WO2019243226A1 - Procédé de détection d'un pincement ou d'une torsion d'un tuyau d'évacuation - Google Patents

Procédé de détection d'un pincement ou d'une torsion d'un tuyau d'évacuation Download PDF

Info

Publication number
WO2019243226A1
WO2019243226A1 PCT/EP2019/065821 EP2019065821W WO2019243226A1 WO 2019243226 A1 WO2019243226 A1 WO 2019243226A1 EP 2019065821 W EP2019065821 W EP 2019065821W WO 2019243226 A1 WO2019243226 A1 WO 2019243226A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
solenoid
gases
threshold
pinch
Prior art date
Application number
PCT/EP2019/065821
Other languages
English (en)
Inventor
Thierry Collet
Original Assignee
Continental Automotive France
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive France, Continental Automotive Gmbh filed Critical Continental Automotive France
Priority to CN201980040921.1A priority Critical patent/CN112672904B/zh
Priority to KR1020217001163A priority patent/KR102537751B1/ko
Priority to US17/253,348 priority patent/US11679666B2/en
Publication of WO2019243226A1 publication Critical patent/WO2019243226A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K15/03519Valve arrangements in the vent line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03236Fuel tanks characterised by special filters, the mounting thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03256Fuel tanks characterised by special valves, the mounting thereof
    • B60K2015/03302Electromagnetic valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03328Arrangements or special measures related to fuel tanks or fuel handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/03523Arrangements of the venting tube
    • B60K2015/03528Mounting of venting tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/03561Venting means working at specific times
    • B60K2015/03571Venting during driving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/035Fuel tanks characterised by venting means
    • B60K2015/0358Fuel tanks characterised by venting means the venting is actuated by specific signals or positions of particular parts
    • B60K2015/03585Fuel tanks characterised by venting means the venting is actuated by specific signals or positions of particular parts by gas pressure

Definitions

  • the present invention relates to the automotive field and relates more particularly to a method and a system for detecting a pinch of a pipe connecting an absorbent filter to a fuel tank of a motor vehicle.
  • this drain hose is pinched or twisted so that the polluting gases can no longer flow to the absorbent filter but remain blocked in the tank, which can cause an overpressure when filling the tank with fuel. .
  • an overpressure can block the fuel supply gun when filling the tank and also cause a fraction of the polluting gases to be released into the atmosphere, which has major drawbacks. It is therefore necessary to detect cases of pinching or twisting of the evacuation pipe in order to be able to overcome these problems.
  • a known detection solution consists in using a pump, allowing the gases contained in the tank to be sucked in, and a pressure sensor, mounted in the fuel tank.
  • a pressure sensor mounted in the fuel tank.
  • the invention firstly relates to a method of detecting a pinch or a twist of a discharge pipe connecting a fuel tank and an absorbent filter of an evaporation system of a motor vehicle, said method being remarkable in that, said evaporation system comprising a pressure regulating device mounted between the absorbent filter and the exterior of the vehicle and said pressure regulating device comprising a solenoid and a valve , said valve being configured to move between a closed position, in which it prevents the passage of gases through the pressure regulating device, and an open position, in which it allows the passage of gases from the tank or up to to the reservoir, the displacement of the generating valve defining a voltage across the terminals of the solenoid when said solenoid is not electrically controlled, the method comprises the steps of:
  • valve being initially in its closed position, displacement of the valve by the gases circulating in the absorbent filter, for example when filling a tank,
  • the method according to the invention makes it possible to simply and effectively detect a pinch or a twist of the discharge pipe by analyzing the variations of the tension defined at the terminals of the solenoid of the pressure regulating device when its valve is not controlled.
  • a pinch or a twist of the exhaust pipe reducing the flow of gas circulating in the pressure regulating device, this results in a concomitant reduction in the amplitude of the displacements of the valve and therefore in the amplitude of the variations. of the voltage measured across the solenoid.
  • a pressure regulating device already exists in the vehicle, in particular in order to detect leaks in the evaporation system, it can thus be used to detect a pinch or a twist of the exhaust pipe, this which simplifies the architecture of the vehicle.
  • the invention avoids the use of a pressure sensor in the tank, which simplifies the vehicle and reduces the cost.
  • the first threshold is between -10 mV and -20 mV.
  • the second threshold is between +10 mV and +20 mV.
  • the valve is configured to move when the pressure of the filtered gases is greater than or equal to 1 millibar or less than or equal to -1 1 millibars.
  • the invention also relates to a system for detecting a pinch or a twist of a discharge pipe connecting a fuel tank and an absorbent filter of an evaporation system of a motor vehicle, said system for detection including: • a control module,
  • a pressure regulation device mounted between the absorbent filter and the exterior of the vehicle, comprising:
  • valve configured to move between a closed position, in which it prevents the passage of gases through the pressure regulating device, and an open position, in which it authorizes the passage of gases from the tank or up to '' to the reservoir, the displacement of the valve defining a voltage across the terminals of the solenoid when said solenoid is not electrically controlled, and
  • a measurement module configured to measure the voltage at the terminals of the solenoid and to send these measurements to the control module, the control module being configured to receive the measurements made by the measurement module during a movement of the valve from its closed position and to detect a pinch or twist of the discharge pipe when the measurements received are between a first predetermined threshold and a second predetermined threshold.
  • the regulation device is a natural vacuum leak detection device (NVLD).
  • NVLD natural vacuum leak detection device
  • the first threshold is between -10 mV and -20 mV.
  • the second threshold is between +10 mV and +20 mV.
  • the measurement module is mounted on the vehicle’s fuel tank or else integrated into the pressure regulation module or else integrated into the control module.
  • the valve is configured to move when the pressure of the filtered gases is greater than or equal to 1 millibar or less than or equal to -11 millibars.
  • the invention finally relates to a motor vehicle comprising a detection system as presented above.
  • FIG. 1 schematically illustrates an embodiment of a vehicle according to the invention.
  • FIG. 2 schematically illustrates an embodiment of the pressure control device.
  • FIG. 3 schematically illustrates an example of variation of the voltage across the solenoid of the pressure control device in the absence of a pinch or a twist of the discharge pipe.
  • FIG. 4 schematically illustrates an example of variation of the intensity of the current in the solenoid of the pressure regulating device in the presence of a pinch or a twist of the discharge pipe.
  • FIG. 1 shows a motor vehicle 1 comprising a heat engine 10, a fuel tank 20, an evaporation system 30 and detection system 40.
  • the heat engine 10 (or combustion engine) comprises one or more hollow cylinders 100 each delimiting a combustion chamber into which a mixture of air and fuel is injected.
  • the fuel for example petrol
  • the tank 20 from which it is sucked up by an injection pump 25 to be conveyed, via an injection rail 26 and injectors 27, as far as the cylinders 100 motor 10.
  • the vehicle 1 comprises an evaporation system 30, connected both to the engine 10, to the tank 20 and outside the vehicle 1 via an air filter 35, which makes it possible to absorb the vapors and convey them to the combustion chambers of the engine 10 so as to be burned therein, so that the gases evacuated into the atmosphere are significantly purified of polluting components.
  • the evaporation system 30 comprises an absorbent filter 310 (called a “canister” by a person skilled in the art in English), an evacuation circuit 320, a purge circuit 330 in which is mounted a purge valve 340 and a ventilation circuit 350.
  • absorbent filter 310 called a “canister” by a person skilled in the art in English
  • evacuation circuit 320 a purge circuit 330 in which is mounted a purge valve 340 and a ventilation circuit 350.
  • the absorbent filter 310 is an activated carbon filter whose function is to capture the polluting fuel vapors emanating from the tank 20.
  • the exhaust pipe 320 is a pipe, for example made of plastic or rubber, which connects the absorbent filter 310 to the tank 20.
  • the purge circuit 330 connects the absorbent filter 310 to the motor 10.
  • the ventilation circuit 350 connects the absorbent filter 310 to the air filter 35.
  • the purge circuit 330 and the ventilation circuit 350 may be in the form of pipes, for example made of plastic or rubber, or rigid pipes.
  • the detection system 40 makes it possible to detect leaks from the evaporation system but also a pinching or twisting of the evacuation pipe 320 which could lead to rejecting some of the polluting vapors into the atmosphere, in particular when filling the tank 20 with fuel.
  • the detection system 40 comprises a control module 410, a pressure regulation device 420 and a measurement module 430.
  • the pressure regulating device 420 is mounted at the ventilation circuit 350, between the absorbent filter 320 and the air filter 35, and comprises, with reference to FIG. 2, a solenoid 421 and a movable valve 422 connected to the spring 423.
  • the pressure regulating device 420 can be an existing device, known as a natural vacuum leak detection device (NVLD), used to regulate the pressure and detect leaks in the evaporation system 30, in a manner known per se.
  • NVLD natural vacuum leak detection device
  • valve 422 is configured to move between a closed position, in which it prevents the passage of gases through the pressure regulator 420, and a plurality of open positions in which it allows the passage gases through the pressure regulator 420.
  • the solenoid 421 can be electrically controlled by the control module 410 in opening or closing.
  • the solenoid 421 is not electrically controlled by the control module 410, the movement of the valve 422 by a flow of gas coming from the absorbent filter 310 generates a current in the solenoid 421.
  • the fuel vapors are evacuated to the absorbent filter 320 and the gases filtered by said absorbent filter 320 moves the valve from its closed position to an open position more or less distant from the closed position depending on the gas pressure and flow.
  • the displacement of the valve 422 generates a current in the solenoid 421, the voltage induced at these terminals can be measured by the measurement module 430.
  • the measurement module 430 is thus configured to measure the voltage induced at the terminals of the solenoid 421 and to send these measurements to the control module 410 with which it is connected on a communication link, for example via a communication network of the proprietary type or LIN, well known to those skilled in the art, which connects electrical equipment of the vehicle 1.
  • the measurement module 430 is mounted on the reservoir 20 and can in particular perform other functions.
  • the measurement module 430 may further comprise a temperature sensor making it possible to measure the internal temperature of the reservoir 20.
  • the measurement module 430 could be integrated into the pressure regulation device 420 or directly into the command 410.
  • the control module 410 is configured to receive the measurements made by the measurement module 430 during a movement of the valve and to detect a pinch or a twist of the discharge pipe 320 when the measurements received are between a first predetermined threshold and a second predetermined threshold.
  • control module 410 is also connected to the injectors 27 to control the fuel injections and to the purge valve 340 to control it in closing or in opening when it is necessary to convey the polluting vapors retained in the absorbent filter 310 to the cylinders 100 of the engine 10 in order to burn them.
  • control module 410 is implemented by the engine control computer of the vehicle 1.
  • the entity which receives the intensity measurements of the current flowing in the solenoid 421 of a on the other hand and the entity which controls the injectors 27 and the purge valve 340 on the other hand could be two separate physical entities.
  • the detection of a pinch or a twist of the evacuation pipe 320 requires in prerequisite that the valve 422 is in the closed position.
  • This configuration can for example be obtained when the control module 410 controls the closing of the valve 422 and causes a generation of vacuum in the tank 20 by controlling the purge valve 340, that is to say when the control module 410 is switched off.
  • the detection of a pinch or a twist of the evacuation pipe 320 can be carried out at different times such as, for example, during the detection of a leak or even when the tank 20 is filled.
  • a circulation of the gases from the absorbent filter 310 towards the reservoir 20 towards the absorbent filter 310 causes a flow of filtered gases through the pressure regulating device 420 which moves the valve 422 to an open position, in a step E1, then to again in the closed position as soon as the gases cease to circulate through the pressure regulating device 420.
  • the movement of the valve 422 generates a current in the solenoid 421, the intensity of which is measured by the measurement module 430 in a step E2.
  • the intensity measurements made by the measurement module 430 are sent in real time to the control module 410 which analyzes them.
  • the displacement of the valve 422 in opening then in closing will be more important because the flow of circulating gas is not limited by the section restriction due to the pinching or twisting of the pipe, which will generate, as illustrated in FIG. 3, a current in the solenoid 421 defining a voltage U across the terminals of said solenoid 421 whose value will first pass below a first threshold S1 (low) when the valve 422 moves to the open position and then exceeds a second threshold S2 (high) when the valve 422 returns to the closed position.
  • the amplitude of the displacement of the valve 422 in opening then in closing will be less important, which will generate, as illustrated in the figure 4, a current in the solenoid 421 defining a voltage U across the terminals of said solenoid 421, the value of which will not fall below the first threshold S1 during the movement of the valve 422 in the open position, nor will it cross the second threshold S2 when the valve 422 returns to the closed position.
  • the control module 410 detects, in a step E3, a pinch or a twist of the discharge pipe 320 when the voltage U measured at the terminals of the solenoid 421 during the movement of the valve 422 varies between the first threshold S1 and the second threshold S2 without ever going below said first threshold S1 or above said second threshold S2.
  • the method according to the invention therefore makes it possible to determine in a simple, rapid and reliable manner the presence of a pinch or a twist of the discharge pipe 320, in particular by using existing equipment (the device for regulating pressure 420) which is initially used to regulate the pressure in the evaporation system 30 and / or to detect leaks in said evaporation system 30.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

La présente invention a pour objet un procédé de détection d'un pincement ou d'une torsion d'un tuyau d'évacuation reliant un réservoir de carburant et un filtre absorbant d'un système d'évaporation d'un véhicule automobile. Le procédé comprend les étapes, la soupape étant initialement dans sa position de fermeture, de déplacement (E1) de la soupape par les gaz circulant dans le filtre absorbant, de mesure (E2), en l'absence de commande du solénoïde, de la tension générée aux bornes du solénoïde par le déplacement de la soupape, et de détection (E3) d'un pincement ou d'une torsion du tuyau d'évacuation lorsque la tension mesurée est comprise entre un premier seuil prédéterminé et un deuxième seuil prédéterminé.

Description

Procédé de détection d’un pincement ou d’une torsion d’un tuyau d’évacuation
La présente invention se rapporte au domaine de l’automobile et concerne plus particulièrement un procédé et un système de détection d’un pincement d’un tuyau reliant un filtre absorbant à un réservoir de carburant d’un véhicule automobile.
De nos jours, les véhicules automobiles à moteur thermique comportent de manière connue un système d’évaporation connecté au réservoir de carburant. Un tel système permet d’évacuer les vapeurs de carburant accumulées dans le réservoir. Dans le but d’éviter que ces gaz polluants ne soient rejetés directement dans l’atmosphère, il est connu de monter un filtre appelé « filtre absorbant » (également connu sous le nom de « canister » en anglais) entre le réservoir et l’atmosphère, le filtre absorbant étant relié au réservoir via un tuyau d’évacuation.
Il arrive cependant que ce tuyau d’évacuation se pince ou se torde de sorte que les gaz polluants ne puissent plus circuler jusqu’au filtre absorbant mais restent bloqués dans le réservoir, ce qui peut provoquer une surpression lors du remplissage du réservoir avec du carburant. Or, une telle surpression peut bloquer le pistolet d’alimentation en carburant lors d’un remplissage du réservoir et aussi entraîner un rejet d’une fraction des gaz polluants dans l’atmosphère, ce qui présente des inconvénients majeurs. Il s’avère donc nécessaire de détecter les cas de pincement ou de torsion du tuyau d’évacuation afin de pouvoir pallier ces problèmes.
Une solution de détection connue consiste à utiliser une pompe, permettant d’aspirer les gaz contenus dans le réservoir, et un capteur de pression, monté dans le réservoir de carburant. Ainsi, en l’absence de pincement ou de torsion du tuyau d’évacuation, lorsque la pompe aspire les gaz contenus dans le réservoir, la pression mesurée par le capteur diminue. En revanche, lorsque le tuyau d’évacuation est pincé ou tordu et que la pompe tente d’aspirer les gaz stockés dans le réservoir, la pression mesurée dans le réservoir variera peu ou ne variera pas, indiquant alors un pincement ou une torsion. L’ajout et l’utilisation d’un capteur de pression monté dans le réservoir peut s’avérer complexe et onéreux, ce qui présente des inconvénients importants pour les constructeurs automobile. Il existe donc le besoin d’une solution permettant de remédier au moins en partie à ces inconvénients.
Dans ce but, l’invention a tout d’abord pour objet un procédé de détection d’un pincement ou d’une torsion d’un tuyau d’évacuation reliant un réservoir de carburant et un filtre absorbant d’un système d’évaporation d’un véhicule automobile, ledit procédé étant remarquable en ce que, ledit système d’évaporation comprenant un dispositif de régulation de pression monté entre le filtre absorbant et l’extérieur du véhicule et ledit dispositif de régulation de pression comprenant un solénoïde et une soupape, ladite soupape étant configurée pour se déplacer entre une position de fermeture, dans laquelle elle empêche le passage des gaz à travers le dispositif de régulation de pression, et une position d’ouverture, dans laquelle elle autorise le passage des gaz depuis le réservoir ou jusqu’au réservoir, le déplacement de la soupape générant définissant une tension aux bornes du solénoïde lorsque ledit solénoïde n’est pas commandé électriquement, le procédé comprend les étapes de :
• la soupape étant initialement dans sa position de fermeture, déplacement de la soupape par les gaz circulant dans le filtre absorbant, par exemple lors d’un remplissage de réservoir,
• mesure, en l’absence de commande du solénoïde, de la tension générée aux bornes du solénoïde par le déplacement de la soupape,
• détection d’un pincement ou d’une torsion du tuyau d’évacuation lorsque la tension mesurée est comprise entre un premier seuil prédéterminé et un deuxième seuil prédéterminé.
Le procédé selon l’invention permet de détecter simplement et efficacement un pincement ou une torsion du tuyau d’évacuation en analysant les variations de la tension définie aux bornes du solénoïde du dispositif de régulation de pression lorsque sa soupape n’est pas commandée. En effet, un pincement ou une torsion du tuyau d’évacuation réduisant le débit de gaz circulant dans le dispositif de régulation de pression, il en résulte une diminution concomitante de l’amplitude des déplacements de la soupape et donc de l’amplitude des variations de la tension mesurées aux bornes du solénoïde. En particulier, lorsqu’un tel dispositif de régulation de pression existe déjà dans le véhicule, notamment afin de détecter des fuites dans le système d’évaporation, il peut ainsi être utilisé pour détecter un pincement ou une torsion du tuyau d’évacuation, ce qui simplifie l’architecture du véhicule. En particulier, l’invention permet d’éviter l’utilisation d’un capteur de pression dans le réservoir, ce qui simplifie le véhicule et en réduit le coût.
De préférence, le premier seuil est compris entre -10 mV et -20 mV.
De préférence encore, le deuxième seuil est compris entre +10 mV et +20 mV.
Selon un aspect de l’invention, la soupape est configurée pour se déplacer quand la pression des gaz filtrés est supérieure ou égale à 1 millibar ou inferieur ou égale à -1 1 millibars.
L’invention concerne également un système de détection d’un pincement ou d’une torsion d’un tuyau d’évacuation reliant un réservoir de carburant et un filtre absorbant d’un système d’évaporation d’un véhicule automobile, ledit système de détection comprenant : • un module de commande,
• un dispositif de régulation de pression, monté entre le filtre absorbant et l’extérieur du véhicule, comprenant :
- un solénoïde
- une soupape configurée pour se déplacer entre une position de fermeture, dans laquelle elle empêche le passage des gaz à travers le dispositif de régulation de pression, et une position d’ouverture, dans laquelle elle autorise le passage des gaz depuis le réservoir ou jusqu’au réservoir, le déplacement de la soupape définissant une tension aux bornes du solénoïde lorsque ledit solénoïde n’est pas commandé électriquement, et
- un module de mesure configuré pour mesurer la tension aux bornes du solénoïde et pour envoyer ces mesures au module de commande, le module de commande étant configuré pour recevoir les mesures réalisées par le module de mesure pendant un déplacement de la soupape à partir de sa position de fermeture et pour détecter un pincement ou une torsion du tuyau d’évacuation lorsque les mesures reçues sont comprise entre un premier seuil prédéterminé et un deuxième seuil prédéterminé.
Dans une forme de réalisation préférée, le dispositif de régulation est un dispositif de détection de fuite par vide naturel (Natural Vacuum Leakage Détection ou NVLD en langue anglaise).
De préférence, le premier seuil est compris entre -10 mV et -20 mV.
De préférence encore, le deuxième seuil est compris entre +10 mV et +20 mV.
Selon un aspect de l’invention, le module de mesure est monté sur le réservoir de carburant du véhicule ou bien intégré au module de régulation de pression ou bien intégré au module de commande.
Selon un autre aspect de l’invention, la soupape est configurée pour se déplacer quand la pression des gaz filtrés est supérieure ou égale à 1 millibar ou inferieur ou égale à -11 millibars.
L’invention concerne enfin un véhicule automobile comprenant un système de détection tel que présenté précédemment.
D’autres caractéristiques et avantages de l’invention apparaîtront lors de la description qui suit faite en regard des figures annexées données à titre d’exemples non limitatifs et dans lesquelles des références identiques sont données à des objets semblables. - La figure 1 illustre schématiquement une forme de réalisation d’un véhicule selon l’invention.
- La figure 2 illustre schématiquement une forme de réalisation du dispositif de régulation de pression.
- La figure 3 illustre schématiquement un exemple de variation de la tension aux bornes du solénoïde du dispositif de régulation de pression en l’absence d’un pincement ou d’une torsion du tuyau d’évacuation.
- La figure 4 illustre schématiquement un exemple de variation de l’intensité du courant dans le solénoïde du dispositif de régulation de pression en présence d’un pincement ou d’une torsion du tuyau d’évacuation.
- La figure 5 illustre schématiquement un mode de réalisation du procédé selon l’invention.
On a représenté à la figure 1 un véhicule 1 automobile comprenant un moteur 10 thermique, un réservoir 20 de carburant, un système d’évaporation 30 et système de détection 40.
Le moteur 10 thermique (ou moteur à combustion) comprend un ou plusieurs cylindres 100 creux délimitant chacun une chambre de combustion dans laquelle est injecté un mélange d’air et de carburant.
Le carburant, par exemple de l’essence, est stocké dans le réservoir 20, depuis lequel il est aspiré par une pompe d’injection 25 pour être acheminé, via un rail d’injection 26 et des injecteurs 27, jusque dans les cylindres 100 du moteur 10.
La pression des gaz contenus dans le réservoir 20 devant être contrôlée pour éviter tout dommage ou accident et limiter la pollution due aux vapeurs de carburant, le véhicule 1 comprend un système d’évaporation 30, relié à la fois au moteur 10, au réservoir 20 et à l’extérieur du véhicule 1 via un filtre à air 35, qui permet d’absorber les vapeurs et de les acheminer dans les chambres de combustion du moteur 10 afin d’y être brûlées, de sorte que les gaz évacués dans l’atmosphère soient significativement purifiés des composants polluants.
Le système d’évaporation 30 comprend un filtre absorbant 310 (appelé « canister » par l’homme du métier en langue anglaise), un circuit d’évacuation 320, un circuit de purge 330 dans lequel est monté une vanne de purge 340 et un circuit de ventilation 350.
Le filtre absorbant 310 est un filtre à charbon actif dont la fonction est de capter les vapeurs polluantes de carburant émanant du réservoir 20. Le tuyau d’évacuation 320 est un tuyau, par exemple réalisé en plastique ou en caoutchouc, qui relie le filtre absorbant 310 au réservoir 20. Le circuit de purge 330 relie le filtre absorbant 310 au moteur 10. Le circuit de ventilation 350 relie le filtre absorbant 310 au filtre à air 35. Le circuit de purge 330 et le circuit de ventilation 350 peuvent se présenter sous la forme de tuyaux, par exemple réalisé en plastique ou en caoutchouc, ou de canalisations rigides.
Le système de détection 40 permet de détecter les fuites du système d’évaporation mais aussi un pincement ou une torsion du tuyau d’évacuation 320 qui pourrait conduire à rejeter certaines des vapeurs polluantes dans l’atmosphère, notamment lors du remplissage du réservoir 20 avec du carburant.
A cette fin, le système de détection 40 comprend un module de commande 410, un dispositif de régulation de pression 420 et un module de mesure 430.
Le dispositif de régulation de pression 420 est monté au niveau du circuit de ventilation 350, entre le filtre absorbant 320 et le filtre à air 35, et comprend, en référence à la figure 2, un solénoïde 421 et une soupape 422 mobile reliée à ressort 423. Le dispositif de régulation de pression 420 peut être un dispositif existant, connu sous le nom de dispositif de détection de fuite par vide naturel (Natural Vacuum Leak Détection ou NVLD en langue anglaise), utilisé pour réguler la pression et détecter des fuites dans le système d’évaporation 30, de manière connue en soi.
Dans cet exemple, la soupape 422 est configurée pour se déplacer entre une position de fermeture, dans laquelle elle empêche le passage des gaz à travers le dispositif de régulation de pression 420, et une pluralité de positions d’ouverture dans laquelle elle autorise le passage des gaz à travers le dispositif de régulation de pression 420.
Le solénoïde 421 peut être commandé électriquement par le module de commande 410 en ouverture ou en fermeture. Lorsque le solénoïde 421 n’est pas commandé électriquement par le module de commande 410, le déplacement de la soupape 422 par un flux de gaz venant du filtre absorbant 310 génère un courant dans le solénoïde 421. Notamment, lorsqu’un opérateur remplit le réservoir 20 avec du carburant, les vapeurs de carburant sont évacuées vers le filtre absorbant 320 et les gaz filtrés par ledit filtre absorbant 320 déplace la soupape de sa position de fermeture vers une position d’ouverture plus ou moins éloignée de la position de fermeture selon la pression et le débit des gaz. Ce faisant, le déplacement de la soupape 422 génère un courant dans le solénoïde 421 dont la tension induite a ces bornes peut être mesurée par le module de mesure 430.
Le module de mesure 430 est ainsi configuré pour mesurer la tension induite aux bornes du solénoïde 421 et pour envoyer ces mesures au module de commande 410 avec lequel il est connecté sur un lien de communication, par exemple via un réseau de communication de type propriétaire ou LIN, bien connu de l’homme du métier, qui relie des équipements électriques du véhicule 1. Dans la forme de réalisation décrite, le module de mesure 430 est monté sur le réservoir 20 et peut notamment réaliser d’autres fonctions. Par exemple, le module de mesure 430 peut comprendre en outre un capteur de température permettent de mesurer la température interne du réservoir 20. En variante, le module de mesure 430 pourrait être intégré au dispositif de régulation de pression 420 ou directement dans le module de commande 410.
Le module de commande 410 est configuré pour recevoir les mesures réalisées par le module de mesure 430 pendant un déplacement de la soupape et pour détecter un pincement ou une torsion du tuyau d’évacuation 320 lorsque les mesures reçues sont comprises entre un premier seuil prédéterminé et un deuxième seuil prédéterminé.
Dans la forme de réalisation décrite, le module de commande 410 est également connecté aux injecteurs 27 pour commander les injections de carburant et à la vanne de purge 340 pour la commander en fermeture ou en ouverture lorsqu’il est nécessaire d’acheminer les vapeurs polluantes retenues dans le filtres absorbant 310 vers les cylindres 100 du moteur 10 afin de les brûler.
Ainsi, dans cet exemple, le module de commande 410 est mis en oeuvre par le calculateur de contrôle moteur du véhicule 1. Toutefois, on notera que l’entité qui reçoit les mesures d’intensité du courant circulant dans le solénoïde 421 d’une part et l’entité qui commande les injecteurs 27 et la vanne de purge 340 d’autre part pourraient être deux entités physiques distinctes.
La mise en oeuvre du système de détection selon l’invention va maintenant être décrite en référence aux figures 3 à 5.
La détection d’un pincement ou d’une torsion du tuyau d’évacuation 320 nécessite en prérequis que la soupape 422 soit en position de fermeture. Cette configuration peut par exemple être obtenue lorsque le module de commande 410 commande la fermeture de la soupape 422 et provoque une génération de vide dans le réservoir 20 grâce au pilotage de la vanne de purge 340, soit lorsque le module de commande 410 est éteint. Dans ce cas, la détection d’un pincement ou d’une torsion du tuyau d’évacuation 320 peut être réalisée à des moments différents tels que, par exemple, lors de la détection de fuite ou bien un remplissage du réservoir 20.
Ainsi, lors d’un test de détection d’un pincement ou d’une torsion du tuyau d’évacuation 320, la soupape 422 étant initialement dans sa position de fermeture, une circulation des gaz du filtre absorbant 310 vers du réservoir 20 vers le filtre absorbant 310 provoque une circulation de gaz filtrés à travers le dispositif de régulation de pression 420 qui déplace la soupape 422 vers une position d’ouverture, dans une étape E1 , puis de nouveau en position de fermeture dès que les gaz cessent de circuler à travers le dispositif de régulation de pression 420.
Le déplacement de la soupape 422 génère un courant dans le solénoïde 421 dont l’intensité est mesurée par le module de mesure 430 dans une étape E2.
Les mesures d’intensité réalisées par le module de mesure 430 sont envoyées en temps réel au module de commande 410 qui les analyse.
Plus précisément, en l’absence d’un pincement ou d’une torsion du tuyau d’évacuation 320, le déplacement de la soupape 422 en ouverture puis en fermeture va être plus important car le flux de gaz circulant n’est pas limité par la restriction de section due au pincement ou à la torsion du tuyau, ce qui va générer, comme illustré sur la figure 3, un courant dans le solénoïde 421 définissant une tension U aux bornes dudit solénoïde 421 dont la valeur passera tout d’abord en-dessous d’un premier seuil S1 (bas) lors du déplacement de la soupape 422 en position d’ouverture puis dépassera un deuxième seuil S2 (haut) lors du retour de la soupape 422 en position de fermeture. En d’autres termes, en l’absence d’un pincement ou d’une torsion du tuyau d’évacuation 320, l’oscillation de la soupape 422 sera importante et la valeur de la tension U mesurée aux bornes du solénoïde 421 descendra en-deçà du premier seuil S1 puis franchira le deuxième seuil S2.
En revanche, en présence d’un pincement ou d’une torsion du tuyau d’évacuation 320, l’amplitude du déplacement de la soupape 422 en ouverture puis en fermeture va être moins important, ce qui va générer, comme illustré sur la figure 4, un courant dans le solénoïde 421 définissant une tension U aux bornes dudit solénoïde 421 dont la valeur ne descendra pas en-dessous du premier seuil S1 lors du déplacement de la soupape 422 en position d’ouverture, ni ne franchira le deuxième seuil S2 lors du retour de la soupape 422 en position de fermeture. En d’autres termes, en présence d’un pincement ou d’une torsion du tuyau d’évacuation 320, l’oscillation de la soupape 422 sera moins importante qu’en l’absence d’un pincement ou d’une torsion du tuyau d’évacuation 320 de sorte que la valeur de la tension U mesurée aux bornes du solénoïde 421 évolue strictement entre le premier seuil S1 et le deuxième seuil S2. Ainsi, le module de commande 410 détecte, dans une étape E3, un pincement ou une torsion du tuyau d’évacuation 320 lorsque la tension U mesurée aux bornes du solénoïde 421 pendant le déplacement de la soupape 422 varie entre le premier seuil S1 et le deuxième seuil S2 sans jamais passer en-dessous dudit premier seuil S1 ou au-dessus dudit deuxième seuil S2.
Le procédé selon l’invention permet donc de déterminer de manière simple, rapide et fiable la présence d’un pincement ou d’une torsion du tuyau d’évacuation 320, notamment en utilisant un équipement existant (le dispositif de régulation de pression 420) qui est initialement utilisé pour réguler la pression dans le système d’évaporation 30 et/ou pour détecter des fuites dans ledit système d’évaporation 30.

Claims

REVENDICATIONS
1. Procédé de détection d’un pincement ou d’une torsion d’un tuyau d’évacuation (320) reliant un réservoir (20) de carburant et un filtre absorbant (310) d’un système d’évaporation (30) d’un véhicule (1 ) automobile, ledit procédé étant caractérisé en ce que, ledit système d’évaporation (30) comprenant un dispositif de régulation de pression (420) monté entre le filtre absorbant (310) et l’extérieur du véhicule (1 ) et ledit dispositif de régulation de pression (420) comprenant un solénoïde (421 ) et une soupape (422), ladite soupape (422) étant configurée pour se déplacer entre une position de fermeture dans laquelle elle empêche le passage des gaz à travers le dispositif de régulation de pression (420) et une position d’ouverture dans laquelle elle autorise le passage des gaz depuis le réservoir (20) ou jusqu’au réservoir (20), le déplacement de la soupape (422) générant un courant définissant une tension (U) aux bornes du solénoïde (421 ) lorsque ledit solénoïde (421 ) n’est pas commandé électriquement, le procédé comprend les étapes de :
• la soupape (422) étant initialement dans sa position de fermeture, déplacement (E1 ) de la soupape (422) par les gaz circulant dans le filtre absorbant (310),
• mesure (E2), en l’absence de commande du solénoïde (421 ), de la tension (U) générée aux bornes du solénoïde (421 ) par le déplacement de la soupape (422),
• détection (E3) d’un pincement ou d’une torsion du tuyau d’évacuation (320) lorsque la tension (U) mesurée est comprise entre un premier seuil (S1 ) prédéterminé et un deuxième seuil (S2) prédéterminé.
2. Procédé selon la revendication 1 , dans lequel le premier seuil (S1 ) est compris entre -10 mV et -20 mV.
3. Procédé selon l’une des revendications précédentes, dans lequel le deuxième seuil (S2) est compris entre +10 mV et +20mV.
4. Procédé selon l’une des revendications précédentes, dans lequel la soupape (422) est configurée pour se déplacer quand la pression des gaz filtrés est supérieure ou égale à 1 millibar ou inferieur ou égale à -1 1 millibars.
5. Système de détection (40) d’un pincement ou d’une torsion d’un tuyau d’évacuation (320) reliant un réservoir (20) de carburant et un filtre absorbant (310) d’un système d’évaporation (30) d’un véhicule (1 ) automobile, ledit système de détection (40) comprenant :
• un module de commande (410), • un dispositif de régulation de pression (420), monté entre le filtre absorbant (310) et l’extérieur du véhicule (1 ), comprenant :
- un solénoïde (421 )
- une soupape (422) configurée pour se déplacer entre une position de fermeture, dans laquelle elle empêche le passage des gaz à travers le dispositif de régulation de pression (420), et une position d’ouverture, dans laquelle elle autorise le passage des gaz depuis le réservoir (20) ou jusqu’au réservoir (20), le déplacement de la soupape définissant alors une tension (U) aux bornes du solénoïde (421 ) lorsque ledit solénoïde (421 ) n’est pas commandé électriquement, et
- un module de mesure (430) configuré pour mesurer la tension (U) générée aux bornes du solénoïde (421 ) et pour envoyer ces mesures au module de commande (410),
le module de commande (410) étant configuré pour recevoir les mesures réalisées par le module de mesure (430) pendant un déplacement de la soupape (422) à partir de sa position de fermeture et pour détecter un pincement ou une torsion du tuyau d’évacuation (320) lorsque les mesures reçues sont comprise entre un premier seuil (S1 ) prédéterminé et un deuxième seuil (S2) prédéterminé.
6. Système de détection (40) selon la revendication précédente, dans lequel le premier seuil (S1 ) est compris entre -10 mV et -20 mV.
7. Système de détection (40) selon l’une des revendications 5 et 6, dans lequel le deuxième seuil (S2) est compris entre +10 mV et +20 mV.
8. Système de détection (40) selon l’une des revendications 5 à 7, dans lequel le module de mesure (430) est monté sur le réservoir (20) de carburant du véhicule (1 ) ou bien intégré au dispositif de régulation de pression (420) ou bien au module de commande (410).
9. Système de détection (40) selon l’une des revendications 5 à 8, dans lequel la soupape (422) est configurée pour se déplacer quand la pression des gaz filtrés est supérieure ou égale à 1 millibar ou inferieur ou égale à -1 1 millibars.
10. Véhicule (1 ) automobile comprenant un système de détection (40) selon l’une des revendications 5 à 9.
PCT/EP2019/065821 2018-06-18 2019-06-17 Procédé de détection d'un pincement ou d'une torsion d'un tuyau d'évacuation WO2019243226A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980040921.1A CN112672904B (zh) 2018-06-18 2019-06-17 用于检测排放管道的挤压或扭曲的方法
KR1020217001163A KR102537751B1 (ko) 2018-06-18 2019-06-17 배출 파이프의 막힘 또는 비틀림을 검출하는 방법
US17/253,348 US11679666B2 (en) 2018-06-18 2019-06-17 Method for detecting the trapping or twisting of a discharge pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1855309A FR3082465B1 (fr) 2018-06-18 2018-06-18 Procede de detection d'un pincement ou d'une torsion d'un tuyau d'evacuation
FR1855309 2018-06-18

Publications (1)

Publication Number Publication Date
WO2019243226A1 true WO2019243226A1 (fr) 2019-12-26

Family

ID=63557635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/065821 WO2019243226A1 (fr) 2018-06-18 2019-06-17 Procédé de détection d'un pincement ou d'une torsion d'un tuyau d'évacuation

Country Status (5)

Country Link
US (1) US11679666B2 (fr)
KR (1) KR102537751B1 (fr)
CN (1) CN112672904B (fr)
FR (1) FR3082465B1 (fr)
WO (1) WO2019243226A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040089275A1 (en) * 2002-11-05 2004-05-13 Toru Kidokoro Evaporated fuel treatment device for internal combustion engine
WO2011116926A1 (fr) * 2010-03-24 2011-09-29 Continental Automotive France Procede et dispositif de detection de pincement de tuyau de liaison entre un reservoir et un filtre a vapeurs d'essence
US20170120745A1 (en) * 2015-10-30 2017-05-04 Hyundai Motor Company Fuel filling apparatus and method for bi-fuel vehicle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809742A (en) * 1988-04-18 1989-03-07 Pneumo Abex Corporation Control valve assembly including valve position sensor
DE4142996A1 (de) * 1991-12-24 1993-07-01 Bosch Gmbh Robert Verfahren zum messen der mechanischen bewegung eines magnetventilankers, insbesondere von elektrisch gesteuerten einspritzanlagen
US5623907A (en) * 1995-06-09 1997-04-29 Walbro Corporation Liquid propane fuel delivery system
US6657847B1 (en) * 1999-07-13 2003-12-02 Siemens Automotive Corporation Method of using inductance for determining the position of an armature in an electromagnetic solenoid
US20020172788A1 (en) * 2001-03-22 2002-11-21 Chan Hong-Ta James Method of producing a shaped article having excellent barrier properties
JP2005114022A (ja) * 2003-10-07 2005-04-28 Nissan Motor Co Ltd タンク取付構造
JP4460513B2 (ja) * 2005-09-21 2010-05-12 八千代工業株式会社 バリア材層を有する容器の構造
US7768257B2 (en) * 2007-05-17 2010-08-03 Alcotek, Inc. Systems and methods for determining the position of an electrical solenoid
KR100986062B1 (ko) * 2008-04-07 2010-10-08 현대자동차주식회사 차량용 연료증발가스 재순환 장치
US8074627B2 (en) * 2010-07-14 2011-12-13 Ford Global Technologies, Llc Automotive fuel system leak testing
RU2638899C2 (ru) * 2013-03-15 2017-12-18 ФОРД ГЛОУБАЛ ТЕКНОЛОДЖИЗ, ЭлЭлСи Способ опорожнения бака (варианты)
US9618137B2 (en) * 2013-12-18 2017-04-11 Rain Bird Corporation Detection of a plunger position in an irrigation control device
DE102015012656A1 (de) * 2014-10-22 2016-04-28 Audi Ag Verfahren zum Betreiben einer Kraftstoffanlage für ein Kraftfahrzeug sowie entsprechende Kraftstoffanlage
US9777678B2 (en) * 2015-02-02 2017-10-03 Ford Global Technologies, Llc Latchable valve and method for operation of the latchable valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040089275A1 (en) * 2002-11-05 2004-05-13 Toru Kidokoro Evaporated fuel treatment device for internal combustion engine
WO2011116926A1 (fr) * 2010-03-24 2011-09-29 Continental Automotive France Procede et dispositif de detection de pincement de tuyau de liaison entre un reservoir et un filtre a vapeurs d'essence
US20170120745A1 (en) * 2015-10-30 2017-05-04 Hyundai Motor Company Fuel filling apparatus and method for bi-fuel vehicle

Also Published As

Publication number Publication date
CN112672904A (zh) 2021-04-16
KR20210020120A (ko) 2021-02-23
KR102537751B1 (ko) 2023-05-26
US11679666B2 (en) 2023-06-20
FR3082465B1 (fr) 2020-06-05
US20210260990A1 (en) 2021-08-26
CN112672904B (zh) 2023-09-01
FR3082465A1 (fr) 2019-12-20

Similar Documents

Publication Publication Date Title
JP4140345B2 (ja) 内燃機関の蒸発燃料処理装置
JP4253325B2 (ja) エバポリーク診断装置及び方法及び内燃機関の制御装置
JP3849584B2 (ja) 蒸発燃料処理装置
FR2807835A1 (fr) Procede et dispositif de controle d'etancheite ecologique d'un reservoir
FR2767287A1 (fr) Installation pour le diagnostic d'un dispositif de ventilation de reservoir d'un vehicule
WO2018002550A1 (fr) Procédé de contrôle d'une mesure de pression dans un réservoir de carburant
EP3803073A1 (fr) Procede de detection d'un catalyseur d'oxydation dans la ligne d'echappement d'un moteur diesel et loi de commande pour sa mise en & oeuvre
KR20160128415A (ko) 연료 탱크 시스템의 누설을 진단하는 방법
WO2019170973A1 (fr) Détection de fuite dans un dispositif d'évaporation des vapeurs d'un carburant stocké dans un réservoir d'un moteur thermique de véhicule
WO2019243226A1 (fr) Procédé de détection d'un pincement ou d'une torsion d'un tuyau d'évacuation
FR2958691A1 (fr) Procede et dispositif de diagnostic de vanne de purge pour vehicule a motorisation hybride.
EP2851529A1 (fr) Procédé de purge d'un système de réduction catalytique sélective
FR3044612B1 (fr) Controle de la depressurisation d'un reservoire de carburant d'un vehicule automobile
US6615808B2 (en) Method for checking the tightness of an automotive tank system
WO2017216442A1 (fr) Procédé de détection de fuite dans un système de recyclage des vapeurs de carburant
FR3100840A1 (fr) Détermination de la charge en hydrocarbures d’un filtre absorbant en boucle fermée
FR2959273A1 (fr) Procede de controle de purge d'un systeme de reduction catalytique selective
EP1321652B1 (fr) Procédé de régulation de la dépression dans un réservoir à carburant pour automobile
WO2022161859A1 (fr) Dispositif et procede de purge d'un flux de gaz charge en vapeurs d'hydrocarbures
FR3100841A1 (fr) Détermination de la charge en hydrocarbures d’un filtre absorbant en circuit ouvert
WO2023046639A1 (fr) Dispositif et procédé de récupération active des vapeurs de carburant d'un réservoir d'un véhicule à combustion interne
FR2991275A1 (fr) Dispositif de commande de passage en mode thermique de vehicule hybride
JP4039170B2 (ja) 蒸発燃料処理装置
FR2849117A1 (fr) Procede pour diagnostiquer les pannes d'un systeme d'injection de carburant et outil pour sa mise en oeuvre
FR3103013A3 (fr) PROCEDE DE contrôle D’UN CIRCUIT D’ADMISSION D’AIR DE MOTEUR A COMBUSTION INTERNE SURALIMENTE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19732576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001163

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19732576

Country of ref document: EP

Kind code of ref document: A1