WO2019244266A1 - ワーク搬送方法および工作機械 - Google Patents

ワーク搬送方法および工作機械 Download PDF

Info

Publication number
WO2019244266A1
WO2019244266A1 PCT/JP2018/023404 JP2018023404W WO2019244266A1 WO 2019244266 A1 WO2019244266 A1 WO 2019244266A1 JP 2018023404 W JP2018023404 W JP 2018023404W WO 2019244266 A1 WO2019244266 A1 WO 2019244266A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
relay
chuck
machine tool
machine
Prior art date
Application number
PCT/JP2018/023404
Other languages
English (en)
French (fr)
Inventor
木村敏隆
長戸一義
後藤繁夫
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2020525139A priority Critical patent/JP6876198B2/ja
Priority to PCT/JP2018/023404 priority patent/WO2019244266A1/ja
Publication of WO2019244266A1 publication Critical patent/WO2019244266A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/24Tool holders for a plurality of cutting tools, e.g. turrets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q7/00Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting
    • B23Q7/04Arrangements for handling work specially combined with or arranged in, or specially adapted for use in connection with, machine tools, e.g. for conveying, loading, positioning, discharging, sorting by means of grippers

Definitions

  • the present invention relates to a work transfer method for transferring a work to a chuck having an extremely small opening margin, and a machine tool for executing the transfer method.
  • a processing machine line in which various working machines such as a plurality of machine tools are arranged is provided with an automatic work transfer machine for sequentially transferring the work to each working machine in accordance with a processing process.
  • the work automatic transfer machine has a configuration in which a transfer robot having a chuck for transferring a work is mounted on a traveling device that can move between work machines. Then, the workpiece is delivered by the chuck of the transfer robot performing clamping and unclamping of the workpiece with respect to the spindle chuck and the like of each working machine.
  • Patent Document 1 below discloses a work transfer method in which an auxiliary chuck is added to a spindle chuck and a transfer robot.
  • a first spindle chuck and a second spindle chuck, and a first auxiliary chuck and a second auxiliary chuck are provided on two lathes, respectively.
  • Control for performing delivery is performed. Specifically, there are two control modes. In the first control, the auxiliary chuck receives the work from the spindle chuck, and the transfer robot passes the work to the empty spindle chuck, and then the transfer robot receives the work from the auxiliary chuck. . In the second control, the transfer robot transfers the work to the auxiliary chuck, and after the transfer robot receives the work from the spindle chuck, the auxiliary chuck transfers the work to the spindle chuck.
  • ⁇ ⁇ ⁇ Work is generally transferred directly from the transfer robot to the spindle chuck, etc. in the processing machine line.
  • an auxiliary chuck is provided to prevent a decrease in efficiency due to the transfer of the work to the temporary placing table, and the work can be transferred to and from the spindle chuck. Delivery is performed to the spindle chuck as in the other conventional examples.
  • direct transfer of a workpiece from the transfer robot to the spindle chuck has made it difficult to achieve positional accuracy of the workpiece when the opening margin of the spindle chuck is very small (for example, 0.1 mm in the radial direction).
  • the work automatic transfer machine is largely moved in the processing machine line by the traveling device, and the transfer operation of the transfer robot is also large. Therefore, it is structurally difficult to obtain the positional accuracy of the work according to the spindle chuck. .
  • the present invention provides a work transfer method for transferring a work between a spindle chuck and a transfer robot via a relay device in a machine tool, and a machine tool for executing the method.
  • the purpose is to do.
  • the work transfer method includes a work transfer step of transferring a work to a corresponding machine tool by a transfer robot, and a relay device provided in the machine tool transfers the work to and from the transfer robot.
  • a machine tool includes a spindle device configured to rotate a workpiece gripped by a spindle chuck, a relay device configured to move a workpiece gripped by a relay chuck in the machine, and transfer the workpiece to and from the spindle chuck; And a relay drive device for moving the device inside the machine.
  • the work transferred to the machine tool by the transfer robot is transferred between the relay device and the transfer robot in the machine tool, and further, the work is transferred to the spindle chuck by the relay device that receives the work. Is carried out, even if the opening of the spindle chuck is minute, it is possible to appropriately deliver the work.
  • FIG. 2 is a side view showing the internal structure of the embodiment of the machine tool.
  • FIG. 2 is a side view schematically showing an automatic work transfer machine, showing a work transfer state (A) and a work transfer state (B).
  • FIG. 3 is a diagram schematically illustrating an embodiment of a work transfer method. It is a figure showing the main composition which the work conveyance method of this embodiment performs. It is the figure which looked at the turret apparatus as a relay apparatus from the lower side. It is the figure which simplified and showed the relationship of each apparatus in a processing machine line.
  • FIG. 1 is a perspective view showing an example of a processing machine line.
  • the processing machine line 1 is a module in which a working machine such as a machine tool is modularized.
  • one processing line for processing a workpiece stepwise by six processing modules 5 is configured.
  • Two of the processing modules 5 are mounted on the base 2, and working machines such as machine tools are respectively covered by the body covers 6.
  • the six processing modules 5 are arranged in the width direction, and are arranged in a state of being extremely close to each other. All the modules 5 are mounted on a movable bed provided with wheels, and can move in the longitudinal direction of the body along rails provided on the base 2. Therefore, while the entire processing machine line 1 can be made compact, work such as maintenance and component replacement can be easily performed on the processing modules 5 that can move in the longitudinal direction of the machine.
  • the processing machine line 1 is provided with an automatic work transfer device that transfers the work to each of the processing modules 5 in order, and a space for transferring the work is configured on the front surface. That is, each of the processing modules 5 is provided with a front cover 7 that can be closed in front of the machine body cover 6 that covers the working machine body. The front cover 7 is provided for each processing module 5, but there is no partition between adjacent processing modules 5, so that the transfer space 30 spreads over the entire line (see FIG. 2), and the workpiece is automatically transferred by a transfer robot. Machine is configured.
  • FIG. 2 is a side view showing the internal structure of the machine tool 10.
  • the machine tool 10 is assembled on the movable bed 11 provided with wheels as described above, and can move along the rail 201 laid on the base 2.
  • the machine tool 10 has a tool table 13 provided with a rotary tool such as an end mill or a drill or a cutting tool such as a cutting tool, and a turret device 15 capable of rotating and indexing the tool table 13 is provided.
  • the machine tool 10 includes a driving device that moves the turret device 15 in the processing axis direction.
  • the machine tool 10 is configured such that the rotation axis (spindle) of the spindle device 12 that rotates the work is horizontal in the longitudinal direction of the machine body.
  • a horizontal axis parallel to the main axis of the main spindle device 12 is defined as a Z axis.
  • the moving axis for moving the tool of the turret device 15 forward and backward with respect to the Z axis, which is the vertical direction of the machine orthogonal to the Z axis, is defined as the X axis.
  • the machine tool 10 is a two-axis lathe that moves the tool of the turret device 15 in the Z-axis direction and the X-axis direction with respect to the work held by the spindle chuck 16.
  • the machine tool 10 of the present embodiment is designed so that the dimension in the machine body width direction (Y-axis direction) is reduced.
  • the spindle device 12 is configured such that a spindle chuck 16 and a driven pulley are integrally formed with a rotatably supported spindle, and the rotation of a spindle motor 21 is transmitted via a timing belt.
  • the turret device 15 is formed integrally with the Z-axis slide 23 of the Z-axis drive device 17, and is mounted on the X-axis slide 26 of the X-axis drive device 18 together with the Z-axis slide 23.
  • a Z-axis guide 24 is fixed to the X-axis slide 26, and the Z-axis slide 23 is slidably attached to the Z-axis guide 24.
  • a screw shaft is mounted via a bearing on a support frame fixed to a Z-axis guide 24, and the screw shaft is screwed into a non-rotating feed nut in the Z-axis slide 23 to form a ball screw mechanism. Is configured.
  • the rotation of the Z-axis servomotor 22 is transmitted to the screw shaft, and the Z-axis slide 23 is caused to move linearly through a feed nut.
  • the X-axis driving device 18 supporting the Z-axis driving device 17 and the turret device 15 is mounted on a column 25 installed beside the main shaft device 12.
  • the X-axis drive device 18 is configured to raise and lower the Z-axis drive device 17 above the main spindle device 12 in order to suppress the machine width of the machine tool 10.
  • the X-axis drive device 18 has an X-axis slide 26 slidably mounted in a vertical direction via a guide formed on a column 25.
  • a screw shaft arranged in the vertical direction is rotatably supported by the column 25, and the screw shaft is screwed to a non-rotating feed nut in the X-axis slide 26 to form a ball screw mechanism.
  • the rotation of the X-axis servomotor 29 is transmitted to the screw shaft, and the X-axis slide 26 is moved up and down via a feed nut.
  • the work held by the spindle chuck 16 rotates, the turret device 15 is moved by the driving of the Z-axis drive device 17 and the X-axis drive device 18, and the tool is moved with respect to the work.
  • Predetermined processing such as cutting is performed by being applied.
  • the machine tool 10 is entirely covered with the machine body cover 6, and a machining chamber 20 for machining a workpiece held by the spindle chuck 16 is formed inside the machine tool 6.
  • a storage tank 27 for collecting chips is provided below the processing chamber 20, and a discharge device (not shown) including a screw conveyor is configured. Therefore, the chips in the storage tank 27 are scraped out to the rear of the machine body by the rotating screw, and the chips can be collected outside.
  • the used coolant is stored in the storage tank 27 and sent to a coolant tank 28 in a state where foreign substances are removed through a filter. It is comprised so that it may be injected.
  • the transfer robot moves in the transfer space 30 covered by the opening / closing cover 7, stops in front of the machine tool 10, and transfers the workpiece through an opening formed in the wall surface of the processing chamber 20. Done.
  • An automatic opening / closing door 31 that moves up and down is provided in the opening. Therefore, when the automatic opening / closing door 31 is closed, processing in the processing chamber 20 becomes possible, and when the automatic opening / closing door 31 is opened, the transfer robot moving in the transfer space 30 enters the processing chamber 20, and FIG. As shown in the figure, the work can be delivered.
  • FIG. 3 is a simplified side view showing an automatic work transfer machine, wherein FIG. 3A shows a work transfer state, and FIG. 3B shows a work transfer state.
  • the automatic workpiece transfer machine 3 has a traveling robot 35 mounted on a traveling platform 34 and a traveling structure 35 for traveling the traveling platform 34 with respect to the base 2.
  • the traveling structure 35 has a horizontally extending rack or rail fixed to the front portion of the base 2, and the traveling platform 34 has a traveling slide that grips the rail and slides or a pinion that meshes with the rack.
  • the motor 36 is integrally formed.
  • a support table 333 is mounted on the traveling table 34 via a swivel table, and the transfer robot 33 is mounted thereon.
  • the transfer robot 33 is an arm robot in which an upper arm member 331 and a forearm member 332 are connected via a joint mechanism, and a robot hand 37 for gripping a work W is provided at a distal end.
  • the robot hand 37 has a pair of front and back chuck mechanisms, is pivotally supported by the forearm member 332, and can adjust the angle of the chuck surface that grips the work W.
  • the transfer robot 33 can move within the transfer space 30 by folding the forearm member 332 on the upper arm member 331 to be in a compact state.
  • the transfer robot 33 transfers the work W at a remote position by the robot hand 37 by the expansion and contraction operation in which the inclination of the upper arm member 331 and the forearm member 332 is changed. It is possible.
  • the transfer robot 33 moves with respect to the six processing modules 5 constituting the processing machine line 1, moves the robot hand 37 by the expansion and contraction operation as described above, and transfers the work W. At this time, depending on the spindle chuck 16, high accuracy is required for the delivery position of the work W. Therefore, it is very difficult to position the work held by the robot hand 37 on the spindle chuck 16. This is because the work automatic transfer machine 3 requires advanced positioning control such as the stop position of the traveling platform 34, the posture of the transfer robot 33 at the time of delivery, and the angle of the robot hand 37.
  • a work transfer method of relaying the work W in the machine tool 10 is adopted.
  • the turret device 15 is configured as a relay device for relaying the work W
  • the Z-axis drive device 17 and the X-axis drive device 18 are configured as relay drive devices.
  • FIG. 4 is a side view schematically showing one embodiment of such a work transfer method
  • FIG. 5 is a diagram showing a main configuration for executing the work transfer method.
  • FIG. 6 is a drawing of the turret device 15 as viewed from below.
  • the turret device 15 of the machine tool 10 is configured such that a tool 42 such as an end mill, a drill, or a cutting tool is detachably attached to the tool base 13. That is, it holds a tool for processing the work W.
  • a relay chuck 41 is attached to the tool base 13 together with a plurality of tools 42.
  • the relay chuck 41 is a collet chuck using a single-acting hydraulic cylinder, and is in a clamped state in which the chuck is closed by hydraulic pressure, and is in an unclamped state in which the chuck is opened by a built-in spring when the hydraulic pressure is released.
  • the relay chuck 41 may have another configuration that opens and closes the chuck by air other than the hydraulic pressure.
  • the spindle chuck 16 is a collet chuck having an opening margin of 0.1 mm, while the relay chuck 41 has an opening margin of 0.7 mm, and the robot hand 37 has a chuck opening margin of 25 mm. It is. That is, the relay chuck 41 has a larger opening at the time of unclamping than the main spindle chuck 16, and accordingly, there is a margin in positioning by the transfer robot 33 at the time of workpiece transfer.
  • the machine tool 10 has a configuration in which the turret device 15 having the relay chuck 41 can move within the processing chamber 20 with high accuracy. That is, the Z-axis driving device 17 and the X-axis driving device 18 for moving the turret device 15 have a configuration capable of positioning with the accuracy. This is because the processing of the workpiece W by the machine tool 10 requires an accuracy in the order of microns, and therefore the turret device 15 on which the tool is mounted needs extremely accurate movement and positioning accuracy. Therefore, the machine tool 10 is configured to execute the work transfer method of the present embodiment by using the turret device 15 as a relay device.
  • FIG. 7 is a diagram showing a simplified relationship between the processing module 5 and the automatic workpiece transfer machine 3 in the processing machine line 1.
  • the processing machine line 1 two processing modules 5 are mounted on one base 2.
  • a hub (HUB) 46 is provided for each of the bases 2, and control devices 45 (control devices 19 in the machine tool 10) of all the processing modules 5 are connected via the hub 46.
  • the automatic workpiece transfer machine 3 constituting the processing machine line 1 also has a transfer control device 47, and the transfer control device 47 is connected to the processing control devices 15 of all the processing modules 5 via the hub 46.
  • a communication system in which each control device is connected via a cable is thus constructed.
  • the control device 19 of the machine tool 10 stores machining programs related to various kinds of machining, types of workpieces, workpiece machining information relating to tools and jigs, and the like.
  • the turret device 15 is used as a relay device to further transport the workpiece W. Stores the relay transfer program to be performed. Therefore, in the machine tool 10, the transfer of the workpiece W as shown in FIG. At this time, the machine tool 10 and the work carrier 3 share the carrier information using the relay device (turret device 15).
  • the turret device 15 moves to the front in the processing chamber 20, and stands by in a state where the relay chuck 41 is positioned at the front side of the machine body by turning index.
  • the robot hand 37 enters the processing chamber 20 by the operation of the transfer robot 33, and the work W is delivered. That is, as shown in FIG. 5, the workpiece W is switched from the hand chuck 43 to the relay chuck 41.
  • the tool table 13 is turned by 180 ° in the turret device 15, and the work W is directed toward the machine body rear side, that is, toward the main spindle chuck 16.
  • the work W moves in the processing chamber 20 in the X-axis direction and the Z-axis direction by the movement of the turret device 15, and is carried to the spindle chuck 16.
  • the rotation of the X-axis servo motor 29 is converted into a linear motion via a ball screw mechanism, and the X-axis slide 26 slides vertically along a guide formed on the column 25.
  • the work W positioned in the height direction is then fitted on the spindle chuck 16 by the Z-axis drive device 17.
  • the movement in the Z-axis direction is based on the fact that the rotation of the Z-axis servo motor 22 is converted into the linear movement of the Z-axis slide 23 via the ball screw mechanism. Then, the positioned work W is transferred between the relay chuck 41 and the spindle chuck 16.
  • the work W received from the work transfer machine 3 is relayed and transferred to the spindle chuck 16, even if the opening margin of the spindle chuck 16 is minute, the transfer of the work W is performed. Can be done properly.
  • the work W can be transported to a chuck with a small margin.
  • the machine tool 10 is a two-axis lathe in which the turret device 15 that turns around the rotation axis in the X-axis direction is movable in the X-axis direction and the Z-axis direction, the machine tool 10 is designed so that the width of the machine body is reduced. It is a thing. Since such a turret device 5 is used as a relay device, and the Z-axis drive device 17 and the X-axis drive device 18 are configured as relay drive devices, the moving distance of the workpiece W in the processing chamber 20 is particularly large in the machine tool 10. It is possible to shorten the transport time. Further, the work transfer machine 3 can reduce the time required for the transfer of the work W in the machine tool 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Feeding Of Workpieces (AREA)
  • Turning (AREA)

Abstract

搬送ロボットによってワークを該当する工作機械へ搬送するワーク搬送工程と、前記工作機械内に設けられた中継装置が前記搬送ロボットとの間でワークの受渡しを行う中継搬送工程と、前記工作機械内に設けられた主軸チャックが前記中継装置との間でワークの受渡しを行うワーク着脱工程とを有するワーク搬送方法であり、その方法を実行する工作機械は、主軸チャックによって把持したワークを回転させる主軸装置と、中継チャックによって把持したワークを機内において移動させ、前記主軸チャックとの受け渡しを行う中継装置と、前記中継装置を機内において移動させる中継用駆動装置とを有する。

Description

ワーク搬送方法および工作機械
 本発明は、開き代が極めて小さいチャックに対してワークの受渡しを行うためのワーク搬送方法および、当該搬送方法を実行するための工作機械に関する。
 複数の工作機械など、各種作業機が並べられた加工機械ラインには、加工工程に従ってワークを各作業機へと順番に搬送するためのワーク自動搬送機が設けられている。ワーク自動搬送機は、作業機の間を移動可能な走行装置に対し、ワークの受渡しを行うチャックを備えた搬送ロボットを搭載させるなどの構成を有している。そして、各作業機の主軸チャックなどに対して、搬送ロボットのチャックがワークのクランプ・アンクランプを行うことにより、そのワークの受渡しが行われる。例えば、下記特許文献1には、主軸チャックと搬送ロボットに補助チャックを加えたワーク搬送方法が開示されている。
 同文献に記載の従来例では、2台の旋盤にそれぞれ第1主軸チャックおよび第2主軸チャックと、第1補助チャックおよび第2補助チャックが設けられ、それぞれのチャックに対して搬送チャックがワークの受渡しを行うようための制御が行われるようになっている。具体的には、2つの制御態様があり、第1制御では、主軸チャックからワークを補助チャックが受取り、空いた主軸チャックへ搬送ロボットがワークを渡した後、搬送ロボットが補助チャックからワークを受け取る。また、第2制御では、搬送ロボットが補助チャックにワークを渡し、搬送ロボットが主軸チャックからワークを受け取った後、補助チャックが主軸チャックへワークを渡す。
特開平11-300568号公報
 加工機械ラインにおけるワークの搬送は、概ね搬送ロボットから主軸チャックなどへ直接ワークの受渡しが行われる。前記従来例では、仮置き台へのワーク搬送による効率低下を防止するため補助チャックが設けられ、主軸チャックとの間でワークの受渡しが可能になっているものの、搬送ロボットによって搬送されたワークは、他の従来例と同様に主軸チャックに受渡しが行われる。しかし、搬送ロボットから主軸チャックへ行われるワークの直接の受渡しは、その主軸チャックの開き代が微小(例えば、径方向に0.1mm)な場合、ワークの位置精度を出すことが困難であった。ワーク自動搬送機は、走行装置によって加工機械ライン内を大きく移動し、搬送ロボットの受渡し動作も大きいものであるため、構造上、主軸チャックに合わせたワークの位置精度を出すことが困難であった。
 そこで、本発明は、かかる課題を解決すべく、工作機械内の中継装置を介して主軸チャックと搬送ロボットとのワークの受渡しを行うワーク搬送方法および、同方法を実行するための工作機械を提供することを目的とする。
 本発明の一態様におけるワーク搬送方法は、搬送ロボットによってワークを該当する工作機械へ搬送するワーク搬送工程と、前記工作機械内に設けられた中継装置が前記搬送ロボットとの間でワークの受渡しを行う中継搬送工程と、前記工作機械内に設けられた主軸チャックが前記中継装置との間でワークの受渡しを行うワーク着脱工程とを有する。
 本発明の他の態様における工作機械は、主軸チャックによって把持したワークを回転させる主軸装置と、中継チャックによって把持したワークを機内において移動させ、前記主軸チャックとの受け渡しを行う中継装置と、前記中継装置を機内において移動させる中継用駆動装置とを有する。
 前記構成によれば、搬送ロボットによって工作機械へ搬送されたワークは、その工作機械内において中継装置と搬送ロボットとの間で受け渡しが行われ、更にワークを受け取った中継装置により主軸チャックへとワークの受渡しが行われるため、主軸チャックの開き代が微小であっても適切なワークの受渡しが可能になる。
加工機械ラインの一例を示した斜視図である。 工作機械の一実施形態についてその内部構造を示した側面図である。 ワーク自動搬送機を簡略化して示し側面図であり、ワークの搬送状態(A)とワークの受渡し状態(B)とが示されている。 ワーク搬送方法の一実施形態を簡略化して示した図である。 本実施形態のワーク搬送方法の実行する主要な構成を示した図である。 中継装置としてのタレット装置を下側から見た図面である。 加工機械ラインにおける各装置の関係を簡略化して示した図である。
 次に、本発明に係るワーク搬送方法および工作機械の一実施形態について、図面を参照しながら以下に説明する。本実施形態では、複数の工作機械などからなる加工機械ラインのワーク搬送方法および、その加工機械ラインを構成する工作機械について説明する。図1は、加工機械ラインの一例を示した斜視図である。この加工機械ライン1は、工作機械などの作業機がモジュール化されたものであり、本実施形態では6台の加工モジュール5によってワークを段階的に加工する一つの加工ラインが構成されている。
 加工モジュール5は、2台ずつがベース2の上に搭載され、工作機械などの作業機がそれぞれ機体カバー6によって覆われている。6台の加工モジュール5は、幅方向に並べられ、互いが極めて近接した状態で配置されている。全てのモジュール5は、車輪を備えた可動ベッド上に組み付けられ、ベース2上に設けられたレールに沿って機体前後方向の移動が可能となっている。そのため、加工機械ライン1の全体をコンパクトすることができる一方で、機体前後方向の移動が可能な加工モジュール5に関し、それぞれメンテナンスや部品交換などの作業が容易となっている。
 加工機械ライン1は、各々の加工モジュール5に対して順番にワークを搬送するワーク自動搬送機が設けられ、ワークを搬送するための空間が前面部に構成されている。すなわち、加工モジュール5には作業機本体を覆う機体カバー6の前に、閉可能な前カバー7が各々に設けられている。その前カバー7は、加工モジュール5毎に設けられているが、隣との間に仕切は無いためライン全体に搬送空間30が広がり(図2参照)、その中に搬送ロボットからなるワーク自動搬送機が構成されている。
 次に、加工機械ライン1を構成する加工モジュール5の一つである工作機械について説明する。図2は、その工作機械10の内部構造を示した側面図である。この工作機械10は、前述したように車輪を備えた可動ベッド11の上に組み付けられ、ベース2の上に敷設されたレール201に沿った移動が可能になっている。工作機械10は、エンドミルやドリルなどの回転工具、或いはバイトなどの切削工具を備える工具台13を有し、その工具台13の旋回割出しが可能なタレット装置15が設けられている。工作機械10には、そのタレット装置15を加工軸方向に移動させる駆動装置が構成されている。
 工作機械10は、ワークを回転させる主軸装置12の回転軸(主軸)が、機体前後方向であって且つ水平になるように構成されている。その主軸装置12の主軸と平行な水平軸をZ軸とする。そして、Z軸に対して直交する機体上下方向であり、タレット装置15の工具をZ軸に対して進退させる移動軸をX軸とする。工作機械10は、主軸チャック16に把持されたワークに対して、タレット装置15の工具をZ軸方向とX軸方向とに移動させる2軸旋盤である。本実施形態の工作機械10では、機体幅方向(Y軸方向)の寸法が小さくなるように設計されている。
 主軸装置12は、回転自在に支持された主軸に対して主軸チャック16と従動プーリとが一体に形成され、スピンドルモータ21の回転がタイミングベルトを介して伝達されるよう構成されている。タレット装置15は、Z軸駆動装置17のZ軸スライド23に対して一体的に構成され、そのZ軸スライド23とともにX軸駆動装置18のX軸スライド26に搭載されている。X軸スライド26にはZ軸ガイド24が固定され、Z軸スライド23がそのZ軸ガイド24に対して摺動自在に取り付けられている。
 Z軸駆動装置17は、Z軸ガイド24に固定された支持フレームにネジ軸が軸受を介して取り付けられ、そのネジ軸がZ軸スライド23内の非回転の送りナットに螺合してボールネジ機構が構成されている。ネジ軸にはZ軸用サーボモータ22の回転が伝達され、送りナットを介してZ軸スライド23の直進運動が行われるようになっている。そのZ軸駆動装置17やタレット装置15を支持するX軸駆動装置18は、主軸装置12の横に設置されたコラム25に組み付けられている。特に、工作機械10の機体幅寸法を抑えるため、X軸駆動装置18は、主軸装置12の上方でZ軸駆動装置17を昇降させるよう構成されている。
 X軸駆動装置18は、コラム25に形成されたガイドを介して、X軸スライド26が鉛直方向に摺動自在に取り付けられている。コラム25には鉛直方向に配置されたネジ軸が回転可能に支持され、そのネジ軸がX軸スライド26内の非回転の送りナットに螺合してボールネジ機構が構成されている。ネジ軸にはX軸用サーボモータ29の回転が伝達され、送りナットを介してX軸スライド26の昇降が行われるようになっている。よって、本実施形態の工作機械10は、主軸チャック16に保持されたワークが回転し、Z軸駆動装置17およびX軸駆動装置18の駆動によりタレット装置15が移動し、ワークに対して工具が当てられて切削など所定の加工が行われるようになっている。
 工作機械10は、全体が機体カバー6によって覆われ、その内部には、主軸チャック16に把持されたワークに対して加工を行う加工室20が構成されている。加工室20の下には、切屑を回収する貯留槽27が設けられ、スクリューコンベアからなる不図示の排出装置が構成されている。そのため、回転するスクリューによって貯留槽27内の切屑が機体後方へと掻き出され、外部における切屑の回収が可能になっている。また、貯留槽27には使用済のクーラントが溜められ、フィルタを通して異物が除かれた状態でクーラントタンク28へと送られ、再生されたクーラントがポンプ29によって加工室20内の洗浄や加工点などへ噴射されるよう構成されている。
 加工機械ライン1では、開閉カバー7によって覆われた搬送空間30内を搬送ロボットが移動し、工作機械10の前で停止して、加工室20の壁面に形成された開口部を通してワークの受渡しが行われる。その開口部には上下に移動する自動開閉扉31が設けられている。そのため、自動開閉扉31が閉じることにより加工室20内での加工が可能になり、自動開閉扉31が開くことにより、搬送空間30を移動する搬送ロボットが加工室20内に侵入し、図3に示すようにワークの受渡しが可能になっている。
 図3は、ワーク自動搬送機を簡略化して示し側面図であり、図(A)にはワークの搬送状態が示され、図(B)にはワークの受渡し状態が示されている。このワーク自動搬送機3は、搬送ロボット33が走行台34に搭載され、ベース2に対して走行台34を走行させるための走行構造35が設けられている。走行構造35は、ベース2の前面部に水平に延びたラックやレールが固定され、走行台34には、そのレールを掴んで摺動する走行スライドや、ラックに噛合するピニオンを備えた走行用モータ36が一体になって構成されている。そして、走行台34には旋回テーブルを介して取り付けられた支持台333が取り付けられ、その上に搬送ロボット33が組み付けられている。
 搬送ロボット33は、上腕部材331と前腕部材332が関節機構を介して連結されたアームロボットであり、先端部にはワークWを把持するロボットハンド37が設けられている。ロボットハンド37は、表裏一対のチャック機構を備え、前腕部材332に対して軸支され、ワークWを把持するチャック面の角度調整が可能になっている。こうした搬送ロボット33は、図3(A)に示すように、上腕部材331に前腕部材332が折り畳まれてコンパクトな状態になることで搬送空間30内の移動が可能になっている。一方で、搬送ロボット33は、図3(B)に示すように、上腕部材331と前腕部材332との傾きを変化させた伸縮作動によって、ロボットハンド37による離れた位置でのワークWの受渡しが可能になっている。
 搬送ロボット33は、加工機械ライン1を構成する6台の加工モジュール5に対して移動し、前述したように伸縮作動によってロボットハンド37を移動させ、ワークWの受渡しが行われる。その際、主軸チャック16によっては、ワークWの受渡し位置に高い精度が要求される。そのため、ロボットハンド37で保持したワークを主軸チャック16へ位置合わせすることが非常に困難である。ワーク自動搬送機3では、走行台34の停止位置、搬送ロボット33の受渡し時の姿勢、そしてロボットハンド37の角度など、高度な位置決め制御が必要となるからである。
 そこで、本実施形態では、主軸チャック16と搬送ロボット33との間のワークWの受渡しを可能にするため、工作機械10内でワークWの中継を行うワーク搬送方法が採用されている。そして、工作機械10の場合には、タレット装置15がワークWを中継する中継装置として構成され、Z軸駆動装置17およびX軸駆動装置18が中継用駆動装置として構成されている。図4は、そうしたワーク搬送方法の一実施形態を簡略化して示し側面図であり、図5は、ワーク搬送方法を実行する主要な構成を示した図である。また、図6は、タレット装置15を下側から見た図面である。
 工作機械10のタレット装置15は、工具台13にエンドミルやドリル、或いはバイトなどの工具42が着脱可能に取り付けられたものである。すなわち、ワークWを加工するための工具を保持するものである。本実施形態では、こうしたタレット装置15を中継装置として機能させるため、工具台13には複数の工具42とともに中継チャック41が組み付けられている。この中継チャック41は、単動の油圧シリンダを使用したコレットチャックであり、油圧によってチャックが閉じたクランプ状態となり、油圧解放時には内蔵されたスプリングによってチャックが開いたアンクランプ状態になるものである。中継チャック41は、油圧以外にもエアーによってチャックの開閉を行う別の構成のものであってもよい。
 また、本実施形態では、主軸チャック16は開き代が0.1mmのコレットチャックであるのに対し、中継チャック41の開き代は、0.7mmであり、ロボットハンド37のチャックの開き代は25mmである。つまり、中継チャック41は、主軸チャック16に比べてアンクランプ時の開きが大きく、それだけ搬送ロボット33によるワーク受渡し時の位置決めに余裕が生じることとなる。
 そして、工作機械10は、中継チャック41を搭載したタレット装置15が加工室20内を精度よく移動することが可能な構成を有している。つまり、タレット装置15を移動させるZ軸駆動装置17やX軸駆動装置18は当該精度の位置決めが可能な構成を有している。工作機械10によるワークWの加工は、ミクロン単位の精度が要求されるため、工具を搭載したタレット装置15には極めて正確な移動および位置決め精度が必要だからである。そこで、工作機械10は、タレット装置15を中継装置とすることで、本実施形態のワーク搬送方法を実行するよう構成されている。
 次に、図7は、加工機械ライン1における加工モジュール5やワーク自動搬送機3の関係を簡略化して示した図である。加工機械ライン1では、1つのベース2に対して2台の加工モジュール5が搭載されている。そのベース2ごとにハブ(HUB)46が設けられ、ハブ46介して全ての加工モジュール5の制御装置45(工作機械10では制御装置19)が接続されている。更に、加工機械ライン1を構成するワーク自動搬送機3も搬送制御装置47を有し、その搬送制御装置47がハブ46を介して全ての加工モジュール5の加工制御装置15に接続されている。加工機械ライン1には、こうして各制御装置がケーブルを介して接続された通信システムが構築されている。
 工作機械10の制御装置19は、各種加工に関する加工プログラムやワークの種類、工具や治具に関するワーク加工情報などが格納され、本実施形態では更に、タレット装置15を中継装置としてワークWの搬送を行う中継搬送プログラムが格納されている。よって、工作機械10では、この中継搬送プログラムに従い、搬送ロボット33との間で図4に示すようなワークWの受渡しが行われる。このとき工作機械10およびワーク搬送機3は、中継装置(タレット装置15)を使用した搬送情報が共有されている。
 工作機械10では、タレット装置15が加工室20内の前部に移動し、旋回割出しによって中継チャック41が機体前方側に位置した状態で待機している。そして、開閉扉31が開くことにより、搬送ロボット33の動作によってロボットハンド37が加工室20内に侵入し、ワークWの受渡しが行われる。すなわち、図5に示すように、ハンドチャック43から中継チャック41へとワークWの掴み替えが行われる。中継チャック41によりワークWがクランプされると、タレット装置15では工具台13が180°旋回し、ワークWが機体後方側つまり主軸チャック16側に向けられる。
 ワークWは、タレット装置15の移動により加工室20内をX軸方向およびZ軸方向に移動し、主軸チャック16へと運ばれる。X軸駆動装置18では、X軸用サーボモータ29の回転がボールネジ機構を介して直進運動に変換され、コラム25に形成されたガイドに沿ってX軸スライド26が上下方向に摺動する。高さ方向に位置決めされたワークWは、次にZ軸駆動装置17によって主軸チャック16へと嵌め合わされる。そのZ軸方向の移動は、Z軸用サーボモータ22の回転がボールネジ機構を介してZ軸スライド23の直進運動に変換されることによる。そして、位置決めされたワークWは、中継チャック41と主軸チャック16との間で受渡しが行われる。
 よって、本実施形態によれば、ワーク搬送機3から受け取ったワークWを中継して主軸チャック16へと搬送させるようにしたため、主軸チャック16の開き代が微小であってもワークWの受渡しを適切に行うことができる。そして、本実施形態では、主軸チャック16に合わせてワーク搬送機3の精度を高める必要がなくなり、また中継装置を新たに設けることなくタレット装置15を利用しているため、コストをかけることなく開き代が微小なチャックへのワークWの搬送が可能になっている。
 工作機械10は、X軸方向の回転軸を中心に旋回するタレット装置15をX軸方向とZ軸方向の移動可能にした2軸旋盤であるため、機体の幅寸法が小さくなるように設計されたものである。そうしたタレット装置5を中継装置とし、またZ軸駆動装置17およびX軸駆動装置18を中継駆動装置として構成されているため、特にこの工作機械10では加工室20内でのワークWの移動距離が短く、搬送時間も短くすることができる。更に、ワーク搬送機3は、工作機械10においてワークWの受渡しに要する時間を短縮することができる。
 以上、本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
 例えば、前記実施形態では、工具台13に1台の中継チャック41を搭載した例を示したが、180°の対称的な位置2台の中継チャック41を設けるようにしてもよい。
 また、例えば、前記実施形態では2軸旋盤の稿あく機械10を例に挙げて説明したが、3軸加工の旋盤など他の構成の工作機械であってもよい。
1…加工機械ライン 2…ベース 3…ワーク自動搬送機 5…加工モジュール 10…工作機械 12…主軸装置 13…工具台 15…タレット装置 16…主軸チャック 17…Z軸駆動装置 18…X軸駆動装置 20…加工室 30…搬送空間 33…搬送ロボット 37…ロボットハンド 41…中継チャック
 
 

Claims (5)

  1.  搬送ロボットによってワークを該当する工作機械へ搬送するワーク搬送工程と、
     前記工作機械内に設けられた中継装置が前記搬送ロボットとの間でワークの受渡しを行う中継搬送工程と、
     前記工作機械内に設けられた主軸チャックが前記中継装置との間でワークの受渡しを行うワーク着脱工程と、
    を有するワーク搬送方法。
  2.  前記中継装置は、前記工作機械を構成するタレット装置がチャックを備えたものであり、前記タレット装置の旋回割出しおよび、加工軸方向の移動により、前記中継搬送工程と前記ワーク着脱工程とを実行する請求項1に記載のワーク搬送方法。
  3.  主軸チャックによって把持したワークを回転させる主軸装置と、
     中継チャックによって把持したワークを機内において移動させ、前記主軸チャックとの受け渡しを行う中継装置と、
     前記中継装置を機内において移動させる中継用駆動装置と、
    を有する工作機械。
  4.  前記中継装置は、前記中継チャックを備え、機体上下方向の回転軸を中心に旋回割出しするタレット装置であり、
     前記中継用駆動装置は、前記主軸装置の回転軸に対して平行な機体前後方向および、その回転軸に直交する機体上下方向に前記タレット装置を移動させるタレット用駆動装置である請求項3に記載の工作機械。
  5.  前記中継チャックはコレットチャックであり、その開き代が前記主軸チャックの開き代より大きい請求項3又は請求項4に記載の工作機械。
     
PCT/JP2018/023404 2018-06-20 2018-06-20 ワーク搬送方法および工作機械 WO2019244266A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020525139A JP6876198B2 (ja) 2018-06-20 2018-06-20 工作機械
PCT/JP2018/023404 WO2019244266A1 (ja) 2018-06-20 2018-06-20 ワーク搬送方法および工作機械

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/023404 WO2019244266A1 (ja) 2018-06-20 2018-06-20 ワーク搬送方法および工作機械

Publications (1)

Publication Number Publication Date
WO2019244266A1 true WO2019244266A1 (ja) 2019-12-26

Family

ID=68983535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023404 WO2019244266A1 (ja) 2018-06-20 2018-06-20 ワーク搬送方法および工作機械

Country Status (2)

Country Link
JP (1) JP6876198B2 (ja)
WO (1) WO2019244266A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130873U (ja) * 1986-02-07 1987-08-18
JPH01234134A (ja) * 1988-03-11 1989-09-19 Hitachi Seiko Ltd 超精密正面旋盤
JPH0362703U (ja) * 1989-10-24 1991-06-19
WO2016113894A1 (ja) * 2015-01-16 2016-07-21 富士機械製造株式会社 工作機械

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130873U (ja) * 1986-02-07 1987-08-18
JPH01234134A (ja) * 1988-03-11 1989-09-19 Hitachi Seiko Ltd 超精密正面旋盤
JPH0362703U (ja) * 1989-10-24 1991-06-19
WO2016113894A1 (ja) * 2015-01-16 2016-07-21 富士機械製造株式会社 工作機械

Also Published As

Publication number Publication date
JPWO2019244266A1 (ja) 2021-03-11
JP6876198B2 (ja) 2021-05-26

Similar Documents

Publication Publication Date Title
US9095954B2 (en) Apparatus for machining an elongated workpiece
RU2743712C2 (ru) Станок для механической обработки заготовок
KR20160117617A (ko) 가공 동안 단일-스테이션 공작 기계를 로딩 및 언로딩 하기 위한 로봇 셀
JP2004160643A (ja) 工具タレットおよび工作機械
US6920679B2 (en) Machine tool
EP2163334B1 (en) Machine comprising a drum having workpiece supporting spindles movable in the direction of the longitudinal axis of the drum
JP2008183705A (ja) ワークピース処理装置
JPWO2015145576A1 (ja) 多関節ロボットアーム
JP4668026B2 (ja) 旋盤
JP2014065133A (ja) 平行2軸複合工作機械
US7008152B2 (en) Machine tool for processing work pieces on at least three axes
JP6517782B2 (ja) ワーク自動搬送機
CN111546083B (zh) 一种工作台z轴运动的卧式五轴翻板加工中心
US20060075625A1 (en) Multiple side processing machine and positioning device for a workpiece
JP6613080B2 (ja) 工作機械の搬送装置
JP6735354B2 (ja) 工作機械および加工機械ライン
WO2019244266A1 (ja) ワーク搬送方法および工作機械
CN113910003A (zh) 双主轴双y轴复合数控机床
US20190247997A1 (en) Automatic workpiece transfer machine
CN210498630U (zh) 一种锚具锁头器双侧同步倒角装置
JP4350820B2 (ja) 搬送装置
JP6656262B2 (ja) 機械加工システム
JP6637989B2 (ja) 機械加工システム
JP7546068B2 (ja) 複合加工機
JPH10138063A (ja) ワーク加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020525139

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923674

Country of ref document: EP

Kind code of ref document: A1