WO2019243720A1 - Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium - Google Patents

Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium Download PDF

Info

Publication number
WO2019243720A1
WO2019243720A1 PCT/FR2019/051462 FR2019051462W WO2019243720A1 WO 2019243720 A1 WO2019243720 A1 WO 2019243720A1 FR 2019051462 W FR2019051462 W FR 2019051462W WO 2019243720 A1 WO2019243720 A1 WO 2019243720A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
coating
content
amorphous carbon
layer
Prior art date
Application number
PCT/FR2019/051462
Other languages
English (en)
Inventor
Laurent BOMBILLON
Fabrice PROST
Original Assignee
H.E.F.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H.E.F. filed Critical H.E.F.
Priority to BR112020024244-6A priority Critical patent/BR112020024244A2/pt
Priority to US17/252,615 priority patent/US12012657B2/en
Priority to EP19742446.8A priority patent/EP3824114A1/fr
Priority to JP2020560146A priority patent/JP2021533255A/ja
Priority to MX2020014256A priority patent/MX2020014256A/es
Priority to CA3101721A priority patent/CA3101721A1/fr
Priority to KR1020217001357A priority patent/KR20210019553A/ko
Priority to CN201980041073.6A priority patent/CN112400038B/zh
Publication of WO2019243720A1 publication Critical patent/WO2019243720A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/048Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with layers graded in composition or physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials

Definitions

  • the present invention relates to a coated part comprising a metal substrate coated with a sublayer and a coating of hydrogenated amorphous carbon, which is deposited on the sublayer comprising chromium, carbon and silicon.
  • the parts, comprising a coating, considered here, are for example friction members for the automotive, aeronautical or space sectors.
  • distribution parts such as latches, pushers, or even cams to reduce the friction between these parts.
  • They can also be piston pins, to reduce wear and protect the surfaces from seizing.
  • a coating as described here can also be applied to components such as segments, piston skirts, liners.
  • amorphous carbon coatings hydrogenated or not, have multiple applications that are not limited to components for the automotive, aeronautical or space industries.
  • Guide or sliding elements such as for example on molds for the plastics industry, can also be coated with such a coating to minimize wear and friction without lubrication.
  • Amorphous carbon coatings are often called “DLC” (for "Diamond Like Carbon”). They designate carbonaceous materials generally obtained in the form of a thin layer and by vacuum deposition technologies.
  • a-C: H coatings for “hydrogenated amorphous carbon”. These coatings are generally produced by chemical vapor deposition assisted by plasma with a gaseous carbon precursor (which is for example acetylene (C2H2)).
  • a gaseous carbon precursor which is for example acetylene (C2H2)
  • DLC coatings which have a strong industrial interest are:
  • the coatings "a-C” (for “amorphous carbon"), which are generally produced by magnetron cathode sputtering of a graphite target.
  • the “ta-C” coatings (for “tetrahedral amorphous carbon”), which are generally produced by arc evaporation of a graphite target.
  • the document FR 2 995 493 describes a more efficient device allowing, inter alia, a better adapted transfer from the plasma to the parts, so that the DLC deposition rate is doubled.
  • the deposition device comprises a plasma source, the use of which is very well suited for producing DLC coatings such as those described in the document FR 2 975 404 (and also certain variants of this coating including in addition beforehand a layer of Cr chromium, or a layer of chromium and a layer of chromium nitride CrN).
  • the coatings comprising a layer of Cr followed by a layer of CrN then a transition layer of hydrogenated DLC doped with silicon (aC: H: Si) and finally a coating of hydrogenated DLC (aC: H) as described in the document FR 3 011 305, fail to be deposited with correct characteristics using the device described in the document FR 2 995 493.
  • a coating produced with such a source often exhibits poor quality behavior when the coating is indented by the Rockwell method under 150 kg (kilograms) to assess adhesion according to standard VDI3198.
  • the indentation is noted HF3 according to this standard VDI3198 (which is considered rather bad; a good result is noted HF1 and the worst is noted HF6).
  • VDI3198 which is considered rather bad; a good result is noted HF1 and the worst is noted HF6.
  • the observation of the indentation a few hours after it was performed shows a spontaneous deterioration in the notation of the indentation towards HF6.
  • the process parameters have been adjusted, in particular to reduce the stresses on the transition layer of hydrogenated DLC doped with silicon (aC: H: Si), in particular by lowering the ion flux that the plasma source sends to the rooms via the reduction of the power applied to the plasma source and by lowering the energy of the ions via the bias voltage.
  • the improvements noted are not sufficient to obtain a coating which the Rockwell indentation is satisfactory.
  • the plasma source is so efficient that it is not possible to soften the deposition conditions sufficiently for the "a-C: H: Si" layer.
  • an object of the present invention is to at least partially resolve the aforementioned drawbacks.
  • an object of the invention is to provide a part, comprising a hydrogenated DLC coating, in particular of the aC: H type, which makes it possible to accommodate the characteristics of the plasma of the source described in the document FR 2 995 493. .
  • the present invention also aims to provide a part, with a hydrogenated DLC coating, in particular of the a-C: H type, which makes it possible to obtain good behavior in the adhesion test by Rockwell C indentation of the DLC coating.
  • a part comprising a metallic substrate, a coating of hydrogenated amorphous carbon, of the aC: H type, coating the substrate, and an undercoat based on chromium (Cr), carbon. (C) and silicon (Si) disposed between the metal substrate and the coating of amorphous carbon and on which the coating of amorphous carbon is applied, characterized in that the undercoat has the following atomic proportions at its interface with the coating of amorphous carbon (i.e. on the surface of the undercoat):
  • Such an undercoat composition has contents which are, for example, measurable by EDX analysis (Energy Dispersive X-Ray Spectrometry, or analysis by energy dispersion by X-rays) in a scanning electron microscope (SEM), or by GDOES ( Glow Discharge Optical Emission Spectroscopy).
  • EDX analysis Energy Dispersive X-Ray Spectrometry, or analysis by energy dispersion by X-rays
  • SEM scanning electron microscope
  • GDOES Glow Discharge Optical Emission Spectroscopy
  • an underlay has also been found to be particularly advantageous for a non-hydrogenated DLC coating, in particular of the ta-C or even aC type.
  • Such an underlayer is then presented as a composition gradient layer based mainly on chromium (Cr), silicon (Si) and carbon (C).
  • the sublayer is gradually enriched (starting from the substrate and in the direction of the DLC coating) with silicon (Si) and carbon (C), until a composition allowing the adhesion of the coating, as referred to above.
  • the ratio between the silicon content and the chromium (Si / Cr) content of the sublayer in the vicinity of the interface with the DLC is between 0.38 and 0.60, or even between 0 , 40 and 0.60.
  • the ratio between the carbon content and the silicon (C / Si) content of the sublayer in the vicinity of the interface with the DLC is between 2.8 and 3.2, or even between 2 , 9 and 3.1.
  • the sublayer may optionally contain nitrogen (N). This is particularly advantageous if the part also comprises a layer of chromium nitride, as described below.
  • the sub-layer further comprises nitrogen atoms (N), a ratio between a nitrogen content and the chromium content (N / Cr) being less than 0.70 in the vicinity of the interface with the DLC, that is to say at the interface between the sublayer and the coating of amorphous carbon.
  • the ratio between the nitrogen content and the chromium content is between 0.26 and 0.70, or even between 0.29 and 0.67, even between 0.35 and 0 , 65, at the interface between the sublayer and the coating of amorphous carbon.
  • the ratio between the silicon content and the chromium (Si / Cr) content is between 0.40 and 0.55, or even between 0.45 and 0.55, at the interface between the sub -layer and coating of amorphous carbon.
  • the sub-layer, with or without nitrogen is a few tenths of a micrometer thick; preferably a thickness equal to or less than about 1.1 m, for example between about 0.2 mhh and 1.1 m, preferably between about 0.3 pm and 0.6 pm.
  • the coating of amorphous carbon for example, has a thickness equal to or greater than approximately 0.3 ⁇ m, or even approximately 0.5 ⁇ m, or even approximately 1 ⁇ m, or even 1.5 ⁇ m.
  • the coating of amorphous carbon for example, has a thickness equal to or less than about 10 ⁇ m, or even 8 ⁇ m, or even 3.5 ⁇ m.
  • the coating of amorphous carbon has, for example, a thickness of between approximately 1.5 ⁇ m and approximately 3.5 ⁇ m, but can reach 8 ⁇ m when such a coating is applied to a segment for example.
  • the metallic substrate is for example made of steel or other metallic alloys.
  • the part also comprises a chromium-based layer, deposited on the substrate and on which the sub-layer is formed.
  • the chromium-based layer is for example a chromium (Cr) layer and / or a chromium nitride layer, for example CrN or Cr2N, or any intermediate compound.
  • the part comprises a layer of chromium (Cr), or a layer of chromium (Cr) followed by a layer of chromium nitride (for example CrN or Cr2N, or any intermediate compound).
  • Cr chromium
  • Cr2N chromium nitride
  • the chromium-based layer has a thickness of a few tenths of a micrometer, preferably a thickness equal to or less than about 1 pm, or even 0.6 pm, for example between about 0.1 pm and 0.5 pm , or even between about 0.3 pm and 0.5 pm.
  • the sub-layer could have a lesser thickness than the sub-layers of the prior art, thus making it possible to increase the thickness of the DLC for the same total thickness of the coatings (i.e. considering the thicknesses of the DLC, the undercoat and a chromium-based layer if applicable).
  • a ratio between the thickness of the amorphous carbon coating and the thickness of the undercoat, or even taking into account the thickness of the chromium-based layer if appropriate can be increased.
  • Such a ratio is, for example, between approximately 2.2 and approximately 12, or even between approximately 2.25 and approximately 11.5, or even between approximately 2.25 and 7.5, or even between approximately 2.27 and approximately 7.25 .
  • a ratio between the thickness of the amorphous carbon coating and the total thickness of the coatings i.e. here the sum of the thicknesses of the amorphous carbon coating, the undercoat and the layer to be chromium base if applicable
  • ep. DLC / (ep.DLC + ep. Sublayer + ep. Chromium-based layer)] is between approximately 0.65 and approximately 0.9, or even between approximately 0.69 and approximately 0.88.
  • the total thickness of the coatings (ie the sum of the thicknesses of the amorphous carbon coating, of the sublayer and of the chromium-based layer if applicable) is between approximately 1.5 ⁇ m and approximately 4, 9 pm, preferably between about 1.8 pm and about 4.6 pm.
  • the atomic proportions, measured by EDX, are those of the sublayer in the vicinity of the interface with the coating (keeping in mind that the sublayer has a composition gradient, the composition targeted is that towards which it tends at the interface with the DLC coating).
  • the presence of nitrogen at the surface is not critical to the adhesion of the DLC. In fact, with similar nitrogen (N / Cr) proportions (examples 9, 12 and 13), the adhesion may or may not be considered good.
  • N / Cr nitrogen
  • a relatively strong presence of nitrogen can affect adhesion, as in example 11.
  • the absence of nitrogen can lead to good adhesions (examples 4 to 6, 14 and 15) or not (examples 1 to 3 , 7, 8,).
  • the proportion of chromium relative to silicon has proved to be a more determining factor.
  • a relatively high chromium content compared to silicon does not seem to be suitable for adhesion (eg examples 1 to 3).
  • a relatively low chromium content relative to the silicon also does not seem to be suitable for the adhesion of the DLC (eg examples 7 and 8).
  • the vacuum deposition equipment mainly comprises an enclosure, a pumping system, a heating system, configured to pump, heat the parts (substrate) and the interior of the enclosure, in order to accelerate the desorption of gases and quickly obtain a vacuum, considered of quality, in the enclosure.
  • the depositing equipment also comprises a suitable substrate holder, from the point of view of geometry, electrical polarization and kinematics, for the parts, or for the portion of the parts to be coated.
  • the vacuum deposition equipment also includes an ion pickling system configured to bombard the parts (substrates) to be coated with argon (Ar) ions, in order to remove a passivation layer generally present on the metal substrates to be coated.
  • an ion pickling system configured to bombard the parts (substrates) to be coated with argon (Ar) ions, in order to remove a passivation layer generally present on the metal substrates to be coated.
  • the vacuum deposition equipment also includes a magnetron cathode, equipped with a chromium target, to generate the chromium-based layers.
  • the ion stripping system is configured to operate simultaneously with the magnetron cathode. This takes advantage of the end of ion stripping to pre-spray the magnetron cathode equipped with a chromium target.
  • the plasma source such as that described in the document FR 2 995 493 can be used to carry out an effective ionic pickling of the parts to be coated and to coat them with a DLC coating of the aC: H type.
  • the deposition step of the sublayer is for example configured to produce a sublayer having a composition as described above.
  • the step of depositing the underlay is for example configured to further produce an underlay having a thickness as described above.
  • the method can optionally include a step of depositing metallic chromium, for example a step of spraying chromium.
  • this step of depositing metallic chromium comprises a step of introducing nitrogen simultaneously with the step of spraying chromium so as to obtain a layer of chromium nitride, for example CrN or Cr2N or any intermediate compound.
  • Such a chromium-based layer is deposited with a thickness of a few tenths of a micrometer, as described above.
  • TMS tetramethylsilane
  • Si (CH3) 4 typically tetramethylsilane
  • Si (CH3) 4 typically tetramethylsilane
  • Si (CH3) 4 typically tetramethylsilane
  • traces of oxygen typically traces of oxygen
  • TMS is by far preferred for its relatively high chemical stability and high volatility, allowing it to be easily implemented using a mass flow meter.
  • the organosilicon gas is introduced at an increasing flow rate up to a flow rate value at which a silicon content of the sublayer is at least equal to about 0.35 times its chromium content and at most about 0.60 times the chromium content in the vicinity of the interface.
  • the ratio of the carbon content reduced to the silicon content is in parallel between 2.5 and 3.5 in the vicinity of the interface.
  • the amount of nitrogen injected can be gradually reduced as the amount of organosilicon gas increases. The amount of nitrogen is not necessarily brought to 0 but must become significantly less than that of organosilicon gas.
  • the nitrogen introduced to produce a layer of CrN can also be brought abruptly to 0 before introducing the organosilicon precursor. Nevertheless, the gradual reduction of nitrogen is a preferential mode because it allows a gradual transition of nitrogen in the sub-layer.
  • N / Cr is then worth for example 1 and therefore the amount of nitrogen is possibly considered to be excessive.
  • N / Cr is then worth for example 0.5 and in such a case, this ratio can be kept.
  • the bias voltage of the substrate holder is generally between -50 V and -100 V (volt) .
  • the partial pressure of argon during the deposition of these layers is preferably between 0.2 Pa and 0.4 Pa.
  • the power supply to the magnetron cathode is cut off, the reactive gases (i.e. organosilicon gas, or organosilicon gas and nitrogen as appropriate) are arrested.
  • the flow of argon, if any, is reduced to a low value or even brought to 0, and acetylene is introduced to begin the deposition of the aC: H coating using the plasma source as described in the document FR 2 995 493.
  • the ion acceleration voltage on the parts is adjusted to allow the desired aC: H deposit characteristics to be obtained.
  • the a-C: H deposit is all the harder the higher the voltage in absolute value, according to the rules of the art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

La présente demande concerne une pièce comportant un substrat métallique, un revêtement de carbone amorphe non-hydrogéné, de type ta-C voire a-C, revêtant le substrat, et une sous-couche à base de chrome (Cr), de carbone (C) et de silicium (Si) disposée entre le substrat métallique et le revêtement de carbone amorphe et sur laquelle le revêtement de carbone amorphe est appliqué, caractérisée en ce que la sous-couche comporte, à son interface avec le revêtement de carbone amorphe, un rapport entre une teneur atomique en silicium et une teneur atomique en chrome (Si/Cr) compris entre 0,35 et 0,60, et un rapport entre une teneur atomique en carbone et la teneur atomique en silicium (C/Si) compris entre 2,5 et 3,5.

Description

Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium
La présente invention concerne une pièce revêtue comportant un substrat métallique revêtu d’une sous-couche et d’un revêtement de carbone amorphe hydrogéné, lequel est déposé sur la sous-couche comportant du chrome, du carbone et du silicium.
Les pièces, comportant un revêtement, considérées ici, sont par exemple des organes de frottements pour les secteurs de l'automobile, de l’aéronautique ou encore du spatial.
Dans le domaine automobile, il s’agit par exemple de pièces de distributions comme des linguets, des poussoirs, ou encore des cames pour réduire le frottement entre ces pièces. Il peut aussi s’agir d’axes de piston, pour en réduire l’usure et protéger les surfaces contre le grippage.
Un revêtement tel que décrit ici peut aussi s’appliquer aux composants comme les segments, les jupes de piston, les chemises.
Dans les exemples non limitatifs qui précédent les revêtements sont souvent amenés à fonctionner en milieu lubrifié.
Bien évidemment, les revêtements de carbone amorphe, hydrogénés ou non, ont des applications multiples qui ne se limitent pas aux composants pour l’automobile, l’aéronautique ou le spatial. Des éléments de guidage ou coulissant, comme par exemple sur des moules pour la plasturgie, peuvent aussi être revêtus par un tel revêtement pour en minimiser l’usure et le frottement sans lubrification.
Les revêtements de carbone amorphe sont souvent nommés « DLC » (pour « Diamond Like Carbon »). Ils désignent des matériaux carbonés généralement obtenus sous forme d’une couche mince et par des technologies de dépôt sous vide.
Ces revêtements peuvent par exemple être classés en deux familles : ceux comportant de l’hydrogène (H) et ceux sans hydrogène. Parmi les revêtements avec hydrogène, des revêtements DLC qui possèdent un fort intérêt industriel sont :
- Les revêtements « a-C:H » (pour « carbone amorphe hydrogéné »). Ces revêtements sont généralement réalisés par dépôt chimique en phase vapeur assisté par plasma d'un précurseur gazeux carboné (lequel est par exemple de l’acétylène (C2H2)).
Parmi les revêtements sans hydrogène, des revêtements DLC qui possèdent un fort intérêt industriel sont :
- Les revêtements « a-C » (pour « carbone amorphe »), qui sont généralement réalisés par pulvérisation cathodique magnétron d'une cible de graphite.
- Et surtout, les revêtements « ta-C » (pour « carbone amorphe tétraédrique »), qui sont généralement réalisés par évaporation par arc d'une cible de graphite.
Les trois types de revêtement susmentionnés sont donc chacun obtenu par une technologie différente.
En outre, actuellement, pour chaque type de revêtement DLC tel que ceux susmentionnés (réalisés avec des technologies différentes, comme illustré ci-dessus), il est souvent nécessaire d'utiliser une sous-couche spécifique pour que le revêtement adhère sur un substrat donné.
Dans le cas des revêtements de DLC hydrogéné, ou a-C:H en particulier, il existe différentes variantes de technologies de dépôt pour réaliser ces revêtements à partir de la dissociation de gaz hydrocarboné. Historiquement, un des procédés utilisé pour déposer des DLC hydrogénés est décrit dans le document FR 2 922 358. Ce document concerne un procédé de traitement de surface d'une pièce au moyen de sources élémentaires de plasma par résonance cyclotronique électronique. Ce procédé donne des revêtements DLC de qualité satisfaisante.
Toutefois, dans un souci de compétitivité économique, il est souhaitable de faire progresser la technologie pour obtenir des procédés plus efficaces et donc plus compétitifs. A cet effet, par exemple, le document FR 2 995 493 décrit un dispositif plus efficace permettant, entre autre, un transfert mieux adapté du plasma vers les pièces, de sorte que la vitesse de dépôt de DLC est doublée. Pour cela, le dispositif de dépôt comporte une source de plasma dont l’utilisation est très bien adaptée pour réaliser des revêtements DLC tels que ceux décrits dans le document FR 2 975 404 (et aussi certaines variantes de ce revêtement incluant en plus au préalable une couche de chrome Cr, ou une couche de chrome et une couche de nitrure de chrome CrN).
Cependant, les revêtements, comportant une couche de Cr suivie d’une couche de CrN puis une couche de transition de DLC hydrogéné dopé au silicium (a-C:H:Si) et enfin un revêtement de DLC hydrogéné (a-C:H) tel que décrit dans le document FR 3 011 305, ne parviennent pas à être déposés avec des caractéristiques correctes en utilisant le dispositif décrit dans le document FR 2 995 493. En particulier, un tel revêtement élaboré avec une telle source présente souvent un comportement de mauvaise qualité quand le revêtement est indenté par la méthode Rockwell sous 150 kg (kilogrammes) pour en évaluer l’adhérence selon la norme VDI3198. Au minimum, l’indentation est notée HF3 selon cette norme VDI3198 (ce qui est considéré comme plutôt mauvais ; un bon résultat est noté HF1 et le plus mauvais est noté HF6). L’observation de l’indentation quelques heures après qu’elle a été effectuée montre une dégradation spontanée de la notation de l’indentation vers HF6.
Pour remédier à ce problème, les paramètres de procédé ont été ajustés, en particulier pour réduire les contraintes que subit la couche de transition de DLC hydrogéné dopé au silicium (a-C:H:Si), en particulier en abaissant le flux d’ions que la source de plasma envoie vers les pièces via la réduction de la puissance appliquée à la source de plasma et en abaissant l’énergie des ions via la tension de polarisation. Les améliorations constatées ne suffisent pas à obtenir un revêtement dont l’indentation Rockwell donne satisfaction. La source de plasma est tellement efficace qu’il n’est pas possible d’adoucir suffisamment les conditions de dépôt pour la couche de « a-C:H:Si ».
Ainsi, la présente invention a pour but de résoudre au moins en partie les inconvénients précités. En particulier, un objet de l’invention est de proposer une pièce, comportant un revêtement DLC hydrogéné, en particulier de type a-C:H, qui permette de s’accommoder des caractéristiques du plasma de la source décrite dans le document FR 2 995 493.
La présente invention a aussi pour but de proposer une pièce, avec un revêtement DLC hydrogéné, en particulier de type a-C:H, qui permette d’obtenir un bon comportement au test d’adhérence par indentation Rockwell C du revêtement DLC.
A cet effet, est proposée selon un premier aspect, une pièce comportant un substrat métallique, un revêtement de carbone amorphe hydrogéné, de type a-C:H, revêtant le substrat, et une sous-couche à base de chrome (Cr), de carbone (C) et de silicium (Si) disposée entre le substrat métallique et le revêtement de carbone amorphe et sur laquelle le revêtement de carbone amorphe est appliqué, caractérisée en ce que la sous-couche comporte les proportions atomiques suivantes à son interface avec le revêtement de carbone amorphe (c’est-à-dire à la surface de la sous-couche) :
- Un rapport entre une teneur en silicium et une teneur en chrome (Si/Cr) compris entre 0,35 et 0,60, et
- Un rapport entre une teneur en carbone et la teneur en silicium (C/Si) compris entre 2,5 et 3,5.
Une telle composition de sous-couche présente des teneurs qui sont par exemple mesurables par analyse EDX (Energy Dispersive X-Ray Spectrometry, ou analyse par dispersion en énergie des rayons X) dans un microscope électronique à balayage (MEB), ou par GDOES (Glow Discharge Optical Emission Spectroscopy).
Il est apparu qu’une telle sous-couche permet d’obtenir un résultat d’adhérence du revêtement noté HF1 , stable au cours du temps.
Au surplus, une telle sous-couche s’est aussi révélée particulièrement avantageuse pour un revêtement DLC non-hydrogéné, en particulier de type ta-C, voire a-C. Une telle sous-couche se présente alors comme une couche à gradient de composition à base de chrome (Cr), silicium (Si) et carbone (C) principalement.
La sous-couche s’enrichit progressivement (en partant du substrat et en direction du revêtement DLC) en silicium (Si) et en carbone (C), jusqu’à une composition permettant l’adhérence du revêtement, comme visée ci-dessus.
Dans un exemple particulier, le rapport entre la teneur en silicium et la teneur en chrome (Si/Cr) de la sous-couche au voisinage de l’interface avec le DLC est compris entre 0,38 et 0,60, voire entre 0,40 et 0,60.
Dans un exemple particulier, le rapport entre la teneur en carbone et la teneur en silicium (C/Si) de la sous-couche au voisinage de l’interface avec le DLC est compris entre 2,8 et 3,2, voire entre 2,9 et 3,1.
La sous-couche peut comporter éventuellement de l’azote (N). Ceci est particulièrement avantageux si la pièce comporte en outre une couche de nitrure de chrome, comme décrit ci-après.
Ainsi, dans un exemple de réalisation intéressant, la sous-couche comporte en outre des atomes d’azote (N), un rapport entre une teneur en azote et la teneur en chrome (N/Cr) étant inférieur à 0,70 au voisinage de l’interface avec le DLC, c’est-à-dire à l’interface entre la sous-couche et le revêtement de carbone amorphe.
Selon des exemples avantageux, le rapport entre la teneur en azote et la teneur en chrome (N/Cr) est compris entre 0,26 et 0,70, voire entre 0,29 et 0,67, voire entre 0,35 et 0,65, à l’interface entre la sous-couche et le revêtement de carbone amorphe.
Selon des exemples avantageux, le rapport entre la teneur en silicium et la teneur en chrome (Si/Cr) est compris entre 0,40 et 0,55, voire entre 0,45 et 0,55, à l’interface entre la sous-couche et le revêtement de carbone amorphe.
Dans un exemple privilégié, la sous-couche, avec ou sans azote, a une épaisseur de quelques dixièmes de micromètre ; de préférence une épaisseur égale ou inférieure à environ 1 ,1 miti, par exemple comprise entre environ 0,2 mhh et 1 ,1 miti, de préférence comprise entre environ 0,3 pm et 0,6 pm.
En effet, en pratique, au-delà de 1 ,1 pm il se produit un développement colonnaire, néfaste pour la tenue de la sous-couche, et en- dessous de 0,2 pm, la sous-couche ne produit pas son effet de couche d’adaptation.
Le revêtement de carbone amorphe, a, par exemple, une épaisseur égale ou supérieure à environ 0,3 pm, voire à environ 0,5 pm, voire à environ 1 pm, voire à 1 ,5 pm.
Le revêtement de carbone amorphe, a, par exemple, une épaisseur égale ou inférieure à environ 10 pm, voire à 8 pm, voire même à 3,5 pm.
Le revêtement de carbone amorphe a, par exemple, une épaisseur comprise entre environ 1 ,5 pm et environ 3,5 pm, mais peut atteindre 8 pm lorsqu’un tel revêtement est appliqué à un segment par exemple.
Le substrat métallique est par exemple en acier ou autres alliages métalliques.
Dans des exemples de réalisation intéressants, la pièce comporte en outre une couche à base de chrome, déposée sur le substrat et sur laquelle est formée la sous-couche.
La couche à base de chrome est par exemple une couche de chrome (Cr) et/ou une couche de nitrure de chrome, par exemple CrN ou Cr2N, ou tout composé intermédiaire.
De préférence, la pièce comporte une couche de chrome (Cr), ou une couche de chrome (Cr) suivie d’une couche de nitrure de chrome (par exemple CrN ou Cr2N, ou tout composé intermédiaire).
De préférence, la couche à base de chrome a une épaisseur de quelques dixièmes de micromètre, de préférence une épaisseur égale ou inférieure à environ 1 pm, voire 0,6 pm, par exemple comprise entre environ 0,1 pm et 0,5 pm, voire entre environ 0,3 pm et 0,5 pm.
De plus, il est apparu que la sous-couche pouvait présenter une épaisseur moindre que les sous-couches de l’art antérieur, permettant ainsi d’augmenter l’épaisseur du DLC pour une même épaisseur totale des revêtements (c’est-à-dire en considérant les épaisseurs du DLC, de la sous- couche et d’une couche à base de chrome le cas échéant).
Autrement dit, un rapport entre l’épaisseur du revêtement de carbone amorphe et l’épaisseur de la sous-couche, voire en tenant compte de l’épaisseur de la couche à base de chrome le cas échéant (ep. DLC / ep. sous- couche, ou ep. DLC / (ep. sous-couche + couche à base de chrome)), peut être augmenté. Un tel rapport est par exemple compris entre environ 2,2 et environ 12, voire entre environ 2, 25 et environ 11 ,5, voire entre environ 2,25 et 7,5, voire entre environ 2,27 et environ 7,25.
Par exemple, un rapport entre l’épaisseur du revêtement de carbone amorphe et l’épaisseur totale des revêtements (c’est-à-dire ici la sommes des épaisseurs du revêtement de carbone amorphe, de la sous-couche et de la couche à base de chrome le cas échéant), soit [ep. DLC / (ep.DLC + ep. sous- couche + ep. couche à base de chrome)] est compris entre environ 0,65 et environ 0,9, voire entre environ 0,69 et environ 0,88.
Par exemple, l’épaisseur totale des revêtements (i.e. la sommes des épaisseurs du revêtement de carbone amorphe, de la sous-couche et de la couche à base de chrome le cas échéant) est comprise entre environ 1 ,5 pm et environ 4,9 pm, de préférence entre environ 1 ,8 pm et environ 4,6 pm.
Le tableau ci-dessous présente différents essais, numérotés 1 à 15.
Les proportions atomiques, mesurées par EDX, sont celles de la sous-couche au voisinage de l’interface avec le revêtement (gardant à l’esprit que la sous- couche présente un gradient de composition, la composition visée est celle vers laquelle elle tend à l’interface avec le revêtement DLC).
Figure imgf000009_0001
Dans l’ensemble des essais, on note que le comportement en adhérence du DLC sur la sous-couche est lié à la composition de la surface de la sous-couche.
La présence d’azote en surface n’est pas déterminante pour l’adhérence du DLC. En effet à proportions d’azote (N/Cr) similaires (exemples 9, 12 et 13), l’adhérence peut être jugée bonne ou non. Une présence relativement forte d’azote peut nuire à l’adhérence, comme dans l’exemple 11. L’absence d’azote peut conduire à des bonnes adhérences (exemples 4 à 6, 14 et 15) ou non (exemples 1 à 3, 7, 8,).
En revanche, la proportion de chrome relativement au silicium s’est révélée être un facteur plus déterminant. Une teneur relativement élevée en chrome par rapport au silicium (Si/Cr petit) ne semble pas convenir pour l’adhérence (ex. exemples 1 à 3). Une teneur relativement faible en chrome relativement au silicium (Si/Cr grand) ne semble pas non plus convenir pour l’adhérence du DLC (ex. exemples 7 et 8).
Ainsi, alors que le rapport des compositions Si/Cr est compris entre 0,35 et 0,6, l’ensemble des couches de DLC déposées sur ces sous-couches s’est révélé adhérent (exemples 4, 5, 6, 9, 10, 13, 14 et 15).
Pour obtenir un revêtement tel que décrit précédemment, un équipement de dépôt sous vide tel que décrit ci-dessous est utilisé.
L’équipement de dépôt sous vide comporte principalement une enceinte, un système de pompage, un système de chauffage, configurés pour pomper, chauffer les pièces (substrat) et l’intérieur de l’enceinte, afin accélérer la désorption des gaz et obtenir rapidement un vide, considéré de qualité, dans l’enceinte.
L’équipement de dépôt comporte en outre un porte-substrat adapté, du point de vue de la géométrie, de la polarisation électrique et de la cinématique, aux pièces, ou à la portion des pièces à revêtir.
L’équipement de dépôt sous vide comporte aussi un système de décapage ionique configuré pour bombarder les pièces (substrats) à revêtir par des ions argon (Ar), afin d’éliminer une couche de passivation généralement présente sur les substrats métalliques à revêtir.
L’équipement de dépôt sous vide comporte aussi une cathode magnétron, équipée d’une cible de chrome, pour générer les couches à base de chrome.
De préférence, le système de décapage ionique est configuré pour fonctionner simultanément avec la cathode magnétron. On met ainsi à profit la fin du décapage ionique pour pré-pulvériser la cathode magnétron équipée d’une cible de chrome.
Par exemple, la source de plasma telle que celle décrite dans le document FR 2 995 493 peut être mise en œuvre pour effectuer un décapage ionique efficace des pièces à revêtir et les revêtir d’un revêtement DLC de type a-C:H. L’étape de dépôt de la sous-couche est par exemple configurée pour produire une sous-couche ayant une composition telle que décrite précédemment.
L’étape de dépôt de la sous-couche est par exemple configurée pour en outre produire une sous-couche ayant une épaisseur telle que décrite précédemment.
Dans un exemple de mise en œuvre, le procédé peut optionnellement comporter une étape de dépôt de chrome métallique, par exemple une étape de pulvérisation de chrome. Optionnellement, cette étape de dépôt de chrome métallique comporte une étape d’introduction d’azote simultanément avec l’étape de pulvérisation de chrome de sorte à obtenir une couche de nitrure de chrome, par exemple CrN ou Cr2N ou tout composé intermédiaire.
Une telle couche à base de chrome, éventuellement avec de l’azote, est déposée avec une épaisseur de quelques dixièmes de micromètre, comme décrit précédemment.
Le dépôt se poursuit par l’introduction d’un gaz organosilicié, c’est-à- dire un gaz portant au moins du silicium, typiquement du tétraméthylsilane (aussi nommé TMS, de formule (Si(CH3)4), lequel peut comporter des traces d’oxygène) qui est le plus facile à mettre en œuvre, ou un mélange de silane et d’un hydrocarbure. Sans être exclusif, le TMS est de loin utilisé de façon préférentielle pour sa relativement grande stabilité chimique et sa grande volatilité lui permettant une mise en œuvre facile au moyen d’un débitmètre massique.
En cas de dépôt préalable d’une couche à base de chrome (Cr, et/ou CrN ou Cr2N), le gaz organosilicié est introduit à débit croissant jusqu’à une valeur de débit auquel une teneur en silicium de la sous-couche est au moins égale à environ 0,35 fois sa teneur en chrome et au plus d’environ 0,60 fois la teneur en chrome au voisinage de l’interface. Le rapport de la teneur en carbone ramené à la teneur en silicium est parallèlement compris entre 2,5 et 3,5 au voisinage de l’interface. Lorsqu’une couche à base de chrome avec de l’azote est utilisée, la quantité d’azote injectée peut être graduellement réduite quand la quantité de gaz organosilicié augmente. La quantité d’azote n’est pas nécessairement amenée à 0 mais doit devenir notablement inférieure à celle de gaz organosilicié. L’azote introduit pour produire une couche de CrN (ou Cr2N) peut aussi être ramené abruptement à 0 avant d’introduire le précurseur organosilicié. Néanmoins la diminution progressive de l’azote est un mode préférentiel car il permet une transition progressive d’azote dans la sous- couche.
A titre d’exemple, considérant une couche de CrN, N/Cr vaut alors par exemple 1 et donc la quantité d’azote est possiblement considérée comme excessive. Considérant une couche de Cr2N, N/Cr vaut alors par exemple 0,5 et dans un tel cas, ce ratio peut être conservé.
Pendant l’élaboration des diverses couches minces sous vide décrites précédemment (couche à base de chrome, sous-couche ou encore revêtement DLC), la tension de polarisation du porte-substrat se situe généralement entre -50 V et -100 V (volt).
La pression partielle d’argon pendant le dépôt de ces couches se situe de préférence entre 0,2 Pa et 0,4 Pa.
Lorsque le débit de gaz organosilicié a atteint le niveau requis, l’alimentation électrique de la cathode magnétron est coupée, les gaz réactifs (c’est-à-dire le gaz organosilicié, ou le gaz organosilicié et l’azote suivant le cas) sont arrêtés. Le débit d’argon, le cas échéant, est réduit à une valeur faible voire amené à 0, et de l’acétylène est introduit pour commencer le dépôt du revêtement a-C:H à l’aide de la source de plasma comme décrit dans le document FR 2 995 493. La tension d’accélération des ions sur les pièces est réglée pour permettre l’obtention des caractéristiques du dépôt a-C:H souhaitée. Le dépôt a-C:H est d’autant plus dur que la tension en valeur absolue est élevée, selon les règles de l’art.

Claims

REVENDICATIONS
1. Pièce comportant un substrat métallique, un revêtement de carbone amorphe hydrogéné, de type a-C:H, revêtant le substrat, et une sous- couche à base de chrome (Cr), de carbone (C) et de silicium (Si) disposée entre le substrat métallique et le revêtement de carbone amorphe et sur laquelle le revêtement de carbone amorphe est appliqué, caractérisée en ce que la sous-couche comporte les proportions atomiques suivantes à son interface avec le revêtement de carbone amorphe :
Un rapport entre une teneur en silicium et une teneur en chrome (Si/Cr) compris entre 0,35 et 0,60, et
Un rapport entre une teneur en carbone et la teneur en silicium (C/Si) compris entre 2,5 et 3,5.
2. Pièce selon la revendication 1 , caractérisée en ce que le rapport entre la teneur en silicium (Si) et la teneur en chrome (Cr) (Si/Cr) de la sous- couche est compris entre 0,38 et 0,6.
3. Pièce selon l’une quelconque des revendications 1 ou 2, caractérisée en ce que le rapport entre la teneur en carbone (C) et la teneur en silicium (Si) (C/Si) de la sous-couche est compris entre 2,8 et 3,2, voire entre 2,9 et 3,1.
4. Pièce selon l’une quelconque des revendications 1 à 3, caractérisée en ce que la sous-couche comporte en outre des atomes d’azote (N), un rapport entre une teneur en azote et la teneur en chrome (N/Cr) étant inférieur à 0,70 à l’interface entre la sous-couche et le revêtement de carbone amorphe.
5. Pièce selon la revendication 4, caractérisée en ce que le rapport entre la teneur en azote et la teneur en chrome (N/Cr) est compris entre 0,26 et 0,70 et le rapport entre la teneur en silicium et la teneur en chrome (Si/Cr) est compris entre 0,40 et 0,55 à l’interface entre la sous-couche et le revêtement de carbone amorphe.
6. Pièce selon l’une quelconque des revendications 1 à 5, caractérisée en ce que la sous-couche a une épaisseur égale ou inférieure à 1 ,1 miti, par exemple comprise entre 0,2 pm et 1 ,1 miti, de préférence comprise entre 0,3 pm et 0,6 pm.
7. Pièce selon l’une quelconque des revendications 1 à 6, caractérisée en ce que le revêtement de carbone amorphe a une épaisseur égale ou supérieure à 0,3 pm, voire à 0,5 pm, voire à 1 pm.
8. Pièce selon l’une quelconque des revendications 1 à 7, caractérisée en ce que le revêtement de carbone amorphe a une épaisseur comprise entre 1 ,5 pm et 3,5 pm.
9. Pièce selon l’une quelconque des revendications 1 à 8, caractérisée en ce qu’elle comporte en outre une couche à base de chrome, déposée sur le substrat et sur laquelle est formée la sous-couche, la couche à base de chrome étant une couche de chrome (Cr) et/ou une couche de nitrure de chrome, par exemple CrN ou Cr2N, ou tout composé intermédiaire.
10. Pièce selon l’une quelconque des revendications 1 à 9, caractérisée en ce que la couche à base de chrome a une épaisseur de quelques dixièmes de micromètre, de préférence une épaisseur égale ou inférieure à 1 pm, voire 0,6 pm, par exemple comprise entre 0,1 pm et 0,5 pm, voire entre 0,3 pm et 0,5 pm.
PCT/FR2019/051462 2018-06-18 2019-06-17 Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium WO2019243720A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112020024244-6A BR112020024244A2 (pt) 2018-06-18 2019-06-17 peça revestida com um revestimento de carbono amorfo hidrogenado sobre uma subcamada contendo cromo, carbono e silício
US17/252,615 US12012657B2 (en) 2018-06-18 2019-06-17 Part coated with a hydrogenated amorphous carbon coating on an undercoat comprising chromium, carbon and silicon
EP19742446.8A EP3824114A1 (fr) 2018-06-18 2019-06-17 Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium
JP2020560146A JP2021533255A (ja) 2018-06-18 2019-06-17 クロム、炭素およびケイ素を含むアンダーコートの上を水素化非晶質炭素コーティングで被覆した部品
MX2020014256A MX2020014256A (es) 2018-06-18 2019-06-17 Pieza revestida con un revestimiento de carbono amorfo hidrogenado sobre una capa inferior que comprende cromo, carbono y silicio.
CA3101721A CA3101721A1 (fr) 2018-06-18 2019-06-17 Piece revetue par un revetement de carbone amorphe hydrogene sur une sous-couche comportant du chrome, du carbone et du silicium
KR1020217001357A KR20210019553A (ko) 2018-06-18 2019-06-17 크로뮴, 탄소 및 규소를 포함하는 언더코트 상의 수소화 무정형 탄소 코팅으로 코팅된 부품
CN201980041073.6A CN112400038B (zh) 2018-06-18 2019-06-17 在包含铬、碳和硅的底涂层上涂覆有氢化非晶碳涂层的零件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855319 2018-06-18
FR1855319A FR3082526B1 (fr) 2018-06-18 2018-06-18 Piece revetue par un revetement de carbone amorphe hydrogene sur une sous-couche comportant du chrome, du carbone et du silicium

Publications (1)

Publication Number Publication Date
WO2019243720A1 true WO2019243720A1 (fr) 2019-12-26

Family

ID=65031269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051462 WO2019243720A1 (fr) 2018-06-18 2019-06-17 Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium

Country Status (11)

Country Link
US (1) US12012657B2 (fr)
EP (1) EP3824114A1 (fr)
JP (1) JP2021533255A (fr)
KR (1) KR20210019553A (fr)
CN (1) CN112400038B (fr)
BR (1) BR112020024244A2 (fr)
CA (1) CA3101721A1 (fr)
FR (1) FR3082526B1 (fr)
MA (1) MA53161A (fr)
MX (1) MX2020014256A (fr)
WO (1) WO2019243720A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269938A (ja) * 2001-03-22 2001-10-02 Sumitomo Electric Ind Ltd ゴム用金型、ゴム用金型の製造方法およびゴムの成形方法
FR2922358A1 (fr) 2007-10-16 2009-04-17 H E F Soc Par Actions Simplifi Procede de traitement de surface d'au moins un piece au moyen de sources elementaires de plasma par resonance cyclotronique electronique
EP2103711A1 (fr) * 2006-12-28 2009-09-23 JTEKT Corporation Eléments très résistants à la corrosion et leurs procédés de production
FR2975404A1 (fr) 2011-05-19 2012-11-23 Hydromecanique & Frottement Piece avec revetement dlc et procede d'application du revetement dlc
FR2995493A1 (fr) 2012-09-11 2014-03-14 Hydromecanique & Frottement Dispositif pour generer un plasma presentant une etendue importante le long d'un axe par resonnance cyclotronique electronique rce a partir d'un milieu gazeux
FR3011305A1 (fr) 2013-09-27 2015-04-03 Hydromecanique & Frottement Axe de piston
US20170122249A1 (en) * 2014-08-27 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft Coating for Metal Components, Method for Coating a Metal Component, Piston for Internal Combustion Engines and Motor Vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
JP5126867B2 (ja) * 2006-05-25 2013-01-23 独立行政法人産業技術総合研究所 炭素膜の製造方法
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
US8261841B2 (en) * 2009-02-17 2012-09-11 Exxonmobil Research And Engineering Company Coated oil and gas well production devices
BR102012003607A2 (pt) * 2012-02-16 2013-10-29 Mahle Metal Leve Sa Componente deslizante para uso em motores de combustão interna
JP5965378B2 (ja) * 2013-10-31 2016-08-03 株式会社リケン ピストンリング及びその製造方法
US9624975B2 (en) * 2014-03-21 2017-04-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Sliding member and sliding machine
JP6533913B2 (ja) * 2014-10-28 2019-06-26 神港精機株式会社 プラズマ表面処理装置
CN106884149A (zh) * 2015-12-15 2017-06-23 中国科学院宁波材料技术与工程研究所 水环境耐磨涂层、其制备方法及应用
EP3318656B1 (fr) * 2016-03-04 2019-08-07 Kabushiki Kaisha Riken Élément coulissant et segment de piston

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269938A (ja) * 2001-03-22 2001-10-02 Sumitomo Electric Ind Ltd ゴム用金型、ゴム用金型の製造方法およびゴムの成形方法
EP2103711A1 (fr) * 2006-12-28 2009-09-23 JTEKT Corporation Eléments très résistants à la corrosion et leurs procédés de production
FR2922358A1 (fr) 2007-10-16 2009-04-17 H E F Soc Par Actions Simplifi Procede de traitement de surface d'au moins un piece au moyen de sources elementaires de plasma par resonance cyclotronique electronique
FR2975404A1 (fr) 2011-05-19 2012-11-23 Hydromecanique & Frottement Piece avec revetement dlc et procede d'application du revetement dlc
FR2995493A1 (fr) 2012-09-11 2014-03-14 Hydromecanique & Frottement Dispositif pour generer un plasma presentant une etendue importante le long d'un axe par resonnance cyclotronique electronique rce a partir d'un milieu gazeux
FR3011305A1 (fr) 2013-09-27 2015-04-03 Hydromecanique & Frottement Axe de piston
US20170122249A1 (en) * 2014-08-27 2017-05-04 Bayerische Motoren Werke Aktiengesellschaft Coating for Metal Components, Method for Coating a Metal Component, Piston for Internal Combustion Engines and Motor Vehicle

Also Published As

Publication number Publication date
FR3082526B1 (fr) 2020-09-18
MX2020014256A (es) 2021-03-25
FR3082526A1 (fr) 2019-12-20
MA53161A (fr) 2021-05-26
CA3101721A1 (fr) 2019-12-26
US12012657B2 (en) 2024-06-18
CN112400038B (zh) 2023-10-20
US20210254220A1 (en) 2021-08-19
KR20210019553A (ko) 2021-02-22
EP3824114A1 (fr) 2021-05-26
JP2021533255A (ja) 2021-12-02
CN112400038A (zh) 2021-02-23
BR112020024244A2 (pt) 2021-02-23

Similar Documents

Publication Publication Date Title
JP6364685B2 (ja) ピストンリングとその製造方法
KR101860292B1 (ko) 피복 공구 제조 방법
EP0509875A1 (fr) Procédé pour le dépôt sur au moins une pièce, notamment une pièce métallique, d'une couche dure à base de pseudo carbone diamant ainsi que pièce revêtue d'une telle couche
JP6453826B2 (ja) 摺動部材およびその製造方法
EP0801142B1 (fr) Procédé de traitement de surface d'une pièce métallique, pièce métallique obtenue et ses applications
Sharifahmadian et al. Comprehensive tribological study of optimized N-DLC/DLC coatings fabricated by active screen DC-pulsed PACVD technique
EP3824114A1 (fr) Pièce revêtue par un revêtement de carbone amorphe hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium
EP3807450B1 (fr) Pièce revêtue par un revêtement de carbone amorphe non-hydrogéné sur une sous-couche comportant du chrome, du carbone et du silicium
Weng et al. Metal-doped diamond-like carbon films synthesized by filter-arc deposition
CN115413313B (zh) 活塞环及其制造方法
RU2788796C2 (ru) Деталь, снабженная покрытием из гидрированного аморфного углерода на подслое, содержащем хром, углерод и кремний
Bi et al. Effect of acetylene content in working gas on microstructure and thermal stability of DLC coating
EP1214462B1 (fr) Procede de fabrication d'une piece metallique recouverte de diamant et piece metallique obtenue au moyen d'un tel procede
US20180231125A1 (en) Piston ring and engine
Mano et al. Tribological Characteristics of Diamond-Like Carbon Based Double-Layers Film Prepared by DC-Plasma Ionization Deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19742446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560146

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3101721

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020024244

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001357

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019742446

Country of ref document: EP

Effective date: 20210118

ENP Entry into the national phase

Ref document number: 112020024244

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201127