图6示出了根据本公开第二实施例的阻尼器的立体透视图。图7示出了根据本公开第二实施例的阻尼器2000的俯视图。根据本公开第二实施例的阻尼器2000包括壳体100和振动动能耗散单元200。除了阻尼系数调节单元230的结构之外,根据本公开第二实施例的阻尼器2000的结构与根据本公开第一 实施例的阻尼器1000的结构基本相同。因此,下面仅详细描述阻尼系数调节单元230的结构。
根据本公开的第二实施例,通过在质量体220的上部空间内充入气体,并通过调节气体的压力来调节阻尼器2000的阻尼系数。在满足密封要求的情况下,可以将气体直接充入质量体220的上部空间内。此外,还可以在质量体220的上部空间内设置柔性气囊,在柔性气囊上设置进气口和出气口,并由气体压力调节单元231控制柔性气囊内的压力。
因此,根据本公开第二实施例,阻尼系数调节单元230还包括气体压力调节单元231,例如,包括压气机及其控制器、压力测量传感器、进气阀、排气阀等,气体压力调节单元231根据风速、塔筒振动加速度、塔筒晃动的振幅参量等,通过改变充入质量体220的上部空间内的气体的压力来调节阻尼器2000的阻尼系数。
质量体220上部空间内的气体是流体阻尼,质量体220下部浸没的液体也是流体阻尼,即当质量体220在气体或液体中运动时,由流体介质产生阻尼。流体阻尼力始终与质量体220运动速度方向相反。当气体压力较小时,气体对质量体220和阻尼液体向上运动的后期产生的向下的阻力就较小、阻止作用也较慢,气体空间就容易在短时间内被压缩,在较快的压缩过程中气体吸收了质量体220和阻尼液体向上运动的动能(有序能、高品质能量),气体在被压缩过程将受到的压缩功能量转化为气体的无序能(热能、低品质能量),质量体220和阻尼液体获得转移的向上运动的机械能越大同时变化越快而受到的向下的阻力越小时,质量体和阻尼液体获得的速度相对就越快,形成的液体阻尼力始终与液体运动速度方向相反,而大小始终与速度的二次方成正比,质量体220与阻尼液体、质量体220与腔室壁面的液体摩擦阻尼亦是如此。而气体压力大小对阻尼质量体220和液体向上到达顶部的作用是:阻止质量体220撞击壳体顶部;气体压力大小对质量体220和液体向下返回运动有加速返回作用,气体压力越大,返回启动阶段越快,对质量体220和阻尼液体返回起助力作用。压力传感器将获得的信息经过控制器处理后,对气体采取调整压力的措施:加速液体和质量体220的上下运动速度,加速转化、耗散速率,使得阻尼器2000能够自适应地根据围护结构振动状态(振动加速度、振动位移数值的大或小)相应地控制腔室或气囊内气体压力的大小来实现加速对能量的耗散速率、抑制围护结构的振动加速度、振动位移。
在根据本公开第二实施例的阻尼器2000中,可将气体加压后充入质量体运动腔体120中,利用气体充当储能元件,联合质量体220的运动,构成阻尼和能量耗散结构。
在根据本公开的第二实施例中,在质量体220也可设置有节流通孔222。通过节流通孔222充当微分控制器的角色,抑制质量体220的往复振动幅度。
同样地,根据本公开第二实施例的阻尼器2000可安装在承载围护结构上,例如,安装在风力发电机组的塔筒的内壁上,吸收和耗散塔筒的振动动能。在风力发电机组的吊装过程中,如果塔筒吊装完成,机舱安装条件不具备时,能够实现对塔筒的保护。此外,不管是在吊装过程中,还是风力发电机组的运行过程中,能够根据现场风向的改变和风力大小的改变,适应性调整阻尼器的阻尼系数,使得减振性能最佳。
图8示出了根据本公开第三实施例的阻尼器3000。如图8所示,根据本公开第三实施例的阻尼器3000包括壳体100以及位于壳体100的振动能量耗散单元200。
在本公开的第三实施例中,壳体100包括外筒壁、顶盖101和底壁,形成筒形容纳腔。作为可选实施例,壳体为圆筒形,振动能量耗散单元200设置在圆筒形容纳腔中,包括阻尼液210和漂浮在阻尼液210上的多个质量体220。
与前述实施例的阻尼器不同之处在于,多个质量体220自由漂浮在阻尼液210的液面上,相邻质量体220之间没有设置分隔板。波浪破碎犁耙形成在质量体220的外周表面上,可选地,形成在质量体220的整个外周表面上。波浪破碎犁耙为形成在质量体220外表面上的多个齿状凸起221。在质量体220外表面上形成的多个齿状凸起221可以有顺排列或叉排排列,凸起221的高度可以一致或高低交错起伏,凸起221之间可以形成有纵横交错并互相连通的沟或槽,凸起221可以形成有锋利的尖或锋利的棱。可选地,质量体220表面做过防腐或本身是耐腐蚀材质,凸起221的表面形成有防腐层。
当多个质量体220漂浮于阻尼液中时,借助凸起221在相邻质量体220的波浪破碎犁耙之间形成叉排交错结构,维持相邻质量体220之间始终存在间隙,使得阻尼液在该间隙内不能持续沿着特定方向流动,形成动态耗散能量的间隙。
根据本公开的实施例,质量体220上的齿状凸起221交叉设置,当承载 维护结构振动时,有序、有方向的波动的阻尼液体携带动能或动量与质量体220的外表面始终接触并相互作用,波浪破碎犁耙借助锋利的齿状凸起221对阻尼液体产生各个方向的表面力,并将与凸起221接触的流体分解为无数个小质量、流动方向四面八方都有分量的无序的小质量体的动能或动量。具体地,当阻尼液210由于振动而震荡时,震荡的液体冲击到质量体220的齿状凸起221上,与齿状凸起221起发生碰撞,从而被破碎、分解为沿多个方向的小波浪。同时,质量体220外表面的凸起221之间的纵横交错的沟槽,使得朝一个方向的液体携带的大动能或大动量被分解为沿不同方向的小动能或小动量,继而不同方向的小动能或小动量再相互碰撞、削弱或抵消,使得液体获得并携带的具有方向性协同一致的总动能数值上被减小,液体被凸起及其沟槽分流后的分动量的矢量被大幅度削减。因此,多个质量体220能够对接触凸起221的液体产生不同方向的分流流动和竖直方向的表面力、水平方向360度的表面力作用,以分解液体、分流液体动量的方式消耗掉围护结构传递的振动能量,避免承载围护结构10的振动超过预定幅度。同时,波浪破碎犁耙相互之间的碰撞,由于凸起的存在,使得接触、碰撞过程能量极度不守恒、衰减急速,利于振动能量无序化分解。
如图9所示,当阻尼器3000受到围护结构振动能量传递激发阻尼器产生顺风向(纵向)或横风向振动时,首先接收振动动能的一侧(图9中的左侧)将动能从该阻尼器3000固体边界传递给阻尼液210,在该边界处首先接收到振动动能的阻尼液发生较大程度的、初始阶段沿着围护结构传递给液体的振动方向晃动、发生波动。为了更直观地理解振动动能的传递和消散过程,以箭头在阻尼器3000中分布的密度和箭头朝向来表示阻尼液体振动能量的分布以及携带的振动能量导致阻尼液体波动的方向。
这里,用M1表示阻尼液首先接收到的振动动能或动量,用M2表示穿过振动能量耗散单元200后继续沿原来的振动方向F1传递到受限制的固体边界的动能或动量。图9中阻尼器左侧的阻尼液在接收到传递过来的动能后,阻尼液发生较大程度的波动,阻尼液的振动动能M1或动量数值较大,波动方向确定,基本上与振动方向一致。当阻尼液携带振动动能或动量碰撞质量体220并流经相邻质量体220之间的间隙时,阻尼液与波浪破碎犁耙发生碰撞,沿不同方向四散破碎,使得阻尼液的流体动量方向分解为沿多个不同方向的小(液体微团的)动能或动量。动能或动量在通过能量耗散间隙的过程 中被不断消耗,当到达相对的另一侧时,动能或动量几乎消耗殆尽,只有少量的液体携带着振动动能或动量还沿着原先的晃动方向。因此,在振动能量M2通过阻尼器的横截面之后,所剩振动动能或动量M1已经被大幅减小或削弱。
因此,当承载围护结构中安装根据本公开第三实施例的阻尼器3000时,阻尼器3000的动态能量耗散间隙能够将携带着围护结构振动动能的液体动量进行调向,将大波量破碎为各向异性的小波浪,使得传递给阻尼液体的初始的振动能量被四散、分解,将有序的、有方向性的振动能量无序化,从而实现振动抑制效果。
如图9所示,质量体220的侧壁可以形成为磁性壁,多个质量体220的相邻的或不相邻的壁面的磁极性相同,同时为磁性的N极或同时为磁性的S极。因此,同极性磁性壁面之间形成非接触相斥力,相斥力使得相邻的两个质量体220相面对的两个表面之间始终能够形成间隙,或碰撞后自然分离。相邻两个质量体220由于同磁性的极性相斥力而形成的阻尼阻止波动液体的穿越、阻止液体晃动、抑制液面的波动、阻止阻尼液体波动能量的穿越和向对面180度方向固体壁面的传递、降低传递速率、衰减液面波动强度。阻尼大小与两者的间隙距离成反比,与磁场强度成正比。形成的阻尼抑制质量体220上下波动的速率(使质量体220的波动变得平缓)、抑制质量体220上下浮动,消耗液体波动过程携带的能量。同极性磁性犁耙之间的运动永远是各向异性的,永远处于抑制、打破波浪往复运动的周期性和惯性、打破波浪与波浪的关联性、打破波浪与犁耙之间的惯性关联作用。
因此,当在环形腔体内液体沿着环形结构振动、流动、波浪运动时,相邻质量体220之间的间隙能够形成使波动的液体上下或前后左右穿梭于两个质量体220的表面之间的穿梭通道,并在穿梭过程被破碎,将液体获得的振动动量破碎、分解、无序化。破碎后的液体分散成各个方向,总的动量(破碎后合成的动量)越来越小,最终耗散殆尽。
可以通过多种方式来使质量体220形成有磁性壁面。例如,可以在质量体220的表面上镀覆磁性材料,或者形成质量体220的材料的外表面上包覆或粘附一层磁性材料,还可以在质量体220的侧壁上设置磁体等,从而在质量体220上设置第一磁性体224,以使质量体220的壁面具有磁性。
如图8所示,在质量体220的侧表面上设置有第一磁性体224,设置在 不同质量体220上的第一磁性体224的磁性相同,从而在相邻的质量体220之间产生排斥力,一方面避免质量体220扎堆、堆积,另一方面,使得当相邻质量体220靠近时,通过排斥力使得质量体220又相互分开,使得质量体220在阻尼液的液面上沿不同方向运动,相互排斥、还能自行翻滚、自动排布生成间隙、破碎切断液面上的定向流动路径,加快携带的振动动能的分解,实现抑制振动的功能。因此,多个质量体220在阻尼液表面上平移、震荡、翻滚,使得表面波携带的能量沿平面360度被击碎,并在空间六个维度范围内被分解。
除了在相邻的质量体220之间形成同极性的磁性壁面之外,还可以在质量体220与壳体的顶盖101之间形成同极性磁性壁面,同时为N极或同时为S极。同极性磁性壁面之间形成非接触相斥力,相斥力与质量体220与顶盖101之间的距离成反比,形成的阻尼与间隙距离成反比,与磁场强度成正比。形成的阻尼抑制质量体上下浮动、抑制阻尼液上下波动,消耗液体波动过程携带的能量。因此,能够抑制、消除、耗散承载围护结构上部、或顶部存在的俯仰振动、横向振动、顺风向振动携带的能量。
可以在顶盖101的下表面上设置第二磁性体225。可选地,可以在顶盖101的下表面附着磁体或磁性材料,来使得顶盖101的下表面具有磁性,例如,可以在顶盖101的下表面上粘附磁体或磁性材料,包覆或者镀覆磁性材料等。形成在顶盖101下表面上的第二磁性体225与质量体220上的第一磁性体224的极性相同。当质量体220为长方体、正方体、或柱体时,在质量体220的侧表面上形成有第一磁性体224。第二磁性体225和第一磁性体224的极性相同。当第一磁性体224和第二磁性体225两者相互面对时,由于同性磁体之间的排斥力,使得质量体220与顶盖101进行柔性碰撞,甚至避免质量体220碰撞壳体100的顶盖101。
图12示出了根据本公开实施例的阻尼器中的质量体在阻尼液中上下震荡的过程。
根据本公开的实施例,由于壳体的顶盖101的下表面和质量体220的上表面设置为极性相同的磁性壁面,在质量体220在阻尼液中震荡上浮的过程中,顶盖101会对质量体220施加一个非接触式的排斥力。排斥力的大小与质量体220与顶盖101之间的距离成反比,形成的阻尼与间隙距离成反比,与磁场强度成正比。形成的阻尼抑制波浪破碎犁耙上下波动,抑制质量体220 上下浮动,消耗液体波动过程中携带的能量。
与波浪沿水平方向穿过质量体220之间的间隙的过程类似,波浪在向上运动的过程中会穿过相邻质量体220之间的间隙,定向流动的液体被波浪破碎犁耙切断、分割、调向,从而四散开来,从而达到抑制质量体220上下波动、翻滚的效果。高低起伏的波浪使得质量体220在上下浮动的过程中,被液体淹没、从液体中浮出,在运动的过程中,不断与液体波浪撞击。当液体沿着质量体220之间的间隙向上爬升或降落的过程中,与质量体220上的齿状凸起221碰撞,受到相邻两个质量体220的挤压,流体被撞击、切割、分解,使得振动动能支离破碎,将有序的能量、高品质的能量化解为无序的、低品质的能量。
除了在质量体220的外表面上设置磁性体之外,如图11所示,还可以在多个质量体220之间设置弹性连接件227,形成相互连接的犁耙簇。通过弹性连接件227连接多个质量体220以及阻尼器壳体的内侧壁,使得多个质量体以网状形式布置在阻尼液液面上。
弹性连接件227使得质量体220之间始终有间隙,在示意图中将质量体220使用弹性连接件227连在阻尼器内壁,使得犁耙簇不会堆积在阻尼器内壁上,对犁耙簇的运动形成一定的束缚,以网状方式连接和分布的犁耙簇整体覆盖在液面上,由于受固体边界连接件弹性约束或相互间弹性约束,对液面波动过程不会造成与液面完全同幅度起伏的结果,相反,对质量体220周围的与其接触的液体的起伏有抑制作用、对起伏液体和绕流犁耙的液体有破碎作用,液体携带动量,破碎后四散,降低液体振动的总动量,加快振动能量的耗散速率,及时收敛振动、阻止扩大有抑制作用。即,对液体有两个方向的破碎作用,竖直方向,水平方向,构成立体耗散效果。
在根据本公开第三实施例中,弹性连接件227可以是弹簧构件,或者是能够弹性储能、具有自恢复反弹能力的材质,例如拉伸后能够回弹的橡皮筋。
在根据本公开第三实施例中,质量体220可以为长方体、立方体、圆柱体、圆球体、椎体等各种形状。可以通过浇注的方式在质量块的外表面上形成齿状凸起。
非磁性犁耙(即质量体220的外表面不具有磁性)的表面及其凸起可以是机床金属加工表面或机床金属加工模具冲压成型;磁性犁耙(即质量体220的外表面具有磁性)的表面可以是铁氧体永磁成型材料,也可以是烧结铝铁 硼材料成型后续充磁获得。
根据本公开实施例的阻尼器,可以安装在风力发电机组的塔筒内。可针对系统的一阶振动、二阶振动设置相应的阻尼器,并使多个阻尼器沿塔筒的高度方向分层设置。阻尼器的外壁可以与塔筒的内壁紧紧固定在一起。
根据本公开的技术方案,为风力发电组的塔筒等承载围护结构构建了一种保护系统,在风电场建设过程中,预先安装在塔筒上部几段的内周,在塔筒内部构建对能量耗散的能力:结构阻尼,降低对塔筒基础的破坏,降低晃动对原有的上风向空气流面对塔筒绕流形成的攻角和气动外形的影响,提高风能利用率;同时还可以考虑现场风向的改变,能够自适应调整阻尼器的阻尼系数,解决吊装过程风力发电机组承载结构(塔筒)本身受风诱发的晃动所带来的对塔筒基础连接件的破坏和隐患,提高承载围护结构的稳定性,从而提高在有限吊装时间内的安全性和吊装效率,缩短风电场的建设周期,避免风电场建设周期的延期造成风力发电机组并网发电推迟,及早并网发电,从而避免损失发电时间和发电量。
此外,通过将根据本公开实施例的阻尼器应用于风力发电机组,能够抑制运行过程中的俯仰振动、横向振动,以提高风力机对风能利用的吸收系数、还能提高风能转化率、提高发电量;还能在投运过程中以及停机期间保障风力发电机组整机结构的稳定性,抑制风力发电机组在运行、停机过程中在自然环境流固耦合诱发振动给整机、部件造成的过度疲劳、破坏,降低在风力发电机组运行过程中塔筒倾覆的风险,提高风力发电机组运行过程中的可靠性,使得风电场投资方和建设者双方受益。
根据现有技术的采用螺旋线来抑制涡激振动的方案,螺旋线在塔筒表面的覆盖率会影响横向振荡抑制效果,当覆盖率达到(或超过)50%时,抑制横向振动的效果达到最佳。然而,螺旋线与空气流的风致噪声也会相应增加,对自然环境生物造成严重影响,尤其是对动物、鸟类造成干扰、对生态环境造成破坏。根据本公开的技术方案,通过将阻尼器安装在塔筒内部,不会像螺旋线方案那样产生风致噪声,即使在抑制振动的过程中有一定的噪声,也被塔筒壁阻挡,因此,解决了传统的振动抑制装置存在噪声或噪音的问题,避免了对生态环境造成的影响。
根据本公开实施例的阻尼器,由于安装在塔筒内部,不仅解决了安装在塔筒外部的振动抑制装置造成的环境噪音问题,还具有不会影响塔筒外观以 及不增加塔筒的风阻的优点。此外,可以在塔筒吊装完毕后将阻尼器拆除从而回收后反复使用,也可以固定在塔筒内部,在风力发电机组的运行过程中抑制塔筒的振动。
根据本公开的技术方案,除了应用于风力发电机组的塔筒之外,还可以应用于柱形的工厂烟囱或冷却塔等各种承载围护结构中,降低承载围护结构的因卡门涡街引起共振而倒塌的风险。
本公开的以上实施例仅仅是示例性的,而本公开并不受限于此。本领域技术人员应该理解:在不脱离本公开的原理和精神的情况下,可对这些实施例进行改变,其中,本公开的保护范围在权利要求及其等同物中限定。

Claims (20)

  1. 一种阻尼器,其特征在于,所述阻尼器(1000、2000、3000)包括形成容纳腔的壳体(100)以及位于壳体(100)内的振动能量耗散单元(200),
    所述容纳腔包括储液腔(110)和位于所述储液腔(110)上部的质量体运动腔(120),所述振动能量耗散单元(200)包括容纳于所述储液腔(110)中的阻尼液(210)和位于所述质量体运动腔(120)中的多个质量体(220),所述质量体(220)漂浮在所述阻尼液(210)的液面上,在所述质量体(220)的外表面上形成多个齿状凸起(221)。
  2. 如权利要求1所述的阻尼器,其特征在于,所述质量体(220)上的齿状凸起(221)具有如下结构特征中的至少一种:
    所述多个齿状凸起(221)顺排排列或叉排排列;
    所述多个齿状凸起(221)高度一致或高低交错起伏;
    所述多个齿状凸起(221)之间设置有纵横交错并互相连通的沟或槽;
    所述齿状凸起(221)的边缘具有锋利的尖或锋利的棱。
  3. 如权利要求1所述的阻尼器,其特征在于,所述质量体(220)的外侧形成为磁性壁面,并且相邻的两个质量体(220)的相面对的表面具有相同的磁极性。
  4. 如权利要求3所述的阻尼器,其特征在于,所述壳体(100)包括顶盖(101),所述顶盖(101)的下表面形成为磁性壁面,并且所述顶盖(101)的下表面与所述质量体(220)的上表面具有相同的磁极性。
  5. 如权利要求3所述的阻尼器,其特征在于,所述质量体(220)的外侧附着有第一磁性体(224)。
  6. 如权利要求5所述的阻尼器,其特征在于,所述顶盖(101)的下表面上附着有第二磁性体(225)。
  7. 如权利要求1所述的阻尼器,其特征在于,所述质量体(220)为正方体、长方体、圆柱体、圆球体或锥状体。
  8. 如权利要求1所述的阻尼器,其特征在于,多个所述质量体(220)之间以及多个所述质量体(220)与所述壳体(100)的内侧壁之间通过弹性连接件(227)相互连接,形成网状连接结构。
  9. 如权利要求8所述的阻尼器,其特征在于,所述弹性连接件(227) 为弹簧或由弹性橡胶材料制成的橡皮筋。
  10. 如权利要求1所述的阻尼器,其特征在于,所述质量体运动腔(120)和所述质量体(220)均为多个,并通过多个腔体隔板(240)分隔开,所述腔体隔板(240)沿着所述阻尼器(1000,2000)的高度方向设置,所述质量体(220)分别位于每个质量体运动腔(120)中,并且所述多个齿状凸起(221)形成在所述质量体(220)的下表面上。
  11. 如权利要求10所述的阻尼器,其特征在于,所述壳体(100)为圆筒状,所述质量体运动腔(120)和所述质量体(220)为扇形或扇环形,沿着圆周方向均匀布置,位于所述质量体运动腔(120)下部的阻尼液(210)相互连通。
  12. 如权利要求11所述的阻尼器,其特征在于,所述质量体(220)中还形成有节流通孔(222),所述节流通孔(222)穿透所述质量体(220),连通所述阻尼液(210)和所述质量体(220)上部的空间。
  13. 如权利要求12所述的阻尼器,其特征在于,所述节流通孔(222)为等截面通孔或变截面通孔,所述节流通孔(222)中插入有管,所述管的下端开口伸入所述阻尼液(210)预定深度,所述管的上端开口高出所述质量体(220)的上表面预定高度。
  14. 如权利要求10所述的阻尼器,其特征在于,所述阻尼器(1000,2000)还包括阻尼系数调节单元(230),用于调节所述阻尼器(1000,2000)的阻尼系数。
  15. 如权利要求14所述的阻尼器,其特征在于,所述壳体(100)包括外筒壁、顶壁和底壁,所述阻尼系数调节单元(230)为如下结构中的一种:
    所述阻尼系数调节单元(230)包括形成在所述质量体(220)上部的气体腔室和位于所述气体腔室中的刚度可调弹性构件,所述刚度可调弹性构件连接在所述顶壁和所述质量体(220)之间;
    所述阻尼系数调节单元(230)包括形成在所述质量体(220)上部的密闭的气体腔室以及与所述气体腔室连接的气体压力调节单元(231),由所述气体压力调节单元(231)调节所述气体腔室中的压力;
    所述阻尼系数调节单元(230)包括形成在所述质量体(220)上部的气体腔室、容纳在所述气体腔室中的气囊以及与所述气囊连接的气体压力调节单元(231),由所述气体压力调节单元(231)调节所述气囊内的压力;
    所述阻尼系数调节单元包括设置在所述质量体(220)的上表面的第一磁性体(224)和设置在所述壳体(100)的顶盖(101)的下表面的第二磁性体(225),所述第一磁性体(224)和所述第二磁性体(225)具有相同的磁极性。
  16. 如权利要求10所述的阻尼器,其特征在于,所述质量体(220)的数量为偶数个,沿着圆周方向均匀、对称设置。
  17. 如权利要求1-16中任一项所述的阻尼器,其特征在于,所述阻尼器(3000)还包括加热器和散热结构,所述加热器设置在所述储液腔(110)中,所述散热结构设置在所述壳体(100)的外侧壁上。
  18. 一种承载围护结构,其特征在于,所述承载围护结构中安装有如权利要求1-17中任一项所述的阻尼器。
  19. 如权利要求18所述的承载围护结构,其特征在于,所述承载围护结构为筒状结构,所述阻尼器安装在所述筒状结构的内壁上。
  20. 如权利要求19所述的承载围护结构,其特征在于,所述承载围护结构为风力发电机组的塔筒、电视塔、通讯塔、冷却塔、工厂烟囱或桥梁支柱,所述阻尼器的数量为多个,沿着所述承载围护结构的高度方向间隔设置。
PCT/CN2018/107458 2018-06-28 2018-09-26 阻尼器以及具有该阻尼器的承载围护结构 WO2020000714A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18923771.2A EP3808974A4 (en) 2018-06-28 2018-09-26 DAMPER AND LOAD-BEARING HOUSING STRUCTURE THEREFORE
AU2018430498A AU2018430498B2 (en) 2018-06-28 2018-09-26 Damper and load-bearing enclosure structure having same
US17/043,221 US11415109B2 (en) 2018-06-28 2018-09-26 Damper and load-bearing enclosure structure having same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810684760.7 2018-06-28
CN201810684760.7A CN110630680B (zh) 2018-06-28 2018-06-28 阻尼器以及具有该阻尼器的承载围护结构
CN201810689683.4A CN108797829B (zh) 2018-06-28 2018-06-28 阻尼器以及具有该阻尼器的承载围护结构
CN201810689683.4 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020000714A1 true WO2020000714A1 (zh) 2020-01-02

Family

ID=68985958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107458 WO2020000714A1 (zh) 2018-06-28 2018-09-26 阻尼器以及具有该阻尼器的承载围护结构

Country Status (4)

Country Link
US (1) US11415109B2 (zh)
EP (1) EP3808974A4 (zh)
AU (1) AU2018430498B2 (zh)
WO (1) WO2020000714A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472937A (zh) * 2020-04-10 2020-07-31 三一重能有限公司 一种液体阻尼器、风力发电机塔筒及风力发电机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799010B (zh) * 2018-06-21 2020-10-09 北京金风科创风电设备有限公司 外表面设有混频吸收器的围护结构
EP3901455A1 (en) * 2020-04-23 2021-10-27 Siemens Gamesa Renewable Energy A/S Wind turbine
CN113446170B (zh) * 2021-08-06 2022-10-11 中国华能集团清洁能源技术研究院有限公司 一种阻尼器、风电机组用塔筒阻尼器和风力发电机组
CN113753187B (zh) * 2021-09-26 2022-08-19 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133670A (ja) * 2003-10-31 2005-05-26 Naotake Otsuka 液体振動を利用した風力発電装置
CN102410155A (zh) * 2011-12-09 2012-04-11 三一电气有限责任公司 一种风机及其塔筒
CN204677662U (zh) * 2015-04-30 2015-09-30 北京交通大学 双锥角的一阶浮力原理磁性液体减振器
WO2016037958A1 (de) * 2014-09-11 2016-03-17 Hochschule Wismar Einrichtung zum tilgen und dämpfen von schwingungen an bauwerken
CN106703246A (zh) * 2016-12-16 2017-05-24 中铁二十四局集团安徽工程有限公司 风力发电塔组合盆式混合调谐阻尼器
CN108797829A (zh) * 2018-06-28 2018-11-13 北京金风科创风电设备有限公司 阻尼器以及具有该阻尼器的承载围护结构

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783937A (en) 1986-08-06 1988-11-15 Shimizu Construction Co., Ltd. Device for suppressing vibration of structure
GB2212531B (en) * 1987-11-17 1991-12-11 Shimizu Construction Co Ltd Method for effectively restraining response of a structure to outside disturbances and apparatus therefor
EP0648906A1 (de) 1993-06-04 1995-04-19 Multicon Schwingungsdämpfer GmbH Schwingungsdämpfer für schwingungsgefährdete, insbesondere schlanke Bauwerke
WO1996018001A1 (fr) 1994-12-05 1996-06-13 Shogen Okawa Outil a traiter les tetes de pieux coules sur place, procede de traitement de tetes de pieux et procede de realisation de pieux coules sur place
CN1198994C (zh) 2002-11-07 2005-04-27 同济大学 发电机耗能可调谐质量阻尼器
EP1947365B1 (en) 2005-08-18 2012-06-06 Specialized Bicycle Components, Inc. Inertia valve for a bicycle
EP1820922A1 (en) 2006-02-15 2007-08-22 Dtu Tuned liquid damper
KR100856942B1 (ko) 2008-01-07 2008-09-04 주식회사 동부하이텍 이미지센서 및 그 제조방법
CN201396393Y (zh) 2009-03-19 2010-02-03 尹学军 弹簧阻尼隔振器
CN101994352B (zh) 2009-08-27 2013-01-16 润弘精密工程事业股份有限公司 微震控制建筑系统
CN102808882B (zh) 2012-07-25 2016-01-20 广西大学 长行程磁悬浮减震器
CN103785139A (zh) * 2014-01-26 2014-05-14 任立元 阻尼式漫步机
CN106545102B (zh) * 2016-10-28 2019-03-01 同济大学 浮板型调谐液体阻尼器
CN106948256B (zh) 2017-04-26 2019-06-21 中铁大桥科学研究院有限公司 一种超低频液体质量调谐阻尼器及设计方法
CN206815164U (zh) * 2017-05-04 2017-12-29 同济大学 组合型调谐质量液体阻尼器
KR101842524B1 (ko) 2017-09-29 2018-05-14 (주)영광공작소 풍력발전기용 진폭 댐퍼
CN107882690A (zh) 2017-11-09 2018-04-06 华电重工股份有限公司 一种引入调质阻尼器的风电塔架
EP3514374B1 (en) * 2018-01-17 2021-08-25 Siemens Gamesa Renewable Energy A/S A wind turbine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133670A (ja) * 2003-10-31 2005-05-26 Naotake Otsuka 液体振動を利用した風力発電装置
CN102410155A (zh) * 2011-12-09 2012-04-11 三一电气有限责任公司 一种风机及其塔筒
WO2016037958A1 (de) * 2014-09-11 2016-03-17 Hochschule Wismar Einrichtung zum tilgen und dämpfen von schwingungen an bauwerken
CN204677662U (zh) * 2015-04-30 2015-09-30 北京交通大学 双锥角的一阶浮力原理磁性液体减振器
CN106703246A (zh) * 2016-12-16 2017-05-24 中铁二十四局集团安徽工程有限公司 风力发电塔组合盆式混合调谐阻尼器
CN108797829A (zh) * 2018-06-28 2018-11-13 北京金风科创风电设备有限公司 阻尼器以及具有该阻尼器的承载围护结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3808974A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111472937A (zh) * 2020-04-10 2020-07-31 三一重能有限公司 一种液体阻尼器、风力发电机塔筒及风力发电机

Also Published As

Publication number Publication date
AU2018430498A1 (en) 2020-11-19
AU2018430498B2 (en) 2021-11-18
EP3808974A4 (en) 2021-08-11
EP3808974A1 (en) 2021-04-21
US11415109B2 (en) 2022-08-16
US20210017960A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
US11549277B2 (en) Damper and load-bearing enclosing structure provided with damper
WO2020000714A1 (zh) 阻尼器以及具有该阻尼器的承载围护结构
CN110630680B (zh) 阻尼器以及具有该阻尼器的承载围护结构
ES2688775T3 (es) Placas de amortiguación (de oscilación vertical) con características mejoradas
Bauer Oscillations of immiscible liquids in a rectangular container: a new damper for excited structures
US7220104B2 (en) Vibration reduction system for a wind turbine
CN108797829B (zh) 阻尼器以及具有该阻尼器的承载围护结构
CN108894571B (zh) 阻尼系统以及具有该阻尼系统的承载围护结构
CN209414046U (zh) 水上风力发电机塔筒减振阻尼索
CN108799010B (zh) 外表面设有混频吸收器的围护结构
CA2863612A1 (en) Bluff body turbine and method
CN209619825U (zh) 悬索桥减振阻尼索
CN209483859U (zh) 陆上风力发电机塔筒减振阻尼索
Vo-Duy et al. Mitigating large vibrations of stayed cables in wind and rain hazards
CN105443634A (zh) 一种具有调谐、碰撞双重作用的盆式颗粒减振器
CN107227806B (zh) 双向碰撞摆减振控制装置
WO2024066870A1 (zh) 漂浮式风力发电平台和漂浮式风力发电系统
CN110847674A (zh) 服役钢管塔杆件微风振动耗能抑制装置
CN114909010B (zh) 调谐气压液柱阻尼器和塔筒
US20130200861A1 (en) Bluff body turbine
CN217501237U (zh) 调谐液柱阻尼器和塔筒
CN109139784B (zh) 抑振装置及风力发电机组
Webler Soares Floating wind turbine motion suppression using an active wave energy converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018430498

Country of ref document: AU

Date of ref document: 20180926

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018923771

Country of ref document: EP

Effective date: 20210113