WO2020000604A1 - 前盖板的工况性能参数获取方法及装置 - Google Patents

前盖板的工况性能参数获取方法及装置 Download PDF

Info

Publication number
WO2020000604A1
WO2020000604A1 PCT/CN2018/101807 CN2018101807W WO2020000604A1 WO 2020000604 A1 WO2020000604 A1 WO 2020000604A1 CN 2018101807 W CN2018101807 W CN 2018101807W WO 2020000604 A1 WO2020000604 A1 WO 2020000604A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
module
front cover
submodule
constant value
Prior art date
Application number
PCT/CN2018/101807
Other languages
English (en)
French (fr)
Inventor
王玮
Original Assignee
东汉新能源汽车技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东汉新能源汽车技术有限公司 filed Critical 东汉新能源汽车技术有限公司
Publication of WO2020000604A1 publication Critical patent/WO2020000604A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/10Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/10Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles
    • B62D25/105Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles for motor cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/10Bonnets or lids, e.g. for trucks, tractors, busses, work vehicles
    • B62D25/12Parts or details thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites

Definitions

  • the present disclosure relates to the technical field of automobile front cover design, and in particular, to a method and a device for acquiring working condition performance parameters of a front cover.
  • the front cover of a car as one of the outer cover of the vehicle body, needs to resist the impact load received during the use of the vehicle, and also has the demand for the stiffness of the concave resistance. Therefore, in the realization of the composite material front cover structure and material integration design, it is necessary to accurately estimate the working condition performance in the front cover, and then optimize the design of the front cover through the obtained working condition performance parameters. .
  • the composite material is obtained by establishing a representative volume element finite element model of the composite material under different weaving parameters and using the Chamis formula. Constant value of elastic performance; Then, through the finite element modeling of the front cover plate, the performance parameters of the front cover plate under various working conditions are obtained by simulating the elastic performance constant value simulation.
  • the representative finite element model of the composite volume element is established based on the observed volume fraction.
  • the representative finite element model of the composite volume element obtained by this method will be true There is a certain gap in the composite material, so the performance parameters of the front cover obtained subsequently under various working conditions are not accurate.
  • the embodiments of the present disclosure provide a method and a device for acquiring working condition performance parameters of the front cover.
  • the technical solution is as follows:
  • a method for acquiring working condition performance parameters of a front cover plate including:
  • the working performance parameters of the front cover are obtained according to the mechanical property constant value of the composite material and the finite element model of the front cover; the material of the front cover includes the composite material.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: obtaining a microstructure diagram of the composite material, obtaining a mechanical property constant value of the composite material according to the microstructure diagram, according to the mechanical property constant value of the composite material, and a limited front cover
  • the metamodel obtains the performance parameters of the front cover; the material of the front cover includes composite materials.
  • the microstructure diagram of the composite material can be closer to the real material, thereby ensuring that the mechanical properties of the composite material obtained according to the microstructure diagram are closer to the real situation, that is, the macromechanical performance parameters closer to the real material can be obtained , Thereby effectively improving the accuracy of the performance parameters of the front cover obtained in subsequent calculations.
  • obtaining the mechanical property constant value of the composite material according to the microstructure diagram includes:
  • the weaving parameters include: the distance between adjacent materials and the number of layers of the composite material;
  • the mechanical property constant value of the composite material is obtained according to the mechanical property constant value of each material in the composite material and the representative volume unit of the composite material.
  • the obtaining the mechanical property constant value of the composite material according to the mechanical property constant value of each material in the composite material and the representative volume unit of the composite material includes:
  • the mechanical property constant value of each material in the composite material is obtained.
  • the microstructure diagram is at least two;
  • the step of establishing a representative volume unit of the composite material corresponding to the weaving parameters according to the microstructure diagram includes:
  • a representative volume unit of the composite material corresponding to the weaving parameters is established.
  • the obtaining a microstructure diagram of the composite material includes:
  • the preset geometric variable value of the first material includes at least: a diameter of the first material Distance from adjacent first material;
  • filling a blank area in the preset model with a second material in the composite material to obtain a microstructure diagram of the composite material includes:
  • the filled preset model is a microstructure diagram of the composite material ;
  • the geometric variable value is updated.
  • the working condition performance parameter includes at least one of the following parameters: a mounting point stiffness of the front cover, an outer plate stiffness of the front cover, and a wing tip of the front cover Stiffness.
  • a device for acquiring operating performance parameters of a front cover including:
  • a first acquisition module configured to acquire a microstructure diagram of a composite material
  • a second obtaining module configured to obtain a mechanical property constant value of the composite material according to the microstructure diagram obtained by the first obtaining module
  • a third obtaining module configured to obtain the working performance parameters of the front cover according to the mechanical property constant value of the composite material and the finite element model of the front cover obtained by the second obtaining module;
  • the material includes the composite material.
  • the second acquisition module includes a first acquisition submodule, a second acquisition submodule, a first establishment submodule, and a third acquisition submodule;
  • the first obtaining sub-module is configured to obtain a mechanical property constant value of each material in the composite material according to the microstructure diagram obtained by the first obtaining module;
  • the second acquisition sub-module is configured to acquire multiple sets of weaving parameters; the weaving parameters include: a distance between adjacent materials and a number of layers of the composite material;
  • the first establishing sub-module is configured to establish a weaving for each group of the plurality of sets of weaving parameters obtained by the second obtaining sub-module according to the microstructure diagram obtained by the first obtaining module.
  • the third acquisition submodule is configured to be based on the mechanical property constant value of each material in the composite material acquired by the first acquisition submodule and the representative volume unit of the composite material established by the first establishment submodule. Obtain a constant value of the mechanical properties of the composite material.
  • the third acquisition submodule includes: a replication submodule and a fourth acquisition submodule;
  • the copying sub-module is configured to copy the representative volume unit of the composite material established by the first establishing sub-module according to the frame model of the front cover to obtain the target composite volume unit;
  • the fourth acquisition submodule is configured to acquire the mechanics of the composite material according to the mechanical property constant value of each material in the composite material acquired by the first acquisition submodule and the representative volume unit of the target composite material. Performance constant value.
  • the microstructure diagram is at least two; the first establishment sub-module includes: a selection sub-module and a second establishment sub-module;
  • the selection sub-module is configured to select a corresponding microstructure diagram for each layer of the composite material according to a preset rule
  • the second establishing sub-module is configured to establish a representative volume unit of a composite material corresponding to the weaving parameter according to the microstructure diagram and the weaving parameter selected by the selecting sub-module.
  • the first obtaining module includes: a first filling sub-module and a second filling sub-module;
  • the first filling sub-module is configured to fill the first material in a preset model according to a preset geometric variable value of the first material in the composite material; the preset geometric variable value of the first material At least: a diameter of the first material and a distance between adjacent first materials;
  • the second filling sub-module is configured to fill a blank area in the preset model with a second material in the composite material to obtain a microstructure diagram of the composite material.
  • the second filling submodule includes: a third filling submodule, a detection submodule, a determination submodule, and an update submodule;
  • the third filling submodule is configured to fill a blank area in the preset model with a second material in the composite material to obtain a filled preset model;
  • the detection submodule is configured to detect whether the volume fraction of the first material in the preset model filled by the third filling submodule is smaller than the volume fraction of the first material in the physical sample;
  • the determining submodule is configured to, when the detection submodule detects that the volume fraction of the first material in the preset model filled by the third filling submodule is smaller than the volume fraction of the first material in the physical sample, Determining that the filled preset model is a microstructure diagram of the composite material;
  • the update sub-module is configured to, when the detection sub-module detects that the third filling sub-module is filled with the first material in the preset model, the volume fraction of the first material is greater than or equal to the volume of the first material in the physical sample When scored, the geometric variable value is updated.
  • the working condition performance parameter includes at least one of the following parameters: a mounting point stiffness of the front cover, an outer plate stiffness of the front cover, and a wing tip of the front cover Stiffness.
  • Fig. 1 is a flowchart illustrating a method for obtaining working condition performance parameters of a front cover according to an exemplary embodiment.
  • Fig. 2 is a sectional microscopic observation result diagram of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • Fig. 3 is a microstructure diagram of a carbon fiber bundle in a slice of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • Fig. 4 is a microstructure diagram of a resin matrix in a slice of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram of mechanical properties according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram showing the distribution of fibers in a representative volume unit of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • FIG. 7 is a schematic diagram showing resin distribution in a representative volume unit of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • Fig. 8 is a schematic structural diagram of a representative volume unit of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • Fig. 9 is a schematic structural diagram of a representative volume unit of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram of a frame model of a front cover according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a device for acquiring working condition performance parameters of a front cover according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a second acquisition module in a working condition parameter acquisition device for a front cover according to an exemplary embodiment.
  • Fig. 13 is a block diagram of a second acquisition submodule in a working condition parameter acquisition device for a front cover according to an exemplary embodiment.
  • Fig. 14 is a block diagram of a first establishment sub-module in a working condition parameter acquisition device for a front cover according to an exemplary embodiment.
  • Fig. 15 is a block diagram of a first acquisition module in a working condition parameter acquisition device for a front cover according to an exemplary embodiment.
  • Fig. 16 is a block diagram of a second filling sub-module in an operating condition performance parameter obtaining device for a front cover according to an exemplary embodiment.
  • a microstructure diagram of a composite material is obtained, a mechanical property constant value of the composite material is obtained according to the microstructure diagram, and a working performance parameter of the front cover plate is obtained according to the mechanical property constant value of the composite material and a finite element model of the front cover plate.
  • the material of the front cover includes composite materials.
  • the microstructure diagram of the composite material can be closer to the real material, thereby ensuring that the mechanical properties of the composite material obtained according to the microstructure diagram are closer to the real situation, that is, the macromechanical performance parameters closer to the real material can be obtained. , Thereby effectively improving the accuracy of the performance parameters of the front cover obtained in subsequent calculations.
  • Fig. 1 is a flow chart showing a method for obtaining working condition performance parameters of a front cover according to an exemplary embodiment. As shown in Fig. 1, the method includes the following steps S101-S103:
  • step S101 a microstructure diagram of the composite material is obtained.
  • the microstructure diagram obtained at this time includes: a microstructure diagram of a carbon fiber bundle and a resin matrix.
  • FIG. 2 is a microscopic observation result view of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment
  • FIG. 3 is a three-dimensional view according to an exemplary embodiment.
  • FIG. 4 is a microstructure diagram of a resin matrix in a slice of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment.
  • three-dimensional woven / woven carbon fiber composites (English: Carbon, Fiber, Reinforced Plastics) is a carbon fiber reinforced composite material with a textile structure.
  • the matrix is carbon fiber, which is woven or knitted by a textile machine.
  • step S102 a mechanical property constant value of the composite material is obtained according to the microstructure diagram.
  • step S103 the working performance parameters of the front cover are obtained according to the mechanical property constant value of the composite material and the finite element model of the front cover; the material of the front cover includes a composite material.
  • ABAQUS finite element software can be used to perform finite element modeling on the front cover of the composite material. Using the obtained mechanical property constant value of the composite material as the input of material properties, multiple static working conditions are performed on the front cover finite element model. Simulation analysis to obtain the performance parameters of the front cover.
  • the working condition performance parameter includes at least one of the following parameters: the mounting point stiffness of the front cover, the outer plate stiffness of the front cover, and the wing tip stiffness of the front cover.
  • the micro-mixing rule of each material in the composite material can be generated according to the slice of the composite material and a preset control algorithm to obtain the micro-structure map of the composite material, so that the micro-structure map is closer to the real composite material, thereby ensuring The method of obtaining the mechanical property constant value of the composite material according to the microstructure diagram is closer to the real situation, thereby improving the accuracy of obtaining the working performance parameters of the front cover plate based on the mechanical property constant value of the composite material and the finite element model of the front cover plate.
  • the methods in the prior art assume that the constituent materials of the composite material are completely uniformly distributed on the microstructure, but the constituent materials of the actual composite material are not necessarily regularly blended. Therefore, the microstructure is constructed by slicing the composite material The structure drawing makes it closer to the real material.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: obtaining a microstructure diagram of the composite material, obtaining a mechanical property constant value of the composite material according to the microstructure diagram, according to the mechanical property constant value of the composite material, and a limited front cover plate.
  • the metamodel obtains the performance parameters of the front cover; the material of the front cover includes composite materials.
  • the microstructure diagram of the composite material can be closer to the real material, thereby ensuring that the mechanical properties of the composite material obtained according to the microstructure diagram are closer to the real situation, that is, the macromechanical performance parameters closer to the real material can be obtained. , Thereby effectively improving the accuracy of the performance parameters of the front cover obtained in subsequent calculations.
  • the above step S102 includes the following sub-steps A1-A4:
  • the Chamis formula can only predict linear elastic properties (dashed lines in Figure 5), but not nonlinear mechanical properties ( The curve in Figure 5); and can only be targeted at uniform isotropic materials, can not be applied to anisotropic materials, can not consider the non-uniformity of materials, can not consider the material performance is affected by temperature
  • the mechanical properties are not limited to the linear and elastic stages and should cover non-linear (such as elastoplastic, viscoelastic). Etc.), even the influence of temperature on the characteristics of the material.
  • Digimat software can be used to obtain the mechanical property constants of composite materials based on the microstructure diagram.
  • Digimat software contains a variety of commonly used nonlinear constitutive components: linear elasticity, elastoplasticity , Viscoelasticity, viscoelasticity, superelasticity, etc.
  • the material properties predicted by Digimat software are not limited to linear mechanical properties, but also nonlinear mechanical properties (curves in Figure 5); and Digimat software can not only target uniform Isotropic materials can also be applied to anisotropic materials, that is, the non-uniformity of materials can be considered; and Digimat software can also consider that the properties of materials are affected by temperature.
  • the fiber filament used is AS4 of Hexcel
  • the matrix is epoxy resin 3506-6.
  • Carbon fiber filaments are transversely isotropic materials.
  • E 1f is the axial elastic modulus of the fiber
  • E 2f is the lateral elastic modulus of the fiber
  • G 12f is the in-plane shear modulus
  • G 23f is the out-of-plane shear modulus.
  • ⁇ 12f is the main Poisson's ratio
  • ⁇ 23f is the transverse Poisson's ratio
  • ⁇ f is the fiber density
  • the matrix is an isotropic material
  • Em is the elastic modulus of the matrix
  • Gm is the shear modulus of the matrix
  • ⁇ m is the matrix Poisson's ratio
  • ⁇ m is the matrix density.
  • the mechanical property constant value of the fiber bundle with a fiber volume fraction of 70% in the three-dimensional woven / woven carbon fiber composite material as shown in Table 3 was obtained by using Digimat software combined with the microstructure diagram of the three-dimensional woven / woven carbon fiber composite material.
  • E 1 is the axial elastic modulus of the fiber bundle
  • E 2 is the transverse elastic modulus of the fiber bundle
  • G 12 is the in-plane shear modulus of the fiber bundle
  • G 23 is the out-of-plane shear modulus of the fiber bundle
  • ⁇ 12 is The main Poisson's ratio.
  • weaving parameters include: the distance between adjacent materials and the number of layers of the composite material.
  • A3 a representative volume unit of the composite material corresponding to the knitting parameters is established for each group of the knitting parameters according to the microstructure diagram according to the microstructure diagram.
  • the Representative Volume Unit also known as the unit cell model, is an effective means for studying multi-scale, discretely distributed polyphases such as composite materials; the selected typical unit must be too small It is sufficient to represent the microscopic structural characteristics of the material, and it is large enough to represent the full physical properties of the composite material.
  • This simplified unit body is called a representative volume unit.
  • Digimat software can be used to quickly establish representative 3D woven / woven carbon fiber composite volume units obtained with different weaving parameters.
  • the weaving parameters are shown in Table 4:
  • Knitting parameters Number of warp yarns Number of weft yarns Layers Weaving depth Weaving Weaving type Value 8 4 4 4 2 steps diagonal
  • FIG. 6 is a schematic diagram showing the distribution of fibers in a representative volume unit of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment
  • FIG. 7 is a representative view of a three-dimensional woven / woven carbon fiber composite material according to an exemplary embodiment. Schematic representation of the resin distribution in the volume unit.
  • the mechanical property constant value of the composite material is obtained according to the mechanical property constant value of each material in the composite material and the representative volume unit of the composite material.
  • the mechanical property constant values of each material in the 3D woven / woven carbon fiber composite material are assigned to the representative volume unit of the 3D woven / woven carbon fiber composite material, and the main direction of the fiber bundle is defined by establishing a local coordinate system of the fiber bundle,
  • a mesoscopic finite element model of a representative volume element of a three-dimensional woven / woven carbon fiber composite material is established, and the mechanics of a three-dimensional woven / woven carbon fiber composite material is obtained through the mesoscopic finite element model of the representative volume element of the three-dimensional woven / woven carbon fiber composite material.
  • Performance constant value is established.
  • the above step A3 includes the following sub-steps B1-B2:
  • the representative volume unit of the composite material is obtained by copying the representative volume unit of the composite material according to the frame model of the front cover plate.
  • the representative volume unit of the composite material needs to be copied according to the frame model of the front cover shown in FIG. 10 to obtain the target composite.
  • the material representative volume unit and then based on the mechanical property constant value of each material in the composite material and the target composite material representative volume unit, obtain the mechanical property constant value of the composite material.
  • the mechanical property constant value of the composite material obtained is more accurate.
  • step A2 includes the following sub-steps C1-C2:
  • a corresponding microstructure map is selected for each layer of the composite material according to a preset rule.
  • the material may also be anisotropic in each direction. Therefore, according to preset rules, the corresponding microstructure diagram can be selected for each layer of the composite material. Therefore, the representative volume unit of the composite material is closer to the real material, and the non-uniformity of the material can be considered.
  • the disclosure does not limit the preset rules.
  • step S101 includes the following sub-steps D1-D2:
  • the first material is filled in a preset model according to a preset geometric variable value of the first material in the composite material; the preset geometric variable value of the first material includes at least: a diameter of the first material and an adjacent first The spacing between a material.
  • a blank material in the preset model is filled with a second material in the composite material to obtain a microstructure diagram of the composite material.
  • the microstructure of materials can be generated using Matlab software and python scripting language. Specifically, according to the microscopic observation result of the slice, the preset geometric variable value of the first material is input into the Matlab software. At this time, the Matlab software fills the first material in the preset model, and then uses the second material in the composite material. Fill the blank area in the preset model to obtain a microstructure map of the composite material.
  • the preset model at this time is a fiber hard core model, and the preset geometric variable values of the carbon fiber material are input into Matlab software.
  • Matlab software The model is filled with carbon fiber material, and the blank space in the hard core model of the fiber is filled with resin to obtain a microstructure diagram of the three-dimensional woven / woven carbon fiber composite material.
  • the first material is filled in the preset model, and the blank area in the preset model is filled with the second material, which effectively reduces the complexity of the step of obtaining the microstructure diagram degree.
  • step D2 includes the following sub-steps E1-E4:
  • a blank material in the preset model is filled with a second material in the composite material to obtain a filled preset model.
  • the second material in the composite material is used to fill the blank area in the preset model.
  • the filling needs to be detected.
  • the volume fraction of the first material in the subsequent preset model is smaller than the volume fraction of the first material in the physical sample, and when the volume fraction of the first material in the filled preset model is smaller than the volume of the first material in the physical sample
  • the score is determined, it is determined that the filled preset model is a microstructure diagram of the composite material, and when it is detected that the volume fraction of the first material in the filled preset model is greater than or equal to the volume fraction of the first material in the physical sample, Update the geometric variable values and repopulate the preset model based on the updated geometric variable values.
  • the obtained microstructure map is closer to the physical sample.
  • the validity of the optimization result can be verified by finite element simulation to realize the optimization of the composite front cover plate.
  • the target values of the working performance parameters of the front cover are: 1) Rigidity of the mounting point of the front cover: The rigidity of the mounting point of the front cover is ⁇ 50N / mm, (deformation after applying 50N ⁇ 1mm); 2) The rigidity of the outer plate of the front cover: the rigidity value of the outer plate of the front cover is ⁇ 100N / mm, (deformation ⁇ 3mm after applying 300N), the ball head is loaded with a diameter of 25.4, and the loading point is the geometric center of the outer plate No support area; 3) Other stiffness of the front cover (for example: wing tip stiffness of the front cover): The recommended stiffness is ⁇ 100N / mm (deformation ⁇ 3mm after applying 300N).
  • Fig. 11 is a block diagram of a device for acquiring working condition performance parameters of a front cover according to an exemplary embodiment.
  • the working condition performance parameter obtaining device of the front cover includes:
  • a first acquisition module 11 configured to acquire a microstructure diagram of a composite material
  • a second obtaining module 12 configured to obtain a mechanical property constant value of the composite material according to the microstructure diagram obtained by the first obtaining module 11;
  • the third obtaining module 13 is configured to obtain the working performance parameters of the front cover according to the mechanical property constant value of the composite material and the finite element model of the front cover obtained by the second obtaining module 12;
  • the material of the cover plate includes the composite material.
  • the second acquisition module 12 includes: a first acquisition submodule 121, a second acquisition submodule 122, a first establishment submodule 123, and a third acquisition submodule 124;
  • the first obtaining sub-module 121 is configured to obtain a mechanical property constant value of each material in the composite material according to the microstructure diagram obtained by the first obtaining module 11;
  • the second obtaining sub-module 122 is configured to obtain multiple sets of weaving parameters; the weaving parameters include: a distance between adjacent materials and a number of layers of the composite material;
  • the first establishment sub-module 123 is configured to, for each group of the plurality of sets of knitting parameters acquired by the second acquisition sub-module 122, according to the microstructure diagram acquired by the first acquisition module 11 To establish a representative volume unit of composite material corresponding to the braiding parameters;
  • the third acquisition sub-module 124 is configured to be based on the mechanical property constant value of each material in the composite material acquired by the first acquisition sub-module 121 and the composite material representative established by the first establishment sub-module 123.
  • the constant volume unit obtains a constant value of the mechanical properties of the composite material.
  • the third acquisition submodule 124 includes: a replication submodule 1241 and a fourth acquisition submodule 1242;
  • the duplication submodule 1241 is configured to perform a duplication operation on the representative volume unit of the composite material established by the first establishment submodule 123 according to the frame model of the front cover to obtain a target representative volume unit of the composite material;
  • the fourth acquisition submodule 1242 is configured to be based on the mechanical property constant value of each material in the composite material acquired by the first acquisition submodule 121 and the target composite material representative obtained by the replication submodule 1241.
  • a volume unit to obtain a constant value of the mechanical properties of the composite material.
  • the microstructure diagram is at least two; the first establishment sub-module 123 includes: a selection sub-module 1231 and a second establishment sub-module 1232;
  • the selection sub-module 1231 is configured to select a corresponding microstructure map for each layer of the composite material according to a preset rule
  • the second establishing sub-module 1232 is configured to establish a representative volume unit of the composite material corresponding to the weaving parameters according to the microstructure diagram and the weaving parameters selected by the selection sub-module 1231.
  • the first obtaining module 11 includes: a first filling sub-module 111 and a second filling sub-module 112;
  • the first filling sub-module 111 is configured to fill the first material in a preset model according to a preset geometric variable value of the first material in the composite material; the preset geometric variable of the first material The value includes at least: a diameter of the first material and a distance between adjacent first materials;
  • the second filling sub-module 112 is configured to fill a blank area in the preset model with a second material in the composite material to obtain a microstructure diagram of the composite material.
  • the second filling submodule 112 includes a third filling submodule 1121, a detection submodule 1122, a determination submodule 1123, and an update submodule 1124;
  • the third filling sub-module 1121 is configured to fill a blank area in the preset model with the second material in the composite material to obtain a filled preset model;
  • the detection sub-module 1122 is configured to detect whether the volume fraction of the first material in the preset model filled by the third filling sub-module 1121 is smaller than the volume fraction of the first material in the physical sample;
  • the determining submodule 1123 is configured to: when the detecting submodule 1122 detects that the third filling submodule 1121 is filled with a first material in a preset model, the volume fraction of the first material is smaller than the volume of the first material in the physical sample. When the score is obtained, it is determined that the filled preset model is a microstructure diagram of the composite material;
  • the update sub-module 1124 is configured to, when the detection sub-module 1122 detects that the third filling sub-module 1121 is filled with a first material in a preset model whose volume fraction is greater than or equal to the first in the physical sample When the volume fraction of the material, the geometric variable value is updated.
  • the working condition performance parameter includes at least one of the following parameters: a mounting point stiffness of the front cover, an outer plate stiffness of the front cover, and a wing tip of the front cover Stiffness

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Superstructure Of Vehicle (AREA)

Abstract

本公开是关于前盖板的工况性能参数获取方法及装置。该方法包括:获取复合材料的微观结构图,根据微观结构图获取复合材料的力学性能常数值,根据复合材料的力学性能常数值和前盖板的有限元模型获取前盖板的工况性能参数;前盖板的材料包括复合材料。其中,复合材料的微观结构图可以更接近真实的材料,从而保证了根据微观结构图获取得到的复合材料的力学性能与真实情况更加接近,也即能得到与真实材料更接近的宏观力学性能参数,从而有效提升了后续计算得到的前盖板的工况性能参数的准确性。

Description

前盖板的工况性能参数获取方法及装置
相关申请的交叉参考
本申请基于申请号为201810691899.4、申请日为2018年06月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及汽车前盖板设计技术领域,尤其是一种前盖板的工况性能参数获取方法及装置。
背景技术
汽车前盖板作为车身外覆盖件之一,需要抵抗车辆使用中受到的冲击载荷,同时也有抗凹性的刚度需求。因此,在实现复合材料前盖板结构与材料一体化设计中需要对前盖板中的工况性能进行准确的预估,进而通过获取到的工况性能参数对前盖板的设计方案进行优化。
目前,在获取前盖板的工况性能参数时,是基于观测得到的纤维的体积分数,通过建立不同机织参数下的复合材料代表性体积单元有限元模型,采用Chamis公式计算得到复合材料的弹性性能常数值;然后通过对前盖板进行有限元建模,配合上述弹性性能常数值仿真得到前盖板在各个工况下的性能参数。
上述在获取前盖板的工况性能参数时,是基于观测得到的体积分数来建立复合材料代表性体积单元有限元模型,该种方法得到的复合材料代表性体积单元有限元模型会和真实的复合材料存在一定的差距,从而后续获取到的前盖板在各个工况下的性能参数并不准确。
发明内容
为克服相关技术中存在的问题,本公开实施例提供前盖板的工况性能参数获取方法及装置。所述技术方案如下:
根据本公开实施例的第一方面,提供一种前盖板的工况性能参数获取方法,包括:
获取复合材料的微观结构图;
根据所述微观结构图获取所述复合材料的力学性能常数值;
根据所述复合材料的力学性能常数值和前盖板的有限元模型获取所述前盖板的工况性能参数;所述前盖板的材料包括所述复合材料。
本公开的实施例提供的技术方案可以包括以下有益效果:获取复合材料的微观结构图,根据微观结构图获取复合材料的力学性能常数值,根据复合材料的力学性能常数值和前盖板的有限元模型获取前盖板的工况性能参数;前盖板的材料包括复合材料。其中,复合材料的微观结构图可以更接近真实的材料,从而保证了根据微观结构图获取得到的复合材料的力学性能与真实情况更加接近,也即能得到与真实材料更接近的宏观力学性能参数,从而有效提升了后续计算得到的前盖板的工况性能参数的准确性。
在一个实施例中,所述根据所述微观结构图获取所述复合材料的力学性能常数值,包括:
根据所述微观结构图获取所述复合材料中各材料的力学性能常数值;
获取多组编织参数;所述编织参数包括:相邻材料的间距和所述复合材料的层数;
针对所述多组编织参数中的每组编织参数,根据所述微观结构图,建立编织参数对应的复合材料代表性体积单元;
根据所述复合材料中各材料的力学性能常数值和所述复合材料代表性体积单元获取所述复合材料的力学性能常数值。
在一个实施例中,所述根据所述复合材料中各材料的力学性能常数值和所述复合材料代表性体积单元获取所述复合材料的力学性能常数值,包括:
根据所述前盖板的框架模型对所述复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元;
根据所述复合材料中各材料的力学性能常数值和所述目标复合材料代表性体积单元,获取所述复合材料的力学性能常数值。
在一个实施例中,所述微观结构图为至少两幅;
所述根据所述微观结构图,建立编织参数对应的复合材料代表性体积单元,包括:
按照预设规则为所述复合材料的每一层选择对应的微观结构图;
根据所选择的所述微观结构图和所述编织参数,建立所述编织参数对应的复合材料代表性体积单元。
在一个实施例中,所述获取复合材料的微观结构图,包括:
根据所述复合材料中的第一材料的预设几何变量值,在预设模型中填充所述第一材料;所述第一材料的预设几何变量值至少包括:所述第一材料的直径和相邻第一材料之间的间距;
使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图。
在一个实施例中,所述使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图,包括:
使用所述复合材料中的第二材料填充所述预设模型中的空白区域得到填充后的预设模型;
检测所述填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数;
当检测所述填充后的预设模型中的第一材料的体积分数小于所述实物样本中第一材料的体积分数时,确定所述填充后的预设模型为所述复合材料的微观结构图;
当检测到所述填充后的预设模型中的第一材料的体积分数大于或等于所述实物样本中第一材料的体积分数时,更新所述几何变量值。
在一个实施例中,所述工况性能参数至少包括以下参数中的至少一种:所述前盖板的安装点刚度、所述前盖板的外板刚度和所述前盖板的翼尖刚度。
根据本公开实施例的第二方面,提供一种前盖板的工况性能参数获取装置,包括:
第一获取模块,设置为获取复合材料的微观结构图;
第二获取模块,设置为根据所述第一获取模块获取的所述微观结构图获取所述复合材料的力学性能常数值;
第三获取模块,设置为所述第二获取模块获取的根据所述复合材料的力学性能常数值和前盖板的有限元模型获取所述前盖板的工况性能参数;所述前盖板的材料包括所述复合材料。
在一个实施例中,所述第二获取模块包括:第一获取子模块、第二获取子模块、第一建立子模块和第三获取子模块;
所述第一获取子模块,设置为根据所述第一获取模块获取的所述微观结构图获取所述复合材料中各材料的力学性能常数值;
所述第二获取子模块,设置为获取多组编织参数;所述编织参数包括:相邻材料的间距和所述复合材料的层数;
所述第一建立子模块,设置为针对所述第二获取子模块获取的所述多组编织参数中的每组编织参数,根据所述第一获取模块获取的所述微观结构图,建立编织参数对应的复合材料代表性体积单元;
所述第三获取子模块,设置为根据所述第一获取子模块获取的所述复合材料中各材料的力学性能常数值和所述第一建立子模块建立的所述复合材料代表性体积单元获取所述复合材料的力学性能常数值。
在一个实施例中,所述第三获取子模块包括:复制子模块和第四获取子模块;
所述复制子模块,设置为根据所述前盖板的框架模型对所述第一建立子模块建立的所述复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元;
所述第四获取子模块,设置为根据所述第一获取子模块获取的所述复合材料中各材料的力学性能常数值和所述目标复合材料代表性体积单元,获取所述复合材料的力学性能常数值。
在一个实施例中,所述微观结构图为至少两幅;所述第一建立子模块包括:选择子模块和第二建立子模块;
所述选择子模块,设置为按照预设规则为所述复合材料的每一层选择对应的微观结构图;
所述第二建立子模块,设置为根据所述选择子模块所选择的所述微观结构图和所述编织参数,建立所述编织参数对应的复合材料代表性体积单元。
在一个实施例中,所述第一获取模块包括:第一填充子模块和第二填充子模块;
所述第一填充子模块,设置为根据所述复合材料中的第一材料的预设几何变量值,在预设模型中填充所述第一材料;所述第一材料的预设几何变量值至少包括:所述第一材料的直径和相邻第一材料之间的间距;
所述第二填充子模块,设置为使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图。
在一个实施例中,所述第二填充子模块包括:第三填充子模块、检测子模块、确定子模块和更新子模块;
所述第三填充子模块,设置为使用所述复合材料中的第二材料填充所述预设模型中的空白区域得到填充后的预设模型;
所述检测子模块,设置为检测所述第三填充子模块填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数;
所述确定子模块,设置为当所述检测子模块检测所述第三填充子模块填充后的预设模型中的第一材料的体积分数小于所述实物样本中第一材料的体积分数时,确定所述填充后的预设模型为所述复合材料的微观结构图;
所述更新子模块,设置为当所述检测子模块检测到所述第三填充子模块填充后的预设模型中的第一材料的体积分数大于或等于所述实物样本中第一材料的体积分数时,更新所述几何变量值。
在一个实施例中,所述工况性能参数至少包括以下参数中的至少一种:所述前盖板的安装点刚度、所述前盖板的外板刚度和所述前盖板的翼尖刚度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起设置为解释本公开的原理。
图1是根据一示例性实施例示出的前盖板的工况性能参数获方法的流程图。
图2是根据一示例性实施例示出的三维机织/编织碳纤维复合材料的切片显微观察结果图。
图3是根据一示例性实施例示出的三维机织/编织碳纤维复合材料的切片中碳纤维束的微观结构图。
图4是根据一示例性实施例示出的三维机织/编织碳纤维复合材料的切片中树脂基体的微观结构图。
图5是根据一示例性实施例示出的力学性能示意图。
图6是根据一示例性实施例示出的三维机织/编织碳纤维复合材料代表性体积单元中纤维的分布示意图。
图7是根据一示例性实施例示出三维机织/编织碳纤维复合材料代表性体积单元中树脂的分布示意图。
图8是根据一示例性实施例示出的三维机织/编织碳纤维复合材料代表性体积单元结构示意图。
图9是根据一示例性实施例示出的三维机织/编织碳纤维复合材料代表性体积单元结构示意图。
图10是根据一示例性实施例示出的前盖板的框架模型示意图。
图11是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置的框图。
图12是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置中第二获取模块的框图。
图13是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置中第二获取子模块的框图。
图14是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置中第一建立子模块的框图。
图15是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置中第一获取模块的框图。
图16是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置中第二填充子模块的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开中,获取复合材料的微观结构图,根据微观结构图获取复合材料的力学性能常数值,根据复合材料的力学性能常数值和前盖板的有限元模型获取前盖板的工况性能参数;前盖板的材料包括复合材料。其中,复合材料的微观结构图可以更接近真实的材料,从而保证了根据微观结构图获取得到的复合材料的力学性能与真实情况更加接近,也即能得到与真实材料更接近的宏观力学性能参数,从而有效提升了后续计算得到的前盖板的工况性能参数的 准确性。
图1是根据一示例性实施例示出的前盖板的工况性能参数获方法的流程图,如图1所示,该方法包括以下步骤S101-S103:
在步骤S101中,获取复合材料的微观结构图。
以复合材料为三维机织/编织碳纤维复合材料为例,此时获取到的微观结构图包括:碳纤维束与树脂基体的微观结构图。如图2-图4所示,其中,图2是根据一示例性实施例示出的三维机织/编织碳纤维复合材料的切片显微观察结果图;图3是根据一示例性实施例示出的三维机织/编织碳纤维复合材料的切片中碳纤维束的微观结构图;图4是根据一示例性实施例示出的三维机织/编织碳纤维复合材料的切片中树脂基体的微观结构图。
其中,三维机织/编织碳纤维复合材料(英文:Carbon Fiber Reinforced Plastics)是一种纺织结构的碳纤维增强复合材料,其基体为碳纤维,经纺织机机织或编织而成,增强体为高分子聚合物,如环氧树脂。
在步骤S102中,根据微观结构图获取复合材料的力学性能常数值。
在步骤S103中,根据复合材料的力学性能常数值和前盖板的有限元模型获取前盖板的工况性能参数;前盖板的材料包括复合材料。
示例的,可以采用ABAQUS有限元软件,对复合材料前盖板进行有限元建模;以得到的复合材料的力学性能常数值作为材料性能输入,对前盖板有限元模型进行多个静态工况仿真分析,得到前盖板的工况下的性能参数。
其中,工况性能参数至少包括以下参数中的至少一种:前盖板的安装点刚度、前盖板的外板刚度和前盖板的翼尖刚度。
在本实施例中,可以根据复合材料的切片结合预设控制算法生成复合材料中各材料的微观掺混规律以得到复合材料的微观结构图,使微观结构图更接近真实的复合材料,从而保证了根据微观结构图获取复合材料的力学性能常数值与真实情况更加接近,进而提升了根据复 合材料的力学性能常数值和前盖板的有限元模型获取前盖板的工况性能参数的准确性。
进一步的,现有技术中的方法假定在微观结构上复合材料的各组成材料是完全均匀分布,而实际复合材料的各组成材料不一定是规则掺混,因此,通过根据复合材料切片去构建微观结构图,使得可以更接近真实的材料。
本公开的实施例提供的技术方案可以包括以下有益效果:获取复合材料的微观结构图,根据微观结构图获取复合材料的力学性能常数值,根据复合材料的力学性能常数值和前盖板的有限元模型获取前盖板的工况性能参数;前盖板的材料包括复合材料。其中,复合材料的微观结构图可以更接近真实的材料,从而保证了根据微观结构图获取得到的复合材料的力学性能与真实情况更加接近,也即能得到与真实材料更接近的宏观力学性能参数,从而有效提升了后续计算得到的前盖板的工况性能参数的准确性。
在一个实施例中,上述步骤S102包括以下子步骤A1-A4:
在A1中,根据微观结构图获取复合材料中各材料的力学性能常数值。
由于现有技术中采用Chamis公式预测复合材料的力学性能常数值有局限性:如图5所示,Chamis公式只能预测线弹性性能(图5中的虚线),而不能预测非线性力学性能(图5中的曲线);且只能针对均匀的各向同性材料,无法适用于各向异性材料,不能考虑材料的非均匀性,也无法考虑材料性能受温度的影响
因此,需要一种高效的力学性能预测方法,实现对不同编织参数下复合材料的力学性能进行准确预测;而且力学性能不局限于线性、弹性阶段,应当要覆盖非线性(如弹塑性、粘弹性等)阶段,甚至要考虑温度对材料特性的影响。
示例的,可以运用Digimat软件根据微观结构图获取复合材料中各材料的力学性能常数值,此时,如图5所示,由于Digimat软件包含多种常用的非线性本构:线弹性、弹塑性、粘弹性、粘弹塑、超弹性等,这样运用Digimat软件预测的材料性能不局限于线性力学性能,还可以预测非线性力学性能(图5中的曲线);且Digimat软件不仅能针对均匀的各向同性材 料,还可以适用于各向异性材料,也即,可以考虑材料的非均匀性;而且Digimat软件还能考虑到材料性能受温度的影响。
以复合材料为三维机织/编织碳纤维复合材料为例进行说明,本实施案例中,所采用的纤维丝为Hexcel赫氏复材的AS4,基体为环氧树脂3506-6。碳纤维丝为横观各向同性材料,定义E 1f为纤维轴向弹性模量,E 2f为纤维横向弹性模量,G 12f为纤维面内剪切模量,G 23f为纤维面外剪切模量,ν 12f为主泊松比,ν 23f为横向泊松比,ρ f为纤维密度;基体为各向同性材料,Em为基体弹性模量,Gm为基体剪切模量,ν m为基体泊松比,ρ m为基体密度。通过Digimat软件结合三维机织/编织碳纤维复合材料的微观结构图得到如表1所示的三维机织/编织碳纤维复合材料中纤维丝的力学性能常数值,以及如表2所示的三维机织/编织碳纤维复合材料中基体的力学性能常数值。
表1纤维丝的力学性能常数值
  类型 E 1f(GPa) E 2f(GPa) ν 12f ν 23f G 12f(GPa) G 23f(GPa) ρ f(g/cm 3)
纤维 碳纤维 235 15 0.2 0.2 27 7 1.8
表2基体的力学性能常数值
  类型 Em(GPa) ν m Gm(GPa) ρ m(g/cm 3)
基体 环氧树脂3506-6 4.3 0.35 1.6 1.27
进一步的,通过Digimat软件结合三维机织/编织碳纤维复合材料的微观结构图得到如表3所示的三维机织/编织碳纤维复合材料中纤维体积分数为70%的纤维束的力学性能常数值。其中,E 1为纤维束轴向弹性模量,E 2为纤维束横向弹性模量,G 12为纤维束面内剪切模量,G 23为纤维束面外剪切模量,ν 12为主泊松比。
表3纤维体积分数为70%的纤维束的力学性能常数值
  E 1(GPa) E 2(GPa) ν 12 ν 23 G 12(GPa) G 23(GPa)
Digimat 77 75 0.06 0.06 6.5 3
在A2中,获取多组编织参数;编织参数包括:相邻材料的间距和复合材料的层数。
在A3中,针对多组编织参数中的每组编织参数,根据微观结构图,建立编织参数对应的复合材料代表性体积单元。
值得注意的是,上述编织参数所包括的类型只是一种举例,在实际应用中并不局限于该两种。
其中,代表性体积单元(Representative Volume Element,简称为:RVE),也称为单胞模型,是研究复合材料这类具有多尺度、离散分布多相体的有效手段;选取的典型单元必须小得足以表示材料的细观结构特征,而且又要大到足以代表复合材料的全部物理性能。这种简化的单元体称为代表性体积单元。
可以运用Digimat软件快速建立不同编织参数得到的三维机织/编织碳纤维复合材料代表性体积单元,例如:编织参数如表4所示:
表4编织参数
编织参数 经向纱线数量 纬向纱线数量 层数 编织深度 编织法 编织类型
数值 8 4 4 4 2步 对角线
Digimat软件基于表4中的编织参数建立三维机织/编织碳纤维复合材料代表性体积单元。其中,图6是根据一示例性实施例示出的三维机织/编织碳纤维复合材料代表性体积单元中纤维的分布示意图,图7是根据一示例性实施例示出三维机织/编织碳纤维复合材料代表性体积单元中树脂的分布示意图。
在A4中,根据复合材料中各材料的力学性能常数值和复合材料代表性体积单元获取复合 材料的力学性能常数值。
当得到了三维机织/编织碳纤维复合材料代表性体积单元后,运用Digimat软件对三维机织/编织碳纤维复合材料代表性体积单元的进行网格划分,将网格划分后的三维机织/编织碳纤维复合材料代表性体积单元导入ABAQUS后单元类型为C3D8R,如图8所示。
将三维机织/编织碳纤维复合材料中各材料的力学性能常数值赋予至三维机织/编织碳纤维复合材料代表性体积单元中,并通过建立纤维束的局部坐标系来定义纤维束的主方向,从而建立三维机织/编织碳纤维复合材料代表性体积单元介观有限元模型,通过该三维机织/编织碳纤维复合材料代表性体积单元介观有限元模型获取三维机织/编织碳纤维复合材料的力学性能常数值。
在一个实施例中,上述步骤A3包括以下子步骤B1-B2:
在B1中,根据前盖板的框架模型对复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元。
在B2中,根据复合材料中各材料的力学性能常数值和目标复合材料代表性体积单元,获取复合材料的力学性能常数值。
如图9所示,为了使得到的复合材料代表性体积单元满足对称性和周期性,需根据如图10所示的前盖板的框架模型对复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元,进而根据复合材料中各材料的力学性能常数值和目标复合材料代表性体积单元,获取复合材料的力学性能常数值。
由于目标复合材料代表性体积单元可以更接近前盖板的形状,从而使得得到的复合材料的力学性能常数值更加准确。
在一个实施例中,微观结构图为至少两幅;上述步骤A2包括以下子步骤C1-C2:
在C1中,按照预设规则为复合材料的每一层选择对应的微观结构图。
在C2中,根据所选择的微观结构图和编织参数,建立编织参数对应的复合材料代表性体 积单元。
由于实际复合材料中各层中,各材料不一定是规则掺混,也即,各向也可能是异性材料,因此,可以根据预设规则为复合材料的每一层选择对应的微观结构图,从而构建的复合材料代表性体积单元更加贴近真实材料,并且可以考虑到材料的非均匀性。
其中,本公开不对预设规则加以限定。
在一个实施例中,上述步骤S101包括以下子步骤D1-D2:
在D1中,根据复合材料中的第一材料的预设几何变量值,在预设模型中填充第一材料;第一材料的预设几何变量值至少包括:第一材料的直径和相邻第一材料之间的间距。
在D2中,使用复合材料中的第二材料填充预设模型中的空白区域,以获取复合材料的微观结构图。
可以采用Matlab软件和python脚本语言生成材料的微观结构。具体的,根据切片显微观察结果,向Matlab软件中输入第一材料的预设几何变量值,此时,Matlab软件在预设模型中填充第一材料,进而,使用复合材料中的第二材料填充预设模型中的空白区域,以获取复合材料的微观结构图。
以复合材料为三维机织/编织碳纤维复合材料为例,此时的预设模型为纤维硬核模型,向Matlab软件中输入碳纤维材料的预设几何变量值,此时,Matlab软件在纤维硬核模型中填充碳纤维材料,进而,使用树脂填充纤维硬核模型中的空白区域,以获取三维机织/编织碳纤维复合材料的微观结构图。
当然,在实际应用中,也可以采用其他其他仿真软件和编程语言获取上述的微观结构图,本公开不对其加以限制。
通过复合材料中的第一材料的预设几何变量值,在预设模型中填充第一材料,进而使用第二材料填充预设模型中的空白区域,有效降低了获取的微观结构图步骤的复杂度。
在一个实施例中,上述步骤D2包括以下子步骤E1-E4:
在E1中,使用复合材料中的第二材料填充预设模型中的空白区域得到填充后的预设模型。
在E2中,检测填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数。
在E3中,当检测填充后的预设模型中的第一材料的体积分数小于实物样本中第一材料的体积分数时,确定填充后的预设模型为复合材料的微观结构图。
在E4中,当检测到填充后的预设模型中的第一材料的体积分数大于或等于实物样本中第一材料的体积分数时,更新几何变量值。
为了使得得到的微观结构图可以与真实实物样本更加吻合,在填充的过程中,使用复合材料中的第二材料填充预设模型中的空白区域得到填充后的预设模型后,还需检测填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数,当检测填充后的预设模型中的第一材料的体积分数小于实物样本中第一材料的体积分数时,确定填充后的预设模型为复合材料的微观结构图,而当检测到填充后的预设模型中的第一材料的体积分数大于或等于实物样本中第一材料的体积分数时,更新几何变量值,根据更新的几何变量值重新填充预设模型。
通过检测填充后的预设模型中的第一材料的体积分数与实物样本中第一材料的体积分数的大小关系,使得得到的微观结构图更加接近实物样本。
进一步的,当获取到前盖板的工况性能参数后,可以通过有限元仿真验证优化结果的有效性,实现复合材料前盖板优化。
在进行前盖板优化时,前盖板的工况性能参数的目标值为:1)前盖板的安装点刚度:前盖板的安装点刚度值≥50N/mm,(施加50N后变形≤1mm);2)前盖板的外板刚度:前盖板的外板刚度值≥100N/mm,(施加300N后变形≤3mm),直径25.4球头加载,加载点为外板几何中心及最大无支撑区;3)前盖板的其他刚度(例如:前盖板的翼尖刚度):刚度建议值≥ 100N/mm(施加300N后变形≤3mm)。
下述为本公开装置实施例,可以用于执行本公开方法实施例。
图11是根据一示例性实施例示出的一种前盖板的工况性能参数获取装置的框图。如图11所示,该前盖板的工况性能参数获取装置包括:
第一获取模块11,设置为获取复合材料的微观结构图;
第二获取模块12,设置为根据所述第一获取模块11获取的所述微观结构图获取所述复合材料的力学性能常数值;
第三获取模块13,设置为所述第二获取模块12获取的根据所述复合材料的力学性能常数值和前盖板的有限元模型获取所述前盖板的工况性能参数;所述前盖板的材料包括所述复合材料。
在一个实施例中,如图12所示,所述第二获取模块12包括:第一获取子模块121、第二获取子模块122、第一建立子模块123和第三获取子模块124;
所述第一获取子模块121,设置为根据所述第一获取模块11获取的所述微观结构图获取所述复合材料中各材料的力学性能常数值;
所述第二获取子模块122,设置为获取多组编织参数;所述编织参数包括:相邻材料的间距和所述复合材料的层数;
所述第一建立子模块123,设置为针对所述第二获取子模块122获取的所述多组编织参数中的每组编织参数,根据所述第一获取模块11获取的所述微观结构图,建立编织参数对应的复合材料代表性体积单元;
所述第三获取子模块124,设置为根据所述第一获取子模块121获取的所述复合材料中各材料的力学性能常数值和所述第一建立子模块123建立的所述复合材料代表性体积单元获取所述复合材料的力学性能常数值。
在一个实施例中,如图13所示,所述第三获取子模块124包括:复制子模块1241和第 四获取子模块1242;
所述复制子模块1241,设置为根据所述前盖板的框架模型对所述第一建立子模块123建立的所述复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元;
所述第四获取子模块1242,设置为根据所述第一获取子模块121获取的所述复合材料中各材料的力学性能常数值和所述复制子模块1241得到的所述目标复合材料代表性体积单元,获取所述复合材料的力学性能常数值。
在一个实施例中,如图14所示,所述微观结构图为至少两幅;所述第一建立子模块123包括:选择子模块1231和第二建立子模块1232;
所述选择子模块1231,设置为按照预设规则为所述复合材料的每一层选择对应的微观结构图;
所述第二建立子模块1232,设置为根据所述选择子模块1231所选择的所述微观结构图和所述编织参数,建立所述编织参数对应的复合材料代表性体积单元。
在一个实施例中,如图15所示,所述第一获取模块11包括:第一填充子模块111和第二填充子模块112;
所述第一填充子模块111,设置为根据所述复合材料中的第一材料的预设几何变量值,在预设模型中填充所述第一材料;所述第一材料的预设几何变量值至少包括:所述第一材料的直径和相邻第一材料之间的间距;
所述第二填充子模块112,设置为使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图。
在一个实施例中,如图16所示,所述第二填充子模块112包括:第三填充子模块1121、检测子模块1122、确定子模块1123和更新子模块1124;
所述第三填充子模块1121,设置为使用所述复合材料中的第二材料填充所述预设模型中的空白区域得到填充后的预设模型;
所述检测子模块1122,设置为检测所述第三填充子模块1121填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数;
所述确定子模块1123,设置为当所述检测子模块1122检测所述第三填充子模块1121填充后的预设模型中的第一材料的体积分数小于所述实物样本中第一材料的体积分数时,确定所述填充后的预设模型为所述复合材料的微观结构图;
所述更新子模块1124,设置为当所述检测子模块1122检测到所述第三填充子模块1121填充后的预设模型中的第一材料的体积分数大于或等于所述实物样本中第一材料的体积分数时,更新所述几何变量值。
在一个实施例中,所述工况性能参数至少包括以下参数中的至少一种:所述前盖板的安装点刚度、所述前盖板的外板刚度和所述前盖板的翼尖刚度
本领域技术人员在考虑说明书及实践这里公开的本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

  1. 一种前盖板的工况性能参数获取方法,包括:
    获取复合材料的微观结构图;
    根据所述微观结构图获取所述复合材料的力学性能常数值;
    根据所述复合材料的力学性能常数值和前盖板的有限元模型获取所述前盖板的工况性能参数;所述前盖板的材料包括所述复合材料。
  2. 根据权利要求1所述的方法,所述根据所述微观结构图获取所述复合材料的力学性能常数值,包括:
    根据所述微观结构图获取所述复合材料中各材料的力学性能常数值;
    获取多组编织参数;所述编织参数包括:相邻材料的间距和所述复合材料的层数;
    针对所述多组编织参数中的每组编织参数,根据所述微观结构图,建立编织参数对应的复合材料代表性体积单元;
    根据所述复合材料中各材料的力学性能常数值和所述复合材料代表性体积单元获取所述复合材料的力学性能常数值。
  3. 根据权利要求2所述的方法,所述根据所述复合材料中各材料的力学性能常数值和所述复合材料代表性体积单元获取所述复合材料的力学性能常数值,包括:
    根据所述前盖板的框架模型对所述复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元;
    根据所述复合材料中各材料的力学性能常数值和所述目标复合材料代表性体积单元,获取所述复合材料的力学性能常数值。
  4. 根据权利要求2所述的方法,所述微观结构图为至少两幅;
    所述根据所述微观结构图,建立编织参数对应的复合材料代表性体积单元,包括:
    按照预设规则为所述复合材料的每一层选择对应的微观结构图;
    根据所选择的所述微观结构图和所述编织参数,建立所述编织参数对应的复合材料代表性体积单元。
  5. 根据权利要求1所述的方法,所述获取复合材料的微观结构图,包括:
    根据所述复合材料中的第一材料的预设几何变量值,在预设模型中填充所述第一材料;所述第一材料的预设几何变量值至少包括:所述第一材料的直径和相邻第一材料之间的间距;
    使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图。
  6. 根据权利要求5所述的方法,所述使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图,包括:
    使用所述复合材料中的第二材料填充所述预设模型中的空白区域得到填充后的预设模型;
    检测所述填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数;
    当检测所述填充后的预设模型中的第一材料的体积分数小于所述实物样本中第一材料的体积分数时,确定所述填充后的预设模型为所述复合材料的微观结构图;
    当检测到所述填充后的预设模型中的第一材料的体积分数大于或等于所述实物样本中第一材料的体积分数时,更新所述几何变量值。
  7. 根据权利要求1所述的方法,所述工况性能参数至少包括以下参数中的至少一种:所述前盖板的安装点刚度、所述前盖板的外板刚度和所述前盖板的翼尖刚度。
  8. 一种前盖板的工况性能参数获取装置,包括:
    第一获取模块,设置为获取复合材料的微观结构图;
    第二获取模块,设置为根据所述第一获取模块获取的所述微观结构图获取所述复合材料 的力学性能常数值;
    第三获取模块,设置为所述第二获取模块获取的根据所述复合材料的力学性能常数值和前盖板的有限元模型获取所述前盖板的工况性能参数;所述前盖板的材料包括所述复合材料。
  9. 根据权利要求8所述的装置,所述第二获取模块包括:第一获取子模块、第二获取子模块、第一建立子模块和第三获取子模块;
    所述第一获取子模块,设置为根据所述第一获取模块获取的所述微观结构图获取所述复合材料中各材料的力学性能常数值;
    所述第二获取子模块,设置为获取多组编织参数;所述编织参数包括:相邻材料的间距和所述复合材料的层数;
    所述第一建立子模块,设置为针对所述第二获取子模块获取的所述多组编织参数中的每组编织参数,根据所述第一获取模块获取的所述微观结构图,建立编织参数对应的复合材料代表性体积单元;
    所述第三获取子模块,设置为根据所述第一获取子模块获取的所述复合材料中各材料的力学性能常数值和所述第一建立子模块建立的所述复合材料代表性体积单元获取所述复合材料的力学性能常数值。
  10. 根据权利要求9所述的装置,所述第三获取子模块包括:复制子模块和第四获取子模块;
    所述复制子模块,设置为根据所述前盖板的框架模型对所述第一建立子模块建立的所述复合材料代表性体积单元进行复制操作得到目标复合材料代表性体积单元;
    所述第四获取子模块,设置为根据所述第一获取子模块获取的所述复合材料中各材料的力学性能常数值和所述目标复合材料代表性体积单元,获取所述复合材料的力学性能常数值。
  11. 根据权利要求9所述的装置,所述微观结构图为至少两幅;所述第一建立子模块包括:选择子模块和第二建立子模块;
    所述选择子模块,设置为按照预设规则为所述复合材料的每一层选择对应的微观结构图;
    所述第二建立子模块,设置为根据所述选择子模块所选择的所述微观结构图和所述编织参数,建立所述编织参数对应的复合材料代表性体积单元。
  12. 根据权利要求8所述的装置,所述第一获取模块包括:第一填充子模块和第二填充子模块;
    所述第一填充子模块,设置为根据所述复合材料中的第一材料的预设几何变量值,在预设模型中填充所述第一材料;所述第一材料的预设几何变量值至少包括:所述第一材料的直径和相邻第一材料之间的间距;
    所述第二填充子模块,设置为使用所述复合材料中的第二材料填充所述预设模型中的空白区域,以获取所述复合材料的微观结构图。
  13. 根据权利要求12所述的装置,所述第二填充子模块包括:第三填充子模块、检测子模块、确定子模块和更新子模块;
    所述第三填充子模块,设置为使用所述复合材料中的第二材料填充所述预设模型中的空白区域得到填充后的预设模型;
    所述检测子模块,设置为检测所述第三填充子模块填充后的预设模型中的第一材料的体积分数是否小于实物样本中第一材料的体积分数;
    所述确定子模块,设置为当所述检测子模块检测所述第三填充子模块填充后的预设模型中的第一材料的体积分数小于所述实物样本中第一材料的体积分数时,确定所述填充后的预设模型为所述复合材料的微观结构图;
    所述更新子模块,设置为当所述检测子模块检测到所述第三填充子模块填充后的预设模型中的第一材料的体积分数大于或等于所述实物样本中第一材料的体积分数时,更新所述几何变量值。
  14. 根据权利要求8所述的装置,所述工况性能参数至少包括以下参数中的至少一种:
    所述前盖板的安装点刚度、所述前盖板的外板刚度和所述前盖板的翼尖刚度。
PCT/CN2018/101807 2018-06-28 2018-08-22 前盖板的工况性能参数获取方法及装置 WO2020000604A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810691899.4A CN108985003A (zh) 2018-06-28 2018-06-28 前盖板的工况性能参数获取方法及装置
CN201810691899.4 2018-06-28

Publications (1)

Publication Number Publication Date
WO2020000604A1 true WO2020000604A1 (zh) 2020-01-02

Family

ID=63685699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101807 WO2020000604A1 (zh) 2018-06-28 2018-08-22 前盖板的工况性能参数获取方法及装置

Country Status (6)

Country Link
US (1) US20200004924A1 (zh)
EP (1) EP3588333A1 (zh)
JP (1) JP2020004356A (zh)
KR (1) KR20200001953A (zh)
CN (1) CN108985003A (zh)
WO (1) WO2020000604A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220114309A1 (en) * 2020-10-08 2022-04-14 Dassault Systèmes Americas Corp. Modeling and Simulating Material Microstructures
CN112896373B (zh) * 2021-04-08 2022-04-29 东风柳州汽车有限公司 汽车发动机罩变形预测方法、装置、设备及存储介质
CN117747033B (zh) * 2024-02-08 2024-04-19 北京理工大学 复合材料网格结构数字化建模方法和建模装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130231902A1 (en) * 2012-03-05 2013-09-05 Siemens Product Lifecycle Management Software Inc. Spine-based rosette and simulation in fiber-composite materials
CN105046076A (zh) * 2015-07-13 2015-11-11 西安交通大学 层叠碳纤维复合材料的三层单胞结构微观力学性能计算方法
CN107563094A (zh) * 2017-09-21 2018-01-09 上海交通大学 三维机织碳纤维复合材料汽车翼子板优化方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995926B2 (ja) * 2001-09-18 2007-10-24 株式会社富士通長野システムエンジニアリング 構造解析プログラム、構造解析方法、構造解析装置および半導体集積回路の製造方法
JP4453315B2 (ja) * 2003-09-19 2010-04-21 横浜ゴム株式会社 複合材料の力学的解析装置
JP4936135B2 (ja) * 2007-09-28 2012-05-23 横浜ゴム株式会社 膜構造物の変形シミュレーション方法
US8380776B2 (en) * 2009-03-02 2013-02-19 The Yokohama Rubber Co., Ltd. Computational method of material constant of composite material and volume fraction of material component in composite material, and recording medium
US8126659B2 (en) * 2009-03-02 2012-02-28 The Yokohama Rubber Co., Ltd. Computational method of material constant of composite material and volume fraction of material component in composite material, and recording medium
CN103093063B (zh) * 2013-02-19 2015-06-17 西北工业大学 氧化环境中单向碳化硅纤维增韧碳化硅陶瓷基复合材料损伤的检测方法
FI126725B (en) * 2013-10-21 2017-04-28 Onbone Oy Breathable materials
FR3021796B1 (fr) * 2014-06-02 2016-06-24 Safran Procede et dispositif de reconstruction numerique d'un volume elementaire representatif d'une microstructure de materiau composite
CN105426600B (zh) * 2015-11-10 2018-12-07 西安交通大学 一种层叠碳纤维复合材料的层间连接弹性模量计算方法
CN107563010B (zh) * 2017-08-08 2020-09-25 西北工业大学 基于形状特征的多尺度结构材料一体化设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130231902A1 (en) * 2012-03-05 2013-09-05 Siemens Product Lifecycle Management Software Inc. Spine-based rosette and simulation in fiber-composite materials
CN105046076A (zh) * 2015-07-13 2015-11-11 西安交通大学 层叠碳纤维复合材料的三层单胞结构微观力学性能计算方法
CN107563094A (zh) * 2017-09-21 2018-01-09 上海交通大学 三维机织碳纤维复合材料汽车翼子板优化方法

Also Published As

Publication number Publication date
KR20200001953A (ko) 2020-01-07
JP2020004356A (ja) 2020-01-09
US20200004924A1 (en) 2020-01-02
CN108985003A (zh) 2018-12-11
EP3588333A1 (en) 2020-01-01

Similar Documents

Publication Publication Date Title
WO2020000604A1 (zh) 前盖板的工况性能参数获取方法及装置
Sevenois et al. Avoiding interpenetrations and the importance of nesting in analytic geometry construction for Representative Unit Cells of woven composite laminates
WO2020000605A1 (zh) 前盖板优化设计方法及装置
Fagiano et al. Computational geometrical and mechanical modeling of woven ceramic composites at the mesoscale
Joglekar et al. Modeling of 3D woven composites using the digital element approach for accurate prediction of kinking under compressive loads
Zhang et al. A meso-scale finite element model for simulating free-edge effect in carbon/epoxy textile composite
Walther et al. The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites
DE112012000512T5 (de) Aktualisieren von Software
Zhang et al. Analytical model and numerical analysis of the elastic behavior of triaxial braided composites
CN109241649B (zh) 一种基于决策树模型的纤维丝性能检测方法及系统
DE102006040401A1 (de) System und Verfahren zur Überprüfung von Metadaten während einer Messverarbeitung
Liu et al. High-fidelity modeling of 3D woven composites considering inhomogeneous intra-yarn fiber volume fractions
Jia et al. Modelling the needling effect on the stress concentrations of laminated C/C composites
Owlia et al. Experimental and macro finite element modeling studies on conformability behavior of woven nylon 66 composite reinforcement
Jiang et al. Effect of nesting on the permeability of multilayer unidirectional fabrics
Siddique et al. Finite element modeling on fracture toughness of 3D angle-interlock woven carbon/epoxy composites at microstructure level
Wendling et al. Meshing preprocessor for the Mesoscopic 3D finite element simulation of 2D and interlock fabric deformation
EP3107018A2 (en) Method for use in the analysis of a composite component and a design tool
Stolyarov et al. Experimental study and finite element analysis of mechanical behavior of plain weave fabric during deformation through a cross-section observation
Colin et al. Virtual description of Non-Crimp fabrics at the scale of filaments including orientation variability in the fibrous layers
CN106199706A (zh) 三维观测系统面元属性统计方法及装置
García-Carpintero et al. A multi material shell model for the mechanical analysis of triaxial braided composites
EP4181007A2 (en) Systems and methods for semi-discrete modeling of progressive damage and failure in composite laminate materials
Li et al. Multiscale modeling and tensile behavior analysis of uniaxial reinforced warp‐knitted composites
Dusserre et al. Effect of deformation on knitted glass preform in‐plane permeability

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924300

Country of ref document: EP

Kind code of ref document: A1