WO2020000698A1 - 电机的转子结构及电机 - Google Patents

电机的转子结构及电机 Download PDF

Info

Publication number
WO2020000698A1
WO2020000698A1 PCT/CN2018/106469 CN2018106469W WO2020000698A1 WO 2020000698 A1 WO2020000698 A1 WO 2020000698A1 CN 2018106469 W CN2018106469 W CN 2018106469W WO 2020000698 A1 WO2020000698 A1 WO 2020000698A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
yoke
rotor structure
molded body
magnet
Prior art date
Application number
PCT/CN2018/106469
Other languages
English (en)
French (fr)
Inventor
陶志杰
颜学力
张雷雷
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880017037.1A priority Critical patent/CN110896682A/zh
Publication of WO2020000698A1 publication Critical patent/WO2020000698A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors

Definitions

  • Embodiments of the present invention relate to the technical field of motors, and in particular, to a motor rotor structure of a brushless DC motor and a motor using the rotor structure.
  • the current brushless DC motor is generally composed of a stator structure, a rotor structure, and a circuit part.
  • the stator structure includes a coil. After the coil is energized, it is combined with the magnetic field generated by the permanent magnet (magnet) in the rotor structure. The principle of force in a magnetic field, the rotor structure will generate rotational motion.
  • the control part of the motor controls the parameters such as the speed and torque of the motor through the chip to control the voltage and current of the coil to the stator structure.
  • the coil is usually connected to the control circuit through a circuit board, and then the stator structure and the circuit board are integrally mounted on the motor base.
  • FIG. 5 is an exploded perspective view of a conventional motor
  • FIG. 6 is an exploded perspective view of a rotor structure in FIG. 5.
  • the conventional stator structure usually includes a multi-phase coil winding 20 composed of an iron core and a coil.
  • the coil winding 20 is connected to other circuit parts (for example, the circuit board 40) through an enameled wire to be energized, and then assembled as a whole.
  • On the motor base 50 On the motor base 50.
  • the iron core is a magnetically conductive material with better performance.
  • the coil is wound on the iron core by multiple layers of enameled wire.
  • the wound wire is generally divided into three phases, each of which has an incoming line and an outgoing line. Six leads.
  • the six leads in the coil winding 20 need to be connected to the circuit board 40 in order to connect the control circuit.
  • the control circuit of the enameled wire connection of the brushless DC motor mainly adopts the following method:
  • the circuit board 40 connected to the control circuit is located directly below the coil winding 20, and six pads are reserved on the circuit board 40 to correspond to the six enameled wires. Position it, and then manually solder the enameled wire to the corresponding pad with a soldering iron to form a conduction circuit.
  • the substrate of the circuit board may be a PCB (hard circuit board) or an FPC (flexible circuit board).
  • an upper bearing 60 and a lower bearing 70 are respectively provided.
  • a conventional rotor structure is generally configured by assembling components such as a rotating shaft 110, a yoke 120, a holder 130, an upper cover 140, and a magnet 30.
  • the embodiments of the present invention aim to solve at least one of the technical problems existing in the prior art, and provide a novel rotor structure of a motor and a motor having the rotor structure. Realize automation, improve the stability and reliability of the motor rotor structure, and improve production efficiency and yield.
  • An embodiment of the present invention provides a rotor structure of a motor.
  • the motor includes a stator structure and a rotor structure that rotates relative to the stator structure.
  • the rotor structure includes a molded body and a magnetic body embedded in the molded body for generating a magnetic field inside the motor.
  • a plurality of magnets, and the molded body integrally includes a rotating shaft that rotates around a central axis of the motor, a yoke, and a holder that maintains a positional relationship between the plurality of magnets, and the surface of the magnets is attached to the inner periphery of the yoke. side.
  • the molded body further includes an upper cover integrally connected to the yoke and covering the magnet together with the yoke.
  • rotation shaft and the yoke are metal members.
  • the holder and the upper cover are plastic parts.
  • rotating shaft, the yoke, the holder, and the upper cover are integrally formed by insert molding.
  • the magnet is a tile-type magnet.
  • the holder is located between the plurality of magnets and is used to maintain a positional relationship between the plurality of magnets.
  • an embodiment of the present invention further provides a motor, wherein the motor includes a stator structure and a rotor structure of the motor.
  • stator structure is connected to a circuit board, the stator structure includes a coil winding, the coil winding includes an iron core and a coil wound on the iron core, and the coil is connected to the circuit board through a plurality of pins.
  • a small hole for inserting the pin is formed on the plastic bottom of the iron core, one end of the pin passes through the small hole to connect with the coil, and a pad on the circuit board is formed with the above A connection hole corresponding to the pin, and the other end of the pin is soldered to the connection hole of the pad to be electrically connected to the circuit board.
  • the rotor structure of the motor according to the embodiment of the present invention greatly improves the performance and the assembly process of the motor, and can be widely used in the manufacture and assembly of the motor to improve the production efficiency.
  • FIG. 1 is an exploded perspective view of a motor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of the motor in an assembled state corresponding to FIG. 1;
  • FIG. 3 is a cross-sectional view of a rotor in an assembled state according to an embodiment of the present invention
  • FIG. 4 is an exploded perspective view of a stator assembly structure according to an embodiment of the present invention as viewed from the upper side;
  • FIG. 6 is an exploded perspective view of the rotor structure in FIG. 5.
  • FIG. 1 is an exploded perspective view of a motor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of a motor corresponding to FIG. 1 in an assembled state
  • FIG. 3 is a cross-sectional view of a rotor structure in an assembled state according to an embodiment of the present invention
  • the (inductive) brushless DC motor of the embodiment of the present invention generally includes a stator structure, a rotor structure that rotates relative to the stator structure, and a circuit part that energizes the stator structure (coil winding) to generate electromagnetic waves.
  • the rotor structure includes a molded body 1 and a magnet 3 embedded in the molded body 1 for generating a magnetic field inside the motor.
  • the molded body 1 includes a rotating shaft 11 that rotates around a central axis of the motor, a yoke 12, a holder 13 that holds the magnet, and an upper cover that is connected to the yoke 12 and covers the magnet 3 together with the yoke 12. 14.
  • the motor shaft 11 and the yoke 12 are first put into a mold, and the molded product having the shaft 11, the yoke 12, the holder 13, and the upper cover 14 is integrally formed by insert injection molding.
  • the upper cover 14 and the holder 13 may be plastic components, and the motor shaft 11 and the yoke 12 may be metal components.
  • the motor of this embodiment is further provided with an upper bearing 6 and a lower bearing 7 in order to ensure the normal rotation of the rotating shaft.
  • the rotating shaft 11 rotates relative to the stator structure together with the entire molded body 1 and the magnet 3, and the holder 13 is located between the plurality of magnets 3 to hold a plurality of Positional relationship between magnets.
  • the magnet 3 (for example, a tile-type magnet) is mounted on the inner side of the molded body 1 (that is, the inner ring of the yoke 12) by a surface mount method (SMT).
  • SMT surface mount method
  • the magnet 3 is mostly made of rare-earth permanent magnet materials with high coercive force and high magnetic permeability such as neodymium iron boron, which generates a constant magnetic field inside the motor.
  • the motor shaft 11 and the yoke 12 are prepared in advance, wherein the motor shaft 11 is usually processed by turning, and the yoke 12 is usually processed by a stamping process;
  • the prepared motor shaft 11 and yoke 12 are put into a mold, the mold is closed, and injection molding is performed. According to this, the upper cover 14 and the holder 13 are formed from the injected plastic, and the metal motor is also formed.
  • the rotating shaft 11 and the yoke 12 are integrally formed (molded body 1);
  • the obtained molded body 1 is put into a jig, and then the magnet 3 is bonded to the inside of the molded body 1 (yoke 12) through the surface of the jig;
  • an in-mold injection method is used to place a metal motor shaft and yoke into a mold, and the cage of the rotor structure, the shaft, and the yoke (and the upper cover) are integrally injection-molded by insert molding.
  • the rotor structure needs to be assembled by simply putting magnets in such a molded body. According to this, the materials and assembly of a single holder and the upper cover are omitted, the assembly is more convenient, automatic assembly can be realized, a large amount of labor can be saved, and manufacturing efficiency can be improved.
  • the cage, the rotating shaft, and the yoke are formed into a molded body, the structure is simple and compact, and the rotor assembly is more reliable.
  • the cage is integrated with the shaft and the yoke, on the one hand, it can strengthen the cage to prevent it from being easily deformed, and on the other hand, it can prevent the cage from being caused by the shrinkage and deformation of the plastic, manufacturing tolerances and other reasons. The problem of inaccurate positioning can make the rotor more consistent.
  • the stator assembly structure includes a stator structure (coil winding 2) and a circuit board 4.
  • the coil winding 2 of the stator structure is formed by winding a multilayer enameled wire (coil 22) on an iron core 21 (tooth portion).
  • the wound coil is divided into three phases, for example
  • the coil has two leads at the incoming end and the outgoing end, respectively corresponding to a pair of pins.
  • the three-phase coil has a total of six leads.
  • the six leads are connected to the corresponding pads 41 of the circuit board 4 as a circuit portion through a plurality of pins 24 (for example, six pins).
  • a plastic bottom 23 is formed on the bottom of the iron core 21 and extends to the circuit board side.
  • the plastic insulation layer plays a role of fixing the iron core 21 and isolating the iron core 21 from the circuit board 4.
  • the plastic bottom 23 can play a fixed supporting role with respect to the circuit board 4.
  • the plastic bottom 23 is also provided with a mounting for the pin 24 ⁇ 25 ⁇ 25.
  • one end of the pin 24 is connected to the lead of the coil winding 2, and the other end is connected to the pad 41 on the circuit board 4, so as to achieve conduction between the coil winding 2 and the circuit board 4.
  • the mounting portion 25 of the plastic bottom portion 23 of the iron core 21 has six small holes.
  • Pins 24 are inserted into the six small holes in the mounting portion 25, and the pin material can be a tin-plated copper-clad steel wire, which can play a role of conduction.
  • the pins 24 can be inserted into the corresponding small holes through a special pin machine, which can effectively improve Productivity.
  • the method of inserting the coil 22 into the tin furnace and dipping tin between the inserted pin 24 and the lead of the enameled wire can be used to achieve conduction.
  • a side surface (upper surface) of the circuit board 4 opposite to the stator structure is also formed with a Hall sensor 42 and a capacitor 43, wherein the Hall sensor 42 is used to detect the motor rotation angle, and the capacitor 43 is used To filter the current signal.
  • the welding of the pins 24 and the circuit board 4 is completed using an automatic spot welding machine, and batch welding can be achieved with high welding efficiency, and It can effectively avoid the problem of weak solder joints and has a high welding yield.
  • the number of pins 24, small holes in the mounting portion 25, and the number of connection holes of the pad 41 can be determined according to the type of the motor, such as a three-phase brushless DC motor, pins 24, small holes, and connection holes.
  • the numbers are six, of which six pins 24 correspond to the incoming end and the outgoing end of a phase circuit in two groups.
  • the stator assembly structure further includes a motor base 5, in which the circuit board 4 is fixed on the motor base 5. Based on the assembled stator assembly structure, it can be further assembled by automation. The method assembles the stator assembly structure with other components such as a rotor component to obtain a motor.
  • the surface insulation layer of the iron core 21 is injection-molded.
  • a fixed plastic bottom 23 is formed on the bottom of the iron core 21 and formed on the mounting portion 25 together.
  • the pins 24 are inserted into the six small holes of the mounting portion 25 by the pin insertion machine;
  • each phase of the coil is wound on the corresponding end of the pin 24 for a few turns, and then the slot wire of the phase is wound. After slotting the wire, make a few turns on the corresponding pin 24 at the outlet end, repeating the action of each phase in turn until all the coils 22 have been wound;
  • the coil 22 after winding is put into a tin furnace to immerse tin, so that the leads of the three-phase (six-in-all) enameled wires and the corresponding pins 24 of the emissive wire are conducted;
  • the embodiment of the present invention adopts a dead fixed method, the structure is reliable, and it can be freely grasped and placed by a robot . For this reason, after the coil winding is completed, it can be clamped by a mechanical hand to complete the process of assembling the coil winding to the motor base.
  • the spot welding machine is introduced to automatically spot-weld the pins to the circuit board, the solder joints are stable and reliable, and the welding efficiency is also high. Therefore, the assembly structure is simple and convenient, and automatic assembly can be realized, which can save a lot of labor and improve assembly efficiency.
  • the circuit board 4 may be a PCB or an FPC. Due to the dead-fixing method of automatic welding, it is not easy to cause disconnection for PCB circuit boards, and it is not easy to produce deviations and deformations for FPC circuit boards. Especially for the FPC circuit board, which has its own flexibility, using the above-mentioned stator assembly structure, compared with the prior art, it can effectively avoid false welding, false welding, and weak solder joints, and has a higher welding yield. In a preferred embodiment, the circuit board 4 is an FPC, because the FPC can be bent at will, and the wiring is easier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种电机的转子结构和电机,电机包括定子结构和相对定子结构进行旋转的转子结构,转子结构包括成型体(1)和嵌入成型体(1)内部用于在电机内部产生磁场的多个磁铁(3),成型体(1)一体具有围绕电机的中心轴进行旋转的转轴(11)、磁轭(12)以及对多个磁铁(3)之间的位置关系进行保持的保持架(13),磁铁(3)表面贴合于磁轭(12)的内周侧。据此,这种电机的转子结构,结构紧凑,便于电机装配,更加容易实现自动化,提升电机转子结构的稳定性和可靠性,提高生产的效率和良率。

Description

电机的转子结构及电机 技术领域
本发明实施例涉及电机技术领域,尤其涉及一种无刷直流电机的电机转子结构以及采用该转子结构的电机。
背景技术
目前的无刷直流电机,一般主要由定子结构、转子结构、电路部分构成,其中的定子结构包括线圈,给圈通电后,结合转子结构中的永磁体(磁铁)产生的磁场,根据通电导体在磁场中受力原理,转子结构将产生旋转运动,电机的控制部分是通过芯片控制给到定子结构的线圈的电压电流等参数来实现对电机的转速、转矩等参数的调控,因此定子结构的线圈一般会通过电路板连接到控制电路上面,再将定子结构和电路板整体装配置至电机底座上。
图5是现有技术的电机的立体分解图;图6是图5中转子结构的立体分解图。
如图5所示,现有的定子结构通常包含由铁芯和线圈构成的多相线圈绕组20,线圈绕组20通过漆包线与其他的电路部分(例如,电路板40)连接而通电,再整体装配在电机底座50上。
在线圈绕组20中,铁芯是一种性能较好的导磁材料,线圈是在铁芯上面缠绕多层漆包线,所缠绕的线一般分为三相,三相各有进线和出线,一共六根引线。
线圈绕组20中的六根引线需要和电路板40导通,以便连接控制电路。目前无刷直流电机的漆包线连接控制电路主要是采用如下方式:与控制电路连接的电路板40位于线圈绕组20正下方,电路板40上预留六个焊盘以对应六根漆包线,利用治具辅助定位,再人工拿烙铁将漆包线焊接到对应的焊盘上,构成导通电路。另外,在结构上还再需要通过塑胶片80来支撑线圈绕组20和压住电路板40。电路板的基材可以是PCB(硬质电路板)也可以是FPC(柔性电路板)。另外,为了保证转轴正常旋转,分别 设有上轴承60和下轴承70。
另外,如图5、图6所示,现有的转子结构通常由转轴110、磁轭120、保持架130、上盖140、磁铁30等部件组装在一起而构成。
但是,对于这种现有的转子结构,如果采用环形磁铁,磁场强度不够,无法满足电机输出要求;即使采用瓦型磁铁,利用单独的塑胶保持架固定,这样也无形中增加了上盖和保持架的物料以及多余的组装工序,导致生产效率低下;另外,单个保持架组装存在不确定性,组装后的磁铁位置无法很好的管控,不利于转子量产的一致性。
发明内容
有鉴于此,本发明实施例旨在至少解决现有技术中存在的技术问题之一,提供一种新型的电机的转子结构以及具有该转子结构的电机,其结构紧凑,便于电机装配,更加容易实现自动化,提升电机转子结构的稳定性和可靠性,提高生产的效率和良率。
本发明实施例提供了一种电机的转子结构,上述电机包括定子结构和相对定子结构进行旋转的转子结构,其中,上述转子结构包括成型体和嵌入上述成型体内部用于在电机内部产生磁场的多个磁铁,上述成型体一体具有围绕电机的中心轴进行旋转的转轴、磁轭以及对多个上述磁铁之间的位置关系进行保持的保持架,上述磁铁表面贴合于上述磁轭的内周侧。
进一步地,上述成型体还一体具有与上述磁轭相连结而与上述磁轭一起包覆上述磁铁的上盖。
进一步地,上述转轴和上述磁轭是金属部件。
进一步地,上述保持架和上述上盖是塑胶部件。
进一步地,上述转轴、上述磁轭、上述保持架和上述上盖通过镶嵌成型而一体形成。
进一步地,上述磁铁是瓦型磁铁。
进一步地,上述保持架位于多个上述磁铁之间用来保持多个上述磁铁之间的位置关系。
另外,本发明实施例还提供一种电机,其中:上述电机包括定子结构和上述的电机的转子结构。
进一步地,上述定子结构与电路板相连接,上述定子结构包含线圈绕组,上述线圈绕组包括铁芯和缠绕在上述铁芯上的线圈,上述线圈通过多个插针与上述电路板相连接。
进一步地,在上述铁芯的塑胶底部上形成有用于插入上述插针的小孔,上述插针的一端穿过上述小孔而与上述线圈相连接,上述电路板上的焊盘形成有与上述插针相对应的连接孔,上述插针的另一端焊接到上述焊盘的连接孔而与上述电路板电连接。
根据本发明实施例的电机的转子结构,其极大的改善电机的性能和组装工艺,可以广泛应用于电机的制造装配,提高生产效率。
附图说明
为了更完整地理解本发明实施例的技术方案及其优势,现在将参考结合附图的以下描述,其中:
图1是本发明实施例的电机的立体分解图;
图2是与图1相对应的电机组装状态下的剖视图;
图3是本发明实施例的转子组装状态下的剖视图;
图4是本发明实施例的定子组装结构的从上面侧观察的立体分解图;
图5是现有技术的电机的立体分解图;
图6是图5中转子结构的立体分解图。
附图标记:
1-转子结构的成型体,11、110-转轴,12、120-磁轭,13、130-保持架,14、140-上盖,2、20-定子结构的线圈绕组,21-铁芯,22-线圈,23-底部,24-插针,25-安装部,3、30-磁铁,4、40-电路板,41-焊盘,42-霍尔传感器,43-电容,5、50-电机底座,6、60-上轴承,7、70-下轴承,80-塑胶片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明实施例一部分实施例,而不是全部的实施例。基于本发明实施例中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明实施例的技术领域的技术人员通常理解的含义相同。本文中在本发明实施例的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明实施例。
下面结合附图,对本发明实施例的一些实施例作详细说明。在不冲突的情况下,下述的实施例中的特征可以相互组合。
图1是本发明实施例的电机的立体分解图;图2是与图1相对应的电机组装状态下的剖视图;图3是本发明实施例的转子结构组装状态下的剖视图;图4是本发明实施例的定子组装结构的从上面侧观察的立体分解图。
本发明实施例的(有感)无刷直流电机通常包含定子结构、相对定子结构进行旋转的转子结构和对定子结构(线圈绕组)通电以产生电磁的电路部分。
如图1、图2所示,转子结构包括成型体1和嵌入成型体1内部用于在电机内部产生磁场的磁铁3。成型体1中一体具有围绕电机的中心轴进行旋转的转轴11、磁轭12、对磁铁进行保持的保持架13、以及与磁轭12相连结而与磁轭12一起包覆磁铁3的上盖14。在成形成型体1时,先将电机转轴11和磁轭12放入模具中,通过镶嵌注塑成型的方式一体成形具有转轴11、磁轭12、保持架13以及上盖14的成型品。其中,上盖14和保持架13可为塑胶部件,电机转轴11和磁轭12可为金属部件。另外,本实施例的电机,为了保证转轴正常旋转还设有上轴承6和下轴承7。
一并如图2、图3所示,在转子组装状态下,转轴11与整个成型体1和磁铁3一起相对于定子结构进行旋转,保持架13位于多个磁铁3之间用来保持多个磁铁之间的位置关系。磁铁3(例如,瓦型磁铁)通过表面贴装方式(SMT)装配于成型体1的内侧(即,磁轭12的内圈)。磁铁3多采用钕铁 硼等高矫顽力、高渗磁感应密度的稀土永磁材料制作而成,在电机内部产生一种恒定磁场。
以下,对本发明实施例的电机的转子结构的制造工艺进行说明。
首先,事先准备好电机转轴11和磁轭12,其中,电机转轴11通常通过车削加工而成,磁轭12通常通过冲压工艺加工而成;
其次,将准备好的电机转轴11和磁轭12放入模具中,合模,进行注塑成型,据此,利用注入的塑胶成形出上盖14和保持架13的同时,也将金属制的电机转轴11和磁轭12形成为一体(成型体1);
接着,将得到的成型体1放入治具,再将磁铁3通过治具表面贴合到成型体1(磁轭12)的内侧;
这样,整个转子的组装就完成了。
根据上述转子结构,采用模内注塑的方式,将金属材质的电机转轴和磁轭放入模具中,通过镶嵌成型将转子结构的保持架和转轴、磁轭(以及上盖)一体注塑成型,接下来,只需要在这样的成型体中装入磁铁就可完成转子结构的组装。据此,省去了单个保持架和上盖的物料和组装,装配更加方便,可以实现自动化组装,能够节省大量人工,提升制造效率。
另外,将保持架与转轴、磁轭形成为成型体,结构简单紧凑,转子装配更加可靠。而且,保持架与转轴、磁轭形成一体,一方面可以增强保持架,使其不容易产生变形,另一方面也可以防止保持架因塑胶收缩变形、制造公差等原因而造成与转轴、磁轭之间定位不准的问题,能够使转子一致性更好。
另外,如图4所示,定子组装结构中,包括定子结构(线圈绕组2)以及电路板4。
定子结构的线圈绕组2通过在铁芯21(齿部)上缠绕多层漆包线(线圈22)而构成,以三相无刷直流电机为例,所缠绕的线圈例如分为三相,每一相线圈具有进线端和出线端的二根引线,与一对插针分别相对应,三相线圈合计一共有六根引线。六根引线通过多个插针24(例如,六个插针)分别与作为电路部分的电路板4的对应的焊盘41连接。
在铁芯21表面包覆有塑胶绝缘层的同时,还在铁芯21的底部向电路板一侧延伸形成有塑胶底部23。塑胶绝缘层起到固定铁芯21以及隔离铁芯21 和电路板4的作用,塑胶底部23可以起到相对电路板4的固定支撑作用,塑胶底部23上还设有用于安装插针24的安装部25。
据此,在将线圈绕组2相对于电路板4进行定位时,无需像现有技术那样另外需要一个单独的塑胶片,相比于现有技术,这种在铁芯21上包覆塑胶绝缘层以设置塑胶底部的方式可以减少组装的部件,且组装更加方便,由于紧密包覆,稳定性也更高。
在本实施例中,插针24的一端与线圈绕组2的引线相连接,另一端与电路板4上的焊盘41相连接,从而实现线圈绕组2与电路板4的导通。
具体如图1所示,铁芯21的塑胶底部23的安装部25上开有六个小孔。在安装部25上的六个小孔中插入有插针24,插针材质可以为镀锡铜包钢线,能够起到导通的作用。本实施例中,由于安装部25上的小孔的位置是相对固定的,因此在定子组装结构的组装过程中,可以通过专用插针机将插针24插入对应的小孔中,能够有效提高生产效率。
而且,插入的插针24与漆包线的引线之间可以采用将线圈22放入锡炉中浸锡而实现导通的方法。
另外,电路板4上面形成有六个中心带连接孔的焊盘41,分别与线圈22上的六个插针24对应,当插针24焊接到电路板4上对应焊盘41的连接孔后,可以实现引线与电路板4的电连接。
另外,如图4所示,电路板4的与定子结构相对的一侧表面(上面)还形成有霍尔传感器42和电容43,其中,霍尔传感器42用来检测电机转动角度,电容43用来过滤电流信号。
具体地讲,当将插针24穿过电路板4上对应焊盘41的连接孔后,利用自动点焊机完成插针24与电路板4的焊接,可以实现批量焊接,焊接效率高,且可有效避免焊点不牢的问题,具有较高的焊接良率。
而且,在上述自动焊接的期间,工人可以摆放接下来需要焊接的线圈绕组和电路板等,能够节省时间,提升组装效率。
本实施例中,插针24、安装部25上的小孔以及焊盘41的连接孔的数量可以根据电机的类型来确定,比如三相无刷直流电机,插针24、小孔和连接孔的数量均为六个,其中六个插针24以两个为一组对应一相电路的进线端和出线端。
在本实施例中,如图1和图4所示,定子组装结构还包括电机底座5,其中电路板4固定在电机底座5上,基于该装配好的定子组装结构,可以进一步通过自动化装配的方式将定子组装结构与其他组件比如转子组件进行组装得到电机。
以下,对本发明实施例的无刷直流电机绕组焊接和组装方式进行说明:
首先,铁芯21的表面绝缘层采用注塑工艺,通过在铁芯21表面包塑一层塑胶绝缘,同时在铁芯21的底部成形一个固定用的塑胶底部23,一并在安装部25上形成六个小孔;
其次,铁芯注塑好之后在安装部25的六个小孔中由插针机插上插针24;
将插针24插入完成后,将铁芯21放到绕线机上开始绕线,每相线圈先在进线端对应插针24上绕几圈,再绕该相的槽线,绕完正常的槽线之后再在出线端的对应插针24上绕几圈,依次重复每一相的动作,直至绕完所有线圈22;
绕完线之后的线圈22放入锡炉浸锡,使漆包线三相(共六根)的进线端和出线端的引线和对应的插针24导通;
然后,将浸完锡的线圈22放到治具里面,再把电路板4放到治具上,线圈22的六个插针24分别与电路板4的焊盘41的六个连接孔对正;
最后,将治具放到自动点焊机上面,定好位置后,启动点焊机,开始自动焊接,焊接完成后,经过洗板、刷绝缘漆后进行内阻、匝间、绝缘、耐压测试,这样,线圈绕组2就组装完成了。
根据上述定子结构和焊接工艺,由于不像现有技术那样线圈和电路板之间柔性连结而比较脆弱,本发明实施例采用死固定的方式,结构可靠,可以利用机械手随意抓取,随意摆放。为此,线圈绕组做好之后,可以通过机械手夹取,完成线圈绕组装配到电机底座上的工序。
而且,引入点焊机将插针自动点焊到电路板上,焊点稳定可靠,焊接效率也高,从而,组装结构简单便利,可实现自动化组装,能够节省大量人工,提升装配效率。
在本实施例中,电路板4可以为PCB或者FPC。由于采用自动焊接的死固定方式,对于PCB电路板不容易导致断线,对于FPC电路板也不容易产生偏差和变形。尤其对于FPC电路板,其本身具有柔软性,采用上述定子组装 结构,相对于现有技术,更可有效避免虚焊、假焊、焊点不牢等情况,具有较高的焊接良率。在较佳的实施例中,电路板4为FPC,因为FPC可以随意弯折,走线更容易。
在本发明实施例的上述实施例中,以三相无刷直流电机(六根引线)为例进行了说明,不过,对于本领域的技术员当然可以理解,本发明实施例也可以应用到其他类型的电机上。
另外,本技术领域的普通技术人员应当认识到,以上的实施例仅是用来说明本发明实施例,而并非用作为对本发明实施例的限定,只要在本发明实施例的实质精神范围之内,对以上实施例所作的适当改变和变换都落在本发明实施例要求保护的范围之内。

Claims (16)

  1. 一种电机的转子结构,所述电机包括定子结构和相对定子结构进行旋转的转子结构,其特征在于:
    所述转子结构包括成型体(1)和嵌入所述成型体(1)内部用于在电机内部产生磁场的多个磁铁(3),
    所述成型体(1)一体具有围绕电机的中心轴进行旋转的转轴(11)、磁轭(12)以及对多个所述磁铁(3)之间的位置关系进行保持的保持架(13),
    所述磁铁(3)表面贴合于所述磁轭(12)的内周侧。
  2. 根据权利要求1所述的电机的转子结构,其特征在于:
    所述成型体(1)还一体具有与所述磁轭(12)相连结而与所述磁轭(12)一起包覆所述磁铁(3)的上盖(14)。
  3. 根据权利要求1或2所述的电机的转子结构,其特征在于:
    所述转轴(11)和所述磁轭(12)是金属部件。
  4. 根据权利要求2所述的电机的转子结构,其特征在于:
    所述保持架(13)和所述上盖(14)是塑胶部件。
  5. 根据权利要求2或4所述的电机的转子结构,其特征在于:
    所述转轴(11)、所述磁轭(12)、所述保持架(13)和所述上盖(14)通过镶嵌成型而一体形成。
  6. 根据权利要求1或2所述的电机的转子结构,其特征在于:
    所述磁铁(3)是瓦型磁铁。
  7. 根据权利要求1或2所述的电机的转子结构,其特征在于:
    所述保持架(13)位于多个所述磁铁(3)之间用来保持多个所述磁铁(3)之间的位置关系。
  8. 一种电机,其特征在于:所述电机包括定子结构和电机的转子结构,所述电机包括定子结构和相对定子结构进行旋转的转子结构,其特征在于:
    所述转子结构包括成型体(1)和嵌入所述成型体(1)内部用于在电机内部产生磁场的多个磁铁(3),
    所述成型体(1)一体具有围绕电机的中心轴进行旋转的转轴(11)、磁轭(12)以及对多个所述磁铁(3)之间的位置关系进行保持的保持架(13),
    所述磁铁(3)表面贴合于所述磁轭(12)的内周侧。
  9. 根据权利要求8所述的电机,其特征在于:所述成型体(1)还一体具有与所述磁轭(12)相连结而与所述磁轭(12)一起包覆所述磁铁(3)的上盖(14)。
  10. 根据权利要求8或9所述的电机,其特征在于:所述转轴(11)和所述磁轭(12)是金属部件。
  11. 根据权利要求9所述的电机,其特征在于:所述保持架(13)和所述上盖(14)是塑胶部件。
  12. 根据权利要求8或11所述的电机,其特征在于:所述转轴(11)、所述磁轭(12)、所述保持架(13)和所述上盖(14)通过镶嵌成型而一体形成。
  13. 根据权利要求8或9所述的电机,其特征在于:所述磁铁(3)是瓦型磁铁。
  14. 根据权利要求求8或9所述的电机,其特征在于:所述保持架(13)位于多个所述磁铁(3)之间用来保持多个所述磁铁(3)之间的位置关系。
  15. 根据权利要求14所述的电机,其特征在于:
    所述定子结构与电路板(4)相连接,
    所述定子结构包含线圈绕组(2),所述线圈绕组(2)包括铁芯(21)和缠绕在所述铁芯(21)上的线圈(22),
    所述线圈(22)通过多个插针(24)与所述电路板(4)相连接。
  16. 根据权利要求5所述的电机,其特征在于:
    在所述铁芯(21)的塑胶底部(23)上形成有用于插入所述插针(24)的小孔,所述插针(24)的一端穿过所述小孔而与所述线圈(22)相连接,
    所述电路板(4)上的焊盘(41)形成有与所述插针(24)相对应的连接孔,所述插针(24)的另一端焊接到所述焊盘(41)的连接孔而与所述电路板(4)电连接。
PCT/CN2018/106469 2018-06-26 2018-09-19 电机的转子结构及电机 WO2020000698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880017037.1A CN110896682A (zh) 2018-06-26 2018-09-19 电机的转子结构及电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820993478.2 2018-06-26
CN201820993478.2U CN208272734U (zh) 2018-06-26 2018-06-26 电机的转子结构及电机

Publications (1)

Publication Number Publication Date
WO2020000698A1 true WO2020000698A1 (zh) 2020-01-02

Family

ID=64691139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106469 WO2020000698A1 (zh) 2018-06-26 2018-09-19 电机的转子结构及电机

Country Status (2)

Country Link
CN (2) CN208272734U (zh)
WO (1) WO2020000698A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951594A1 (de) * 1999-10-27 2001-05-03 Bosch Gmbh Robert Rotor für einen Elektromotor
US20080197737A1 (en) * 2006-12-12 2008-08-21 Stephane Poulin Permanent magnet rotor assembly
CN103414270A (zh) * 2013-08-30 2013-11-27 维尔纳(福建)电机有限公司 永磁电机磁钢安装固定保持架及应用了该保持架的永磁电机磁缸

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268607A (en) * 1992-09-09 1993-12-07 Webster Plastics Molded resin motor housing
JP2017184525A (ja) * 2016-03-31 2017-10-05 日本電産株式会社 ステータユニット、モータ、および並列ファン

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951594A1 (de) * 1999-10-27 2001-05-03 Bosch Gmbh Robert Rotor für einen Elektromotor
US20080197737A1 (en) * 2006-12-12 2008-08-21 Stephane Poulin Permanent magnet rotor assembly
CN103414270A (zh) * 2013-08-30 2013-11-27 维尔纳(福建)电机有限公司 永磁电机磁钢安装固定保持架及应用了该保持架的永磁电机磁缸

Also Published As

Publication number Publication date
CN208272734U (zh) 2018-12-21
CN110896682A (zh) 2020-03-20

Similar Documents

Publication Publication Date Title
CN107846099B (zh) 定子及制造定子的方法
CN101588089B (zh) 电机
WO2020000667A1 (zh) 电机的定子结构、定子组装结构和电机
JP6766535B2 (ja) ステータユニット、モータ、およびファンモータ
JP6188963B2 (ja) 回転電機、及びその回転電機の製造方法
CN101588100A (zh) 电机
US8536467B2 (en) Connecting structure for electric cables and electric apparatus
CN101588096A (zh) 电机
WO2020000698A1 (zh) 电机的转子结构及电机
JP5925330B2 (ja) 電動機、空気調和機、及び電動機の製造方法
JP3927319B2 (ja) モータ
JPH0646543A (ja) 磁気ディスク駆動用スピンドルモータの巻線用端子および巻線方法
CN207475295U (zh) 定子以及马达
US20140042849A1 (en) Brushless motor
CN101572459A (zh) 电机
CN111342618B (zh) 定子单元、马达以及定子单元的制造方法
JPS6026504Y2 (ja) 扁平形ブラシレスモ−タ
KR100444973B1 (ko) 편평형 진동모터의 전원인가 구조
JPS589564A (ja) トランジスタモ−タの製造方法
KR100556962B1 (ko) 전동기의 고정자 및 그 조립방법
JPH10309054A (ja) モータ
JPS6188752A (ja) フラツトモ−タ
JPS6233509Y2 (zh)
JPH10210726A (ja) コアレスモータ
JPH0210791Y2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924542

Country of ref document: EP

Kind code of ref document: A1