WO2020000249A1 - 一种缝隙内壁微观形貌及粗糙度的检测方法 - Google Patents

一种缝隙内壁微观形貌及粗糙度的检测方法 Download PDF

Info

Publication number
WO2020000249A1
WO2020000249A1 PCT/CN2018/093078 CN2018093078W WO2020000249A1 WO 2020000249 A1 WO2020000249 A1 WO 2020000249A1 CN 2018093078 W CN2018093078 W CN 2018093078W WO 2020000249 A1 WO2020000249 A1 WO 2020000249A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
wall
surface roughness
flexible mechanism
topography
Prior art date
Application number
PCT/CN2018/093078
Other languages
English (en)
French (fr)
Inventor
郭江
刘淑杰
康仁科
郭东明
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to PCT/CN2018/093078 priority Critical patent/WO2020000249A1/zh
Priority to US16/636,491 priority patent/US10942025B2/en
Publication of WO2020000249A1 publication Critical patent/WO2020000249A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/08Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/16Measuring arrangements characterised by the use of fluids for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/22Measuring arrangements characterised by the use of fluids for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/28Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the invention belongs to the technical field of precision measurement and relates to a method for detecting the micro-topography and surface roughness of an inner wall of a gap.
  • the endoscope system (CN202472116U) or diffuse reflection light flux measurement (CN103615992A) can obtain the microscopic topography and surface roughness information of the inner wall to a certain extent.
  • the endoscope system cannot enter, and it is difficult to detect diffusely reflected light.
  • the present invention provides a new method for detecting the micro-morphology and roughness of the inner wall of a gap.
  • a flexible measuring mechanism with a measuring film and a flexible measuring mechanism are provided. It has the function of expansion and contraction at the place where the inner wall of the gap is to be measured. It carries the measuring film into the gap and measures the micro-morphology and surface roughness of the inner wall. Degree, among which, the measuring film extracts the micro-topography and surface roughness information of the inner wall by means of replication.
  • a method for detecting the micro-topography and surface roughness of an inner wall of a gap is implemented based on a measurement system.
  • the measurement system includes a PC, a controller, a flexible mechanism, and a measurement film.
  • the measurement film is adhered to the flexible mechanism, and the measurement film has a copy function;
  • the PC is connected to the flexible mechanism through a controller, and the flexible mechanism is operated: the expansion, contraction, or flexibility of the flexible mechanism is set by the PC.
  • the internal pressure and other information of the flexible mechanism are driven by the controller to drive the flexible mechanism to expand or contract.
  • the PC is connected to the flexible mechanism through the controller, and the operation of the flexible mechanism is specifically: setting the expansion and contraction dimensions of the flexible mechanism and the pressure information of the flexible mechanism on the inner wall of the gap after the flexible mechanism expands through the PC, and controlling
  • the device drives the flexible mechanism to expand or contract in the form of a loaded voltage.
  • the flexible mechanism is made of a shape memory alloy or a small inflatable bladder, and the size of the flexible mechanism is determined according to the size of the gap.
  • the flexible mechanism has expansion and contraction functions, and is used to carry the measurement film into the gap and measure the micro-topography and surface roughness of the inner wall.
  • the thickness of the flexible mechanism after shrinking is within 100 ⁇ m; the thickness of the replication film is within 100 ⁇ m.
  • the flexible mechanism pasted with the measurement film is contracted and inserted into the gap, and the size of the gap entrance is between 300 ⁇ m and 1 mm; the surface roughness Ra of the gap inner wall ranges from 10 nm to 500 nm.
  • the controller controls the expansion or inflation of the flexible mechanism so that the measurement film is effectively combined with the measured surface, and the measurement film extracts the micro-topography and surface roughness information of the inner wall by means of replication;
  • the controller controls the flexible mechanism to contract or deflate and exit from the gap entrance, and the surface topography measuring instrument is used to perform actual numerical measurements on the microtopography and surface roughness information of the inner wall extracted from the measurement film.
  • the measurement film needs to be calibrated before measurement to ensure the measurement accuracy during the measurement film replication process.
  • the surface topography measuring instrument includes an optical / electron microscope and a roughness meter.
  • the measuring system is also provided with a protective device for the internal curved flow channel, and at the same time prevents the inner wall of the non-measurement point from being contacted during the process of extending into the inner wall.
  • the invention has the beneficial effects that the invention can effectively solve the problem of measuring the micro-topography and surface roughness of the inner wall of the slit with a narrow entrance size; the method is simple and easy to operate, the device is easy to carry, the cost is low, and the measurement accuracy is high.
  • FIG. 1 is a flowchart of the present invention.
  • a method for detecting the microscopic morphology and surface roughness of an inner wall of a gap is implemented based on a measurement system.
  • the measurement system includes a PC, a controller, a flexible mechanism, and a measurement film; the measurement film is adhered to the flexible mechanism, and the measurement film has a copy Function; PC operates the flexible mechanism through the controller, sets the size and pressure of expansion, and drives the flexible mechanism to perform expansion and contraction operations through the controller.
  • the main operating procedures include: calibration before measurement; inserting a flexible measurement mechanism with a measurement film into the gap, and expanding or inflating so that the replication film effectively combines with the surface being measured, copying the surface topography information, shrinking and exiting. After copying the film to extract the micro-topography and surface roughness information of the inner wall, the actual numerical measurement was performed by optical / electron microscope and roughness meter. The specific data is as follows:
  • the slot entrance size is 300 ⁇ m.
  • the internal dimensions are around 10 ⁇ 10 mm 2 .
  • the flexible mechanism is made of a tiny inflatable bladder.
  • the size of the flexible mechanism is about 5 ⁇ 5 mm 2 .
  • the measurement film size is about 3 ⁇ 3 mm 2 .
  • Gap surface roughness ranges from Ra 50-100 nm.
  • the flexible mechanism shrinks to a thickness of 50 ⁇ m, and the thickness of the replication film is 50 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种缝隙内壁微观形貌及粗糙度的检测方法:1)将黏贴测量薄膜的柔性机构收缩插入缝隙;2)通过控制器控制柔性机构膨胀,使测量薄膜有效结合在被测量表面,测量薄膜通过复制方式提取内壁微观形貌及表面粗糙度信息;3)控制柔性机构收缩从缝隙入口退出,通过表面形貌测量仪器对测量薄膜提取到的内壁微观形貌及表面粗糙度进行数值测量。

Description

一种缝隙内壁微观形貌及粗糙度的检测方法 技术领域
本发明属于精密测量技术领域,涉及一种缝隙内壁微观形貌及表面粗糙度的检测方法。
背景技术
随着制造技术的不断进步,利用精密加工技术或者结合3D打印的增减材制造技术可以加工出结构非常复杂的部件。然而,由于结构复杂给测量增加了难度,尤其对于入口处尺寸狭窄的缝隙测量成了新的挑战。
现阶段,对于缝隙的几何尺寸测量,主要有探针法,电容法,电涡流法和光纤法等方法。除此,还可以利用数字X射线成像方法(专利公开号为CN105021417A)以及尺寸几十微米的测头(Micromachines 2018, 9(3), 133; https://doi.org/10.3390/mi9030133)进行检测。这些测量方法虽然可以获取缝隙的几何尺寸信息,但很难检测到缝隙深处内壁的微观形貌及表面粗糙度信息。
目前,通过利用光学手段,内窥镜系统(CN202472116U)或者漫反射光通量测量(CN103615992A)可以一定程度的获取到内壁微观形貌及表面粗糙度信息。但对于入口尺寸狭窄的缝隙深处,内窥镜系统无法进入,也很难检测到漫反射光。
由于无论采用接触式还是非接触式测量都存在较大困难,目前还没有有效测量缝隙深处内壁微观形貌及粗糙度的检测方法。
技术问题
为了解决入口处狭窄的缝隙内壁微观形貌及表面粗糙度的测量问题,本发明提供一种新的缝隙内壁微观形貌及粗糙度的检测方法,采用带测量薄膜的柔性测量机构,柔性测量机构在缝隙内壁待测量处具有膨胀和收缩功能,承载测量薄膜进入缝隙并测量内壁微观形貌及表面粗糙度,即该检测方法采用柔性机构与测量薄膜结合的方式检测缝隙内壁微观形貌及表面粗糙度,其中,测量薄膜通过复制的方式提取内壁微观形貌及表面粗糙度信息。
技术解决方案
为了达到上述目的,本发明采用的技术方案为:
一种缝隙内壁微观形貌及表面粗糙度的检测方法,基于测量系统实现,所述的测量系统包括PC机、控制器、柔性机构与测量薄膜。所述的测量薄膜粘在柔性机构上,测量薄膜具有复制功能;所述的PC机通过控制器与柔性机构连接,对柔性机构进行操作:通过PC机设定柔性机构的膨胀、收缩尺寸或柔性机构充放气后柔性机构内部压力等信息,并通过控制器驱动柔性机构进行膨胀或收缩。所述的PC机通过控制器与柔性机构连接,对柔性机构进行操作具体为:通过PC机设定柔性机构的膨胀、收缩尺寸以及柔性机构膨胀后柔性机构对缝隙内壁的压力信息,并通过控制器以加载电压的形式驱动柔性机构进行膨胀或收缩。
所述的柔性机构采用形状记忆合金或微小充气囊制成,柔性机构尺寸根据缝隙尺寸确定。柔性机构具有膨胀和收缩功能,用于承载测量薄膜进入缝隙并测量内壁微观形貌及表面粗糙度。所述的柔性机构收缩之后厚度在100 µm以内;所述的复制薄膜厚度在100 µm以内。
检测方法具体过程如下:
首先,将粘贴测量薄膜的柔性机构收缩后插入缝隙,所述的缝隙入口尺寸为300 µm~1 mm之间;缝隙内壁表面粗糙度Ra范围在10 nm~ 500 nm。
其次,通过控制器控制柔性机构膨胀或充气,使测量薄膜与被测量表面有效结合,测量薄膜通过复制的方式提取内壁微观形貌及表面粗糙度信息;
最后,通过控制器控制柔性机构收缩或放气从缝隙入口退出,通过表面形貌测量仪器对测量薄膜提取到的内壁微观形貌及表面粗糙度信息进行实际数值测量。所述的测量薄膜测量前需进行标定,保证测量薄膜复制过程中的测量精度。所述的表面形貌测量仪器包括光学/电子显微镜,粗糙度仪。
另外,该测量系统还针对内部弯曲流道设置了保护装置,同时防止伸入内壁过程中接触非测量点内壁。
有益效果
本发明的有益效果为:本发明能够有效解决入口尺寸狭窄的缝隙内壁微观形貌及表面粗糙度的测量问题;方法简单易行,操作简单,设备便于携带,成本低,测量精度高。
附图说明
图1为本发明流程图。
本发明的实施方式
以下结合具体实施例对本发明做进一步说明。
一种缝隙内壁微观形貌及表面粗糙度的检测方法,基于测量系统实现,所述的测量系统包括PC机、控制器、柔性机构与测量薄膜;测量薄膜粘在柔性机构上,测量薄膜具有复制功能;PC通过控制器对柔性机构进行操作,设定膨胀的尺寸,压力等信息,通过控制器驱动柔性机构进行膨胀收缩等操作。主要操作流程包括:测量前进行标定;将带测量薄膜的柔性测量机构插入缝隙,膨胀或充气使得复制薄膜与被测量表面有效结合,复制表面形貌信息,收缩并退出。复制薄膜提取到内壁微观形貌及表面粗糙度信息后,通过光学/电子显微镜、粗糙度仪进行实际数值测量。具体数据如下:
缝隙入口尺寸在300 µm。内部尺寸在10×10 mm 2左右。
柔性机构采用微小充气囊制成。
柔性机构尺寸在5×5 mm 2左右。
测量薄膜尺寸在3×3 mm 2左右。
缝隙表面粗糙度范围在Ra 50-100 nm。
柔性机构收缩之后厚度为50 µm,复制薄膜厚度为50 µm。
以上所述实施例仅表达了本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (8)

  1. 一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的检测方法基于测量系统实现,测量系统包括PC机、控制器、柔性机构与测量薄膜;所述的测量薄膜具有复制功能,粘在柔性机构上;所述的PC机通过控制器与柔性机构连接,控制柔性机构进行膨胀或收缩;所述的柔性机构具有膨胀和收缩功能,用于承载测量薄膜进入缝隙并测量内壁微观形貌及表面粗糙度;
    检测方法具体过程如下:
    首先,将粘贴测量薄膜的柔性机构收缩后插入缝隙,所述的缝隙入口尺寸为300 µm~1 mm之间;
    其次,通过控制器控制柔性机构膨胀,使测量薄膜与被测量表面有效结合,测量薄膜通过复制的方式提取内壁微观形貌及表面粗糙度信息;
    最后,通过控制器控制柔性机构收缩从缝隙入口退出,通过表面形貌测量仪器对测量薄膜提取到的内壁微观形貌及表面粗糙度信息进行实际数值测量;所述的测量薄膜测量前进行标定,保证测量薄膜复制过程中的测量精度。
  2. 根据权利要求1所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的柔性机构采用形状记忆合金或充气囊制成,柔性机构尺寸根据缝隙尺寸确定。
  3. 根据权利要求1或2所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的柔性机构收缩之后厚度在100 µm以内;所述的测量薄膜厚度在100 µm以内。
  4. 根据权利要求1或2所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的缝隙内壁表面粗糙度Ra范围在10 nm~ 500 nm。
  5. 根据权利要求3所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的缝隙内壁表面粗糙度Ra范围在10 nm~ 500 nm。
  6. 根据权利要求1或2或5所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的表面形貌测量仪器包括光学/电子显微镜,粗糙度仪。
  7. 根据权利要求3所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的表面形貌测量仪器包括光学/电子显微镜,粗糙度仪。
  8. 根据权利要求4所述的一种缝隙内壁微观形貌及表面粗糙度的检测方法,其特征在于,所述的表面形貌测量仪器包括光学/电子显微镜,粗糙度仪。
PCT/CN2018/093078 2018-06-27 2018-06-27 一种缝隙内壁微观形貌及粗糙度的检测方法 WO2020000249A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/093078 WO2020000249A1 (zh) 2018-06-27 2018-06-27 一种缝隙内壁微观形貌及粗糙度的检测方法
US16/636,491 US10942025B2 (en) 2018-06-27 2018-06-27 Measurement method for micro topography and roughness of internal surface of gap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/093078 WO2020000249A1 (zh) 2018-06-27 2018-06-27 一种缝隙内壁微观形貌及粗糙度的检测方法

Publications (1)

Publication Number Publication Date
WO2020000249A1 true WO2020000249A1 (zh) 2020-01-02

Family

ID=68984556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093078 WO2020000249A1 (zh) 2018-06-27 2018-06-27 一种缝隙内壁微观形貌及粗糙度的检测方法

Country Status (2)

Country Link
US (1) US10942025B2 (zh)
WO (1) WO2020000249A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117848248A (zh) * 2024-03-05 2024-04-09 中路黄河(山西)交通科技集团有限公司 一种桥梁健康监测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226546A (ja) * 2002-02-06 2003-08-12 Sumitomo Electric Ind Ltd 光ファイバ母材製造用反応容器、光ファイバ母材製造装置および光ファイバ母材製造方法
CN103615992A (zh) * 2013-11-15 2014-03-05 南京航空航天大学 一种微孔内表面粗糙度的检测方法及其装置
CN107416763A (zh) * 2017-08-18 2017-12-01 西安交通大学 复杂腔体内表面微纳结构的自适应随形制造方法
CN207074048U (zh) * 2017-07-21 2018-03-06 成都凯天电子股份有限公司 便携式深孔内槽表面粗糙度测试镜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8559678B2 (en) * 2011-10-31 2013-10-15 Cisco Technology, Inc. Method and apparatus for determining surface roughness of metal foil within printed circuits
CN202472116U (zh) 2012-03-16 2012-10-03 江西省电力科学研究院 新型工业内窥镜
CN103363946B (zh) 2012-03-30 2016-08-03 国家纳米科学中心 一种非破坏性检测表面形貌的方法
CN105021417A (zh) 2015-07-09 2015-11-04 天津大学 数字x射线成像系统调制传递函数的狭缝法测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003226546A (ja) * 2002-02-06 2003-08-12 Sumitomo Electric Ind Ltd 光ファイバ母材製造用反応容器、光ファイバ母材製造装置および光ファイバ母材製造方法
CN103615992A (zh) * 2013-11-15 2014-03-05 南京航空航天大学 一种微孔内表面粗糙度的检测方法及其装置
CN207074048U (zh) * 2017-07-21 2018-03-06 成都凯天电子股份有限公司 便携式深孔内槽表面粗糙度测试镜
CN107416763A (zh) * 2017-08-18 2017-12-01 西安交通大学 复杂腔体内表面微纳结构的自适应随形制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117848248A (zh) * 2024-03-05 2024-04-09 中路黄河(山西)交通科技集团有限公司 一种桥梁健康监测设备
CN117848248B (zh) * 2024-03-05 2024-05-07 中路黄河(山西)交通科技集团有限公司 一种桥梁健康监测设备

Also Published As

Publication number Publication date
US10942025B2 (en) 2021-03-09
US20200249015A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
US10748770B2 (en) Device and method for bonding of substrates
WO2016180290A1 (zh) 应用于oct内窥扫描成像的球囊导管、使用方法及oct成像系统
Fernholz et al. The effects of a favourable pressure gradient and of the Reynolds number on an incompressible axisymmetric turbulent boundary layer. Part 1. The turbulent boundary layer
WO2016180289A1 (zh) 自动充放气设备在oct内窥扫描成像系统中的应用
WO2020000249A1 (zh) 一种缝隙内壁微观形貌及粗糙度的检测方法
WO2016180287A1 (zh) 利用通用图像处理器处理oct信号的方法及系统
TW201519293A (zh) 用於晶圓安裝的接收構件
JP2006019002A (ja) 磨耗ゲージ及びそれの使用方法
Su et al. Tribological and dynamic study of head disk interface at sub-1-nm clearance
JP2007535442A (ja) タイヤ空気圧の漏れ検出方法およびシステム
CN107024533A (zh) 用于确定管的完整性的设备和方法
CN112556917B (zh) 一种利用测压装置进行测压的方法
CN106568393A (zh) 一种用于反射镜光学加工原位检测的装置及使用方法
CN108663012B (zh) 一种缝隙内壁微观形貌及粗糙度的检测方法
CN101482384A (zh) 一种角接触球轴承磨工沟位置检测方法
CN103877656B (zh) 一种喉罩、喉罩的制作方法以及喉罩的插管方法
TWM569492U (zh) Measuring device for detecting roughness and deformation of a wafer patch ring
CN214407975U (zh) 一种侧向光光纤透镜的测量装置
CN108987296A (zh) 晶圆弹性应变测量装置、测量方法及晶圆键合方法
JP3654439B2 (ja) ワークの内径寸法測定装置
JP3414362B2 (ja) 外径測定方法及び装置
CN106813572A (zh) 一种牙科旋转器械径向圆跳动检测装置
CN106813571A (zh) 一种牙科旋转器械径向圆跳动检测装置
US20050101885A1 (en) Apparatus for determining the length of the endocervical canal
CN208433372U (zh) 晶圆弹性应变测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18924226

Country of ref document: EP

Kind code of ref document: A1