WO2019242268A1 - 监测站的选址方法、用于监测站选址的装置 - Google Patents

监测站的选址方法、用于监测站选址的装置 Download PDF

Info

Publication number
WO2019242268A1
WO2019242268A1 PCT/CN2018/123426 CN2018123426W WO2019242268A1 WO 2019242268 A1 WO2019242268 A1 WO 2019242268A1 CN 2018123426 W CN2018123426 W CN 2018123426W WO 2019242268 A1 WO2019242268 A1 WO 2019242268A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
relay
stations
starting
relay stations
Prior art date
Application number
PCT/CN2018/123426
Other languages
English (en)
French (fr)
Inventor
余磊
陈星云
杨易之
杨明
易水寒
周治柱
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Priority to US15/734,894 priority Critical patent/US11159232B2/en
Publication of WO2019242268A1 publication Critical patent/WO2019242268A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/12Shortest path evaluation
    • H04L45/123Evaluation of link metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for selecting a monitoring station location and a device for selecting a monitoring station location.
  • the optical fiber cable monitoring system can monitor the optical fiber in real time, automatically find the optical fiber cable faults and hidden trouble points, shorten the optical fiber cable fault duration, improve the maintenance efficiency of the transmission network, and reduce the line maintenance costs.
  • the distribution of the monitoring stations needs to be designed reasonably.
  • the reasonable location of the monitoring stations can cover as many optical fiber lines as possible with the minimum number of monitoring stations, which is optimized. Layout, reducing the role of investment.
  • the site selection of monitoring stations is performed manually.
  • the designer decides to set up some stations as monitoring stations based on the distribution of the stations and the connection conditions of the optical cables, and designs the range of optical cables monitored by the monitoring stations.
  • With the increase of the complexity of the fiber optic network there are more and more relay sites. For hundreds or even thousands of relay sites, how to choose the optimal monitoring site reasonably has been difficult to complete manually.
  • the technical problem to be solved by the embodiments of the present invention is that the monitoring station serves as the core functional site of the optical cable monitoring system.
  • the location of the monitoring station directly affects the range of optical cables that the optical cable monitoring system can monitor.
  • relay stations are also increasing The more and more, for hundreds or even thousands of relay stations, how to reasonably select the optimal monitoring station, it is difficult to complete the distribution of monitoring stations by rational design. Therefore, it is necessary to select a reasonable location for the monitoring station to cover as many optical fiber lines as possible with the least resources, thereby improving the efficiency of fault analysis.
  • the present invention provides a method for selecting a monitoring station, including:
  • Each relay station is set as a starting station in turn, and the relay stations in the station list are traversed from the starting station according to a preset coverage area, and the failure of the relay station corresponding to each of the starting stations that is not covered is determined. set;
  • the method further includes: acquiring the number of optical cables of each relay station, wherein the number of optical cables is one of the relay station and the station. Number of optical cables directly connected by other relay stations in the list;
  • the collection of relay stations includes:
  • Each relay station in the relay station set with the number of optical cables not less than 2 is set as a starting station, and the relay stations in the site list are traversed from the starting station according to a preset coverage area, and each of the relay stations is determined. The set of uncovered relay stations corresponding to the starting station.
  • each relay station is set as a starting station in turn, and the relay stations in the site list are traversed from the starting station according to a preset coverage area to determine the unscheduled corresponding to each of the starting stations.
  • the set of relay stations that can be covered includes:
  • the preset coverage range is a dynamic range of an optical time domain reflectometer OTDR; the optical fiber attenuation between the relay stations represents a path length between the relay stations;
  • the obtaining the relay station corresponding to the shortest path length greater than the preset coverage area, so as to integrate and obtain a set of uncovered relay stations corresponding to each of the starting stations includes:
  • the shortest path algorithm includes any one of Dijkstra algorithm, Bellman-Ford algorithm, Floyd algorithm or SPFA algorithm.
  • the dynamic range of the OTDR is a maximum attenuation value of a backscattering curve that can be measured by an optical time domain reflectometer OTDR, and the maximum attenuation value ranges from 30 dB to 45 dB.
  • intersection base number is the number of sets in each intersection; the set of intersection bases that are not covered by each of the starting stations is traversed and intersected according to a preset intersection base number, and
  • the determination of one or more relay stations corresponding to the set whose intersection result is the empty set as the target monitoring station includes:
  • the address selection method further includes: if there is an empty set, stopping traversing the intersection, and determining one or more relay stations corresponding to the set whose intersection result is the empty set as the target monitoring station.
  • the preset intersection base number is 1, and the set of uncovered relay stations corresponding to each of the starting stations is traversed for intersection according to the preset intersection base number, and the intersection result is
  • the determination of one or more relay stations corresponding to the empty set as the target monitoring station includes:
  • a relay station corresponding to the set of uncovered relay stations corresponding to the starting station is an empty set set is determined as the target monitoring station.
  • the present invention further provides a device for selecting a monitoring station location, including at least one processor; and a memory communicatively connected to the at least one processor; wherein the memory stores a memory that can be used by Instructions executed by at least one processor, the instructions being set by a program to perform the method for selecting a location of a monitoring station according to the first aspect.
  • the present invention also provides a non-volatile computer storage medium, where the computer storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors to complete the first The method of selecting a monitoring station as described above.
  • the embodiment of the present invention has the beneficial effect that the present invention uses a traversal manner to determine the set of relay stations corresponding to each relay station that cannot be covered, and traverses and intersects the foregoing set in turn.
  • the present invention uses a traversal manner to determine the set of relay stations corresponding to each relay station that cannot be covered, and traverses and intersects the foregoing set in turn.
  • the relay station corresponding to the set where the intersection result is the empty set is set as the target monitoring station, so that the optical cable monitoring system can monitor all the relay stations in the station list, improve the efficiency and accuracy of the monitoring station location, and have a wide range of applications. Performance, which in turn shortens the duration of the maintenance of the optical cable, improves the maintenance efficiency of the transmission network, and reduces line maintenance costs.
  • FIG. 1 is a schematic flowchart of a method for selecting a monitoring station location according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a specific embodiment of step 11 in FIG. 1;
  • FIG. 3 is a schematic flowchart of a specific embodiment of step 12 in FIG. 1;
  • FIG. 4a is a schematic diagram of a topology structure of an optical fiber network according to an embodiment of the present invention.
  • FIG. 4b is a schematic diagram of a connection relationship between the optical cables between the relay stations and the optical cable attenuation relationship between the relay stations in FIG. 4a;
  • 4c is a schematic diagram of the shortest path length relationship between the relay station in FIG. 4a as the starting station and other relay stations;
  • FIG. 5 is a schematic structural diagram of a device for selecting a monitoring station location according to an embodiment of the present invention.
  • Embodiment 1 of the present invention provides a method for selecting a monitoring station.
  • the method for selecting a monitoring station is applicable to a fiber network with various network connection relationships, especially a scenario where the connection relationship of the fiber network is complicated and there are many relay stations.
  • an optimal monitoring station can be quickly and efficiently selected from a large number of relay stations, thereby improving the efficiency of location selection.
  • the site selection method of the monitoring station includes the following steps:
  • Step 10 Obtain a site list including multiple relay stations and the connection relationship of the optical cables between the relay stations.
  • the actual optical cable network structure is integrated into a network topology diagram or chart as a data source.
  • a site list including multiple relay stations and the connection relationship of the optical cables between the relay stations can be obtained by analyzing the aforementioned data source.
  • the station names of the relay stations in the station list are unique in the same optical cable distribution diagram.
  • the optical cable connection relationship between different relay stations and the attenuation between different relay stations are obtained.
  • the attenuation of the optical cable has a certain relationship with the actual path length of the optical cable, and the actual path length of the optical cable can be indirectly reflected by the attenuation of the optical cable.
  • Step 11 Set each relay station as a starting station in turn, and traverse the relay stations in the site list from the starting station according to a preset coverage area, and determine the failure to cover corresponding to each of the starting stations. Collection of relay stations.
  • the preset coverage range is determined by the test dynamic range of the corresponding optical cable tester, that is, the maximum test capability of the tester.
  • an optical time domain reflectometer (Optical Time Domain Reflectometer, abbreviated as: OTDR) can be used to measure the optical cables between relay stations to locate faults.
  • OTDR is a precision optoelectronic integrated meter made by using Rayleigh scattering and Fresnel reflection when light is transmitted through an optical fiber. It is widely used in the maintenance and construction of optical cable lines. , Can measure fiber length, fiber transmission attenuation, connector attenuation and fault location.
  • the preset coverage is set according to the dynamic range of the optical time domain reflectometer OTDR.
  • the dynamic range of the OTDR is the maximum attenuation value of the backscatter curve that the optical time domain reflectometer OTDR can test.
  • the OTDR maximum attenuation value ranges from 30dB to 45dB, that is, the dynamic range of the OTDR is between 30dB and 45dB, which can be 30dB or 40dB or 45dB.
  • the larger the dynamic range of the OTDR the higher the corresponding cost of the OTDR tester. In actual application scenarios, you can select the corresponding OTDR according to the actual situation, and then set the coverage.
  • each relay station in the site list is sequentially set as the starting station, and the relay station in the site list is traversed from the starting station according to a preset coverage area to determine the failure corresponding to each starting station.
  • Set of covered relay stations When the optical fiber network is complicated, different connection paths may exist between different relay stations, and the optical cable attenuation of different connection paths is different.
  • the shortest path algorithm is used to calculate different relay stations. The shortest path length between them, and comparing the shortest path length with a preset coverage area, and then determining the set of uncovered relay stations corresponding to each starting station. Please refer to FIG. 2 for the specific method, which includes the following steps:
  • Step 111 Set each relay station as the starting station in turn.
  • Step 112 Calculate the shortest path length from the starting station to the relay station in the station list by using the shortest path algorithm.
  • a shortest path algorithm is used to calculate the shortest path length from the starting station to the relay stations in the station list, where the fiber loss between the relay stations represents the path length between the relay stations.
  • optical cable data transmission between different relay stations can be bidirectional.
  • the shortest path algorithm includes any one of Dijkstra algorithm, Bellman-Ford algorithm, Floyd algorithm or SPFA algorithm.
  • the corresponding algorithm can be selected according to the actual optical cable distribution map.
  • Step 113 Obtain a relay station corresponding to the shortest path length greater than the preset coverage area, so as to integrate and obtain a set of uncovered relay stations corresponding to each of the starting stations.
  • the tester cannot cover the relay station from the starting station, that is, The tester cannot completely test all the optical cables between the starting station and the relay station, and thus cannot determine the failure point. Therefore, when the shortest path length between the starting station and other relay stations is greater than the preset coverage area, the starting station cannot cover the corresponding relay station, and the relay stations corresponding to the shortest path length greater than the preset coverage area are integrated. Thus, a set of relay stations that cannot be covered corresponding to each starting station is obtained.
  • the preset coverage range is the dynamic range of the optical time domain reflectometer OTDR, and the relay station corresponding to the shortest path length greater than the dynamic range of the OTDR is obtained, thereby integrating to obtain each A set of uncovered relay stations corresponding to a starting station.
  • a set of repeater stations with an optical cable direction of not less than 2 can be filtered out, and then the traversal and intersection are performed according to the set of repeater stations with an optical cable direction of not less than 2 to determine each start.
  • the number of optical cables of each relay station is obtained, where the number of optical cables is the number of optical cables that a relay station directly connects with other relay stations in the station list, and the set of relay stations with the number of optical cables not less than 2 can be understood as the relay stations in the set Establish a connection directly with no less than 2 other relay stations.
  • each relay station in the foregoing relay station set with the number of optical cables not less than 2 is set as a starting station, and the relay stations in the site list are traversed from the starting station according to a preset coverage area, and then determined. The set of uncovered relay stations corresponding to each starting station.
  • part of the relay stations located at the edge can be eliminated to reduce the traversed objects, thereby improving the efficiency of site selection.
  • Step 12 Traverse the set of uncovered relay stations corresponding to each of the starting stations according to a preset intersection cardinality, and determine one or more relay stations corresponding to the set whose intersection result is an empty set. Target monitoring station.
  • intersection base number is the number of sets in each intersection, and may be 1 or 2 or other numbers. In practical scenarios, a reasonable intersection base can be determined based on the actual network distribution.
  • Step 121 Traverse the set of remaining relay stations that cannot be covered corresponding to each of the starting stations according to a preset intersection base.
  • the set of uncovered relay stations corresponding to each starting station is traversed and intersected according to a preset intersection base.
  • Step 122 Determine whether there is an empty set in the intersection result in the traversal intersection process.
  • step 123 it is determined whether an empty set exists in the intersection result in the traversal intersection process. If an empty set does not exist, step 123 is performed, and if an empty set exists, step 124 is performed.
  • Step 123 If the empty set does not exist, reset the intersection base in an incremental manner, and perform the set of the remaining intersection stations that cannot be covered corresponding to each of the starting stations with the reset intersection base. Iterate and intersect to determine whether there is an empty set in the result of the intersect in the traversal and intersect process.
  • Step 124 If there is an empty set, stop traversing the intersection, and determine one or more relay stations corresponding to the set whose intersection result is the empty set as the target monitoring station.
  • the intersection base is reset in an incremental manner. For example, the difference can be incremented by 1 or the difference can be incremented by 2. Depending on the situation, it is not specifically limited here.
  • a new set of intersection bases is used to perform the next traversal intersection on the set of uncovered relay stations corresponding to each starting station, and it is determined whether there is an empty set in the intersection result in the traversal intersection process.
  • the intersection is continuously traversed based on the intersection cardinality until an empty set exists in the intersection result.
  • if there is an empty set stop traversing the intersection, and one or more relay stations corresponding to the set whose intersection result is the empty set. Determined as the target monitoring station.
  • the intersection results of multiple groups of sets are all empty, that is, they can be combined by multiple groups of selectable monitoring stations. Because the importance of different relay stations is different in actual scenarios, monitoring stations can be set up near important relay stations in order to reduce maintenance time in the event of a failure.
  • each traversal intersection process is completed, that is, all sets are traversed and intersection, and multiple sets of sets that meet the intersection result are empty, and then determine the multiple sets available
  • the selected monitoring station combination is then selected as a target monitoring station from a plurality of monitoring station combinations according to the actual situation. Specifically, the level of the relay station is obtained from the station list. The higher the level of a relay station, the more important the relay station is.
  • the shortest path lengths between multiple groups of monitoring stations and high-level relay stations are obtained, and different monitoring stations are compared. The shortest path length of the high-level monitoring station, and the monitoring station with the shortest path length is set as the target monitoring station.
  • the intersection base Before traversing the intersection, the intersection base is preset to 1, that is, the collections themselves intersect, and then it is determined whether there are relay stations that can cover all the relay stations in the station list. Specifically, the intersection base is preset to 1, and then the set of uncovered relay stations corresponding to each starting station is intersected by itself, and it is determined whether the set of uncovered relay stations corresponding to the starting station exists. An empty set. If an empty set exists, a relay station corresponding to the set of uncovered relay stations corresponding to the starting station is an empty set and is determined as the target monitoring station.
  • FIG. 4a is a schematic diagram of a topology structure of an optical fiber network according to an embodiment of the present invention.
  • the optical fiber network includes 16 different relay stations, which are relay station A, relay station B, relay station C, and relay station D, respectively. , Relay station E, relay station F, relay station G, relay station H, relay station I, relay station J, relay station M, relay station N, relay station O, relay station P, relay station Q, and relay station R.
  • the site list including multiple relay stations and the connection relationship of the optical cables between the relay stations are obtained according to the schematic diagram of the optical fiber network topology.
  • the specific station list, the connection relationship between the optical fiber cables between the relay stations, and the optical cable attenuation between the relay stations are shown in FIG. 4b.
  • FIG. 4b shows the station list, the optical cable connection relationship between the relay stations, and the optical cable attenuation between the relay stations. .
  • the number of fiber optic cables for relay station A, relay station E, and relay station F are 2, the number of fiber optic cables for relay station B, relay station C, and relay station O are 4, and the number of fiber optic cables for relay station N and relay station D.
  • each relay station in the relay station set U1 with the number of fiber optic cables not less than 2 is set as the starting station, and the relay station in the site list is traversed from the starting station according to the preset coverage area, and then the corresponding starting station is determined.
  • a collection of uncovered relay stations is taken as an example for explanation.
  • the optical fiber attenuation between the relay stations represents the path length between the relay stations.
  • FIG. 4c shows the shortest path length (minimum attenuation) of all relay stations in the station list when different relay stations are used as starting stations.
  • all the relay stations with the shortest path length from the starting station to other relay stations greater than 40 dB are the set of uncovered relay stations corresponding to the starting station.
  • intersection base is the number of sets for each intersection.
  • preset intersection cardinality is 1 for illustration.
  • the intersection cardinality is 1, and the number of sets in each intersection is 1, it means that the set itself intersects.
  • the intersection cardinality is 1, U A ⁇ U O respectively intersect each other.
  • the intersection is traversed according to the intersection base when the second traversal is performed.
  • the intersection is performed according to the intersection base for the third traversal in the third traversal. Iterate and intersect any three different sets in the set U A , set U B , set U C , set U D , set U E , set U F , set U N, and set U O. For example, set U A , The set U B and the set U C intersect, the set U D , the set U E and the set U F are intersected, and the traversal is performed in the foregoing manner.
  • the embodiment of the present invention has the beneficial effect that the present invention uses a traversal manner to determine the set of relay stations corresponding to each relay station that cannot be covered, and traverses and intersects the foregoing set in turn.
  • the present invention uses a traversal manner to determine the set of relay stations corresponding to each relay station that cannot be covered, and traverses and intersects the foregoing set in turn.
  • the relay station corresponding to the set where the intersection result is empty is set as the target monitoring station, which improves the efficiency and accuracy of the monitoring station location, and has a wide applicability, so that the fiber optic cable monitoring system can perform all the relay stations in the station list. Monitoring, shortening the duration of the failure of the optical cable, improving the maintenance efficiency of the transmission network, and reducing the line maintenance costs.
  • FIG. 5 is a schematic structural diagram of a device for selecting a monitoring station location according to an embodiment of the present invention.
  • the apparatus for selecting a monitoring station address in this embodiment includes one or more processors 51 and a memory 52. Among them, one processor 51 is taken as an example in FIG. 5.
  • the processor 51 and the memory 52 may be connected through a bus or in other manners.
  • the connection through the bus is taken as an example.
  • the memory 52 is a non-volatile computer-readable storage medium based on a site selection method of a monitoring station, and can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, as in the first embodiment. Based on the monitoring station location method and corresponding program instructions.
  • the processor 51 runs the non-volatile software programs, instructions, and modules stored in the memory 52 to execute various functional applications and data processing of the monitoring station location method, that is, to implement the monitoring station selection according to the first embodiment. The function of the address method.
  • the memory 52 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 52 may optionally include a memory remotely disposed with respect to the processor 51, and these remote memories may be connected to the processor 51 through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the processor 51 may obtain a site list including multiple relay stations and the connection relationship of the optical cables between the relay stations by analyzing the aforementioned data source.
  • the processor 51 needs to obtain a site list including a plurality of relay stations in a certain area or a certain place, and the connection relationship of the optical cables between the relay stations.
  • the station names of the relay stations in the station list It is unique in order to identify and distinguish different relay stations.
  • the processor 51 acquires the optical cable connection relationship between different relay stations and the attenuation between different relay stations.
  • the attenuation of the optical cable has a certain relationship with the actual path length of the optical cable, and the actual path length of the optical cable can be indirectly reflected by the attenuation of the optical cable.
  • the processor 51 sequentially sets each relay station as a starting station, and traverses the relay stations in the station list from the starting station according to a preset coverage area, and determines the unscheduled corresponding to each of the starting stations.
  • the preset coverage range is determined by the test dynamic range of the corresponding optical cable tester, that is, the maximum test capability of the tester.
  • an optical time domain reflectometer Optical Time Domain Reflectometer, OTDR for short
  • OTDR is a precision optoelectronic integrated meter made by using Rayleigh scattering and Fresnel reflection when light is transmitted through an optical fiber. It is widely used in the maintenance and construction of optical cable lines. , Can measure fiber length, fiber transmission attenuation, connector attenuation and fault location.
  • the processor 51 sets a preset coverage according to the dynamic range of the optical time domain reflectometer OTDR.
  • the dynamic range of the OTDR is the maximum attenuation value of the backscattering curve that the optical time domain reflectometer OTDR can test.
  • the maximum attenuation range of OTDR on the market is 30dB ⁇ 45dB, that is, the dynamic range of OTDR is between 30dB ⁇ 45dB, which can be 30dB or 40dB or 45dB.
  • the larger the dynamic range of the OTDR the higher the corresponding cost of the OTDR tester. In actual application scenarios, you can select the corresponding OTDR according to the actual situation, and then set the coverage.
  • the processor 51 sequentially sets each relay station in the site list as a starting station, and traverses the relay station in the site list from the starting site according to a preset coverage area, and determines the corresponding each starting station. A collection of uncovered relay stations.
  • the processor 51 uses the shortest path algorithm Calculate the shortest path length between different relay stations, compare the shortest path length with a preset coverage area, and then determine the set of uncovered relay stations corresponding to each starting station.
  • the shortest path algorithm includes any one of Dijkstra algorithm, Bellman-Ford algorithm, Floyd algorithm or SPFA algorithm. The corresponding algorithm can be selected according to the actual optical cable distribution map.
  • the tester cannot cover the relay station from the starting station, that is, The tester cannot completely test all the optical cables between the starting station and the relay station, and thus cannot determine the failure point. Therefore, when the shortest path length between the starting station and other relay stations is greater than the preset coverage area, the starting station cannot cover the corresponding relay station, and the relay stations corresponding to the shortest path length greater than the preset coverage area are integrated. Thus, a set of relay stations that cannot be covered corresponding to each starting station is obtained.
  • the preset coverage range is the dynamic range of the optical time domain reflectometer OTDR, and the relay station corresponding to the shortest path length greater than the dynamic range of the OTDR is obtained, thereby integrating to obtain each A set of uncovered relay stations corresponding to a starting station.
  • a set of repeater stations with an optical cable direction of not less than 2 can be filtered out, and then the traversal and intersection are performed according to the set of repeater stations with an optical cable direction of not less than 2 to determine each start The set of relay stations that are not covered by the station.
  • the processor 51 obtains the number of optical cables of each relay station, where the number of optical cables is the number of optical cables that a relay station directly establishes connections with other relay stations in the station list, and the set of relay stations with the number of optical cables not less than 2 can be understood as the set The relay station in China establishes a connection with at least two other relay stations.
  • the processor 51 sequentially sets each relay station in the relay station set with the number of optical cables not less than 2 as a starting station, and traverses the relay stations in the site list from the starting station according to a preset coverage range. , And then determine the set of uncovered relay stations corresponding to each starting station. In this embodiment, part of the relay stations located at the edge can be eliminated to reduce the traversed objects, thereby improving the efficiency of address selection.
  • the processor 51 traverses and intersects the set of uncovered relay stations corresponding to each of the starting stations according to a preset intersection base number, and sets the intersection result to the set corresponding to the empty set.
  • One or more relay stations are identified as target monitoring stations.
  • intersection base number is the number of sets in each intersection, and may be 1 or 2 or other numbers. In practical scenarios, a reasonable intersection base can be determined based on the actual network distribution.
  • the processor 51 traverses and intersects the set of uncovered relay stations corresponding to each starting station according to a preset intersection base, and determines whether an empty set exists in the intersection result in the traversal intersection process. If there is no empty set, if there is no set that can cover all the relay stations in this traversal intersection, then the intersection base is reset in an incremental way. For example, the difference can be increased by 1 or the difference can be increased by 2. It depends on the actual situation and is not limited here.
  • a new set of intersection bases is used to perform the next traversal intersection on the set of uncovered relay stations corresponding to each starting station, and it is determined whether there is an empty set in the intersection result in the traversal intersection process.
  • the intersection is continuously traversed based on the intersection cardinality until an empty set exists in the intersection result.
  • if there is an empty set stop traversing the intersection, and one or more relay stations corresponding to the set whose intersection result is the empty set. Determined as the target monitoring station.
  • the intersection results of multiple groups of sets are all empty, that is, they can be combined by multiple groups of selectable monitoring stations. Because the importance of different relay stations is different in actual scenarios, monitoring stations can be set up near important relay stations in order to reduce maintenance time in the event of a failure.
  • each traversal intersection process is completed, that is, all sets are traversed and intersection, and multiple sets of sets that meet the intersection result are empty, and then determine the multiple sets available
  • the selected monitoring station combination is then selected as a target monitoring station from a plurality of monitoring station combinations according to the actual situation. Specifically, the level of the relay station is obtained from the station list. The higher the level of a certain relay station, the more important the relay station is.
  • the processor 51 separately obtains the shortest path length between multiple groups of monitoring stations and high-level relay stations, and compares the differences. The shortest path length from the monitoring station to the high-level monitoring station, and the monitoring station with the shortest path length is set as the target monitoring station.
  • the intersection base is preset to 1, that is, the collections themselves intersect, and then it is determined whether there are relay stations that can cover all the relay stations in the station list.
  • the preset intersection base is 1, and the processor 51 intersects the set of uncovered relay stations corresponding to each starting station in turn, and determines and determines the set of uncovered relay stations corresponding to the starting station. Whether there is an empty set, and if there is an empty set, a relay station corresponding to the set of uncovered relay stations corresponding to the starting station is an empty set is determined as the target monitoring station.
  • the device for site selection of a monitoring station in this embodiment is applicable to the site selection method of any of the foregoing embodiments.
  • the site selection method for a monitoring station please refer to FIG. 1 to FIG. 4 and related text descriptions. More details.
  • the embodiment of the present invention has the beneficial effect that the present invention uses a traversal manner to determine the set of relay stations corresponding to each relay station that cannot be covered, and traverses and intersects the foregoing set in turn.
  • the present invention uses a traversal manner to determine the set of relay stations corresponding to each relay station that cannot be covered, and traverses and intersects the foregoing set in turn.
  • the relay station corresponding to the set where the intersection result is empty is set as the target monitoring station, which improves the efficiency and accuracy of the monitoring station location, and has a wide applicability, so that the fiber optic cable monitoring system can perform all the relay stations in the station list. Monitoring, shortening the duration of the failure of the optical cable, improving the maintenance efficiency of the transmission network, and reducing the line maintenance costs.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: Read memory (ROM), Random Access Memory (RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及通信技术领域,提供了一种监测站的选址方法及用于监测站选址的装置,该监测站的选址方法包括:获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系;依次设置每一中继站为起始站点,并按照预设的覆盖范围从起始站点出发遍历站点列表中的中继站,确定每一起始站点所对应的未能覆盖的中继站的集合;按照预设的求交基数对每一起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。本发明监测站的选址方法提高了监测站选址的效率以及准确率,且具有较广的适用性。

Description

监测站的选址方法、用于监测站选址的装置 【技术领域】
本发明涉及通信技术领域,特别是涉及一种监测站的选址方法、用于监测站选址的装置。
【背景技术】
随着通信网络的发展,光纤网络变得越来越复杂,由于工程施工、自然灾害的影响,光纤网络故障也越来越多。光缆监测系统可以实时对光纤进行监测,自动查找光缆故障及隐患点,缩短光缆的故障历时,提高了传输网维护效率,同时降低线路维护费用。
光缆监测系统方案设计时,由于监测站作为光缆监测系统的核心功能站点,需合理设计监测站的分布,监测站合理的选址可以用最少的监测站覆盖尽可能多的光缆线路,起到优化布局,减少投资的作用。
目前,监测站选址是通过人工方式进行,设计人员根据站点分布和光缆连接情况,决定将部分站点设置为监测站,并设计监测站监测的光缆范围。随着光纤网络的复杂度增加,中继站点也越来越多,针对上百个甚至上千个中继站,如何合理选择最优监测站点,靠人工方式已经很难完成。
鉴于此,克服该现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明实施例要解决的技术问题是监测站作为光缆监测系统的核心功能站点,监测站的选址直接影响光缆监测系统所能够监测光缆范围,由于光纤网络的复杂度增加,中继站点也越来越多,针对上百个甚至上千个中继站,如何合理选择最优监测站点,靠人工方式已经很难完成需合理设计监测站的分布。因此,需要对监测站进行合理的选址,实现用最少的资源覆盖尽可能多的光缆线路,从而提高故障分析的效率。
本发明实施例采用如下技术方案:
第一方面,本发明提供一种监测站的选址方法,包括:
获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系;
依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合;
按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
优选的,所述获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系之后,还包括:获取每一中继站的光缆数量,其中,所述光缆数量为一所述中继站与所述站点列表中的其他中继站直接建立连接的光缆数量;
获取所述光缆数量不小于2的中继站集合;
所述依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合包括:
依次设置所述光缆数量不小于2的中继站集合中的每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合。
优选的,所述依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合包括:
依次设置每一中继站为起始站点;
通过最短路径算法计算从所述起始站点出发到达所述站点列表中的中继站的最短路径长度;
获取所述最短路径长度大于所述预设的覆盖范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合。
优选的,所述预设的覆盖范围为光时域反射仪OTDR的动态范围;所述中继站之间的光纤衰耗表示所述中继站之间的路径长度;
所述获取所述最短路径长度大于所述预设的覆盖范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合包括:
获取所述最短路径长度大于所述OTDR的动态范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合。
优选的,所述最短路径算法包括:Dijkstra算法,Bellman-Ford算法,Floyd算法或SPFA算法中的任一种。
优选的,所述OTDR的动态范围为光时域反射仪OTDR能够测试的背向散射曲线的最大衰减值,所述最大衰减值的范围为30dB~45dB。
优选的,所述求交基数为每次求交时的集合数目;所述按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站包括:
按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交;
判断确定本次遍历求交过程中求交结果是否存在空集;
若不存在空集,则以递增的方式重新设置所述求交基数,并以重新设置的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合进行遍历求交,判断确定本次遍历求交过程中求交结果是否存在空集。
优选的,所述选址方法还包括:若存在空集,则停止遍历求交,将所述求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
优选的,所述预设的求交基数为1,所述按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站包括:
依次将每一所述起始站点所对应的未能覆盖的中继站的集合各自自身求交;
判断确定所述起始站点所对应的未能覆盖的中继站的集合是否存在空集;
若存在空集,则将所述起始站点所对应的未能覆盖的中继站的集合是空集的集合所对应的一个中继站确定为目标监测站。
第二方面,本发明还提供一种用于监测站选址的装置,包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被程序设置为执行第一方面所述的监测站的选址方法。
第三方面,本发明还提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,用于完成第一方面所述的监测站的选址方法。
与现有技术相比,本发明实施例的有益效果在于:本发明采用遍历的方式确定每一个中继站所对应的未能覆盖的中继站的集合,并将前述的集合依次遍历求交,当求交结果存在空集时,可以确定前述的一个或多个集合中没有相同的中继站,从而确定前述求交结果为空集的集合所对应的中继站相互配合可以覆盖站点列表中的全部中继站,则可将求交结果为空集的集合所对应的中继站设置为目标监测站,以便于光缆监测系统对站点列表中的全部中继站进行监测,提高监测站选址的效率以及准确率,且具有较广的适用性,进而缩短维修光缆的故障历时,提高了传输网维护效率,同时降低线路维护费用。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例提供的一种监测站的选址方法的流程示意图;
图2是图1中的步骤11的一具体实施例的流程示意图;
图3是图1中的步骤12的一具体实施例的流程示意图;
图4a是本发明实施例提供的一种光纤网络拓扑结构示意图;
图4b为图4a中的中继站之间的光缆的连接关系以及中继站之间的光缆衰耗的关系示意图;
图4c为图4a中的中继站为起始站点到其他中继站的最短路径长度关系示意图;
图5是本发明实施例提供的一种用于监测站选址的装置的结构示意图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:
本发明实施例1提供了一种监测站的选址方法,该监测站的选址方法适用于各种网络连接关系的光纤网络,特别是光纤网络的连接关系较复杂、中继站较多的场景,采用本实施例1的监测站的选址方法可以快速、有效地从众多中继站中选择最优的监测站点,提高选址效率。该监测站的选址方法包括如下步骤:
步骤10:获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系。
在本实施例中,在进行监测站选址时,首先需要获取实际的光缆分布图,再根据光缆分布图选择合适的中继站作为监测站。在一个具体的应用场景中,在对某个区域或某个地方搭建通信网络时,将实际的光缆网络结构整合成网络拓扑图或图表作为数据源。在本实施例中,可以通过解析前述的数据源获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系。
具体而言,需要获取某个区域或某个地方包括多个中继站的站点列表以及中继站之间的光缆的连接关系,其中,在同一光缆分布图中,站点列表中的中继站的站点名称是唯一的,以便于识别和区分不同的中继站。同时,获取不同中继站之间的光缆连接关系以及不同中继站之间的衰耗。在实际场景中,光缆 的衰耗与光缆的实际路径长度存在一定的关系,可以用光缆的衰耗间接反映光缆的实际路径长度。
步骤11:依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合。
其中,预设的覆盖范围是由相应的光缆测试仪的测试动态范围而决定的,即由测试仪的最大测试能力决定的。在实际应用场景中,可以采用光时域反射仪(Optical Time Domain Reflectometer,简写为:OTDR)对中继站之间的光缆进行测量,从而对故障进行定位。其中,OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
在本实施例中,依据光时域反射仪OTDR的动态范围设置预设的覆盖范围,OTDR的动态范围为光时域反射仪OTDR能够测试的背向散射曲线的最大衰减值,目前市面上的OTDR最大衰减值的范围为30dB~45dB,即,OTDR的动态范围位于30dB~45dB之间,可以为30dB或40dB或45dB。OTDR的动态范围越大,OTDR测试仪相应的成本也就越高。在实际应用场景中,可以依据实际情况选择相应的OTDR,进而设置覆盖范围。
在本实施例中,依次设置站点列表中的每一中继站为起始站点,并按照预设的覆盖范围从该起始站点出发遍历站点列表中的中继站,确定每一起始站点所对应的未能覆盖的中继站的集合。在光纤网络较复杂时,不同的中继站之间可能存在不同的连接路径,且不同的连接路径的光缆衰耗不同,为了提高判断的准确性,在本实施例中,采用最短路径算法计算不同中继站之间的最短路径长度,并对比该最短路径长度与预设的覆盖范围,进而确定每一起始站点所对应的未能覆盖的中继站的集合。具体的方法请参阅图2,具体包括如下步骤:
步骤111:依次设置每一中继站为起始站点。
步骤112:通过最短路径算法计算从所述起始站点出发到达所述站点列表中 的中继站的最短路径长度。
在本实施例中,通过最短路径算法计算从所述起始站点出发到达所述站点列表中的中继站的最短路径长度,其中,中继站之间的光纤衰耗表示中继站之间的路径长度。在本实施例中,不同中继站之间的光缆数据传输可以双向的。
其中,最短路径算法包括Dijkstra算法,Bellman-Ford算法,Floyd算法或SPFA算法中的任一种,可以依据实际的光缆分布图选择相应的算法。
步骤113:获取所述最短路径长度大于所述预设的覆盖范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合。
由于预设的覆盖范围是由测试仪决定的,当从起始站点出发到达某一中继站的最短路径大于预设的覆盖范围时,测试仪从起始站点出发是无法覆盖到该中继站的,即测试仪无法完整测试起始站点与该中继站之间的所有光缆,进而无法判断出故障点。因此,当起始站点与其他中继站之间的最短路径长度大于预设的覆盖范围时,该起始站点是无法覆盖对应的中继站,将最短路径长度大于预设的覆盖范围所对应的中继站进行整合,从而得到每一起始站点所对应的未能覆盖的中继站的集合。
具体而言,当选用光时域反射仪OTDR进行测试时,预设的覆盖范围为光时域反射仪OTDR的动态范围,获取最短路径长度大于OTDR的动态范围所对应的中继站,从而整合得到每一起始站点所对应的未能覆盖的中继站的集合。
在优选的实施例中,为了提高选址的效率,节省处理计算的能力可以先筛选出光缆方向不小于2的中继站集合,再依据光缆方向不小于2的中继站集合进行遍历求交确定每一起始站点所对应的未能覆盖的中继站的集合。
具体地,获取每一中继站的光缆数量,其中,光缆数量为一中继站与站点列表中的其他中继站直接建立连接的光缆数量,获取光缆数量不小于2的中继站集合,可以理解为该集合中的中继站与不少于2个的其他中继站直接建立连接。同时,在本实施例中,依次设置前述光缆数量不小于2的中继站集合中的每一中继站为起始站点,并按照预设的覆盖范围从起始站点出发遍历站点列表中的中继站,进而确定每一起始站点所对应的未能覆盖的中继站的集合。在本 实施例中,可以将部分位于边缘位置的中继站剔除,减少遍历的对象,进而提高选址的效率。
步骤12:按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
其中,求交基数为每次求交时的集合数目,可以为1或2或者其他数目。在实际场景中,可以依据实际的网路分布情况确定合理的求交基数。
具体的方法请参阅图3,具体包括如下步骤:
步骤121:按照预设的求交基数对每一所述起始站点所对应的未能覆盖的剩余中继站的集合遍历求交。
在本实施例中,按照预设的求交基数对每一起始站点所对应的未能覆盖的中继站的集合遍历求交。
步骤122:判断确定本次遍历求交过程中求交结果是否存在空集。
在本实施例中,判断确定本次遍历求交过程中求交结果是否存在空集。若不存在空集,执行步骤123,若存在空集,则执行步骤124。
步骤123:若不存在空集,则以递增的方式重新设置所述求交基数,并以重新设置的求交基数对每一所述起始站点所对应的未能覆盖的剩余中继站的集合进行遍历求交,判断确定本次遍历求交过程中求交结果是否存在空集。
步骤124:若存在空集,则停止遍历求交,将所述求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
在本实施例中,本次遍历求交中没有集合能够覆盖全部的中继站,则以递增的方式重新设置求交基数,例如,可以差值1进行递增,也可以差值2进行递增,根据实际情况而定,在此,不做具体限定。同时,以重新设置的求交基数对每一起始站点所对应的未能覆盖的中继站的集合进行下一次遍历求交,判断确定本次遍历求交过程中求交结果是否存在空集。
按照上述方式,基于求交基数不断遍历求交,直至求交结果存在空集。在其中的一个实施例中,为了提高效率,在某次遍历求交的过程中,若存在空集, 则停止遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。在另一个实施例中,在某次遍历求交的过程中,可能存在有多组集合求交后的求交结果均为空的情况,即,可以由多组可供选择的监测站组合,由于在实际场景下,不同的中继站的重要程度不同,可以在靠近重要中继站的地方设置监测站,以便于在发生故障时减少维修时间。
因此,在重新设置求交基数后,每次的遍历求交过程均执行完毕,即全部的集合均进行遍历求交,并获取符合求交结果为空的多组集合,进而确定多组可供选择的监测站组合,再根据实际情况从多组监测站组合中选取一组或多组监测站作为目标监测站。具体而言,从站点列表中获取中继站的等级,某个中继站的等级越高则表示该中继站越重要,分别获取多组监测站与高等级中继站之间的最短路径长度,并比较不同监测站到高等级监测站的最短路径长度,将最短路径长度最小的监测站设置为目标监测站。
在具体的应用场景中,当需要多个中继站同时配合组成监测站时所需的成本较高,而可能存在其中一个中继站能够覆盖到站点列表中的全部中继站,因此,为了提高选址的效率,在遍历求交之前,预设求交基数为1,即,集合各自自身求交,进而确定是否有中继站能够覆盖到站点列表中的全部中继站。具体地,预设求交基数为1,然后依次将每一起始站点所对应的未能覆盖的中继站的集合各自自身求交,判断确定起始站点所对应的未能覆盖的中继站的集合是否存在空集,若存在空集,则将起始站点所对应的未能覆盖的中继站的集合是空集的集合所对应的一个中继站确定为目标监测站。
前述具体阐述了本发明的监测站选址的方法,为了直观的解释说明监测站选址的具体过程,在此,以一具体的应用场景解释说明。具体请参阅图4a,本发明实施例提供的一种光纤网络拓扑结构示意图,如图4a所示,该光纤网路包括16个不同的中继站,分别为中继站A、中继站B、中继站C、中继站D、中继站E、中继站F、中继站G、中继站H、中继站I、中继站J、中继站M、中继站N、中继站O、中继站P、中继站Q以及中继站R。
在进行监测站选址时,依据光纤网络拓扑结构示意图获取包括多个中继站 的站点列表以及中继站之间的光缆的连接关系。具体的站点列表、中继站之间的光缆的连接关系以及中继站之间的光缆衰耗具体请参阅图4b,图4b示出站点列表、中继站之间的光缆的连接关系以及中继站之间的光缆衰耗。
现基于图4a以及图4b说明监测站选址的过程。
首先,获取每一中继站的光缆数量,其中,中继站A、中继站E以及中继站F的光缆数量均为2,中继站B、中继站C以及中继站O的光缆数量均为4,中继站N以及中继站D的光缆数量为3,中继站G、中继站H、中继站I、中继站J、中继站M、中继站P、中继站Q以及中继站R的光缆数量均为1,从而获取光缆数量不小于2的中继站集合U1={中继站A,中继站B,中继站C,中继站D,中继站E,中继站F,中继站N,中继站O}。
然后,依次设置光缆数量不小于2的中继站集合U1中的每一中继站为起始站点,并按照预设的覆盖范围从起始站点出发遍历站点列表中的中继站,进而确定每一起始站点所对应的未能覆盖的中继站的集合。在此,以预设的覆盖范围为40dB为例解释说明,其中,中继站之间的光纤衰耗表示中继站之间的路径长度。
下面结合图4c进行解释说明,图4c示出以不同中继站为起始站点时,到达站点列表中的全部中继站的最短路径长度(最小衰耗)。如图4c所示,从起始站点到达其他中继站的最短路径长度大于40dB的全部中继站为起始站点所对应的未能覆盖的中继站的集合。
(1)以中继站A为起始站点,起始站点A(中继站A)所对应的未能覆盖的中继站的集合U A={中继站D、中继站E、中继站F、中继站G、中继站I、中继站J、中继站O、中继站P、中继站Q以及中继站R}。
(2)以中继站B为起始站点,起始站点B(中继站B)所对应的未能覆盖的中继站的集合U B={中继站E、中继站F、中继站G、中继站P、以及中继站R}。
(3)以中继站C为起始站点,起始站点C(中继站C)所对应的未能覆盖 的中继站的集合U C={中继站F、中继站G、中继站M以及中继站Q}。
(4)以中继站D为起始站点,起始站点D(中继站D)所对应的未能覆盖的中继站的集合U D={中继站A、中继站G、中继站M、中继站P以及中继站Q}。
(5)以中继站E为起始站点,起始站点E(中继站E)所对应的未能覆盖的中继站的集合U E={中继站A、中继站B、中继站H、中继站I、中继站M、中继站N、中继站O、中继站P、中继站Q以及中继站R}。
(6)以中继站F为起始站点,起始站点F(中继站F)所对应的未能覆盖的中继站的集合U F={中继站H、中继站I、中继站J、中继站M、中继站N、中继站O、中继站P、中继站Q以及中继站R}。
(7)以中继站N为起始站点,起始站点N(中继站N)所对应的未能覆盖的中继站的集合U N={中继站E、中继站F、中继站G、中继站I、中继站J、中继站M以及中继站P}。
(8)以中继站O为起始站点,起始站点O(中继站O)所对应的未能覆盖的中继站的集合U O={中继站A、中继站E、中继站F、中继站H以及中继站M}。
在确定了各起始站点所对应的未能覆盖的中继站的集合后,按照预设的求交基数,对全部前述集合进行遍历求交,其中,求交基数为每次求交的集合数目。在此以预设的求交基数为1举例说明,在第一次遍历求交时,求交基数为1时,每次求交的集合数目为1个,则表示集合自身求交。在求交基数为1时,U A~U O分别各自自身求交,在第一次遍历求交过程中,求交结果不存在空集,则递增求交基数。
在此,以差值为1递增,则第二次遍历求交时,按照求交基数为2遍历求交。将集合U A、集合U B、集合U C、集合U D、集合U E、集合U F、集合U N以及集合U O分别与其他集合求交,例如,将集合U A分别与集合U B、集合U C、集合U D、集合U E、集合U F、集合U N以及集合U O求交;将集合U B分别与集合U A、集合U C、集合U D、集合U E、集合U F、集合U N以及集合U O求交,按照前述方 式遍历求交,求交结果均不存在空集,则再次递增求交基数。
在此,以差值为1递增,则第三次遍历求交时,按照求交基数为3遍历求交。将集合U A、集合U B、集合U C、集合U D、集合U E、集合U F、集合U N以及集合U O中任意三个不同的集合遍历求交,例如,将集合U A、集合U B和集合U C求交,将集合U D、集合U E和集合U F求交,按照前述方式遍历求交。当集合U B、集合U E以及集合U O求交时,求交结果为空,则停止遍历求交,将集合U B、集合U E以及集合U O所对应的多个中继站确定为目标监测站,即,将中继站B、中继站E以及中继站O设为目标监测站。
在此需要说明的是,上述的实施例是为了便于更好的解释说明本发明,只是前述监测站的选址方法中的一种实施方式,具体的选址方法需对应参照图1~图3以及相关的文字描述。
与现有技术相比,本发明实施例的有益效果在于:本发明采用遍历的方式确定每一个中继站所对应的未能覆盖的中继站的集合,并将前述的集合依次遍历求交,当求交结果存在空集时,可以确定前述的一个或多个集合中没有相同的中继站,从而确定前述求交结果为空集的集合所对应的中继站相互配合可以覆盖站点列表中的全部中继站,则可将求交结果为空集的集合所对应的中继站设置为目标监测站,提高监测站选址的效率以及准确率,且具有较广的适用性,以便于光缆监测系统对站点列表中的全部中继站进行监测,缩短光缆的故障历时,提高了传输网维护效率,同时降低线路维护费用。
实施例2
请参阅图5,图5是本发明实施例提供的一种用于监测站选址的装置的结构示意图。本实施例的用于监测站选址的装置括一个或多个处理器51以及存储器52。其中,图5中以一个处理器51为例。
处理器51和存储器52可以通过总线或者其他方式连接,图5中以通过总线连接为例。
存储器52作为一种基于监测站的选址方法的非易失性计算机可读存储介质, 可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如实施例1中的基于监测站的选址方法以及对应的程序指令。处理器51通过运行存储在存储器52中的非易失性软件程序、指令以及模块,从而执行监测站的选址方法的各种功能应用以及数据处理,即实现实施例1的基于监测站的选址方法的功能。
其中,存储器52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器52可选包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至处理器51。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
在本实施例中,在进行监测站选址时,首先需要获取实际的光缆分布图,再根据光缆分布图选择合适的中继站作为监测站。在一个具体的应用场景中,在对某个区域或某个地方搭建通信网络时,将实际的光缆网络结构整合成网络拓扑图或图表作为数据源。在本实施例中,处理器51可以通过解析前述的数据源获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系。
具体而言,处理器51需要获取某个区域或某个地方包括多个中继站的站点列表以及中继站之间的光缆的连接关系,其中,在同一光缆分布图中,站点列表中的中继站的站点名称是唯一的,以便于识别和区分不同的中继站。同时,处理器51获取不同中继站之间的光缆连接关系以及不同中继站之间的衰耗。在实际场景中,光缆的衰耗与光缆的实际路径长度存在一定的关系,可以用光缆的衰耗间接反映光缆的实际路径长度。
然后,处理器51依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合。
其中,预设的覆盖范围是由相应的光缆测试仪的测试动态范围而决定的,即由测试仪的最大测试能力决定的。在实际应用场景中,可以采用光时域反射仪(Optical Time Domain Reflectometer,简写为:OTDR)对中继站之间的光缆 进行测量,从而对故障进行定位。其中,OTDR是利用光线在光纤中传输时的瑞利散射和菲涅尔反射所产生的背向散射而制成的精密的光电一体化仪表,它被广泛应用于光缆线路的维护、施工之中,可进行光纤长度、光纤的传输衰减、接头衰减和故障定位等的测量。
在本实施例中,处理器51依据光时域反射仪OTDR的动态范围设置预设的覆盖范围,OTDR的动态范围为光时域反射仪OTDR能够测试的背向散射曲线的最大衰减值,目前市面上的OTDR最大衰减值的范围为30dB~45dB,即,OTDR的动态范围位于30dB~45dB之间,可以为30dB或40dB或45dB。OTDR的动态范围越大,OTDR测试仪相应的成本也就越高。在实际应用场景中,可以依据实际情况选择相应的OTDR,进而设置覆盖范围。
在本实施例中,处理器51依次设置站点列表中的每一中继站为起始站点,并按照预设的覆盖范围从该起始站点出发遍历站点列表中的中继站,确定每一起始站点所对应的未能覆盖的中继站的集合。在光纤网络较复杂时,不同的中继站之间可能存在不同的连接路径,且不同的连接路径的光缆衰耗不同,为了提高判断的准确性,在本实施例中,处理器51采用最短路径算法计算不同中继站之间的最短路径长度,并对比该最短路径长度与预设的覆盖范围,进而确定每一起始站点所对应的未能覆盖的中继站的集合。其中,最短路径算法包括Dijkstra算法,Bellman-Ford算法,Floyd算法或SPFA算法中的任一种,可以依据实际的光缆分布图选择相应的算法。
由于预设的覆盖范围是由测试仪决定的,当从起始站点出发到达某一中继站的最短路径大于预设的覆盖范围时,测试仪从起始站点出发是无法覆盖到该中继站的,即测试仪无法完整测试起始站点与该中继站之间的所有光缆,进而无法判断出故障点。因此,当起始站点与其他中继站之间的最短路径长度大于预设的覆盖范围时,该起始站点是无法覆盖对应的中继站,将最短路径长度大于预设的覆盖范围所对应的中继站进行整合,从而得到每一起始站点所对应的未能覆盖的中继站的集合。
具体而言,当选用光时域反射仪OTDR进行测试时,预设的覆盖范围为光 时域反射仪OTDR的动态范围,获取最短路径长度大于OTDR的动态范围所对应的中继站,从而整合得到每一起始站点所对应的未能覆盖的中继站的集合。
在优选的实施例中,为了提高选址的效率,节省处理计算的能力可以先筛选出光缆方向不小于2的中继站集合,再依据光缆方向不小于2的中继站集合进行遍历求交确定每一起始站点所对应的未能覆盖的中继站的集合。
具体地,处理器51获取每一中继站的光缆数量,其中,光缆数量为一中继站与站点列表中的其他中继站直接建立连接的光缆数量,获取光缆数量不小于2的中继站集合,可以理解为该集合中的中继站与不少于2个的其他中继站建立连接。同时,在本实施例中,处理器51依次设置前述光缆数量不小于2的中继站集合中的每一中继站为起始站点,并按照预设的覆盖范围从起始站点出发遍历站点列表中的中继站,进而确定每一起始站点所对应的未能覆盖的中继站的集合。在本实施例中,可以将部分位于边缘位置的中继站剔除,减少遍历的对象,进而提高选址的效率。
在本实施例中,处理器51按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
其中,求交基数为每次求交时的集合数目,可以为1或2或者其他数目。在实际场景中,可以依据实际的网路分布情况确定合理的求交基数。
具体地,处理器51按照预设的求交基数对每一起始站点所对应的未能覆盖的中继站的集合遍历求交,并判断确定本次遍历求交过程中求交结果是否存在空集。若不存在空集,则本次遍历求交中没有集合能够覆盖全部的中继站,则以递增的方式重新设置求交基数,例如,可以差值1进行递增,也可以差值2进行递增,根据实际情况而定,在此,不做具体限定。同时,以重新设置的求交基数对每一起始站点所对应的未能覆盖的中继站的集合进行下一次遍历求交,判断确定本次遍历求交过程中求交结果是否存在空集。
按照上述方式,基于求交基数不断遍历求交,直至求交结果存在空集。在其中的一个实施例中,为了提高效率,在某次遍历求交的过程中,若存在空集, 则停止遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。在另一个实施例中,在某次遍历求交的过程中,可能存在有多组集合求交后的求交结果均为空的情况,即,可以由多组可供选择的监测站组合,由于在实际场景下,不同的中继站的重要程度不同,可以在靠近重要中继站的地方设置监测站,以便于在发生故障时减少维修时间。
因此,在重新设置求交基数后,每次的遍历求交过程均执行完毕,即全部的集合均进行遍历求交,并获取符合求交结果为空的多组集合,进而确定多组可供选择的监测站组合,再根据实际情况从多组监测站组合中选取一组或多组监测站作为目标监测站。具体而言,从站点列表中获取中继站的等级,某个中继站的等级越高则表示该中继站越重要,处理器51分别获取多组监测站与高等级中继站之间的最短路径长度,并比较不同监测站到高等级监测站的最短路径长度,将最短路径长度最小的监测站设置为目标监测站。
在具体的应用场景中,当需要多个中继站同时配合组成监测站时所需的成本较高,而可能存在其中一个中继站能够覆盖到站点列表中的全部中继站,因此,为了提高选址的效率,在遍历求交之前,预设求交基数为1,即,集合各自自身求交,进而确定是否有中继站能够覆盖到站点列表中的全部中继站。具体地,预设求交基数为1,处理器51依次将每一起始站点所对应的未能覆盖的中继站的集合各自自身求交,判断确定起始站点所对应的未能覆盖的中继站的集合是否存在空集,若存在空集,则将起始站点所对应的未能覆盖的中继站的集合是空集的集合所对应的一个中继站确定为目标监测站。
本实施例的用于监测站选址的装置适用于上述任一实施例的选址方法,关于监测站选址方法的具体过程请参阅图1~图4以及相关的文字描述,在此,不再赘述。
与现有技术相比,本发明实施例的有益效果在于:本发明采用遍历的方式确定每一个中继站所对应的未能覆盖的中继站的集合,并将前述的集合依次遍历求交,当求交结果存在空集时,可以确定前述的一个或多个集合中没有相同的中继站,从而确定前述求交结果为空集的集合所对应的中继站相互配合可以 覆盖站点列表中的全部中继站,则可将求交结果为空集的集合所对应的中继站设置为目标监测站,提高监测站选址的效率以及准确率,且具有较广的适用性,以便于光缆监测系统对站点列表中的全部中继站进行监测,缩短光缆的故障历时,提高了传输网维护效率,同时降低线路维护费用。
值得说明的是,上述装置和系统内的模块、单元之间的信息交互、执行过程等内容,由于与本发明的处理方法实施例基于同一构思,具体内容可参见本发明方法实施例中的叙述,此处不再赘述。
本领域普通技术人员可以理解实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(Read Only Memory,简写为ROM)、随机存取存储器(Random Access Memory,简写为RAM)、磁盘或光盘等。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种监测站的选址方法,其特征在于,包括:
    获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系;
    依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合;
    按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
  2. 根据权利要求1所述的监测站的选址方法,其特征在于,所述获取包括多个中继站的站点列表以及中继站之间的光缆的连接关系之后,还包括:
    获取每一中继站的光缆数量,其中,所述光缆数量为一所述中继站与所述站点列表中的其他中继站直接建立连接的光缆数量;
    获取所述光缆数量不小于2的中继站集合;
    所述依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合包括:
    依次设置所述光缆数量不小于2的中继站集合中的每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合。
  3. 根据权利要求1所述的监测站的选址方法,其特征在于,所述依次设置每一中继站为起始站点,并按照预设的覆盖范围从所述起始站点出发遍历所述站点列表中的中继站,确定每一所述起始站点所对应的未能覆盖的中继站的集合包括:
    依次设置每一中继站为起始站点;
    通过最短路径算法计算从所述起始站点出发到达所述站点列表中的中继站的最短路径长度;
    获取所述最短路径长度大于所述预设的覆盖范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合。
  4. 根据权利要求3所述的监测站的选址方法,其特征在于,所述预设的覆盖范围为光时域反射仪OTDR的动态范围;所述中继站之间的光纤衰耗表示所述中继站之间的路径长度;
    所述获取所述最短路径长度大于所述预设的覆盖范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合包括:
    获取所述最短路径长度大于所述OTDR的动态范围所对应的中继站,从而整合得到每一所述起始站点所对应的未能覆盖的中继站的集合。
  5. 根据权利要求4所述的监测站的选址方法,其特征在于,所述最短路径算法包括:Dijkstra算法,Bellman-Ford算法,Floyd算法或SPFA算法中的任一种。
  6. 根据权利要求4所述的监测站的选址方法,其特征在于,所述OTDR的动态范围为光时域反射仪OTDR能够测试的背向散射曲线的最大衰减值,所述最大衰减值的范围为30dB~45dB。
  7. 根据权利要求1所述的监测站的选址方法,其特征在于,所述求交基数为每次求交时的集合数目;
    所述按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站包括:
    按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集 合遍历求交;
    判断确定本次遍历求交过程中求交结果是否存在空集;
    若不存在空集,则以递增的方式重新设置所述求交基数,并以重新设置的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合进行遍历求交,判断确定本次遍历求交过程中求交结果是否存在空集。
  8. 根据权利要求7所述的监测站的选址方法,其特征在于,所述选址方法还包括:
    若存在空集,则停止遍历求交,将所述求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站。
  9. 根据权利要求7所述的监测站的选址方法,其特征在于,所述预设的求交基数为1,
    所述按照预设的求交基数对每一所述起始站点所对应的未能覆盖的中继站的集合遍历求交,将求交结果为空集的集合所对应的一个或多个中继站确定为目标监测站包括:
    依次将每一所述起始站点所对应的未能覆盖的中继站的集合各自自身求交;
    判断确定所述起始站点所对应的未能覆盖的中继站的集合是否存在空集;
    若存在空集,则将所述起始站点所对应的未能覆盖的中继站的集合是空集的集合所对应的一个中继站确定为目标监测站。
  10. 一种用于监测站选址的装置,其特征在于,包括至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被程序设置为执行如权利要求1~9任一项所述的监测站的选址方法。
PCT/CN2018/123426 2018-06-22 2018-12-25 监测站的选址方法、用于监测站选址的装置 WO2019242268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/734,894 US11159232B2 (en) 2018-06-22 2018-12-25 Method of site selection for monitoring station, and device for site selection for monitoring station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810650738.0A CN108923848B (zh) 2018-06-22 2018-06-22 监测站的选址方法、用于监测站选址的装置
CN201810650738.0 2018-06-22

Publications (1)

Publication Number Publication Date
WO2019242268A1 true WO2019242268A1 (zh) 2019-12-26

Family

ID=64422306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123426 WO2019242268A1 (zh) 2018-06-22 2018-12-25 监测站的选址方法、用于监测站选址的装置

Country Status (3)

Country Link
US (1) US11159232B2 (zh)
CN (1) CN108923848B (zh)
WO (1) WO2019242268A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112527673A (zh) * 2020-12-22 2021-03-19 北京百度网讯科技有限公司 站点测试方法、装置、电子设备及可读存储介质
CN113496334A (zh) * 2020-04-03 2021-10-12 北京京东振世信息技术有限公司 一种站点选择的方法和装置
CN114520979A (zh) * 2021-12-22 2022-05-20 浙江高信技术股份有限公司 包括中转模块的灯杆通讯系统及中转模块安装预测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923848B (zh) 2018-06-22 2020-11-10 武汉光迅科技股份有限公司 监测站的选址方法、用于监测站选址的装置
CN114186700B (zh) * 2021-12-06 2023-10-10 国网江苏省电力有限公司扬州供电分公司 一种电力光缆多周期运维入站站点选择方法
CN115032338B (zh) * 2022-05-26 2023-03-21 武汉理工大学 一种港口船舶大气污染物排放监测站点选址方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124138A (ja) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd 分散型ネットワークによる移動体位置検出システム
CN204046607U (zh) * 2014-07-29 2014-12-24 国家电网公司 一种光缆故障监测系统
CN105978642A (zh) * 2016-05-18 2016-09-28 成都福兰特电子技术股份有限公司 基于干扰大数据的无线监测站分析选址方法及系统
CN206195782U (zh) * 2016-11-01 2017-05-24 广东长实通信科技有限公司 空闲光纤监测系统
CN108923848A (zh) * 2018-06-22 2018-11-30 武汉光迅科技股份有限公司 监测站的选址方法、用于监测站选址的装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6005694A (en) * 1995-12-28 1999-12-21 Mci Worldcom, Inc. Method and system for detecting optical faults within the optical domain of a fiber communication network
US20040015309A1 (en) * 2000-12-04 2004-01-22 Swisher Douglas S. Systems and methods for OTDR tracing and mapping
US8009983B2 (en) * 2008-06-26 2011-08-30 Tyco Electronics Subsea Communications Llc High loss loop back for long repeater span
CN103166809A (zh) * 2011-12-15 2013-06-19 中国移动通信集团湖南有限公司 一种监测站点的部署方法及装置
CN103384406B (zh) * 2012-05-03 2016-05-11 普天信息技术研究院有限公司 一种中继系统的调度方法
CN102946273B (zh) * 2012-12-03 2015-05-06 东南大学 一种无源光网络光纤链路故障检测方法
CN104579459B (zh) * 2013-10-25 2018-03-16 华为技术有限公司 一种光纤链路识别的方法、设备和系统
US9654852B2 (en) * 2013-12-24 2017-05-16 Nec Corporation Scalable hybrid packet/circuit switching network architecture
US10536389B1 (en) * 2014-11-03 2020-01-14 Amazon Technologies, Inc. Biased selection of dedicated physical connections to provider network
CN104796193B (zh) * 2015-03-23 2017-05-17 北京千禧维讯科技有限公司 一种光缆链路关系快速查询定位的方法
US9681313B2 (en) * 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
CN106507377B (zh) * 2016-10-25 2019-04-05 北京航空航天大学 一种通讯网络中继站点最优选址方法
US10863255B2 (en) * 2019-04-17 2020-12-08 Cisco Technology, Inc. Method and system for optical path restoration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124138A (ja) * 2005-10-26 2007-05-17 Matsushita Electric Works Ltd 分散型ネットワークによる移動体位置検出システム
CN204046607U (zh) * 2014-07-29 2014-12-24 国家电网公司 一种光缆故障监测系统
CN105978642A (zh) * 2016-05-18 2016-09-28 成都福兰特电子技术股份有限公司 基于干扰大数据的无线监测站分析选址方法及系统
CN206195782U (zh) * 2016-11-01 2017-05-24 广东长实通信科技有限公司 空闲光纤监测系统
CN108923848A (zh) * 2018-06-22 2018-11-30 武汉光迅科技股份有限公司 监测站的选址方法、用于监测站选址的装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113496334A (zh) * 2020-04-03 2021-10-12 北京京东振世信息技术有限公司 一种站点选择的方法和装置
CN112527673A (zh) * 2020-12-22 2021-03-19 北京百度网讯科技有限公司 站点测试方法、装置、电子设备及可读存储介质
CN112527673B (zh) * 2020-12-22 2023-08-01 北京百度网讯科技有限公司 站点测试方法、装置、电子设备及可读存储介质
CN114520979A (zh) * 2021-12-22 2022-05-20 浙江高信技术股份有限公司 包括中转模块的灯杆通讯系统及中转模块安装预测方法
CN114520979B (zh) * 2021-12-22 2024-02-09 浙江高信技术股份有限公司 包括中转模块的灯杆通讯系统及中转模块安装预测方法

Also Published As

Publication number Publication date
CN108923848B (zh) 2020-11-10
US11159232B2 (en) 2021-10-26
CN108923848A (zh) 2018-11-30
US20210226699A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
WO2019242268A1 (zh) 监测站的选址方法、用于监测站选址的装置
AU2016203323B2 (en) System and method for certification of physical parameters of communication links
CN102752042B (zh) 光线路监视装置和光线路监视方法
WO2015196496A1 (zh) 在线模式下检测otdr曲线末端事件定位光纤断点的方法
CN109474459A (zh) 域名配置管理方法、装置、计算机设备及存储介质
US20220131782A1 (en) Method and Apparatus for Providing Network Experience Testing
CN115694642A (zh) 一种光纤业务管理方法、装置及电子设备
CN111082855A (zh) 一种基于otdr的光缆测试方法、系统、终端及存储介质
CN110034818B (zh) 一种基于智能光纤配线系统进行光缆监测的装置和系统
CN107483105A (zh) 测试参数处理方法、装置及测试器
CN110417461B (zh) 多故障点的光缆定位方法、装置及终端设备
CN109217917A (zh) 故障光纤的位置确定方法及装置、存储介质、处理器
CN106777441A (zh) 时序约束管理方法及装置
CN109004974A (zh) 光纤网络故障检测装置
WO2023083112A1 (zh) 检测方法、检测装置、光纤系统及网络设备
CN108769246A (zh) 一种nfs共享最大化的测试方法和系统
WO2022268092A1 (zh) 光纤测试系统、方法、光纤测量管理设备及存储介质
WO2016202058A1 (zh) 校验处理方法、装置及系统
Huang Application of MCU in Engineering of Intelligent Building Network
CN116054936A (zh) 光纤的故障实时监测装置、监测方法及装置
CN116318383A (zh) 一种光缆的监测方法、装置、设备及存储介质
CN111435854A (zh) 检测光纤故障的方法、装置、系统和计算机可读存储介质
JP2016075589A (ja) 芯線検査装置および芯線検査方法
CN109004975A (zh) 一种光缆故障点定位方法及装置
CN117743061A (zh) 基于fttr的fpga密钥无线静态测试方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923146

Country of ref document: EP

Kind code of ref document: A1