WO2019244726A1 - 電位測定装置及び電位測定装置の製造方法 - Google Patents

電位測定装置及び電位測定装置の製造方法 Download PDF

Info

Publication number
WO2019244726A1
WO2019244726A1 PCT/JP2019/023178 JP2019023178W WO2019244726A1 WO 2019244726 A1 WO2019244726 A1 WO 2019244726A1 JP 2019023178 W JP2019023178 W JP 2019023178W WO 2019244726 A1 WO2019244726 A1 WO 2019244726A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
potential
readout
insulating member
unit
Prior art date
Application number
PCT/JP2019/023178
Other languages
English (en)
French (fr)
Inventor
直彦 君塚
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US17/250,183 priority Critical patent/US11906563B2/en
Publication of WO2019244726A1 publication Critical patent/WO2019244726A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present technology relates to a potential measuring device and a method of manufacturing the potential measuring device.
  • electrodes, amplifiers, A / D converters, and the like are integrated on one semiconductor substrate (chip) using a CMOS (Complementary Metal Oxide Semiconductor) integrated circuit technology, and a potential measuring device that measures potentials simultaneously at multiple points Is attracting attention.
  • CMOS Complementary Metal Oxide Semiconductor
  • Patent Document 1 may not be able to further improve the evaluation quality.
  • the present technology has been made in view of such a situation, and has as its main object to provide a potential measuring device capable of further improving the evaluation quality and a method of manufacturing the potential measuring device.
  • the present inventors have conducted intensive research to solve the above-mentioned object, and as a result, have succeeded in dramatically improving the image quality, and have completed the present technology.
  • a plurality of readout electrodes that are arranged in an array and detect the potential of an action potential generation point generated by the activity of cells, An insulating member; A reference electrode for detecting a reference potential, An amplification unit that obtains a potential difference between the detection potential of the readout electrode and the detection potential of the reference electrode,
  • the readout electrode has a covering region where the insulating member is laminated on the readout electrode, and an opening region where the insulating member is not laminated on the readout electrode,
  • the readout electrode has, in the opening region, at least one high portion having a high height and / or at least one low portion having a low height with respect to a stacked surface of the readout electrode and the insulating member; An electric potential measurement device is provided.
  • an uneven shape may be formed on a surface of the opening region.
  • a plurality of readout electrodes that are arranged in an array and detect the potential of an action potential generation point generated by the activity of cells, An insulating member; Metal members, A reference electrode for detecting a reference potential, An amplification unit that obtains a potential difference between the detection potential of the readout electrode and the detection potential of the reference electrode,
  • the readout electrode has a covering region in which the metal member and the insulating member are laminated on the readout electrode in this order, and an opening region in which the metal member and the insulating member are not laminated on the readout electrode.
  • the readout electrode has, in the opening region, at least one high portion having a high height and / or at least one low portion having a low height with respect to a lamination surface of the readout electrode and the metal member.
  • An electric potential measurement device is provided.
  • the readout electrode may have, in the opening region, at least one high portion having a high height with respect to a stacked surface of the metal member and the insulating member. Further, an uneven shape may be formed on the surface of the opening region.
  • the insulating member is laminated on the readout electrode, Forming an opening region in which the insulating member is not laminated on the readout electrode; Performing an electrochemical oxidation-reduction cycle on the readout electrode having the opening region.
  • the method for manufacturing the potential measuring device may include removing a substance attached to a surface of the opening region, and a surface of the opening region is defined on the basis of a lamination surface of the readout electrode and the insulating member. And forming at least one high portion having a high height and / or at least one low portion having a low height, and further forming an uneven shape on the surface of the opening region. May be included.
  • a metal member and an insulating member are stacked on the readout electrode in this order, Forming an opening region in which the metal member and the insulating member are not laminated on the readout electrode; Performing an electrochemical oxidation-reduction cycle on the readout electrode having the opening region.
  • the method for manufacturing a potential measuring device may include removing a substance attached to a surface of the opening region, and a surface of the opening region is defined based on a lamination surface of the readout electrode and the metal member. And forming at least one high portion having a high height and / or at least one low portion having a low height, and laminating the metal member with the insulating member on a surface of the opening region.
  • the method may include forming at least one high portion having a height relative to a surface, and further including forming an uneven shape on a surface of the opening region.
  • the evaluation quality can be further improved.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a readout electrode included in the potential measuring device according to the first embodiment to which the present technology is applied.
  • FIG. 11 is a cross-sectional view illustrating a configuration example of a readout electrode included in a potential measurement device according to a second embodiment to which the present technology is applied.
  • FIG. 1 is a configuration diagram schematically illustrating a configuration of a potential measurement device according to a first embodiment and a second embodiment to which the present technology is applied.
  • FIG. 5 is a plan view showing an example of an electrode arrangement of a reference electrode and a readout electrode having a square electrode shape.
  • FIG. 3 is a schematic diagram illustrating an example of a wiring structure between a read electrode and a reference electrode and a differential amplifier.
  • FIG. 3 is a diagram for explaining an increase in roughness due to an oxidation-reduction cycle on a readout electrode surface. It is a sectional view showing an example of a manufacturing method of a potential measuring device of a third embodiment to which the present technology is applied. It is a top view and a sectional view showing an example of a manufacturing method of a potential measuring device of a third embodiment to which the present technology is applied. It is a sectional view showing an example of a manufacturing method of a potential measuring device of a fourth embodiment to which the present technology is applied. It is a top view and a sectional view showing an example of a manufacturing method of a potential measuring device of a fourth embodiment to which the present technology is applied.
  • An object of the present technology is to provide a potential measurement device capable of further improving the evaluation quality and a method for manufacturing the potential measurement device. It is an object of the present invention to provide a potential measuring device that can be dimensionally measured and a method for manufacturing the potential measuring device.
  • Equation (1) k is a Boltzmann constant, T is an absolute temperature, and C es, s is an electrode capacitance. From equation (1), it can be seen that the value of the observed noise is inversely proportional to the value of the electrode capacitance (C es, s ). That is, as the electrode capacitance increases, the observed noise decreases.
  • the present technology it is possible to increase the effective surface area by removing impurities on the electrode surface and forming irregularities. As a result, the electrode impedance can be reduced, the electrode noise can be suppressed, the S / N ratio can be improved, and a minute signal can be obtained with the minute electrode array.
  • the present technology can easily increase the surface area of the readout electrode immediately before shipment of a device (potential measurement device) or immediately before use by a user, and is effective in improving evaluation quality.
  • the potential measuring device according to the first embodiment (example 1 of the potential measuring device) according to the present technology is arranged in an array, and includes a plurality of readout electrodes that detect a potential at an action potential generating point generated by cell activity; An insulating member, a reference electrode for detecting a reference potential, and an amplification unit for obtaining a potential difference between a detection potential of the readout electrode and a detection potential of the reference electrode, wherein the readout electrode has a coating in which the readout electrode is laminated with the insulating member.
  • a readout electrode having an opening region in which the insulating member is not stacked on the readout electrode, wherein the readout electrode has at least one height that is higher than the height of the readout electrode in the opening region with respect to the lamination surface of the readout electrode and the insulating member.
  • a potential measurement device having at least one low portion with a low portion and / or low height.
  • an uneven shape may be formed on the surface of the opening region.
  • the potential measurement device is configured such that at least one high portion and / or high height is set in the opening region of the read electrode with reference to the stacked surface of the read electrode and the insulating member.
  • at least one low portion for example, uneven shape
  • the effective surface area of the opening region (readout electrode) can be increased. Therefore, according to the potential measuring device of the first embodiment of the present technology, it is possible to reduce the electrode impedance, suppress the electrode noise, improve the S / N ratio, and generate a small signal. It can be obtained with a microelectrode array.
  • the potential measuring device according to the first embodiment of the present technology can two-dimensionally measure a weak cell action potential with high resolution and low noise.
  • the potential measuring device can further increase the effective surface area of the opening region (reading electrode) by removing impurities on the surface of the reading electrode in the opening region. Therefore, according to the potential measuring device of the first embodiment of the present technology, the electrode impedance can be further reduced, the electrode noise can be further suppressed, and the S / N ratio can be further improved. A minute signal can be obtained with the minute electrode array. Impurities on the electrode surface include substances that are generated and adsorbed on the electrode surface during the manufacturing process of the potential measurement device, such as processing, or contamination that floats in the air and adheres to the electrode surface after the completion of the potential measurement device. Is mentioned.
  • FIG. 1 is a cross-sectional view illustrating a configuration example (readout electrode 1-1-c) of a readout electrode included in the potential measuring device according to the first embodiment of the present technology.
  • the insulating member 2-1-c is laminated on the unit electrode (readout electrode) 1-1-c, and the coating of the unit electrode 1-1-c is provided.
  • a region T-1-1-c is formed.
  • an insulating member 2-1-4-c is disposed on the unit electrode 1-1-c and on the right side surface. More specifically, the insulating member 2-1-2-c is laminated on the unit electrode 1-1-c to form a covering region T-1-2-c of the unit electrode 1-1-c.
  • An insulating member 2-1-3-c is covered on the right side surface of the electrode 1-1-c so as to separate a unit electrode (not shown) on the right side.
  • the unit electrode 1-1-c has an opening region S-1-c in which the insulating member is not laminated on the unit electrode 1-1-c.
  • the insulating member 2-1-1 of the unit electrode 1-1-c is provided on the surface of the opening area S-1-c of the unit electrode 1-1-c (working electrode).
  • the height is higher on the basis of the laminated surface R-1-1-c with the insulating member 2-1-2-c of the unit electrode 1-1-c.
  • a high portion H-1-1 and a high portion H-1-3 are formed, and the heights are substantially equal with respect to the laminated surface R-1-1-c and the laminated surface R-1-2-c.
  • a high portion H-1-2 and a high portion H-1-4 are formed.
  • a laminated surface R-1 of the unit electrode 1-1-c and the insulating member 2-1-1-c is provided on the surface of the opening region S-1-c of the unit electrode 1-1-c (working electrode).
  • -1-c and a lower portion L-1-1 having a lower height with reference to a laminated surface R-1-2-c of the unit electrode 1-1-c and the insulating member 2-1-2-c.
  • a lower portion L-1-2, a lower portion L-1-3, a lower portion L-1-4, and a lower portion L-1-5 are formed.
  • the negative volume (the negative electrode material of the unit electrode) based on the laminated surface R-1-1-c and the laminated surface R-1-2-c of the lower portions L-1-1 to L-1-5. ) Is approximately zero. That is, the volume of the unit electrode 1-1 (the amount of the electrode material of the unit electrode) which is substantially flat with respect to the lamination surface R-1-1-c and the lamination surface R-1-2-c is referred to. The volume of c (the amount of the electrode material of the unit electrode) is substantially equal.
  • the unit electrodes 1-1-c are formed on the upper portions H-1-1 to H-1-4 and the lower portions L-1-1 to L-1-5 based on the surface U-1-c. Base, and a concavo-convex shape is formed.
  • the unit electrode 1-1-c (working electrode) in which the irregularities based on the high portions H-1-1 to H-1-4 and the low portions L-1-1 to L-1-5 are formed.
  • the effective surface area is substantially flat on the basis of the laminated surface R-1-2-c, and is compared with the surface area of the unit electrodes (for example, the unit electrodes 1-1-a and 1-1-b) to which impurities are attached. Increase. Due to the increase in the surface area, the electrode impedance is reduced, and the background noise when measuring the potential with the microelectrode array can be suppressed.
  • FIG. 6 shows a roughness (for example, a concavo-convex shape, a shape having a high portion and a low portion) associated with an oxidation-reduction cycle of a readout electrode surface (for example, a unit electrode 1-1-c, a unit electrode 1-2c described later).
  • a readout electrode surface for example, a unit electrode 1-1-c, a unit electrode 1-2c described later.
  • FIG. The surface of the readout electrode is observed by a scanning tunneling microscope (Scanning Tunneling Microscope), and FIGS. 6A to 6E are diagrams based on the observation.
  • FIG. 6A is a view of the surface of the readout electrode after repeating the oxidation-reduction cycle ( ⁇ 0.2251.15 V) 20 times
  • FIG. 6B is a diagram of the oxidation-reduction cycle ( ⁇ 0.22
  • FIG. 6C is a diagram of the readout electrode surface after repeating (1.15 V) 60 times
  • FIG. 6C is a view of the readout electrode surface after repeating the oxidation-reduction cycle ( ⁇ 0.220.21.15 V) 240 times
  • FIG. FIGS. 6D and 6E are views of the surface of the readout electrode after repeating the oxidation-reduction cycle ( ⁇ 0.22 ⁇ 1.15 V) 480 times
  • FIGS. 6A to 6E are diagrams (two visual fields) of the surface of the readout electrode at different observation locations. As is clear from FIGS. 6A to 6E, as the number of oxidation-reduction cycles increases, the roughness of the readout electrode surface (for example, an uneven shape, a shape having a high portion and a low portion, and the like) increases. You can see that it is doing.
  • FIG. 3 is a configuration diagram schematically showing the configuration of the potential measuring device according to the first embodiment of the present technology.
  • the potential measurement device 10 according to the first embodiment of the present technology includes an electrode unit 11, a row selection unit 12, a column selection unit 13, amplification units 14A and 14B, and an A / A, which are formed using a CMOS integrated circuit technology.
  • This is a device in which the D conversion units 15A and 15B are integrated on one semiconductor substrate (semiconductor chip) 16.
  • the configuration in which the amplification units 14A and 14B and the A / D conversion units 15A and 15B are arranged on both sides of the electrode unit 11 is adopted. It is possible.
  • a plurality of readout electrodes 21 for detecting a potential at an action potential generation point generated by the activity of a cell are arranged in m rows and n columns in an array.
  • the readout electrode 21 has, for example, an electrode size approximately equal to the size of the action potential generation point.
  • a reference electrode 22 for detecting a reference potential is arranged in the array of the read electrodes 21.
  • the readout electrode 21 is, for example, the unit electrode 1-1-c described with reference to FIG. Then, as described with reference to FIG. 1, an insulating member can be laminated on the readout electrode 21.
  • three reference electrodes 22 are arranged in units of three read electrodes 21 in a row direction and a total of nine read electrodes 21 in a column direction, and the electrode size of the read electrodes 21 is smaller than the electrode size of the reference electrodes 22. .
  • the electrode size of the reference electrode 22 is larger than the electrode size of the readout electrode 21.
  • the reference potential detected by the reference electrode 22 is a reference potential used as a reference when calculating a difference from the potential at the action potential generation point detected by the readout electrode 21.
  • the electrode structure of the read electrode 21 and the reference electrode 22 is a planar structure.
  • row select lines 31_1 to 31_m are wired for each row, and column select lines 32_1 to 32_n and signal read lines 33_1 to 33_n are provided for each column. Wired.
  • One end of each of the row selection lines 31_1 to 31_m is connected to the output end of the corresponding row of the row selection unit 12.
  • One end of each of the column selection lines 32_1 to 32_n is connected to the output end of the corresponding column of the column selection unit 13.
  • the readout electrode 21 is connected to the signal readout lines 33_1 to 33_n via the switch 23.
  • the switch 23 is illustrated as one switch for simplification of the drawing, but actually, the switch 23 includes at least two switches for row selection and column selection.
  • the signal readout lines 33_1 to 33_n also include at least two signal readout lines.
  • the row selection switch is turned on (closed) by a row selection signal applied from the row selection unit 12 via the row selection lines 31_1 to 31_m . It is turned on by a column selection signal applied from the column selection unit 13 via the column selection lines 32_1 to 32_n .
  • the switches for selection and column selection is turned on, the read potential of the electrode 21 has detected is output to the signal read line 33 _1 ⁇ 33 _n, amplifying section 14A by these signal read lines 33 _1 ⁇ 33 _n , 14B.
  • the potential readout system of the reference electrode 22 has basically the same configuration. More specifically, a potential reading system including a row selecting unit 12, a column selecting unit 13, row selecting lines 31_1 to 31_m , column selecting lines 32_1 to 32_n, and signal reading lines 33_1 to 33_n performs reading. Two systems are provided for reading the potential of the electrode 21 and for reading the potential of the reference electrode 22.
  • the detected potential of the read electrode 21 and the detected potential of the reference electrode 22 read by the two potential read systems are supplied to the amplifiers 14A and 14B.
  • the amplifying units 14A and 14B include a plurality of differential amplifiers provided in common to the plurality of readout electrodes 21.
  • the detection potential (reference potential) of the reference electrode 22 and the reference potential are set in units of the reference electrode 22.
  • the difference from the detected potential of the nine readout electrodes 21 belonging to the reference electrode 22 is calculated. This difference is supplied to A / D converters 15A and 15B.
  • the A / D converters 15A and 15B A / D convert the difference output from the amplifiers 14A and 14B, and output the digital value as a digital value corresponding to the potential detected by the readout electrode 21.
  • the reference electrode 22 is disposed near the readout electrode 21, specifically, in an array of the readout electrodes 21.
  • the size of the reference electrode 22 is larger than the size of the readout electrode 21.
  • Various shapes of electrodes can be used as the reference electrode 22.
  • FIG. 4 shows an example in which the electrode shape of the reference electrode 22 is a square.
  • FIG. 4 shows an example in which the reference electrodes 22 are arranged in units of nine readout electrodes 21, three in each of the row and column directions, based on the correspondence relationship with FIG. 3.
  • One reference electrode 22 has nine openings 22A in its plane at positions corresponding to the nine readout electrodes 21 arranged in a matrix. Then, the reference electrodes 22 are arranged such that each of the nine readout electrodes 21 arranged in a matrix is located in the nine openings 22A. In other words, the readout electrode 21 is disposed so as to be located in the opening 22A of the reference electrode 22.
  • the electrode arrangement of the readout electrode 21 and the reference electrode 22 as shown in FIG. 4 is suitable for reading out a local potential change.
  • the readout electrode 21 having an electrode size of about 5 [ ⁇ m] and a size 10 times or more thereof, that is, 50 [ ⁇ m]. ⁇ m] or more.
  • the action potential generation part is equivalent to one local point.
  • the readout electrode 21 having a size of 5 [ ⁇ m]
  • the reference electrode 22 having a size of 50 [ ⁇ m]
  • the potential fluctuation becomes about 10 times. Then, by taking the difference between the potential detected by the readout electrode 21 and the potential detected by the reference electrode 22, the action potential of the living cell can be measured.
  • FIG. 5 shows an example of wiring between the readout electrode 21 and the reference electrode 22 and one differential amplifier of the amplifiers 14A and 14B.
  • the reference electrode 22 is arranged near the read electrode 21, more specifically, in the array of the read electrodes 21, the read electrode 21 is positioned with respect to the position of the differential amplifier 24. And the position of the reference electrode 22 can be made equal.
  • the two wirings connecting the readout electrode 21 and the reference electrode 22 to the two input terminals of the differential amplifier 24 become substantially equivalent in electrical capacity and wiring capacity, and are superimposed on these wirings. Since the noise can be made equal, the noise included in the output of the differential amplifier 24 when the difference is obtained can be suppressed.
  • the potential measuring device of the second embodiment (example 2 of the potential measuring device) according to the present technology is arranged in an array, and includes a plurality of readout electrodes for detecting a potential at an action potential generating point generated by the activity of a cell; An insulating member, a metal member, a reference electrode for detecting a reference potential, and an amplification section for obtaining a potential difference between a detection potential by the readout electrode and a detection potential by the reference electrode, wherein the readout electrode includes a metal member on the readout electrode.
  • the readout electrode has a metal member of the readout electrode in the opening region.
  • a potential measuring device having at least one high portion having a high height and / or at least one low portion having a low height with respect to the lamination surface of.
  • the readout electrode has at least one high portion having a height higher than a lamination surface of the metal member and the insulating member in the opening region. May be. Further, in the potential measurement device according to the second embodiment of the present technology, an uneven shape may be formed on the surface of the opening region.
  • the potential measuring device is configured such that, in the opening region, at least one high portion having a high height and / or at least a low height, with respect to the lamination surface of the readout electrode and the metal member.
  • the effective surface area of the opening region (readout electrode) can be increased. Therefore, according to the potential measuring device of the second embodiment of the present technology, it is possible to lower the electrode impedance, suppress the electrode noise, improve the S / N ratio, and generate a small signal. It can be obtained with a microelectrode array.
  • the potential measuring device according to the second embodiment of the present technology can two-dimensionally measure a weak cell action potential with high resolution and low noise.
  • the potential measuring device can further increase the effective surface area of the opening region (reading electrode) by removing impurities on the surface of the reading electrode in the opening region. Therefore, according to the potential measuring device of the second embodiment of the present technology, it is possible to further reduce the electrode impedance, further suppress the electrode noise, and further improve the S / N ratio, A minute signal can be obtained with the minute electrode array.
  • impurities on the electrode surface substances that are generated during the manufacturing process such as processing of the potential measuring device and are adsorbed on the electrode surface, or contamination that floats in the air and adheres to the electrode surface after the completion of the potential measuring device And the like.
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a readout electrode included in the potential measuring device according to the second embodiment of the present technology.
  • a metal member 5-2-1-c and an insulating member 2-2-1-c are stacked in this order on the unit electrode 1-2-c.
  • a covering region T-2-1-c of the unit electrode 1-2-c is formed.
  • the metal member 5-2-2-c laminated on the unit electrode 1-2-c and the right side surfaces of the unit electrode 1-2-c and the metal member 5-2-2-c are shown.
  • a region T-2-2-c is formed, and a unit electrode (not shown) on the right side and a metal member are separated on the right side of the unit electrode 1-2-c and the metal member 5-2-2-c. Insulating member 2-2-3-c is covered. Then, as shown in FIG. 2, the unit electrode 1-2-c has a metal corresponding to a portion not covered with the insulating members 2-2-1-c and 2-2-2-c as described above. The member is melted, and an opening region S-2-c where the insulating member and the metal member are not laminated is formed on the unit electrode 1-2-c.
  • the surface of the unit electrode 1-2-c (working electrode) is oxidized and reduced by the electrochemical oxidation / reduction cycle treatment, and the open area S ⁇ of the unit electrode 1-2-c (working electrode) is reduced.
  • the laminated surface R-2-1-c of the unit electrode 1-2-c with the metal member 5-2-1-c and the metal member 5-2 of the unit electrode 1-1-c are provided.
  • -2-c a high portion H-2-1 and a high portion H-2-2 are formed on the basis of the laminated surface R-2-2-c, and the laminated surface R-2-1 is formed.
  • a high portion H-2-3 and a high portion H-2-4 having substantially the same height are formed based on -c and the laminated surface R-2-2-c.
  • the high portion H-2-2 has a laminated surface V-2-1-c with the insulating member 2-2-1-c of the unit electrode 1-2-c and the insulating member 2- of the unit electrode 1-1-c. It is high with respect to the laminated surface V-2-2-2c with 2-2-c.
  • a laminated surface R-2 of the unit electrode 1-2-c and the metal member 5-2-1-c is provided on the surface of the opening region S-1-c of the unit electrode 1-2-c (working electrode).
  • a laminated surface R-2 of the unit electrode 1-2-c and the metal member 5-2-1-c is provided on the surface of the opening region S-1-c of the unit electrode 1-2-c (working electrode).
  • -1-c and a lower portion L-2-1 having a lower height with respect to a lamination surface R-2-2-c of the unit electrode 1-1-c with the metal member 5-2-2-c.
  • a lower portion L-2-2, a lower portion L-2-3, a lower portion L-2-4, and a lower portion L-2-5 are formed.
  • the volume of the unit electrode 1-2-c (the amount of the electrode material of the unit electrode) is substantially equal to the amount of the electrode material of the unit electrode).
  • the unit electrodes 1-1-c are formed on the upper portions H-1-1 to H-1-4 and the lower portions L-1-1 to L-1-5 based on the surface U-1-c. Base, and a concavo-convex shape is formed.
  • the unit electrode 1-2c (working electrode) in which the irregularities based on the high portions H-2-1 to H-2-4 and the low portions L-2-1 to L-2-5 are formed.
  • the effective surface area is substantially flat on the basis of the laminated surface R-2-1-c and the laminated surface R-2-2-c, and the unit electrodes (for example, the unit electrodes 1-2a and 1-2a) to which impurities are attached. -2-b) as compared with the surface area. Due to the increase in the surface area, the electrode impedance is reduced, and the background noise when measuring the potential with the microelectrode array can be suppressed.
  • the read electrode 21 is, for example, the unit electrode 1-2-c described with reference to FIG. Then, as described with reference to FIG. 2, a metal member and an insulating member can be laminated on the readout electrode 21 in this order.
  • Example 1 of Manufacturing Method of Potential Measuring Apparatus In the method for manufacturing a potential measuring device according to the third embodiment (Example 1 of manufacturing method for a potential measuring device) according to the present technology, an insulating member is stacked on a readout electrode, and an insulating member is stacked on the readout electrode. Forming a non-opening region, and performing an electrochemical oxidation-reduction cycle on the readout electrode having the opening region. Further, as a modified example of the method of manufacturing the potential measurement device according to the third embodiment (Example 1 of the method of manufacturing the potential measurement device) according to the present technology, the method includes performing an electrochemical oxidation-reduction cycle on the readout electrode.
  • a method for manufacturing a potential measuring device a method for manufacturing a potential measuring device including performing an electrochemical oxidation-reduction cycle on a readout electrode and removing a substance attached to a surface of the readout electrode, A method for manufacturing a potential measurement device includes performing an electrochemical oxidation-reduction cycle, removing a substance attached to the surface of the readout electrode, and forming an uneven shape on the surface of the readout electrode.
  • the potential measuring device manufactured by using the method for manufacturing the potential measuring device according to the third embodiment of the present technology can two-dimensionally measure a weak cell action potential with high resolution and low noise. Further, the potential measuring device manufactured by using the modified example of the manufacturing method of the potential measuring device of the third embodiment according to the present technology measures the weak cell action potential two-dimensionally with high resolution and low noise. can do.
  • the method of manufacturing the potential measuring device according to the third embodiment of the present technology may include removing a substance attached to the surface of the opening region. Further, in the method of manufacturing the potential measuring device according to the third embodiment of the present technology, at least one high portion having a height higher than the surface of the readout electrode with respect to the lamination surface of the readout electrode and the insulating member is provided. And / or forming at least one low portion having a low height, and may include forming a concavo-convex shape on the surface of the opening region.
  • FIG. 7 is a cross-sectional view illustrating an example of a method for manufacturing the potential measuring device according to the third embodiment of the present technology.
  • FIG. 8 is a top view and a cross-sectional view illustrating an example of a method for manufacturing a potential measuring device according to the third embodiment of the present technology.
  • FIG. 7A shows a unit electrode 1-1-a of a device (potential measurement device) in which an assembling process is completed after the wafer process is completed.
  • the unit electrodes 1-1-a (unit electrodes 1-1-b to 1-1-c in FIGS. 7B to 7C) are working electrodes and may be made of a noble metal electrode material. Examples of the noble metal electrode material include platinum, gold, iridium, rhodium, and palladium. That is, the unit electrode 1-1-a may be, for example, a platinum electrode or the like.
  • impurities 3-1-1-a and 3-1-2-a attached from the environment adhere to the surface U-1-a of the unit electrode 1-1-a. ing.
  • an insulating member 2-1-1-a is laminated on the unit electrode 1-1-a, and a covering region T-1-1-a of the unit electrode 1-1-a is formed. Is formed.
  • an insulating member 2-1-4-a is provided on the unit electrode 1-1-a and on the right side of the unit electrode 1-1-a.
  • the insulating member 2-1-2-a is laminated on the unit electrode 1-1-a to form a covering region T-1-2-a of the unit electrode 1-1-a, and the unit electrode The right side surface of 1-1-a is covered with an insulating member 2-1-3-a so as to separate a unit electrode (not shown) on the right side. Then, as shown in FIG. 7A, an opening region S-1-a in which an insulating member is not laminated on the unit electrode 1-1-a is formed in the unit electrode 1-1-a. I have.
  • FIG. 7B shows an electrochemical solution in which an electric potential difference is applied between a unit electrode (working electrode) 1-1-b and a counter electrode 4-1-b in an electrolyte solution (for example, physiological saline).
  • FIG. 4 is a diagram showing that a proper oxidation / reduction cycle is performed.
  • the potential of the unit electrode (working electrode) 1-1-b is set between 0 [V] and 3 [V] with reference to the counter electrode 4-1-b. Sweep 20 times.
  • the counter electrode 4-1-b can be provided on a device of a microelectrode array, or a platinum electrode is separately prepared and used by immersing it in an electrolyte solution. As shown in FIG.
  • an insulating member 2-1-b is laminated on the unit electrode 1-1-b to form a covering region T-1-1-b of the unit electrode 1-1-b. Is done.
  • an insulating member 2-1-4-b is disposed on the unit electrode 1-1-b and on the right side. More specifically, the insulating member 2-1-2-b is laminated on the unit electrode 1-1-b to form a covering region T-1-2-b of the unit electrode 1-1-b, and the unit electrode 1-1-b is formed.
  • the right side surface of 1-1-b is covered with an insulating member 2-1-3-b so as to separate a unit electrode (not shown) on the right side. Then, as shown in FIG. 7B, an opening region S-1-b in which an insulating member is not laminated on the unit electrode 1-1-b is formed in the unit electrode 1-1-b. I have.
  • FIG. 7C shows the manufactured unit electrode (readout electrode) 1-1-c.
  • the impurities 3-1-1-b and 3-1-2-b are decomposed by the electrochemical oxidation / reduction cycle described with reference to FIG. 7 (b). And, by ionization, the impurities 3-1-1-b and 3-1-2-b can be removed.
  • the insulating member 2-1-1-c is laminated on the unit electrode 1-1-c on the left side of FIG. 7C, and the unit electrode 1-1 is formed.
  • the covering region T-1-1-c included in -c is formed.
  • an insulating member 2-1-4-c is provided on the unit electrode 1-1-c and on the right side surface.
  • the insulating member 2-1-2-c is laminated on the unit electrode 1-1-c to form a covering region T-1-2-c of the unit electrode 1-1-c.
  • An insulating member 2-1-3-c is covered on the right side surface of the electrode 1-1-c so as to separate a unit electrode (not shown) on the right side.
  • an opening region S-1-c in which the insulating member is not laminated on the unit electrode 1-1-c is formed in the unit electrode 1-1-c. I have.
  • the surface of the unit electrode 1-1-c (working electrode) is oxidized and reduced by the electrochemical oxidation / reduction cycle treatment, and the open area S ⁇ of the unit electrode 1-1-c (working electrode) is reduced.
  • a laminated surface R-1-1-c of the unit electrode 1-1-c with the insulating member 2-1-1-c and the insulating member 2-1 of the unit electrode 1-1-c are provided on the surface of 1-c.
  • the high portion H-1-1 and the high portion H-1-3 are formed on the basis of the laminated surface R-1-2-c with respect to the laminated surface R-1-2-c, and the laminated surface R-1-1 is formed.
  • a high portion H-1-2 and a high portion H-1-4 having substantially the same height are formed on the basis of -c and the laminated surface R-1-2-c.
  • a laminated surface R-1 of the unit electrode 1-1-c and the insulating member 2-1-1-c is provided on the surface of the opening region S-1-c of the unit electrode 1-1-c (working electrode).
  • -1-c and a lower portion L-1-1 having a lower height with reference to a laminated surface R-1-2-c of the unit electrode 1-1-c and the insulating member 2-1-2-c.
  • a lower portion L-1-2, a lower portion L-1-3, a lower portion L-1-4, and a lower portion L-1-5 are formed.
  • the negative volume (the negative electrode material of the unit electrode) based on the laminated surface R-1-1-c and the laminated surface R-1-2-c of the lower portions L-1-1 to L-1-5. ) Is approximately zero. That is, the volume (for example, the unit electrodes 1-1-a and 1-1-b) of the unit electrodes (for example, the unit electrodes 1-1-a and 1-1-b), which are substantially flat with respect to the stacked surfaces R-1-1-c and the stacked surfaces R-1-2-c.
  • the volume of the unit electrode 1-1-c (the amount of the electrode material of the unit electrode) is substantially equal to the volume of the electrode material of the unit electrode).
  • the unit electrodes 1-1-c are formed on the upper portions H-1-1 to H-1-4 and the lower portions L-1-1 to L-1-5 based on the surface U-1-c. Base, and a concavo-convex shape is formed.
  • the effective surface area of the c (working electrode) is substantially flat on the basis of the laminated surface R-1-1-c and the laminated surface R-1-2-c. -1-a and 1-1-b). Due to the increase in the surface area, the electrode impedance is reduced, and the background noise when measuring the potential with the microelectrode array can be suppressed.
  • a potential measuring device manufactured using the unit electrode 1-1-c can measure a weak cell action potential two-dimensionally with high resolution and low noise.
  • FIG. 8A is a top view of a unit electrode 1-3-a of a device (potential measuring device) in which an assembling process is completed after a wafer process is completed.
  • the unit electrodes 1-3-a (the unit electrodes 1-3-b to 1-3-d in FIGS. 8B to 8D) are working electrodes and may be made of a noble metal electrode material. Examples of the noble metal electrode material include platinum, gold, iridium, rhodium, and palladium. That is, the unit electrode 1-3-a may be, for example, a platinum electrode or the like.
  • impurities 3-3-1-a and 3-3-2-a attached from the environment are attached to the unit electrode 1-3-a.
  • the insulating member 2-3-a is arranged around the unit electrode 1-3-a.
  • FIG. 8B is a top view of the manufactured unit electrode (readout electrode) 1-3-b.
  • the impurities 3-3-1-a and 3-3--2-a are decomposed and ionized by the electrochemical oxidation / reduction cycle treatment, and the impurities 3-3 ⁇ 1 ⁇ a and 3 ⁇ 2 ⁇ 2 ⁇ a are removed, and the unit electrode (readout electrode) 1-3 ⁇ b has an uneven shape based on the high portion and the low portion.
  • the insulating member 2-3-3-b is disposed around the unit electrode 1-3-b.
  • FIG. 8C is a cross-sectional view taken along line P3-P′3 shown in FIG. 8A.
  • FIG. 8C shows a device (potential measurement) in which the assembly process is completed after the wafer process. (Unit) 1-3c is shown.
  • the impurities 3-3-1-c and 3-3-2-c attached from the environment adhere to the surface U-3-c of the unit electrode 1-3-c. ing.
  • an insulating member 2-3-1-c is laminated on the unit electrode 1-3-c, and the covering region T-3-1-c of the unit electrode 1-3-c is formed. Is formed.
  • an insulating member 2-3-4-c is arranged on the unit electrode 1-3-c and on the right side of the unit electrode 1-3-c.
  • the insulating member 2-3-2-c is laminated on the unit electrode 1-3-c to form a covering region T-3-2-c for the unit electrode 1-3-c, and the unit electrode is formed.
  • an insulating member 2-3-3-c is covered so as to separate the unit electrode 1-3-2-c on the right side.
  • the unit electrodes 1-3-c include insulating members 2-3-1-c and 2-3-2-c on the unit electrodes 1-3-c.
  • An opening region S-3-c that is not stacked is formed.
  • FIG. 8D is a cross-sectional view taken along line Q3-Q′3 shown in FIG. 8B.
  • FIG. 8D shows the manufactured unit electrode (readout electrode) 1-3-d. It is shown.
  • the impurities 3-3-1-c and 3-3-2-c are decomposed and ionized by the electrochemical oxidation / reduction cycle treatment, and the impurities 3-3 -1-c and 3-3-2-c can be removed.
  • the insulating member 2-3-1-d is laminated on the unit electrode 1-3-d, and the covering region T-3-1-d of the unit electrode 1-3-d is formed. d is formed.
  • an insulating member 2-3-4-d is provided on the unit electrode 1-3-d and on the right side of the unit electrode 1-3-d.
  • the insulating member 2-3-2-d is stacked on the unit electrode 1-3-d to form a covering region T-3-2-d of the unit electrode 1-3-d, and the unit The right side surface of the electrode 1-3-d is covered with an insulating member 2-3-3-d so as to separate the unit electrode 1-3-2-d on the right side. Then, as shown in FIG. 8D, an opening region S-3-d in which the insulating member is not laminated on the unit electrode 1-3-d is formed in the unit electrode 1-3-d. I have.
  • the surface of the unit electrode 1-3-d (working electrode) is oxidized / reduced by the electrochemical oxidation / reduction cycle treatment, and as shown in FIG. A high portion and a low portion are formed on the surface of the opening region S-3-d of -d (working electrode), and the high portion and the low portion are formed with reference to the surface U-3-d of the unit electrode 1-3-d. An uneven shape based on the lower portion is formed. Since the unit electrode 1-3-d (unit electrode 1-3-b) has an irregular shape formed by removing impurities from the unit electrode 1-3-c (unit electrode 1-3-a).
  • the surface area of the unit electrode 1-3-d (unit electrode 1-3-b) increases as compared with the surface area of the unit electrode 1-3-c (unit electrode 1-3-a), and the electrode impedance decreases. However, it is possible to suppress background noise when measuring a potential with the microelectrode array.
  • a potential measuring device manufactured using the unit electrode 1-3-d (unit electrode 1-3-b) can measure a weak cell action potential two-dimensionally with high resolution and low noise.
  • the method for manufacturing a potential measuring device according to the fourth embodiment includes stacking a metal member and an insulating member on a read electrode in this order, And forming an open region where the metal member and the insulating member are not stacked, and performing an electrochemical oxidation-reduction cycle on the readout electrode having the open region.
  • the potential measuring device manufactured using the method for manufacturing the potential measuring device according to the fourth embodiment of the present technology can measure a weak cell action potential two-dimensionally with high resolution and low noise.
  • the method for manufacturing the potential measuring device according to the fourth embodiment of the present technology may include removing a substance attached to the surface of the opening region. Further, in the method of manufacturing the potential measuring device according to the fourth embodiment of the present technology, at least one high portion having a height higher than the surface of the readout electrode with respect to the lamination surface of the readout electrode and the insulating member is provided. And / or forming at least one low portion having a low height, wherein the surface of the opening region has at least one high portion having a height higher than a lamination surface of the metal member and the insulating member. May be formed. Furthermore, the method for manufacturing the potential measuring device according to the fourth embodiment of the present technology may include forming an uneven shape on the surface of the opening region.
  • FIG. 9 is a cross-sectional view illustrating an example of a method for manufacturing the potential measuring device according to the fourth embodiment of the present technology.
  • FIG. 10 is a top view and a cross-sectional view illustrating an example of a method for manufacturing a potential measuring device according to the fourth embodiment of the present technology.
  • FIG. 9A shows a unit electrode 1-2-a of a device (potential measuring device) in which an assembling process is completed after the wafer process is completed.
  • the unit electrodes 1-2-a (unit electrodes 1-2-b to 1-2-c in FIGS. 9B to 9C) are working electrodes and may be made of a noble metal electrode material. Examples of the noble metal electrode material include platinum, gold, iridium, rhodium, and palladium. That is, the unit electrode 1-2-a may be, for example, a platinum electrode or the like.
  • a metal member 5-2-a is formed on the unit electrode 1-2-a.
  • the metal member 5-2-a may be made of, for example, a metal material having little harm or a metal material having a high ionization tendency.
  • the less harmful metal materials include, for example, iron (Fe) and magnesium (Mg).
  • the unit electrode 1-2-a is a platinum electrode and the metal member 5-2-a is iron (Fe)
  • a low biologically harmful metal such as iron is continuously applied.
  • a two-layer structure of the unit electrode 1-2-a and the metal member 5-2-a is formed by sputtering a film having a thickness of 10 nm and patterning the film.
  • -A is attached to the surface U-2-a.
  • a metal member 5-2-a and an insulating member 2-2-1-a are laminated in this order on the unit electrode 1-2-a, and the unit electrode 1-2 is formed.
  • the -a covering region T-2-1-a is formed.
  • the metal member 5-2-a stacked on the unit electrode 1-2-a and the right side surfaces of the unit electrode 1-2-a and the metal member 5-2-a are shown.
  • an insulating member 2-2-4-a is shown in which impurities 3-2-1-a and 3-2-2-a attached from the environment.
  • the metal member 5-2-a and the insulating member 2-2-2-a are laminated in this order on the unit electrode 1-2-a, and the covering region T of the unit electrode 1-2-a is formed.
  • -2-2-a is formed, and a unit electrode (not shown) and a metal member (not shown) on the right side are separated on the right side surface of the unit electrode 1-2-a and the metal member 5-2-a.
  • the insulating member 2-2-3-a is covered.
  • the unit electrode 1-2-a does not have an insulating member laminated on the unit electrode 1-2-a, but has a metal layer on the unit electrode 1-2-a.
  • An opening area S-2-a in which the members 5-2-a are stacked is formed.
  • FIG. 9B shows an electrochemical solution in which a potential difference is applied between a unit electrode (working electrode) 1-2-b and a counter electrode 4-2-b in an electrolyte solution (for example, physiological saline).
  • FIG. 4 is a diagram showing that a proper oxidation / reduction cycle is performed.
  • the potential of the unit electrode (working electrode) 1-2-b is set between 0 [V] and 3 [V] with reference to the counter electrode 4-2-b. Sweep 30 times.
  • the counter electrode 4-2-b can be provided on a device of a microelectrode array, or a platinum electrode can be separately prepared and used by immersing it in an electrolyte solution. As shown in FIG.
  • impurities 3-2-1-b and 3-2-2-b attached from the environment are deposited on the metal member 5- 2-b is attached to the surface U-2-b.
  • a metal member 5-2-b and an insulating member 2-2-1-b are laminated in this order on the unit electrode 1-2-b, and the unit electrode 1-2 is formed.
  • the -b covering region T-2-1-b is formed.
  • the metal member 5-2-b stacked on the unit electrode 1-2-b and the right side surfaces of the unit electrode 1-2-b and the metal member 5-2-b are shown.
  • an insulating member 2-2-4-b is shown on the metal member 5- 2-b is attached to the surface U-2-b.
  • the metal member 5-2-b and the insulating member 2-2-2-b are laminated in this order on the unit electrode 1-2-b, and the covering region T of the unit electrode 1-2-b is formed.
  • 2-2-b is formed, and a unit electrode (not shown) and a metal member (not shown) on the right side are separated on the right side of the unit electrode 1-2-b and the metal member 5-2-b. Insulation member 2-2-3-b is covered.
  • the unit electrode 1-2-b does not have an insulating member laminated on the unit electrode 1-2-b, but has a metal layer on the unit electrode 1-2-b.
  • An opening area S-2-b in which the members 5-2-b are stacked is formed.
  • FIG. 9C shows the manufactured unit electrode (readout electrode) 1-2-c.
  • the impurities 3-2-1-b and 3-2-2-b are decomposed by the electrochemical oxidation / reduction cycle process described with reference to FIG. 9B.
  • the impurities 3-2-1-b and 3-2-2-b can be removed by lift-off due to dissolution of the metal member 5-2-b. Note that removal of impurities by lift-off can correspond to a wide variety of impurities.
  • the metal member 5-2-1-c and the insulating member 2-2-1-c are provided on the unit electrode 1-2-c. Are laminated in this order to form a covering region T-2-1-c of the unit electrode 1-2-c.
  • the metal member 5-2-2-c laminated on the unit electrode 1-2-c and the unit member 1-2-c and the metal member 5-2-2-c are formed.
  • An insulating member 2-2-4-c is provided on the right side surface. More specifically, a metal member 5-2-2-c and an insulating member 2-2-2-c are laminated on the unit electrode 1-2-c in this order, and the unit electrode 1-2-c is covered.
  • a region T-2-2-c is formed, and a unit electrode (not shown) on the right side and a metal member (not shown) are provided on the right side of the unit electrode 1-2-c and the metal member 5-2-2-c. (Shown) is covered with an insulating member 2-2-3-c. Then, as shown in FIG. 9C, the unit electrode 1-2-c is provided with a metal member not covered with the insulating members 2-2-1-b and 2-2-2-b as described above. 5-2-b is dissolved, and an opening region S-2-c in which the insulating member and the metal member are not laminated is formed on the unit electrode 1-2-c.
  • the surface of the unit electrode 1-2-c (working electrode) is oxidized and reduced by the electrochemical oxidation / reduction cycle treatment, and the open area S ⁇ of the unit electrode 1-2-c (working electrode) is reduced.
  • the laminated surface R-2-1-c of the unit electrode 1-2-c with the metal member 5-2-1-c and the metal member 5-2 of the unit electrode 1-1-c are provided.
  • -2-c a high portion H-2-1 and a high portion H-2-2 are formed on the basis of the laminated surface R-2-2-c, and the laminated surface R-2-1 is formed.
  • a high portion H-2-3 and a high portion H-2-4 having substantially the same height are formed based on -c and the laminated surface R-2-2-c.
  • the high portion H-2-2 has a laminated surface V-2-1-c with the insulating member 2-2-1-c of the unit electrode 1-2-c and the insulating member 2- of the unit electrode 1-1-c. It is high with respect to the laminated surface V-2-2-2c with 2-2-c.
  • a laminated surface R-2 of the unit electrode 1-2-c and the metal member 5-2-1-c is provided on the surface of the opening region S-1-c of the unit electrode 1-2-c (working electrode).
  • a laminated surface R-2 of the unit electrode 1-2-c and the metal member 5-2-1-c is provided on the surface of the opening region S-1-c of the unit electrode 1-2-c (working electrode).
  • -1-c and a lower portion L-2-1 having a lower height with respect to a lamination surface R-2-2-c of the unit electrode 1-1-c with the metal member 5-2-2-c.
  • a lower portion L-2-2, a lower portion L-2-3, a lower portion L-2-4, and a lower portion L-2-5 are formed.
  • the volume of the unit electrode 1-2-c (the amount of the electrode material of the unit electrode) is substantially equal to the amount of the electrode material of the unit electrode).
  • the unit electrodes 1-1-c are formed on the upper portions H-1-1 to H-1-4 and the lower portions L-1-1 to L-1-5 based on the surface U-1-c. Base, and a concavo-convex shape is formed.
  • the unit electrode 1-2 in which the impurities are removed and the uneven shape based on the high portions H-2-1 to H-2-4 and the low portions L-2-1 to L-2-5 is formed.
  • the effective surface area of the c (working electrode) is substantially flat with respect to the laminated surface R-2-1-c and the laminated surface R-2-2-c. -2-a and 1-2-b). Due to the increase in the surface area, the electrode impedance is reduced, and the background noise when measuring the potential with the microelectrode array can be suppressed.
  • the potential measuring device manufactured using the unit electrode 1-2-c can measure a weak cell action potential two-dimensionally with high resolution and low noise.
  • FIG. 10A is a top view of a unit electrode 1-4-a of a device (potential measuring device) in which an assembling process is completed after the wafer process is completed.
  • the unit electrode 1-4-a (the unit electrode 1-4-b in FIG. 10B) is a working electrode and may be made of a noble metal electrode material. Examples of the noble metal electrode material include platinum, gold, iridium, rhodium, and palladium. That is, the unit electrode 1-4-a may be, for example, a platinum electrode or the like. As shown in FIG.
  • impurities 3-4-1-a and 3-4-2-a attached from the environment are caused by the metal member laminated on the unit electrode 1-4-a. It is attached to the unit electrode 1-4-a via 5-4-1-a. That is, the impurities 3-4-1-a and 3-4-2-a are directly attached to the metal member 5-4-1-a.
  • the insulating member 2-4-a is disposed around the unit electrode 1-4a. Since FIG. 10A is a top view, metal members 5-4-1-c and 5-4 shown in FIG. 10C, which will be described later, are laminated with the insulating member 2-4-s. -2-c is not shown.
  • FIG. 10B is a top view of the manufactured unit electrode (readout electrode) 1-4-b.
  • the impurities 3-4-1-a and 3-4-2-a are decomposed and ionized by the electrochemical oxidation / reduction cycle treatment, and the impurities 3-4 -1-a and 3-4-2-a are removed, and the unit electrode (readout electrode) 1-4-b has an uneven shape based on the high portion and the low portion.
  • the insulating member 2-4-b is arranged around the unit electrode 1-3-b. Since FIG. 10B is a top view, metal members 5-4-1-d and 5-4 which are laminated with the insulating member 2-4-b and are shown in FIG. -2-d is not shown.
  • FIG. 10C is a cross-sectional view taken along line P4-P'4 shown in FIG. 10A.
  • FIG. 10C shows a device (potential measurement) after the wafer process is completed and the assembly process is completed. (Device) 1-4c is shown.
  • a metal member 5-4-1-c and an insulating member 2-4-1-c are stacked in this order on the unit electrode 1-4-c, and the unit electrode 1 -4-c covering area T-4-1-c is formed.
  • the metal member 5-4-1-c laminated on the unit electrode 1-4-c and the unit electrode 1-4-c and the metal member 5-4-1-c are formed.
  • An insulating member 2-4--4-c is provided on the right side surface. More specifically, a metal member 5-4-1-c and an insulating member 2-4-2-c are laminated in this order on the unit electrode 1-4-c to cover the unit electrode 1-4-c. A region T-4-2-c is formed, and the right side of the unit electrode 1-4-c and the metal member 5-4-1-c are provided on the right side surface of the unit electrode 1-4-2-c and the metal member 5-4-1-c. An insulating member 2-4--3-c is covered so as to separate the member 5-4-2-c. Then, as shown in FIG.
  • the insulating members 2-4-1-c and 2-4-2-c are provided on the unit electrode 1-4-c on the unit electrode 1-4-c.
  • An opening region S-4-c in which the metal member 5-4-1-c is laminated is formed on the unit electrode 1-4-c without being laminated.
  • FIG. 10D is a sectional view taken along line Q4-Q′4 shown in FIG. 10B, and FIG. 10D shows the manufactured unit electrode (readout electrode) 1-4-d. It is shown.
  • the impurities 3-4-1-c and 3-4-2-c are decomposed and ionized by the electrochemical oxidation / reduction cycle treatment, and further, the metal member By lifting off by dissolving 5-4-1-c and 5-4-2-c, impurities 3-4-1-c and 3-4-2-c can be removed. Note that removal of impurities by lift-off can correspond to a wide variety of impurities.
  • a metal member 5-4-1-d and an insulating member 2-4-1-d are stacked in this order on the unit electrode 1-4-d, and -4-d covering area T-4-1-d is formed.
  • the metal member 5-4-2-d laminated on the unit electrode 1-4-d and the unit electrode 1-4-d and the metal member 5-4-2-d are formed.
  • An insulating member 2-4--4-d is arranged on the right side surface. More specifically, a metal member 5-4-2-d and an insulating member 2-4-2-d are laminated in this order on the unit electrode 1-4-d to cover the unit electrode 1-4-d.
  • a region T-4-2-d is formed, and the right side of the unit electrode 1-4-d and the metal member 5-4-2-d are formed on the right side surface of the unit electrode 1-4-d and the metal member 5-4-2-d.
  • the insulating member 2-4-3-d is covered so as to separate the member 5-4-3-d.
  • the unit electrode 1-4-d is provided with a metal member not covered with the insulating members 2-4-1-c and 2-4-2-c as described above. 5-4-1-c is dissolved, and an opening region S-4-d in which the insulating member and the metal member are not laminated is formed on the unit electrode 1-4-d.
  • the surface of the unit electrode 1-4-d (working electrode) is oxidized and reduced by the electrochemical oxidation / reduction cycle treatment, and the open area S ⁇ of the unit electrode 1-4-d (working electrode) is reduced.
  • a high portion and a low portion are formed on the surface of 4-d, and an uneven shape based on the high portion and the low portion is formed based on the surface U-4-d. Since the unit electrodes 1-4-d (unit electrodes 1-4-b) are formed with concavities and convexities by removing impurities from the unit electrodes 1-4-c (unit electrodes 1-4-a).
  • the surface area of the unit electrode 1-4-d (unit electrode 1-4-b) increases as compared with the surface area of the unit electrode 1-4-c (unit electrode 1-4-a), and the electrode impedance decreases. However, it is possible to suppress background noise when measuring a potential with the microelectrode array.
  • the potential measuring device manufactured using the unit electrode 1-4-d (unit electrode 1-4-b) can measure a weak cell action potential two-dimensionally with high resolution and low noise.
  • the present technology can also have the following configurations.
  • the readout electrode has a covering region where the insulating member is laminated on the readout electrode, and an opening region where the insulating member is not laminated on the readout electrode,
  • the readout electrode has, in the opening region, at least one high portion having a high height and / or at least one low portion having a low height with respect to a stacked surface of the readout electrode and the insulating member; Potential measurement device.
  • the readout electrode has a covering region in which the metal member and the insulating member are laminated on the readout electrode in this order, and an opening region in which the metal member and the insulating member are not laminated on the readout electrode.
  • the readout electrode has, in the opening region, at least one high portion having a high height and / or at least one low portion having a low height with respect to a lamination surface of the readout electrode and the metal member.
  • Potential measurement device [4] The potential measurement device according to [3], wherein the readout electrode has at least one high portion having a height higher than a stacked surface of the metal member and the insulating member in the opening region. [5] The potential measuring device according to [3] or [4], wherein an uneven shape is formed on a surface of the opening region.
  • [6] Laminating an insulating member on the readout electrode; Forming an opening region in which the insulating member is not laminated on the readout electrode; Performing an electrochemical oxidation-reduction cycle on the readout electrode having the opening region.
  • [8] Forming at least one high portion having a high height and / or at least one low portion having a low height on the surface of the opening region with reference to a lamination surface of the readout electrode and the insulating member. , [6] or [7].
  • [9] The method for manufacturing a potential measuring device according to any one of [6] to [8], including forming an uneven shape on the surface of the opening region.
  • [10] Laminating a metal member and an insulating member on the readout electrode in this order; Forming an opening region in which the metal member and the insulating member are not laminated on the readout electrode, and performing an electrochemical oxidation-reduction cycle on the readout electrode having the opening region.
  • a method for manufacturing a potential measuring device [11] The method for manufacturing a potential measuring device according to [10], comprising removing a substance attached to a surface of the opening region.
  • [12] Forming at least one high portion having a high height and / or at least one low portion having a low height on the surface of the opening region with reference to a lamination surface of the readout electrode and the metal member. , [10] or [11].
  • [14] The method for manufacturing a potential measuring device according to any one of [10] to [13], including forming an uneven shape on the surface of the opening region.
  • a method for manufacturing a potential measuring device comprising performing an electrochemical oxidation-reduction cycle on a readout electrode.
  • the method for manufacturing a potential measuring device according to [15] comprising removing a substance attached to a surface of the readout electrode.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

評価品質を更に向上させることができる電位測定装置を提供すること。 アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、絶縁部材と、参照電位を検出する参照電極と、読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、該読み出し電極が、該読み出し電極に該絶縁部材が積層された被覆領域と、該読み出し電極に該絶縁部材が積層されていない開口領域とを有し、該読み出し電極が、該開口領域に、該読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置を提供する。

Description

電位測定装置及び電位測定装置の製造方法
 本技術は、電位測定装置及び電位測定装置の製造方法に関する。
 微小な読み出し電極をアレイ状に配置し、当該読み出し電極と溶液との界面で発生する電位を電気化学的に測定する電位測定装置があり、例えば、読み出し電極上に培養液で満たして生体細胞を乗せ、生体細胞が発生する活動電位を測定する電位測定装置が提案されている(例えば、特許文献1参照)。
 特に、近年、CMOS(Complementary Metal Oxide Semiconductor)集積回路技術を用いて電極、増幅器、A/D変換器などを一つの半導体基板(チップ)に集積し、多点で同時に電位を測定する電位測定装置が注目されている。
特開2002-31617号公報
 しかしながら、特許文献1で提案された技術では、評価品質の更なる向上が図れないおそれがある。
 そこで、本技術は、このような状況に鑑みてなされたものであり、評価品質を更に向上させることができる電位測定装置、及びその電位測定装置の製造方法を提供することを主目的とする。
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、画質を飛躍的に向上させることに成功し、本技術を完成するに至った。
 すなわち、本技術では、まず、アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、
 絶縁部材と、
 参照電位を検出する参照電極と、
 読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、
 該読み出し電極が、該読み出し電極に該絶縁部材が積層された被覆領域と、該読み出し電極に該絶縁部材が積層されていない開口領域とを有し、
 該読み出し電極が、該開口領域に、該読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置を提供する。
 本技術に係る電位測定装置において、前記開口領域の表面に、凹凸形状が形成されていてもよい。
 また、本技術では、アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、
 絶縁部材と、
 金属部材と、
 参照電位を検出する参照電極と、
 読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、
 該読み出し電極が、該読み出し電極に該金属部材と該絶縁部材とがこの順で積層された被覆領域と、該読み出し電極に該金属部材と該絶縁部材とが積層されていない開口領域とを有し、
 該読み出し電極が、該開口領域に、該読み出し電極の該金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置を提供する。
 本技術に係る電位測定装置において、前記読み出し電極が、前記開口領域に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を有してもよく、さらに、前記開口領域の表面に、凹凸形状が形成されていてもよい。
 さらに、本技術では、読み出し電極に絶縁部材を積層することと、
 該読み出し電極に、該絶縁部材が積層されていない開口領域を形成することと、
 該開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、電位測定装置の製造方法を提供する。
 本技術に係る電位測定装置の製造方法において、前記開口領域の表面に付着した物質を除去することを含んでもよく、前記開口領域の表面に、前記読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部とを形成することを含んでもよく、さらに、前記開口領域の表面に、凹凸形状を形成することを含んでもよい。
 さらにまた、本技術では、読み出し電極に金属部材と絶縁部材とをこの順で積層することと、
 該読み出し電極に、該金属部材と該絶縁部材とが積層されていない開口領域を形成することと、
 該開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、電位測定装置の製造方法を提供する。
 本技術に係る電位測定装置の製造方法において、前記開口領域の表面に付着した物質を除去することを含んでもよく、前記開口領域の表面に、前記読み出し電極の該金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含んでもよく、前記開口領域の表面に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を形成することを含んでもよく、さらに、前記開口領域の表面に、凹凸形状を形成することを含んでもよい。
 本技術によれば、評価品質を更に向上させることができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した第1の実施形態の電位測定装置に含まれる読み出し電極の構成例を示す断面図である。 本技術を適用した第2の実施形態の電位測定装置に含まれる読み出し電極の構成例を示す断面図である。 本技術を適用した第1の実施形態及び第2の実施形態の電位測定装置の構成の概略を示す構成図である。 電極形状が正方形の参照電極と読み出し電極との電極配置の一例を示す平面図である。 読み出し電極及び参照電極と差動型増幅器との間の配線構造の一例を示す模式図である。 読み出し電極表面の酸化還元サイクルに伴うラフネスの増大を説明するための図である。 本技術を適用した第3の実施形態の電位測定装置の製造方法の一例を示す断面図である。 本技術を適用した第3の実施形態の電位測定装置の製造方法の一例を示す上面図及び断面図である。 本技術を適用した第4の実施形態の電位測定装置の製造方法の一例を示す断面図である。 本技術を適用した第4の実施形態の電位測定装置の製造方法の一例を示す上面図及び断面図である。
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、特に断りがない限り、図面の説明において、「上」を含む用語は、図中の上方向、上側又は上部を意味し、「下」を含む用語は、図中の下方向、下側又は下部を意味し、「左」を含む用語は、図中の左方向、左側又は左部を意味し、「右」を含む用語は、図中の右方向、右側又は右部を意味する。
 なお、説明は以下の順序で行う。
 1.本技術の概要
 2.第1の実施形態(電位測定装置の例1)
 3.第2の実施形態(電位測定装置の例2)
 4.第3の実施形態(電位測定装置の製造方法の例1)
 5.第4の実施形態(電位測定装置の製造方法の例2)
<1.本技術の概要>
 まず、本技術の概要について、説明をする。
 例えば、電気メッキにより白金微粒子を電極表面上に堆積し、表面積を増やす技術がある。しかしながら、白金のメッキを行うためには塩化白金酸や亜硝酸白金のアンモニア溶液などの毒性が強い化学物質を用いる必要があり、塩化白金酸や亜硝酸白金のアンモニア溶液が電極アレイ表面上やパッケージ部材に残留した場合、その後の細胞培養や活動電位取得評価に影響を来すことになる。また、白金を電極表面に析出する場合、電極間のショートのリスクも発生する。さらに、このようにして有効表面積を増大させた場合においても電極表面を環境中に暴露した場合、反応性に富む白金電極表面には環境雰囲気の不純物の付着が進み、やがて有効表面積が減少する。
 本技術は上記の事情を鑑みてなされたものである。本技術は、評価品質を更に向上させることができる電位測定装置、及びその電位測定装置の製造方法を提供することを目的とし、特には、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる電位測定装置及びその電位測定装置の製造方法を提供することを目的とする。
 細胞間における活動電位の伝搬等を、二次元にて高分解能で行う場合、アレイ状に配列された電極のピッチを細胞のサイズに相当する寸法以下にまで微細化する必要がある。この結果、必然的に電極の表面積は小さくなり、電極界面のインピーダンスの増大が生じ、これに由来するバックグラウンドノイズの増大が起きる。これを抑制するためには、何らかの方法で電極の表面積を増大させる必要がある。特にシグナルとなる活動電位が小さい細胞(例えば、神経細胞など)間の伝搬の評価を行う場合、ノイズの低減を行わないと活動電位との分別が困難となる。以上のことから、本願で提案する本技術による評価品質の向上が必要である。
 次に、ノイズとインピーダンスとの関係について説明をする。下記の式(1)で示されるように、ノイズとインピーダンスとの関係を表す式がある。
Figure JPOXMLDOC01-appb-M000001
 式(1)中、kはボルツマン定数(Boltzmann constant)であり、Tは絶対温度(Absolute Temperature)であり、Ces,sは電極キャパシタンスである。式(1)により、観測されるノイズの値は、電極キャパシタンスの値(Ces,s)に反比例することが理解できる。すなわち、電極キャパシタンスが増大すれば、観測されるノイズは減少することとなる。
 本技術によれば、電極表面の不純物の除去と凹凸の形成による有効表面積の拡大を行うことができる。これにより、電極インピーダンスを低下させることが可能となり、電極ノイズの抑制ができ、S/N比が向上し、微小な信号を微小電極アレイで取得することができる。本技術は、例えば、デバイス(電位測定装置)の出荷直前、使用者が用いる直前に簡便に読み出し電極の表面積の拡大を行うことができ、評価品質の向上に有効である。
 以下に、本技術について詳細に説明をする。
<2.第1の実施形態(電位測定装置の例1)>
 本技術に係る第1の実施形態(電位測定装置の例1)の電位測定装置は、アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、絶縁部材と、参照電位を検出する参照電極と、読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、読み出し電極が、読み出し電極に絶縁部材が積層された被覆領域と、読み出し電極に絶縁部材が積層されていない開口領域とを有し、読み出し電極が、開口領域に、読み出し電極の絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置である。
 本技術に係る第1の実施形態の電位測定装置において、開口領域の表面に、凹凸形状が形成されていてもよい。
 本技術に係る第1の実施形態の電位測定装置は、読み出し電極が有する開口領域に、読み出し電極の絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部(例えば、凹凸形状)を有することにより、開口領域(読み出し電極)の有効表面積の拡大を行うことができる。したがって、本技術に係る第1の実施形態の電位測定装置によれば、電極インピーダンスを低下させることが可能となり、電極ノイズの抑制ができ、また、S/N比が向上し、微小な信号が微小電極アレイで取得され得る。本技術に係る第1の実施形態の電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 そして、本技術に係る第1の実施形態の電位測定装置は、開口領域の読み出し電極表面の不純物を除去することにより、開口領域(読み出し電極)の有効表面積の更なる拡大を行うことができる。したがって、本技術に係る第1の実施形態の電位測定装置によれば、電極インピーダンスを更に低下させることが可能となり、電極ノイズの更なる抑制ができ、また、S/N比が更に向上し、微小な信号を微小電極アレイで取得することができる。電極表面上の不純物としては、電位測定装置の加工形成などの製造過程において発生して電極表面に吸着する物質、もしくは電位測定装置の完成後に、空気中に浮遊して電極表面に付着するコンタミ等が挙げられる。
 本技術に係る第1の実施形態の電位測定装置に含まれる読み出し電極を、図1を用いて説明をする。図1は、本技術に係る第1の実施形態の電位測定装置に含まれる読み出し電極の構成例(読み出し電極1-1-c)を示す断面図である。
 図1に示されるように、図1の左側では、単位電極(読み出し電極)1-1-c上に、絶縁部材2-1-cが積層されて、単位電極1-1-cが有する被覆領域T-1-1-cが形成される。図1の右側では、単位電極1-1-c上と右側面に、絶縁部材2-1-4-cが配される。より詳しくは、単位電極1-1-c上に絶縁部材2-1-2-cが積層されて単位電極1-1-cが有する被覆領域T-1-2-cが形成されて、単位電極1-1-cの右側面には、右隣の単位電極(不図示)を分離するように絶縁部材2-1-3-cが覆われている。そして、図1に示されるように、単位電極1-1-cには、単位電極1-1-c上に絶縁部材が積層されていない開口領域S-1-cが形成されている。
 そして、図1に示されるように、単位電極1-1-c(作用電極)の開口領域S-1-cの表面には、単位電極1-1-cの絶縁部材2-1-1-cとの積層面R-1-1-c及び単位電極1-1-cの絶縁部材2-1-2-cとの積層面R-1-2-cを基準にして、高さが高い高部H-1-1及び高部H-1-3が形成され、積層面R-1-1-c及び積層面R-1-2-cを基準にして、高さが略同等である高部H-1-2及び高部H-1-4が形成される。
 また、単位電極1-1-c(作用電極)の開口領域S-1-cの表面には、単位電極1-1-cの絶縁部材2-1-1-cとの積層面R-1-1-c及び単位電極1-1-cの絶縁部材2-1-2-cとの積層面R-1-2-cを基準にして、高さが低い低部L-1-1、低部L-1-2、低部L-1-3、低部L-1-4及び低部L-1-5が形成されている。
 高部H-1-1~H-1-4の積層面R-1-1-c及び積層面R-1-2-cを基準にした正の体積(単位電極の電極材料の正の量)と低部L-1-1~L-1-5の積層面R-1-1-c及び積層面R-1-2-cを基準にした負の体積(単位電極の電極材料の負の量)とを足し合わせると略ゼロとなる。すなわち、積層面R-1-1-c及び積層面R-1-2-cを基準に略平坦である単位電極の体積(単位電極の電極材料の量)に対して単位電極1-1-cの体積(単位電極の電極材料の量)は略同等である。また、単位電極1-1-cは、表面U-1-cを基準にして、高部H-1-1~H-1-4及び低部L-1-1~L-1-5に基づく、凹凸形状が形成されている。
 以上より、高部H-1-1~H-1-4及び低部L-1-1~L-1-5に基づく凹凸形状が形成された単位電極1-1-c(作用電極)の有効な表面積は、積層面R-1-2-cを基準に略平坦であり、不純物が付着した単位電極(例えば、単位電極1-1-a及び1-1-b)の表面積と比較して増加する。この表面積の増加により、電極インピーダンスが低下し、微小電極アレイで電位を計測する場合のバックグラウンドノイズを抑制することができる。
 図6は、読み出し電極表面(例えば、単位電極1-1-c、後述する単位電極1-2-c)の酸化還元サイクルに伴うラフネス(例えば、凹凸形状、高部及び低部を有する形状等)の増大を説明するための図である。読み出し電極表面は、走査型トンネル顕微鏡(Scanning Tunneling Microscope)により観察され、図6(a)~(e)は、その観察に基づく図である。
 図6(a)は、酸化還元サイクル(-0.22⇔1.15V)を20回繰り返した後の読み出し電極表面の図であり、図6(b)は、酸化還元サイクル(-0.22⇔1.15V)を60回繰り返した後の読み出し電極表面の図であり、図6(c)は、酸化還元サイクル(-0.22⇔1.15V)を240回繰り返した後の読み出し電極表面の図である。そして、図6(d)及び(e)は、酸化還元サイクル(-0.22⇔1.15V)を480回繰り返した後の読み出し電極表面の図であり、図6(d)及び(e)は観察場所が異なる読み出し電極表面の図(2視野)である。図6(a)~図6(e)から明らかなように、酸化還元サイクルの回数が多くなるに従って、読み出し電極表面のラフネス(例えば、凹凸形状、高部及び低部を有する形状等)が増大していることがわかる。
 次に、本技術に係る第1の実施形態の電位測定装置を、図3~図5を用いて説明をする。
 図3は、本技術に係る第1の実施形態の電位測定装置の構成の概略を示す構成図である。本技術に係る第1の実施形態の電位測定装置10は、CMOS集積回路技術を用いて作成された電極部11、行選択部12、列選択部13、増幅部14A,14B、及び、A/D変換部15A,15Bを、一つの半導体基板(半導体チップ)16に集積して成るデバイスである。ここでは、増幅部14A,14B及びA/D変換部15A,15Bを、電極部11を挟んで両側に配置した構成を採っているが、電極部11の一方側に配置する構成を採ることも可能である。
 電極部11には、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極21がアレイ状にm行n列配置されている。読み出し電極21は、例えば、活動電位発生点の大きさと同程度の大きさの電極サイズを有する。この読み出し電極21のアレイ内に、参照電位を検出する参照電極22が配置されている。読み出し電極21は、例えば、上記の図1で説明をした単位電極1-1-cである。そして、図1で説明をしたように、読み出し電極21には絶縁部材を積層することができる。
 ここでは、一例として、行方向及び列方向それぞれ3個、計9個の読み出し電極21を単位として参照電極22が配置されており、読み出し電極21の電極サイズが参照電極22の電極サイズよりも小さい。換言すれば、参照電極22の電極サイズが読み出し電極21の電極サイズよりも大きい。参照電極22が検出する参照電位は、読み出し電極21が検出する活動電位発生点の電位との差分を取る際の基準となる基準電位である。読み出し電極21及び参照電極22の電極構造は、平面的な構造となっている。
 m行n列の読み出し電極21の配置に対して、行毎に行選択線31_1~31_mが配線され、列毎に列選択線32_1~32_n及び信号読み出し線33_1~33_nが配線されている。行選択線31_1~31_mは各一端が、行選択部12の対応する行の出力端に接続されている。列選択線32_1~32_nは各一端が、列選択部13の対応する列の出力端に接続されている。
 読み出し電極21は、スイッチ23を介して信号読み出し線33_1~33_nに接続されている。図3では、図面の簡略化のために、スイッチ23を1つのスイッチとして図示しているが、実際には、スイッチ23は行選択用及び列選択用の少なくとも2つのスイッチから成る。また、これに対応して、信号読み出し線33_1~33_nも少なくとも2本の信号読み出し線から成る。
 スイッチ23において、例えば、行選択用のスイッチは、行選択部12から行選択線31_1~31_mを介して印加される行選択信号によってオン(閉)駆動され、列選択用のスイッチは、列選択部13から列選択線32_1~32_nを介して印加される列選択信号によってオン駆動される。この行選択用及び列選択用の各スイッチがオンすることにより、読み出し電極21が検出した電位が信号読み出し線33_1~33_nに出力され、これら信号読み出し線33_1~33_nによって増幅部14A,14Bへ伝送される。
 なお、ここでは、読み出し電極21の電位読み出し系を主体として説明したが、参照電極22の電位読み出し系についても、基本的に同様の構成となる。具体的には、行選択部12、列選択部13、行選択線31_1~31_m、列選択線32_1~32_n及び、信号読み出し線33_1~33_nから成る電位読み出し系が、読み出し電極21の電位読み出し用と、参照電極22の電位読み出し用として2系統設けられることになる。
 この2系統の電位読み出し系によって読み出された読み出し電極21の検出電位及び参照電極22の検出電位は、増幅部14A,14Bに供給される。増幅部14A,14Bは、複数の読み出し電極21に対して共通に設けられた複数の差動型増幅器から成り、例えば、参照電極22を単位として、参照電極22の検出電位(参照電位)と当該参照電極22に属する9個の読み出し電極21の検出電位との差分を取る。この差分は、A/D変換部15A,15Bに供給される。A/D変換部15A,15Bは、増幅部14A,14Bから出力される差分をA/D変換し、読み出し電極21が検出した電位に対応するデジタル値として出力する。
 上記の構成の電位測定装置10において、参照電極22は、読み出し電極21の近傍、具体的には、読み出し電極21のアレイ内に配置されている。そして、参照電極22の大きさは、読み出し電極21の大きさよりも大きくなっている。参照電極22としては様々な形状の電極を用いることができる。参照電極22の電極形状が正方形の例を図4に示す。
 図4には、図3との対応関係から、行方向及び列方向それぞれ3個、計9個の読み出し電極21を単位として参照電極22が配置される例を示している。1つの参照電極22はその平面内に、行列状配置の9個の読み出し電極21のそれぞれに対応する位置に9個の開口部22Aを有している。そして、参照電極22は、行列状配置の9個の読み出し電極21のそれぞれが9個の開口部22A内に位置するように配置されることになる。換言すれば、読み出し電極21は、参照電極22の開口部22A内に位置するように配置されている。
 図4に示すような読み出し電極21及び参照電極22の電極配置は、局所的な電位変化を読み出すのに適している。一例として、5[μm]程度の大きさの生体細胞の活動電位を読み出すために、電極サイズが5[μm]程度の大きさの読み出し電極21と、その10倍以上の大きさ、即ち50[μm]以上の大きさの参照電極22とを配置する。
 このような場合は、活動電位の発生部は局所的な1点と等価となる。5[μm]の大きさの読み出し電極21と50[μm]の大きさの参照電極22では電位変動が約10倍になる。そして、読み出し電極21が検出する電位と参照電極22が検出する電位との差分を取ることによって、生体細胞の活動電位を測定ができる。
 図5に、読み出し電極21及び参照電極22と、増幅部14A,14Bの一つの差動型増幅器との間の配線の一例を示す。上述したように、参照電極22を読み出し電極21の近傍に、より具体的には読み出し電極21のアレイ内に配置した構成を採ることで、差動型増幅器24の位置に対して、読み出し電極21の位置と参照電極22の位置とを同等にできる。これにより、読み出し電極21及び参照電極22と差動型増幅器24の2つの入力端とを接続する二つの配線で、配線容量・環境との容量が電気的にほぼ等価となり、これら配線に重畳するノイズを同等にできるため、その差分を取ったときの差動型増幅器24の出力に含まれるノイズを抑制できる。
<3.第2の実施形態(電位測定装置の例2)>
 本技術に係る第2の実施形態(電位測定装置の例2)の電位測定装置は、アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、絶縁部材と、金属部材と、参照電位を検出する参照電極と、読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、読み出し電極が、該読み出し電極に金属部材と絶縁部材とがこの順で積層された被覆領域と、読み出し電極に金属部材と絶縁部材とが積層されていない開口領域とを有し、読み出し電極が、開口領域に、読み出し電極の金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置である。
 本技術に係る第2の実施形態の電位測定装置において、読み出し電極が、開口領域に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を有してもよい。また、本技術に係る第2の実施形態の電位測定装置において、開口領域の表面に、凹凸形状が形成されていてもよい。
 本技術に係る第2の実施形態の電位測定装置は、開口領域に、読み出し電極の金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部(例えば、凹凸形状)を有することにより、開口領域(読み出し電極)の有効表面積の拡大を行うことができる。したがって、本技術に係る第2の実施形態の電位測定装置によれば、電極インピーダンスを低下させることが可能となり、電極ノイズの抑制ができ、また、S/N比が向上し、微小な信号が微小電極アレイで取得され得る。本技術に係る第2の実施形態の電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 そして、本技術に係る第2の実施形態の電位測定装置は、開口領域の読み出し電極表面の不純物を除去することにより、開口領域(読み出し電極)の有効表面積の更なる拡大を行うことができる。したがって、本技術に係る第2の実施形態の電位測定装置によれば、電極インピーダンスを更に低下させることが可能となり、電極ノイズの更なる抑制ができ、また、S/N比が更に向上し、微小な信号を微小電極アレイで取得することができる。電極表面上の不純物としては、電位測定装置の加工形成などの製造過程において発生して電極表面に吸着する物質、もしくは、電位測定装置の完成後に、空気中に浮遊して電極表面に付着するコンタミ等が挙げられる。
 本技術に係る第2の実施形態の電位測定装置に含まれる読み出し電極を、図2を用いて説明をする。図2は、本技術に係る第2の実施形態の電位測定装置に含まれる読み出し電極の構成例を示す断面図である。
 図2に示されるように、図2の左側では、単位電極1-2-c上に、金属部材5-2-1-cと絶縁部材2-2-1-cとがこの順で積層されて、単位電極1-2-cの被覆領域T-2-1-cが形成される。図2の右側では、単位電極1-2-c上に積層された金属部材5-2-2-cと、単位電極1-2-c及び金属部材5-2-2-cの右側面とに、絶縁部材2-2-4-cが配される。より詳しくは、単位電極1-2-c上に金属部材5-2-2-cと絶縁部材2-2-2-cとがこの順で積層されて、単位電極1-2-cの被覆領域T-2-2-cが形成されて、単位電極1-2-c及び金属部材5-2-2-cの右側面には、右隣の単位電極(不図示)及び金属部材を分離するように絶縁部材2-2-3-cが覆われている。そして、図2に示されるように、単位電極1-2-cには、上記のとおり絶縁部材2-2-1-c及び2-2-2-cで覆われていない箇所に相当する金属部材が溶解し、単位電極1-2-c上に絶縁部材及び金属部材が積層されていない開口領域S-2-cが形成されている。
 そして、電気化学的な酸化・還元サイクルの処理により、単位電極1-2-c(作用電極)の表面が酸化・還元されて、単位電極1-2-c(作用電極)の開口領域S-2-cの表面には、単位電極1-2-cの金属部材5-2-1-cとの積層面R-2-1-c及び単位電極1-1-cの金属部材5-2-2-cとの積層面R-2-2-cを基準にして、高さが高い高部H-2-1及び高部H-2-2が形成され、積層面R-2-1-c及び積層面R-2-2-cを基準にして、高さが略同等である高部H-2-3及び高部H-2-4が形成される。高部H-2-2は、単位電極1-2-cの絶縁部材2-2-1-cとの積層面V-2-1-c及び単位電極1-1-cの絶縁部材2-2-2-cとの積層面V-2-2-cを基準にしても高い。
 また、単位電極1-2-c(作用電極)の開口領域S-1-cの表面には、単位電極1-2-cの金属部材5-2-1-cとの積層面R-2-1-c及び単位電極1-1-cの金属部材5-2-2-cとの積層面R-2-2-cを基準にして、高さが低い低部L-2-1、低部L-2-2、低部L-2-3、低部L-2-4及び低部L-2-5が形成されている。
 高部H-2-1~H-2-4の積層面R-2-1-c及び積層面R-2-2-cを基準にした正の体積(単位電極の電極材料の正の量)と低部L-2-1~L-2-5の積層面R-2-1-c及び積層面R-2-2-cを基準にした負の体積(単位電極の電極材料の負の量)とを足し合わせると略ゼロとなる。すなわち、積層面R-2-1-c及び積層面R-2-2-cを基準に略平坦である単位電極(例えば、単位電極1-2-a及び1-2-b)の体積(単位電極の電極材料の量)に対して単位電極1-2-cの体積(単位電極の電極材料の量)は略同等である。また、単位電極1-1-cは、表面U-1-cを基準にして、高部H-1-1~H-1-4及び低部L-1-1~L-1-5に基づく、凹凸形状が形成されている。
 以上より、高部H-2-1~H-2-4及び低部L-2-1~L-2-5に基づく凹凸形状が形成された単位電極1-2-c(作用電極)の有効な表面積は、積層面R-2-1-c及び積層面R-2-2-cを基準に略平坦であり、不純物が付着した単位電極(例えば、単位電極1-2-a及び1-2-b)の表面積と比較して増加する。この表面積の増加により、電極インピーダンスが低下し、微小電極アレイで電位を計測する場合のバックグラウンドノイズを抑制することができる。
 本技術に係る第2の実施形態の電位測定装置には、上記で説明をした図3~図5及び図6の内容がそのまま適用され得る。そして、読み出し電極21は、例えば、上記の図2で説明をした単位電極1-2-cである。そして、図2で説明をしたように、読み出し電極21には金属部材と絶縁部材とをこの順で積層することができる。
<4.第3の実施形態(電位測定装置の製造方法の例1)>
 本技術に係る第3の実施形態(電位測定装置の製造方法の例1)の電位測定装置の製造方法は、読み出し電極に絶縁部材を積層することと、読み出し電極に、絶縁部材が積層されていない開口領域を形成することと、開口領域を有する読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、製造方法である。また、本技術に係る第3の実施形態(電位測定装置の製造方法の例1)の電位測定装置の製造方法の変形例として、読み出し電極に対して電気化学的酸化還元サイクルを行うことを含む電位測定装置の製造方法、読み出し電極に対して電気化学的酸化還元サイクルを行うことと、読み出し電極の表面に付着した物質を除去することとを含む電位測定装置の製造方法、読み出し電極に対して電気化学的酸化還元サイクルを行うことと、読み出し電極の表面に付着した物質を除去することと、読み出し電極の表面に凹凸形状を形成することとを含む、電位測定装置の製造方法が挙げられる。本技術に係る第3の実施形態の電位測定装置の製造方法を用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。また、本技術に係る第3の実施形態の電位測定装置の製造方法の変形例を用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 本技術に係る第3の実施形態の電位測定装置の製造方法は、開口領域の表面に付着した物質を除去することを含んでもよい。また、本技術に係る第3の実施形態の電位測定装置の製造方法は、開口領域の表面に、読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含んでもよく、開口領域の表面に、凹凸形状を形成することを含んでもよい。
 本技術に係る第3の実施形態の電位測定装置の製造方法を、図7及び図8を用いて説明をする。なお、図7及び図8で説明する内容以外は、公知(例えば、WO2017/061171A1)の方法を用いて、本技術に係る第3の実施形態の電位測定装置を製造することができる。
 図7は、本技術に係る第3の実施形態の電位測定装置の製造方法の一例を示す断面図である。図8は、本技術に係る第3の実施形態の電位測定装置の製造方法の一例を示す上面図及び断面図である。
 まず、図7を用いて、本技術に係る第3の実施形態の電位測定装置の製造方法について説明をする。図7(a)は、ウエハプロセス終了後、組み立て工程が完了したデバイス(電位測定装置)の単位電極1-1-aを示す。単位電極1-1-a(図7(b)~(c)中の単位電極1-1-b~1-1-c)は、作用電極であり、貴金属電極材料から構成されてよい。貴金属電極材料は、例えば、白金、金、イリジウム、ロジウム、パラジウム等が挙げられる。すなわち、単位電極1-1-aは、例えば、白金電極等でよい。
 図7(a)に示されるように、環境中から付着した不純物3-1-1-a及び3-1-2-aが単位電極1-1-aの表面U-1-aに付着している。図7(a)の左側では、単位電極1-1-a上に、絶縁部材2-1-1-aが積層されて、単位電極1-1-aの被覆領域T-1-1-aが形成される。図7(a)の右側では、単位電極1-1-a上と単位電極1-1-aの右側面に、絶縁部材2-1-4-aが配される。より詳しくは、単位電極1-1-a上に絶縁部材2-1-2-aが積層されて単位電極1-1-aの被覆領域T-1-2-aが形成されて、単位電極1-1-aの右側面には、右隣の単位電極(不図示)を分離するように絶縁部材2-1-3-aが覆われている。そして、図7(a)に示されるように、単位電極1-1-aには、単位電極1-1-a上に絶縁部材が積層されていない開口領域S-1-aが形成されている。
 図7(b)は、電解質溶液(例えば生理食塩水)中にて、単位電極(作用電極)1-1-bと対電極4-1-bとの間に電位差を印加し、電気化学的な酸化・還元サイクルを施すことを示す図である。例えば、図7(b)に示されるように、対電極4-1-bを基準にして単位電極(作用電極)1-1-bの電位を0[V]と3[V]との間で20回掃引する。対電極4-1-bは微小電極アレイのデバイス上に設けるか、または別途白金電極を用意し、これを電解質溶液に浸漬して用いることができる。図7(b)に示されるように、環境中から付着した不純物3-1-1-b及び3-1-2-bが単位電極1-1-bの表面U-1-bに付着している。図7(b)の左側では、単位電極1-1-b上に、絶縁部材2-1-bが積層されて、単位電極1-1-bの被覆領域T-1-1-bが形成される。図7(b)の右側では、単位電極1-1-b上と右側面に、絶縁部材2-1-4-bが配される。より詳しくは、単位電極1-1-b上に絶縁部材2-1-2-bが積層されて単位電極1-1-bの被覆領域T-1-2-bが形成されて、単位電極1-1-bの右側面には、右隣の単位電極(不図示)を分離するように絶縁部材2-1-3-bが覆われている。そして、図7(b)に示されるように、単位電極1-1-bには、単位電極1-1-b上に絶縁部材が積層されていない開口領域S-1-bが形成されている。
 図7(c)は、製造された単位電極(読み出し電極)1-1-cを示す。図7(c)に示されるように、図7(b)で説明をした電気化学的な酸化・還元サイクルの処理により、不純物3-1-1-b及び3-1-2-bが分解及びイオン化して、不純物3-1-1-b及び3-1-2-bは除去され得る。図1でも説明したことと同様になるが、図7(c)の左側では、単位電極1-1-c上に、絶縁部材2-1-1-cが積層されて、単位電極1-1-cが有する被覆領域T-1-1-cが形成される。図7(c)の右側では、単位電極1-1-c上と右側面に、絶縁部材2-1-4-cが配される。より詳しくは、単位電極1-1-c上に絶縁部材2-1-2-cが積層されて単位電極1-1-cが有する被覆領域T-1-2-cが形成されて、単位電極1-1-cの右側面には、右隣の単位電極(不図示)を分離するように絶縁部材2-1-3-cが覆われている。そして、図7(c)に示されるように、単位電極1-1-cには、単位電極1-1-c上に絶縁部材が積層されていない開口領域S-1-cが形成されている。
 そして、電気化学的な酸化・還元サイクルの処理により、単位電極1-1-c(作用電極)の表面が酸化・還元されて、単位電極1-1-c(作用電極)の開口領域S-1-cの表面には、単位電極1-1-cの絶縁部材2-1-1-cとの積層面R-1-1-c及び単位電極1-1-cの絶縁部材2-1-2-cとの積層面R-1-2-cを基準にして、高さが高い高部H-1-1及び高部H-1-3が形成され、積層面R-1-1-c及び積層面R-1-2-cを基準にして、高さが略同等である高部H-1-2及び高部H-1-4が形成される。
 また、単位電極1-1-c(作用電極)の開口領域S-1-cの表面には、単位電極1-1-cの絶縁部材2-1-1-cとの積層面R-1-1-c及び単位電極1-1-cの絶縁部材2-1-2-cとの積層面R-1-2-cを基準にして、高さが低い低部L-1-1、低部L-1-2、低部L-1-3、低部L-1-4及び低部L-1-5が形成されている。
 高部H-1-1~H-1-4の積層面R-1-1-c及び積層面R-1-2-cを基準にした正の体積(単位電極の電極材料の正の量)と低部L-1-1~L-1-5の積層面R-1-1-c及び積層面R-1-2-cを基準にした負の体積(単位電極の電極材料の負の量)とを足し合わせると略ゼロとなる。すなわち、積層面R-1-1-c及び積層面R-1-2-cを基準に略平坦である単位電極(例えば、単位電極1-1-a及び1-1-b)の体積(単位電極の電極材料の量)に対して単位電極1-1-cの体積(単位電極の電極材料の量)は略同等である。また、単位電極1-1-cは、表面U-1-cを基準にして、高部H-1-1~H-1-4及び低部L-1-1~L-1-5に基づく、凹凸形状が形成されている。
 以上より、不純物が除去されて、高部H-1-1~H-1-4及び低部L-1-1~L-1-5に基づく凹凸形状が形成された単位電極1-1-c(作用電極)の有効な表面積は、積層面R-1-1-c及び積層面R-1-2-cを基準に略平坦であり、不純物が付着した単位電極(例えば、単位電極1-1-a及び1-1-b)の表面積と比較して増加する。この表面積の増加により、電極インピーダンスが低下し、微小電極アレイで電位を計測する場合のバックグラウンドノイズを抑制することができる。単位電極1-1-cを用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 次に、図8を用いて、本技術に係る第3の実施形態の電位測定装置の製造方法について説明をする。図8(a)は、ウエハプロセス終了後、組み立て工程が完了したデバイス(電位測定装置)の単位電極1-3-aの上面図である。単位電極1-3-a(図8(b)~(d)中の単位電極1-3-b~1-3―d)は、作用電極であり、貴金属電極材料から構成されてよい。貴金属電極材料は、例えば、白金、金、イリジウム、ロジウム、パラジウム等が挙げられる。すなわち、単位電極1-3-aは、例えば、白金電極等でよい。
 図8(a)に示されるように、例えば、環境中から付着した不純物3-3-1-a及び3-3-2-aが単位電極1-3-aに付着している。図8(a)に示されるように、絶縁部材2-3-aは、単位電極1-3-aの外周囲に配されている。
 図8(b)は、製造された単位電極(読み出し電極)1-3-bの上面図である。図8(b)に示されるように、電気化学的な酸化・還元サイクルの処理により、不純物3-3-1-a及び3-3-2-aが分解及びイオン化して、不純物3-3-1-a及び3-3-2-aは除去されて、単位電極(読み出し電極)1-3-bは、高部及び低部に基づく、凹凸形状が形成されている。そして、図8(b)に示されるように、絶縁部材2-3-bは、単位電極1-3-bの外周囲に配されている。
 図8(c)は、図8(a)中に示されるP3-P’3線の断面図であり、図8(c)には、ウエハプロセス終了後、組み立て工程が完了したデバイス(電位測定装置)の単位電極1-3-cが示されている。
 図8(c)に示されるように、環境中から付着した不純物3-3-1-c及び3-3-2-cが単位電極1-3-cの表面U-3-cに付着している。図8(c)の左側では、単位電極1-3-c上に、絶縁部材2-3-1-cが積層されて、単位電極1-3-cの被覆領域T-3-1-cが形成される。図7(a)の右側では、単位電極1-3-c上と単位電極1-3-cの右側面に、絶縁部材2-3-4-cが配される。より詳しくは、単位電極1-3-c上に絶縁部材2-3-2-cが積層されて単位電極1-3-cの被覆領域T-3-2-cが形成されて、単位電極1-3-cの右側面には、右隣の単位電極1-3-2-cを分離するように絶縁部材2-3-3-cが覆われている。そして、図8(c)に示されるように、単位電極1-3-cには、単位電極1-3-c上に絶縁部材2-3-1-c及び2-3-2-cが積層されていない開口領域S-3-cが形成されている。
 図8(d)は、図8(b)中に示されるQ3-Q’3線の断面図であり、図8(d)には、製造された単位電極(読み出し電極)1-3-dが示されている。
 図8(d)に示されるように、電気化学的な酸化・還元サイクルの処理により、不純物3-3-1-c及び3-3-2-cが分解及びイオン化して、不純物3-3-1-c及び3-3-2-cは除去され得る。図8(d)の左側では、単位電極1-3-d上に、絶縁部材2-3-1-dが積層されて、単位電極1-3-dが有する被覆領域T-3-1-dが形成される。図8(d)の右側では、単位電極1-3-d上と単位電極1-3-dの右側面に、絶縁部材2-3-4-dが配される。より詳しくは、単位電極1-3-d上に絶縁部材2-3-2-dが積層されて単位電極1-3-dが有する被覆領域T-3-2-dが形成されて、単位電極1-3-dの右側面には、右隣の単位電極1-3-2-dを分離するように絶縁部材2-3-3-dが覆われている。そして、図8(d)に示されるように、単位電極1-3-dには、単位電極1-3-d上に絶縁部材が積層されていない開口領域S-3-dが形成されている。
 そして、電気化学的な酸化・還元サイクルの処理により、単位電極1-3-d(作用電極)の表面が酸化・還元されて、図8(d)に示されるように、単位電極1-3-d(作用電極)の開口領域S-3-dの表面には高部及び低部が形成されて、単位電極1-3-dの表面U-3-dを基準にして、高部及び低部に基づく凹凸形状が形成されている。単位電極1-3-d(単位電極1-3-b)は、単位電極1-3-c(単位電極1-3-a)に対して、不純物が取り除かれて凹凸形状が形成されるので、単位電極1-3-d(単位電極1-3-b)の表面積は、単位電極1-3-c(単位電極1-3-a)の表面積と比べて増加して、電極インピーダンスが低下し、微小電極アレイで電位を計測する場合のバックグラウンドノイズを抑制することができる。単位電極1-3-d(単位電極1-3-b)を用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
<5.第4の実施形態(電位測定装置の製造方法の例2)>
 本技術に係る第4の実施形態(電位測定装置の製造方法の例2)の電位測定装置の製造方法は、読み出し電極に金属部材と絶縁部材とをこの順で積層することと、読み出し電極に、金属部材と絶縁部材とが積層されていない開口領域を形成することと、開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、製造方法である。本技術に係る第4の実施形態の電位測定装置の製造方法を用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 本技術に係る第4の実施形態の電位測定装置の製造方法は、開口領域の表面に付着した物質を除去することを含んでもよい。また、本技術に係る第4の実施形態の電位測定装置の製造方法は、開口領域の表面に、読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含んでもよく、開口領域の表面に、金属部材の絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を形成することを含んでもよい。さらに、本技術に係る第4の実施形態の電位測定装置の製造方法は、開口領域の表面に、凹凸形状を形成することを含んでもよい。
 本技術に係る第4の実施形態の電位測定装置の製造方法を、図9及び図10を用いて説明をする。なお、図9及び図10で説明する内容以外は、公知(例えば、WO2017/061171A1)の方法を用いて、本技術に係る第4の実施形態の電位測定装置を製造することができる。
 図9は、本技術に係る第4の実施形態の電位測定装置の製造方法の一例を示す断面図である。図10は、本技術に係る第4の実施形態の電位測定装置の製造方法の一例を示す上面図及び断面図である。
 まず、図9を用いて、本技術に係る第4の実施形態の電位測定装置の製造方法について説明をする。図9(a)は、ウエハプロセス終了後、組み立て工程が完了したデバイス(電位測定装置)の単位電極1-2-aを示す。単位電極1-2-a(図9(b)~(c)中の単位電極1-2-b~1-2-c)は、作用電極であり、貴金属電極材料から構成されてよい。貴金属電極材料は、例えば、白金、金、イリジウム、ロジウム、パラジウム等が挙げられる。すなわち、単位電極1-2-aは、例えば、白金電極等でよい。単位電極1-2-a上には、金属部材5-2-aが形成されている。金属部材5-2-a(後述する図9(b)~図9(c)に示される金属部材)は、例えば、為害性の少ない金属材料、イオン化傾向が大きい金属材料等から構成されてよく、為害性の少ない金属材料は、例えば、鉄(Fe)、マグネシウム(Mg)等が挙げられる。単位電極1-2-aが白金電極であり、金属部材5-2-aが鉄(Fe)の場合、白金のスパッタ直後、鉄などの生物学的な為害性の低い金属を連続して、例えば膜厚10nmをスパッタし、これをパターニングすることにより、単位電極1-2-aと金属部材5-2-aとの2層構造が形成される。
 図9(a)に示されるように、環境中から付着した不純物3-2-1-a及び3-2-2-aが単位電極1-2-a上に積層された金属部材5-2-aの表面U-2-aに付着している。図9(a)の左側では、単位電極1-2-a上に、金属部材5-2-aと絶縁部材2-2-1-aとがこの順で積層されて、単位電極1-2-aの被覆領域T-2-1-aが形成される。図9(a)の右側では、単位電極1-2-a上に積層された金属部材5-2-aと、単位電極1-2-a及び金属部材5-2-aの右側面とに、絶縁部材2-2-4-aが配される。より詳しくは、単位電極1-2-a上に金属部材5-2-aと絶縁部材2-2-2-aとがこの順で積層されて、単位電極1-2-aの被覆領域T-2-2-aが形成されて、単位電極1-2-a及び金属部材5-2-aの右側面には、右隣の単位電極(不図示)及び金属部材(不図示)を分離するように絶縁部材2-2-3-aが覆われている。そして、図9(a)に示されるように、単位電極1-2-aには、単位電極1-2-a上に絶縁部材が積層されていないで単位電極1-2-a上に金属部材5-2-aが積層された開口領域S-2-aが形成されている。
 図9(b)は、電解質溶液(例えば生理食塩水)中にて、単位電極(作用電極)1-2-bと対電極4-2-bとの間に電位差を印加し、電気化学的な酸化・還元サイクルを施すことを示す図である。例えば、図9(b)に示されるように、対電極4-2-bを基準にして単位電極(作用電極)1-2-bの電位を0[V]と3[V]との間で30回掃引する。対電極4-2-bは微小電極アレイのデバイス上に設けるか、または別途白金電極を用意し、これを電解質溶液に浸漬して用いることができる。図9(b)に示されるように、環境中から付着した不純物3-2-1-b及び3-2-2-bが、単位電極1-2-b上に積層された金属部材5-2-bの表面U-2-bに付着している。図9(b)の左側では、単位電極1-2-b上に、金属部材5-2-bと絶縁部材2-2-1-bとがこの順で積層されて、単位電極1-2-bの被覆領域T-2-1-bが形成される。図9(b)の右側では、単位電極1-2-b上に積層された金属部材5-2-bと、単位電極1-2-b及び金属部材5-2-bの右側面とに、絶縁部材2-2-4-bが配される。より詳しくは、単位電極1-2-b上に金属部材5-2-bと絶縁部材2-2-2-bとがこの順で積層されて、単位電極1-2-bの被覆領域T-2-2-bが形成されて、単位電極1-2-b及び金属部材5-2-bの右側面には、右隣の単位電極(不図示)及び金属部材(不図示)を分離するように絶縁部材2-2-3-bが覆われている。そして、図9(b)に示されるように、単位電極1-2-bには、単位電極1-2-b上に絶縁部材が積層されていないで単位電極1-2-b上に金属部材5-2-bが積層された開口領域S-2-bが形成されている。
 図9(c)は、製造された単位電極(読み出し電極)1-2-cを示す。図9(c)に示されるように、図9(b)で説明をした電気化学的な酸化・還元サイクルの処理により、不純物3-2-1-b及び3-2-2-bが分解及びイオン化し、さらには、金属部材5-2-bの溶解によるリフトオフにより、不純物3-2-1-b及び3-2-2-bは除去され得る。なお、不純物のリフトオフによる除去は、幅広い種類の不純物に対応することができる。
 図2でも説明したことと同様になるが、図9(c)の左側では、単位電極1-2-c上に、金属部材5-2-1-cと絶縁部材2-2-1-cとがこの順で積層されて、単位電極1-2-cの被覆領域T-2-1-cが形成される。図9(c)の右側では、単位電極1-2-c上に積層された金属部材5-2-2-cと、単位電極1-2-c及び金属部材5-2-2-cの右側面とに、絶縁部材2-2-4-cが配される。より詳しくは、単位電極1-2-c上に金属部材5-2-2-cと絶縁部材2-2-2-cとがこの順で積層されて、単位電極1-2-cの被覆領域T-2-2-cが形成されて、単位電極1-2-c及び金属部材5-2-2-cの右側面には、右隣の単位電極(不図示)及び金属部材(不図示)を分離するように絶縁部材2-2-3-cが覆われている。そして、図9(c)に示されるように、単位電極1-2-cには、上記のとおり絶縁部材2-2-1-b及び2-2-2-bで覆われていない金属部材5-2-bが溶解し、単位電極1-2-c上に絶縁部材及び金属部材が積層されていない開口領域S-2-cが形成されている。
 そして、電気化学的な酸化・還元サイクルの処理により、単位電極1-2-c(作用電極)の表面が酸化・還元されて、単位電極1-2-c(作用電極)の開口領域S-2-cの表面には、単位電極1-2-cの金属部材5-2-1-cとの積層面R-2-1-c及び単位電極1-1-cの金属部材5-2-2-cとの積層面R-2-2-cを基準にして、高さが高い高部H-2-1及び高部H-2-2が形成され、積層面R-2-1-c及び積層面R-2-2-cを基準にして、高さが略同等である高部H-2-3及び高部H-2-4が形成される。高部H-2-2は、単位電極1-2-cの絶縁部材2-2-1-cとの積層面V-2-1-c及び単位電極1-1-cの絶縁部材2-2-2-cとの積層面V-2-2-cを基準にしても高い。
 また、単位電極1-2-c(作用電極)の開口領域S-1-cの表面には、単位電極1-2-cの金属部材5-2-1-cとの積層面R-2-1-c及び単位電極1-1-cの金属部材5-2-2-cとの積層面R-2-2-cを基準にして、高さが低い低部L-2-1、低部L-2-2、低部L-2-3、低部L-2-4及び低部L-2-5が形成されている。
 高部H-2-1~H-2-4の積層面R-2-1-c及び積層面R-2-2-cを基準にした正の体積(単位電極の電極材料の正の量)と低部L-2-1~L-2-5の積層面R-2-1-c及び積層面R-2-2-cを基準にした負の体積(単位電極の電極材料の負の量)とを足し合わせると略ゼロとなる。すなわち、積層面R-2-1-c及び積層面R-2-2-cを基準に略平坦である単位電極(例えば、単位電極1-2-a及び1-2-b)の体積(単位電極の電極材料の量)に対して単位電極1-2-cの体積(単位電極の電極材料の量)は略同等である。また、単位電極1-1-cは、表面U-1-cを基準にして、高部H-1-1~H-1-4及び低部L-1-1~L-1-5に基づく、凹凸形状が形成されている。
 以上より、不純物が除去されて、高部H-2-1~H-2-4及び低部L-2-1~L-2-5に基づく凹凸形状が形成された単位電極1-2-c(作用電極)の有効な表面積は、積層面R-2-1-c及び積層面R-2-2-cを基準に略平坦であり、不純物が付着した単位電極(例えば、単位電極1-2-a及び1-2-b)の表面積と比較して増加する。この表面積の増加により、電極インピーダンスが低下し、微小電極アレイで電位を計測する場合のバックグラウンドノイズを抑制することができる。単位電極1-2-cを用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 次に、図10を用いて、本技術に係る第4の実施形態の電位測定装置の製造方法について説明をする。図10(a)は、ウエハプロセス終了後、組み立て工程が完了したデバイス(電位測定装置)の単位電極1-4-aの上面図である。単位電極1-4-a(図10(b)中の単位電極1-4-b)は、作用電極であり、貴金属電極材料から構成されてよい。貴金属電極材料は、例えば、白金、金、イリジウム、ロジウム、パラジウム等が挙げられる。すなわち、単位電極1-4-aは、例えば、白金電極等でよい。図10(a)に示されるように、例えば、環境中から付着した不純物3-4-1-a及び3-4-2-aは、単位電極1-4-aに積層されている金属部材5-4-1-aを介して単位電極1-4-aに付着している。すなわち、直接的には、不純物3-4-1-a及び3-4-2-aは、金属部材5-4-1-aに付着している。図10(a)に示されるように、絶縁部材2-4-aは、単位電極1-4-aの外周囲に配されている。なお、図10(a)は上面図であるので、絶縁部材2-4-sと積層されている、後述する図10(c)に示される金属部材5-4-1-c及び5-4-2-cは図示されていない。
 図10(b)は、製造された単位電極(読み出し電極)1-4-bの上面図である。図10(b)に示されるように、電気化学的な酸化・還元サイクルの処理により、不純物3-4-1-a及び3-4-2-aが分解及びイオン化して、不純物3-4-1-a及び3-4-2-aは除去されて、単位電極(読み出し電極)1-4-bは、高部及び低部に基づく、凹凸形状が形成されている。そして、図10(b)に示されるように、絶縁部材2-4-bは、単位電極1-3-bの外周囲に配されている。なお、図10(b)は上面図であるので、絶縁部材2-4-bと積層されている、後述する図10(d)に示される金属部材5-4-1-d及び5-4-2-dは図示されていない。
 図10(c)は、図10(a)中に示されるP4-P’4線の断面図であり、図10(c)には、ウエハプロセス終了後、組み立て工程が完了したデバイス(電位測定装置)の単位電極1-4-cが示されている。
 図10(c)に示されるように、環境中から付着した不純物3-4-1-c及び3-4-2-cが単位電極1-4-c上に積層された金属部材5-4-1-cの表面U-4-cに付着している。図10(c)の左側では、単位電極1-4-c上に、金属部材5-4-1-cと絶縁部材2-4-1-cとがこの順で積層されて、単位電極1-4-cの被覆領域T-4-1-cが形成される。図10(c)の右側では、単位電極1-4-c上に積層された金属部材5-4-1-cと、単位電極1-4-c及び金属部材5-4-1-cの右側面とに、絶縁部材2-4-4-cが配される。より詳しくは、単位電極1-4-c上に金属部材5-4-1-cと絶縁部材2-4-2-cとがこの順で積層されて、単位電極1-4-cの被覆領域T-4-2-cが形成されて、単位電極1-4-c及び金属部材5-4-1-cの右側面には、右隣の単位電極1-4-2-c及び金属部材5-4-2-cを分離するように絶縁部材2-4-3-cが覆われている。そして、図10(c)に示されるように、単位電極1-4-cには、単位電極1-4-c上に絶縁部材2-4-1-c及び2-4-2-cが積層されていないで単位電極1-4-c上に金属部材5-4-1-cが積層された開口領域S-4-cが形成されている。
 図10(d)は、図10(b)中に示されるQ4-Q’4線の断面図であり、図10(d)には、製造された単位電極(読み出し電極)1-4-dが示されている。
 図10(d)に示されるように、電気化学的な酸化・還元サイクルの処理により、不純物3-4-1-c及び3-4-2-cが分解及びイオン化し、さらには、金属部材5-4-1-c及び5-4-2-cの溶解によるリフトオフにより、不純物3-4-1-c及び3-4-2-cは除去され得る。なお、不純物のリフトオフによる除去は、幅広い種類の不純物に対応することができる。
 図10(d)の左側では、単位電極1-4-d上に、金属部材5-4-1-dと絶縁部材2-4-1-dとがこの順で積層されて、単位電極1-4-dの被覆領域T-4-1-dが形成される。図10(d)の右側では、単位電極1-4-d上に積層された金属部材5-4-2-dと、単位電極1-4-d及び金属部材5-4-2-dの右側面とに、絶縁部材2-4-4-dが配される。より詳しくは、単位電極1-4-d上に金属部材5-4-2-dと絶縁部材2-4-2-dとがこの順で積層されて、単位電極1-4-dの被覆領域T-4-2-dが形成されて、単位電極1-4-d及び金属部材5-4-2-dの右側面には、右隣の単位電極1-4-2-d及び金属部材5-4-3-dを分離するように絶縁部材2-4-3-dが覆われている。そして、図10(d)に示されるように、単位電極1-4-dには、上記のとおり絶縁部材2-4-1-c及び2-4-2-cで覆われていない金属部材5-4-1-cが溶解し、単位電極1-4-d上に絶縁部材及び金属部材が積層されていない開口領域S-4-dが形成されている。
 そして、電気化学的な酸化・還元サイクルの処理により、単位電極1-4-d(作用電極)の表面が酸化・還元されて、単位電極1-4-d(作用電極)の開口領域S-4-dの表面には、高部及び低部が形成されて、表面U-4-dを基準にして、高部及び低部に基づく、凹凸形状が形成されている。単位電極1-4-d(単位電極1-4-b)は、単位電極1-4-c(単位電極1-4-a)に対して、不純物が取り除かれて凹凸形状が形成されるので、単位電極1-4-d(単位電極1-4-b)の表面積は、単位電極1-4-c(単位電極1-4-a)の表面積と比べて増加して、電極インピーダンスが低下し、微小電極アレイで電位を計測する場合のバックグラウンドノイズを抑制することができる。単位電極1-4-d(単位電極1-4-b)を用いて製造された電位測定装置は、高解像度及び低ノイズで、微弱な細胞活動電位を二次元的に計測することができる。
 なお、本技術に係る実施形態は、上述した実施形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
 また、本技術は、以下のような構成も取ることができる。
[1]
 アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、
 絶縁部材と、
 参照電位を検出する参照電極と、
 読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、
 該読み出し電極が、該読み出し電極に該絶縁部材が積層された被覆領域と、該読み出し電極に該絶縁部材が積層されていない開口領域とを有し、
 該読み出し電極が、該開口領域に、該読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置。
[2]
 前記開口領域の表面に、凹凸形状が形成されている、[1]に記載の電位測定装置。
[3]
 アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、
 絶縁部材と、
 金属部材と、
 参照電位を検出する参照電極と、
 読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、
 該読み出し電極が、該読み出し電極に該金属部材と該絶縁部材とがこの順で積層された被覆領域と、該読み出し電極に該金属部材と該絶縁部材とが積層されていない開口領域とを有し、
 該読み出し電極が、該開口領域に、該読み出し電極の該金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置。
[4]
 前記読み出し電極が、前記開口領域に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を有する、[3]に記載の電位測定装置。
[5]
 前記開口領域の表面に、凹凸形状が形成されている、[3]又は[4]に記載の電位測定装置。
[6]
 読み出し電極に絶縁部材を積層することと、
 該読み出し電極に、該絶縁部材が積層されていない開口領域を形成することと、
 該開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、電位測定装置の製造方法。
[7]
 前記開口領域の表面に付着した物質を除去することを含む、[6]に記載の電位測定装置の製造方法。
[8]
 前記開口領域の表面に、前記読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含む、[6]又は[7]に記載の電位測定装置の製造方法。
[9]
 前記開口領域の表面に、凹凸形状を形成することを含む、[6]から[8]のいずれか1つに記載の電位測定装置の製造方法。
[10]
 読み出し電極に金属部材と絶縁部材とをこの順で積層することと、
 該読み出し電極に、該金属部材と該絶縁部材とが積層されていない開口領域を形成することと、該開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、電位測定装置の製造方法。
[11]
 前記開口領域の表面に付着した物質を除去することを含む、[10]に記載の電位測定装置の製造方法。
[12]
 前記開口領域の表面に、前記読み出し電極の該金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含む、[10]又は[11]に記載の電位測定装置の製造方法。
[13]
 前記開口領域の表面に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を形成することを含む、[10]から[12]のいずれか1つに記載の電位測定装置の製造方法。
[14]
 前記開口領域の表面に、凹凸形状を形成することを含む、[10]から[13]のいずれか1つに記載の電位測定装置の製造方法。
[15]
 読み出し電極に対して電気化学的酸化還元サイクルを行うことを含む、電位測定装置の製造方法。
[16]
 前記読み出し電極の表面に付着した物質を除去することを含む、[15]に記載の電位測定装置の製造方法。
[17]
 前記読み出し電極の表面に、凹凸形状を形成することを含む、[15]又は[16]に記載の電位測定装置の製造方法。
 1、21・・・読み出し電極、2・・・絶縁部材、5・・・金属部材、14A・・・増幅部、22・・・参照電極、10・・・電位測定装置、H・・・高部、L・・・低部、T・・・被覆領域、S・・・開口領域。

Claims (14)

  1.  アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、
     絶縁部材と、
     参照電位を検出する参照電極と、
     読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、
     該読み出し電極が、該読み出し電極に該絶縁部材が積層された被覆領域と、該読み出し電極に該絶縁部材が積層されていない開口領域とを有し、
     該読み出し電極が、該開口領域に、該読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置。
  2.  前記開口領域の表面に、凹凸形状が形成されている、請求項1に記載の電位測定装置。
  3.  アレイ状に配置され、細胞の活動によって発生する活動電位発生点の電位を検出する複数の読み出し電極と、
     絶縁部材と、
     金属部材と、
     参照電位を検出する参照電極と、
     読み出し電極による検出電位と参照電極による検出電位との電位差を得る増幅部と、を含み、
     該読み出し電極が、該読み出し電極に該金属部材と該絶縁部材とがこの順で積層された被覆領域と、該読み出し電極に該金属部材と該絶縁部材とが積層されていない開口領域とを有し、
     該読み出し電極が、該開口領域に、該読み出し電極の該金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を有する、電位測定装置。
  4.  前記読み出し電極が、前記開口領域に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を有する、請求項3に記載の電位測定装置。
  5.  前記開口領域の表面に、凹凸形状が形成されている、請求項3に記載の電位測定装置。
  6.  読み出し電極に絶縁部材を積層することと、
     該読み出し電極に、該絶縁部材が積層されていない開口領域を形成することと、
     該開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、電位測定装置の製造方法。
  7.  前記開口領域の表面に付着した物質を除去することを含む、請求項6に記載の電位測定装置の製造方法。
  8.  前記開口領域の表面に、前記読み出し電極の該絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含む、請求項6に記載の電位測定装置の製造方法。
  9.  前記開口領域の表面に、凹凸形状を形成することを含む、請求項6に記載の電位測定装置の製造方法。
  10.  読み出し電極に金属部材と絶縁部材とをこの順で積層することと、
     該読み出し電極に、該金属部材と該絶縁部材とが積層されていない開口領域を形成することと、
     該開口領域を有する該読み出し電極に対して、電気化学的酸化還元サイクルを行うこと、とを含む、電位測定装置の製造方法。
  11.  前記開口領域の表面に付着した物質を除去することを含む、請求項10に記載の電位測定装置の製造方法。
  12.  前記開口領域の表面に、前記読み出し電極の該金属部材との積層面を基準にして、高さが高い少なくとも1つの高部及び/又は高さが低い少なくとも1つの低部を形成することを含む、請求項10に記載の電位測定装置の製造方法。
  13.  前記開口領域の表面に、前記金属部材の前記絶縁部材との積層面を基準にして、高さが高い少なくとも1つの高部を形成することを含む、請求項10に記載の電位測定装置の製造方法。
  14.  前記開口領域の表面に、凹凸形状を形成することを含む、請求項10に記載の電位測定装置の製造方法。
PCT/JP2019/023178 2018-06-19 2019-06-12 電位測定装置及び電位測定装置の製造方法 WO2019244726A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/250,183 US11906563B2 (en) 2018-06-19 2019-06-12 Electric potential measuring device and method for manufacturing electric potential measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-116172 2018-06-19
JP2018116172A JP2019219244A (ja) 2018-06-19 2018-06-19 電位測定装置及び電位測定装置の製造方法

Publications (1)

Publication Number Publication Date
WO2019244726A1 true WO2019244726A1 (ja) 2019-12-26

Family

ID=68983301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023178 WO2019244726A1 (ja) 2018-06-19 2019-06-12 電位測定装置及び電位測定装置の製造方法

Country Status (3)

Country Link
US (1) US11906563B2 (ja)
JP (1) JP2019219244A (ja)
WO (1) WO2019244726A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7312289B2 (ja) * 2021-08-05 2023-07-20 シャープ株式会社 電位測定装置
JP7312288B2 (ja) * 2021-08-05 2023-07-20 シャープ株式会社 電位測定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031617A (ja) * 2000-07-13 2002-01-31 Matsushita Electric Ind Co Ltd 細胞外記録用一体化複合電極
JP2011069727A (ja) * 2009-09-25 2011-04-07 National Institute Of Advanced Industrial Science & Technology 酸化還元タンパク質固定化ナノ構造電極
US20110209899A1 (en) * 2010-02-27 2011-09-01 Hill Rodney L Metal Interconnect Structure with a Side Wall Spacer that Protects an ARC Layer and a Bond Pad From Corrosion and Method of Forming the Metal Interconnect Structure
JP2012047536A (ja) * 2010-08-25 2012-03-08 Nagoya Univ 電流検出装置
JP2012052839A (ja) * 2010-08-31 2012-03-15 Horiba Ltd 粒子物性測定セル及び粒子物性測定装置
JP2014033105A (ja) * 2012-08-03 2014-02-20 Renesas Electronics Corp 半導体装置とその製造方法
WO2017061171A1 (ja) * 2015-10-09 2017-04-13 ソニー株式会社 電位測定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079993B2 (ja) * 1996-03-27 2000-08-21 日本電気株式会社 真空マイクロデバイスおよびその製造方法
US6132683A (en) * 1998-12-23 2000-10-17 Matsushita Electric Industrial Co., Ltd. Cell potential measuring electrode and measuring apparatus using the same
US20040209352A1 (en) * 2002-10-28 2004-10-21 Nobuhiko Ozaki Integrated electrode and cell immobilization device equipped with the integrated electrode
US8940143B2 (en) * 2007-06-29 2015-01-27 Intel Corporation Gel-based bio chip for electrochemical synthesis and electrical detection of polymers
KR101204539B1 (ko) 2010-08-27 2012-11-23 삼성전기주식회사 에너지 저장 장치의 전극 제조용 도핑 장치 및 이를 이용한 전극 제조 방법
US9322062B2 (en) * 2013-10-23 2016-04-26 Genia Technologies, Inc. Process for biosensor well formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002031617A (ja) * 2000-07-13 2002-01-31 Matsushita Electric Ind Co Ltd 細胞外記録用一体化複合電極
JP2011069727A (ja) * 2009-09-25 2011-04-07 National Institute Of Advanced Industrial Science & Technology 酸化還元タンパク質固定化ナノ構造電極
US20110209899A1 (en) * 2010-02-27 2011-09-01 Hill Rodney L Metal Interconnect Structure with a Side Wall Spacer that Protects an ARC Layer and a Bond Pad From Corrosion and Method of Forming the Metal Interconnect Structure
JP2012047536A (ja) * 2010-08-25 2012-03-08 Nagoya Univ 電流検出装置
JP2012052839A (ja) * 2010-08-31 2012-03-15 Horiba Ltd 粒子物性測定セル及び粒子物性測定装置
JP2014033105A (ja) * 2012-08-03 2014-02-20 Renesas Electronics Corp 半導体装置とその製造方法
WO2017061171A1 (ja) * 2015-10-09 2017-04-13 ソニー株式会社 電位測定装置

Also Published As

Publication number Publication date
US11906563B2 (en) 2024-02-20
US20210172990A1 (en) 2021-06-10
JP2019219244A (ja) 2019-12-26

Similar Documents

Publication Publication Date Title
JP4283880B2 (ja) 電気化学測定用電極板、およびこの電極板を有する電気化学測定装置、ならびにこの電極板を用いて目的物質を定量する方法
JP4418030B2 (ja) 電気化学測定装置を用いて目的物質を検出または定量する方法、電気化学測定装置、および電気化学測定用電極板
WO2019244726A1 (ja) 電位測定装置及び電位測定装置の製造方法
Chen et al. A portable micro glucose sensor based on copper-based nanocomposite structure
US20090194415A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
CN105460882B (zh) 一种石墨烯三维微电极阵列芯片、方法及其应用
Chuang et al. Multifunctional microelectrode array (mMEA) chip for neural-electrical and neural-chemical interfaces: characterization of comb interdigitated electrode towards dopamine detection
Mathieson et al. Large-area microelectrode arrays for recording of neural signals
JPWO2017061171A1 (ja) 電位測定装置
Bui et al. Electrochemical sensing of hydroxylamine by gold nanoparticles on single-walled carbon nanotube films
White et al. Parallel 1024-ch cyclic voltammetry on monolithic CMOS electrochemical detector array
CN102288655B (zh) 一种阵列式光寻址电位传感器及其制作方法
JP5176235B2 (ja) 電気化学測定装置
Wang et al. Electrode–electrolyte interface impedance characterization of ultra-miniaturized microelectrode arrays over materials and geometries for sub-cellular and cellular sensing and stimulation
KR20120126977A (ko) 탄소나노튜브 기반 3전극 시스템, 그 제조방법 및 이를 이용한 전기화학 바이오센서
IL302727A (en) Electrochemical analysis of compounds active in redox reactions
US20060252143A1 (en) High resolution semiconductor bio-chip with configuration sensing flexibility
Sun et al. A 64× 64 high-density redox amplified coulostatic discharge-based biosensor array in 180nm CMOS
Lam et al. Development of highly sensitive interdigitated electrodes (IDEs) with APTES/GOx based lab-on-chip biosensor to determine glucose level
Zhao et al. The study on novel microelectrode array chips for the detection of heavy metals in water pollution
Uno electrochemical impedance sensor for non-invasive living cell monitoring toward CMOS cell culture monitoring platform
Ryynänen et al. Microelectrode array designing for dummies: Contribution of the tracks to the impedance behavior and the noise level
Avram et al. Microbiosensor for electrical impedance spectroscopic study of melanoma cells
Kleps et al. Nanoelectrodes on silicon for electrochemical applications
Mujeeb-U-Rahman et al. Micro/Nano Patterned Integrated Electrochemical Sensors for Implantable Applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19823286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19823286

Country of ref document: EP

Kind code of ref document: A1