WO2019242264A1 - 三管热回收多联机系统及其控制方法 - Google Patents

三管热回收多联机系统及其控制方法 Download PDF

Info

Publication number
WO2019242264A1
WO2019242264A1 PCT/CN2018/122229 CN2018122229W WO2019242264A1 WO 2019242264 A1 WO2019242264 A1 WO 2019242264A1 CN 2018122229 W CN2018122229 W CN 2018122229W WO 2019242264 A1 WO2019242264 A1 WO 2019242264A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor unit
temperature
evaporation temperature
refrigeration
preset
Prior art date
Application number
PCT/CN2018/122229
Other languages
English (en)
French (fr)
Inventor
杨坤
王命仁
Original Assignee
广东美的暖通设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Priority to CA3065399A priority Critical patent/CA3065399A1/en
Priority to US16/625,753 priority patent/US20210356185A1/en
Publication of WO2019242264A1 publication Critical patent/WO2019242264A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02743Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using three four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present application relates to the field of air conditioning technology, and in particular, to a three-tube heat recovery multi-connection system, a control method of a three-tube heat recovery multi-connection system, and a non-transitory computer-readable storage medium.
  • a three-pipe heat recovery multi-connected system that operates cooling and heating at the same time.
  • the low-pressure saturation temperature of the system must be lower than the outdoor ambient temperature to ensure the outdoor heat exchanger.
  • the liquid refrigerant in the medium can absorb heat.
  • the outdoor ambient temperature is lower than a certain temperature (for example, less than 5 ° C)
  • the low-pressure saturation temperature of the multi-connected system will be lower than the freezing point of water.
  • the temperature of the refrigerant in the refrigeration unit coil will approach the system.
  • the low-pressure saturation temperature causes the refrigerant temperature in the coil of the refrigerator to be lower than the freezing point.
  • the coils and fins are frosted.
  • the indoor unit frequently enters the anti-freeze protection, which affects the comfort of the refrigerator. It also has condensate and freezing. Possibility of bad internal machine piping.
  • This application is intended to solve at least one of the technical problems in the related technology.
  • this application proposes a three-tube heat recovery multi-online system.
  • the system can adjust the evaporation temperature of the refrigerating indoor unit through a low-temperature refrigeration anti-freezing module, so that it can effectively respond to the cooling needs of the inner side under low-temperature conditions, while avoiding indoor
  • the machine freezes to ensure the reliability and comfort of the system.
  • This application also proposes a control method for a three-pipe heat recovery multi-online system.
  • the present application also proposes a non-transitory computer-readable storage medium.
  • An embodiment of the first aspect of the present application proposes a three-pipe heat recovery multi-connection system, including: an outdoor unit and an indoor unit, wherein the outdoor unit includes at least one compressor, a low-pressure liquid storage tank, and an outdoor heat exchanger, and the indoor unit includes Indoor heat exchanger; refrigerant distribution device, one side of the refrigerant distribution device is connected to the outdoor unit through a high-pressure liquid pipe, a low-pressure gas pipe, and a high-pressure gas pipe, and the other side of the refrigerant distribution device is connected to the indoor unit,
  • the refrigerant distribution device includes a heat exchange component, a cooling and heating switching valve, and a low-temperature refrigeration anti-freezing module.
  • the heat exchange component includes a first flow path and a second flow path.
  • the low-pressure air pipe is connected, the second end of the low-temperature refrigeration anti-freezing module is connected to the second heat exchange flow path of the heat exchange assembly, and the third end of the low-temperature refrigeration anti-freezing module is connected to the cooling and heating switching valve.
  • a controller configured to obtain the evaporation temperature and outdoor temperature of the refrigerating indoor unit when the three-pipe heat recovery multi-line system is operating in a cooling mode or a mixed operation mode Ambient temperature, and determine whether the evaporation temperature of the refrigeration indoor unit needs to be adjusted according to the evaporation temperature of the refrigeration indoor unit and the outdoor environment temperature, and when determining that the evaporation temperature of the indoor unit needs to be adjusted, control the low-temperature refrigeration prevention
  • the freezing module generates an intermediate pressure state between the second end of the low-temperature refrigeration anti-freezing module and the low-pressure air pipe to adjust the evaporation temperature of the refrigeration indoor unit.
  • the controller when the three-pipe heat recovery multi-connected system is operating in a cooling mode or a mixed operation mode, the controller obtains the evaporation temperature and outdoor ambient temperature of the refrigeration indoor unit, and The evaporation temperature and ambient temperature of the unit determine whether the evaporation temperature of the refrigeration indoor unit needs to be adjusted, and when determining that the evaporation temperature of the indoor unit needs to be adjusted, the second end of the low-temperature refrigeration anti-freezing module and the low-pressure air pipe are controlled by controlling the low-temperature refrigeration anti-freezing module.
  • An intermediate pressure state is generated from time to time to regulate the evaporation temperature of the refrigeration indoor unit.
  • the system can adjust the evaporation temperature of the refrigeration indoor unit through the low-temperature refrigeration anti-freezing module, so that it can effectively respond to the internal cooling demand under low-temperature conditions, and at the same time can prevent the indoor unit from freezing, ensuring the reliability and comfort of the system.
  • the embodiment of the second aspect of the present application proposes a control method of a three-tube heat recovery multi-connected system, including the following steps: obtaining an evaporation temperature of the refrigeration indoor unit and an outdoor environment temperature; and according to the evaporation temperature of the refrigeration indoor unit And the outdoor ambient temperature to determine whether the evaporation temperature of the refrigerating indoor unit needs to be adjusted; if it is determined that the evaporation temperature of the refrigerating indoor unit needs to be adjusted, control the low-temperature refrigeration antifreeze module to make the second An intermediate pressure state is generated between the end and the low-pressure air pipe to adjust the evaporation temperature of the refrigeration indoor unit.
  • the control method of the three-pipe heat recovery multi-connected system according to the embodiment of the present application, firstly, the evaporation temperature and outdoor environment temperature of the refrigerating indoor unit are obtained; and whether the evaporation temperature of the refrigerating indoor unit is needed according to the evaporation temperature and outdoor environment temperature of the refrigerating indoor unit. Adjustment; if it is judged that the evaporation temperature of the refrigerating indoor unit needs to be adjusted, the low-temperature refrigeration anti-freezing module is controlled to generate an intermediate pressure state between the second end of the low-temperature refrigeration anti-freezing module and the low-pressure air pipe to adjust the evaporation temperature of the refrigerating indoor unit.
  • the method can adjust the evaporation temperature of the refrigerating indoor unit through the low-temperature refrigeration anti-freezing module, so that it can effectively respond to the cooling needs of the inner side under low-temperature conditions, and at the same time can prevent the indoor unit from freezing, ensuring the reliability and comfort of the system.
  • the embodiment of the third aspect of the present application proposes a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the control method according to the embodiment of the second aspect of the present application is implemented.
  • the non-transitory computer-readable storage medium in the embodiment of the present application first obtains the evaporation temperature and outdoor environment temperature of the refrigerating indoor unit; determines whether the evaporation temperature of the refrigerating indoor unit needs to be adjusted according to the evaporation temperature of the refrigerating indoor unit and the outdoor environment temperature; if Determine that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, then control the low-temperature refrigeration antifreeze module to generate an intermediate pressure state between the second end of the low-temperature refrigeration antifreeze module and the low-pressure air pipe to adjust the evaporation temperature of the refrigeration indoor unit, which can effectively respond to Under low temperature conditions, the cooling requirements on the inside can also prevent the indoor unit from freezing and ensure the reliability and comfort of the system.
  • FIG. 1 is a schematic structural diagram of a three-tube heat recovery multi-connection system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a three-tube heat recovery multi-connection system according to another embodiment of the present application.
  • FIG. 3 is a schematic diagram of an evaporation temperature adjustment judgment of a refrigeration indoor unit according to an embodiment of the present application
  • FIG. 5 is a flowchart of a control method of a three-tube heat recovery multi-connection system according to an embodiment of the present application.
  • FIGS. 1-2 are schematic structural diagrams of a three-tube heat recovery multi-connection system according to an embodiment of the present application. As shown in FIGS. 1-2, the system includes: an outdoor unit 1, an indoor unit 2, a refrigerant distribution device 3, and a controller (not specifically shown in the figure).
  • the outdoor unit 1 includes at least one compressor 11, a low-pressure liquid storage tank 12, and an outdoor heat exchanger 13.
  • the indoor unit 2 includes an indoor heat exchanger 21.
  • the exhaust end of the compressor 11 is connected to the outdoor heat exchanger 13 and the indoor heat exchanger 21, respectively.
  • the suction end of the compressor 11 is connected to one end of the low-pressure liquid storage tank 12, and the other end of the low-pressure liquid storage tank 12 is changed to outdoor.
  • the heater 13 is connected.
  • One side of the refrigerant distribution device 3 is connected to the outdoor unit 1 through a high-pressure liquid pipe L1, a low-pressure gas pipe L2, and a high-pressure gas pipe L3.
  • the other side of the refrigerant distribution device 3 is connected to the indoor unit 2.
  • the refrigerant distribution device 3 includes a heat exchange component 31, Refrigeration and heating switching valve 32 and low-temperature refrigeration antifreeze module 33.
  • the heat exchange assembly 31 includes a first flow path L4 and a second flow path L5.
  • the first end a of the low-temperature refrigeration antifreeze module 33 is connected to the low-pressure air pipe L2.
  • the second end b of the anti-freezing module 33 is connected to the second heat exchange flow path L5 of the heat exchange module 31, and the third end c of the low-temperature refrigeration anti-freezing module 33 is connected to the cooling and heating switching valve 32.
  • the controller is used to obtain the evaporation temperature and outdoor environment temperature of the refrigeration indoor unit when the three-pipe heat recovery multi-line system is operating in a cooling mode or a hybrid operation, and to judge the evaporation of the refrigeration indoor unit based on the evaporation temperature and outdoor environment temperature of the refrigeration indoor unit. Whether the temperature needs to be adjusted, and when it is judged that the evaporation temperature of the indoor unit needs to be adjusted, the low-temperature refrigeration anti-freeze module 33 is controlled to generate an intermediate pressure state between the third end c of the low-temperature refrigeration anti-freeze module and the low-pressure air pipe L2 to adjust the refrigeration. Evaporation temperature of indoor unit.
  • one end of the first flow path L4 is connected to the outdoor heat exchanger 13 through a high-pressure liquid pipe L1, the other end of the first flow path L4 is connected to the indoor unit 2, and one end of the second flow path L5 is connected to a low pressure.
  • the gas pipe L2 is connected to the low-pressure liquid storage tank 12, and the other end of the second flow path L5 is connected to the other end of the first heat exchange flow path L4.
  • the indoor heat exchanger 21 includes an evaporator 211 and a condenser 212, and the cooling and heating switching valve 32 includes at least one, and two are taken as an example in FIGS. 1-2.
  • Each cooling and heating switching valve 32 includes a first solenoid valve Sva. 2.
  • the second solenoid valve Svb The second solenoid valve Svb.
  • first solenoid valve Sva is connected to the third end c of the low-temperature refrigeration antifreeze module, and one end of the second solenoid valve Svb is connected to the high-pressure gas pipe L3.
  • the first solenoid valve Sva and the second in each of the cooling and heating switching valves The other end of the solenoid valve Svb is correspondingly connected to an evaporator or a condenser.
  • the outdoor unit 1 may further include a four-way valve ST1-ST3 and a throttle valve EXV1-EXV2.
  • the outdoor heat exchanger 13 includes a first outdoor heat exchanger 131 and a second outdoor heat exchanger. Heater 132, the connection between outdoor unit 1 and components are shown in Figure 1-2.
  • One end of the first outdoor heat exchanger 131 is connected to one end of the low-pressure liquid storage tank 12 through four-way valves ST2 and ST1.
  • the other end of the first outdoor heat exchanger 131 is connected to one end of the throttle valve EXV1, the other end of the throttle valve EXV1 is connected to the high-pressure liquid pipe L1, and one end of the second outdoor heat exchanger 132 is connected to the low-pressure storage tank through a four-way valve ST3.
  • One end of the liquid tank 12 is connected, the other end of the second outdoor heat exchanger is connected to one end of the throttle valve EXV2, the other end of the throttle valve EXV2 is connected to the high pressure liquid pipe L2, and the other end of the low pressure liquid storage tank 12 is connected to the compressor The suction end of 11 is connected.
  • the suction end of compressor 11 is connected to one end of the first heat exchanger 131 through a four-way valve ST2, and connected to one end of the second heat exchanger 132 through a four-way valve ST3.
  • the valve ST1 is connected to the high-pressure gas pipe L3.
  • a throttle valve EXV3 is also provided on the second heat exchange flow path L5 of the heat exchange assembly 31 in the refrigerant distribution device 3.
  • the first heat exchange flow path L4 of the heat exchange assembly 31 is the main heat exchange flow path, and the second heat exchange flow is
  • the path L5 is a secondary heat exchange flow path.
  • the indoor unit 2 further includes throttle valves EXV4 and EXV5.
  • the evaporator 211 functions as an internal refrigerator, and the condenser 212 functions as an internal heating device.
  • the first solenoid valve Sva is a cooling solenoid valve
  • the second solenoid valve Svb is a heating solenoid valve.
  • the first solenoid valve Sva is controlled to open and the second solenoid valve is opened.
  • Svb is closed; when the internal machine corresponding to the cooling and heating switching valve is turned on for heating, the first solenoid valve Sva is controlled to be closed and the second solenoid valve Svb is opened.
  • the high-temperature and high-pressure refrigerant at the outlet of the compressor 11 flows through the four-way valve ST1 to the refrigerant distribution device 3, enters the condenser 212, and releases heat to the room.
  • the refrigerant itself is cooled to a low-temperature and high-pressure liquid, and part of it flows to the outdoor heat exchanger 13 for evaporation. Part of the flow goes to the evaporator 211 for evaporation, and the gaseous refrigerant evaporated by the evaporator 211 and the gaseous refrigerant from the outdoor heat exchanger converge and return to the compressor 11 after the outdoor unit. Since the indoor unit and the outdoor evaporator are connected in parallel, the evaporation temperatures of the two are close. When the external temperature is low (for example, less than 5 degrees), in order to ensure the heat absorption of the evaporator 211, the evaporation temperature will be lower than the freezing point.
  • a low-temperature refrigeration antifreeze module 33 is provided in the refrigerant distribution device 3, and the module is provided on the low-pressure gas pipe L2, one end of which is in communication with the low-pressure gas pipe L2, and one end is provided on the secondary heat exchange flow of the heat exchange assembly 31 On the road, the third end is set in front of the cooling and heating switching valve.
  • the controller obtains the evaporation temperature and the outdoor environment temperature of the cooling indoor unit, and judges the evaporation of the cooling indoor unit based on the evaporation temperature of the cooling indoor unit and the outdoor environment temperature. Whether the temperature needs to be adjusted.
  • the controller may determine that the evaporating temperature of the refrigerating indoor unit needs to be adjusted.
  • the controller controls the low-temperature refrigeration anti-freeze module 33 to generate an intermediate pressure state between the third end c of the low-temperature refrigeration anti-freeze module 33 and the low-pressure air pipe L2. It has a positive correlation with pressure. Therefore, the controller can adjust the pressure difference between the third end c of the low-temperature refrigeration antifreeze module 33 and the low-pressure air pipe L2 to adjust the evaporation temperature of the refrigeration indoor unit.
  • the pressure difference between the third end c of the low-temperature refrigeration antifreeze module 33 and the low-pressure gas pipe L2 can be increased. Since the pressure on the low-pressure gas pipe L2 side is constant, the pressure difference can be increased to increase the first temperature of the low-temperature refrigeration antifreeze module 33.
  • the pressure at the three ends c can increase the evaporation pressure of the evaporator, thereby increasing the evaporation temperature.
  • the system can adjust the evaporation temperature of the refrigeration indoor unit through the low-temperature refrigeration anti-freezing module, so that it can effectively respond to the cooling needs of the inner side under low-temperature conditions, while avoiding the indoor unit freezing, and ensuring the reliability and comfort of the system.
  • the throttle valve may be an electronic expansion valve or a solenoid valve or a combination of an electronic expansion valve and a solenoid valve
  • the three-pipe heat recovery multi-connected system has a cooling demand on the indoor side, the system is operating in a cooling mode or a mixed operation mode, and the evaporation temperature of the cooling indoor unit is less than or equal to the first preset temperature T3 and the duration
  • the controller determines that the evaporation temperature of the refrigeration indoor unit needs to be adjusted; when the three-pipe heat recovery multi-line system is operating in a heating mode, or outdoors
  • the controller determines the evaporation of the refrigeration indoor unit The temperature does not need to be adjusted.
  • the third preset temperature T3 is greater than the first preset temperature T1.
  • the first preset temperature T1, the third preset temperature T3, and the first preset time can be preset according to actual conditions.
  • T1 can be 1 ° C
  • T3 can be 8 ° C
  • t1 can be 5min.
  • the controller can determine that the evaporation temperature of the refrigeration indoor unit needs to be adjusted. If the three-pipe heat recovery multi-line system is operating in heating mode, or the outdoor ambient temperature is T3, or the evaporation temperature of the refrigeration indoor unit is greater than T1, and the indoor unit does not have anti-freeze protection within t1, the controller can determine the refrigeration indoor unit The evaporation temperature does not need to be adjusted.
  • the refrigeration room will automatically enter the anti-freeze protection to prevent the heat exchange of the refrigeration indoor unit.
  • the heat exchanger frosts and freezes for a long time, causing damage to the heat exchanger.
  • the judgment period of the controller can be 10-15min, that is, the controller can judge whether the evaporation temperature of the refrigeration indoor unit needs to be adjusted every 10-15min.
  • the low-temperature refrigeration anti-freezing module 33 may include a first four-way valve ST4 and a first throttle valve EXV6.
  • the first end of the first four-way valve ST4 is connected to the low-pressure air pipe L2
  • the second end of the four-way valve ST4 is connected to one end of the first solenoid valve Sva
  • the third end of the first four-way valve ST4 is connected to the low-pressure air pipe through the capillary L6.
  • L2 is connected.
  • One end of the first throttle valve EXV6 is connected to the fourth end of the first four-way valve ST4, and the other end of the first throttle valve EXV6 is connected to the second heat exchange flow path L5 of the heat exchange assembly 31.
  • the controller is also used for controlling the first end of the first four-way valve ST4 to be connected to the second end when it is judged that the evaporation temperature of the refrigerating indoor unit does not need to be adjusted, and when it is judged that the evaporation temperature of the indoor unit needs to be adjusted, controlling The second end of the first four-way valve ST4 is in communication with the fourth end.
  • the controller controls the first end of ST4 to communicate with the second end, EXV6 is fully opened, and the low-temperature refrigeration antifreeze module 33 is completely unable to effect.
  • the high-temperature and high-pressure refrigerant discharged from the compressor is sent to the condenser 212 for condensing through the high-pressure gas pipes L3 and Svb.
  • the low-temperature and high-pressure liquid refrigerant produced is returned to the refrigerant distribution device 3, and a part is sent to the evaporator 211 for evaporation.
  • the low-pressure gas pipe L2 returns to the outdoor unit 1; a part returns to the outdoor unit 1 through the high-pressure liquid pipe L1, and after throttling by EXV1 and EXV2, it is evaporated into a low-pressure gaseous refrigerant in the outdoor heat exchanger, and merges with the low-pressure gaseous refrigerant returned by the low-pressure gas pipe. To return to the suction side of the compressor 11.
  • EXV3 When it is judged that the evaporation temperature of the refrigerating indoor unit needs to be adjusted, EXV3 is fully turned on, the controller controls ST4 to commutate to connect the second end to the fourth end, and the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent through the high-pressure air pipes L3 and Svb.
  • the condenser 212 condenses, and the low-temperature and high-pressure liquid refrigerant produced is returned to the refrigerant distribution device 3, and a part is returned to the outdoor unit 1 through the high-pressure liquid pipe L1, and after being throttled by EXV1 and EXV2, it is evaporated into an outdoor low-pressure gaseous refrigerant, After converging with the low-pressure gaseous refrigerant returned from the low-pressure gas pipe, it returns to the suction end of the compressor 11. A part of it passes through the throttling of EXV4 to become medium-pressure liquid refrigerant, and the evaporator 211 evaporates.
  • the generated medium-pressure gaseous refrigerant is throttled by ST4 and EXV6 and flows into the second heat exchange flow path L5 of the heat exchanger assembly 31 of the refrigerant distribution device. And the low-pressure air pipe L2 returns to the outdoor unit 1.
  • the EXV6 throttling can create an intermediate pressure state between the EXV6 and the low-pressure air pipe L2.
  • the opening degree of the EXV6, the EXV6 and the low-pressure air pipe L2 can be changed. The pressure difference between them can change the evaporation temperature of the refrigeration indoor unit, so as to effectively respond to the cooling demand on the inside under low temperature conditions, avoid the indoor unit from freezing, and ensure the reliability and comfort of the system.
  • the low-temperature refrigeration anti-freezing module 33 may also include a third solenoid valve Sv3, a check valve D, and a second throttle valve EXV7.
  • One end of the third solenoid valve Sv3 is connected to the low-pressure gas pipe L2, and the other end of the third solenoid valve Sv3 is connected to one end of the first solenoid valve Sva; one end of the check valve D is connected to the other end of the third solenoid valve Sv3;
  • One end of the second throttle valve EXV7 is connected to the other end of the check valve D, and the other end of the second throttle valve EXV7 is connected to the second heat exchange flow path L5 of the heat exchange assembly 31.
  • controller may be further configured to control the third solenoid valve Sv3 to open when it is determined that the evaporation temperature of the refrigeration indoor unit does not need to be adjusted, and to control the third solenoid valve Sv3 to be closed when it is determined that the evaporation temperature of the indoor unit does not need to be adjusted.
  • the flow direction of the check valve D is shown by the arrow in FIG. 2.
  • the controller controls Sv3 to open, EXV7 to fully open, and low-temperature refrigeration to prevent The freeze module 33 does not work at all.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent to the condenser 212 for condensation by the high-pressure gas pipes L3 and Svb.
  • the generated low-temperature and high-pressure liquid refrigerant is returned to the refrigerant distribution device 3, and a part is sent to the evaporator 211 for evaporation.
  • the low-pressure steam generated is passed through Sva and Sv3.
  • low-pressure gas pipe L2 return to outdoor unit 1; part returns to outdoor unit 1 through high-pressure liquid pipe L1, and after throttling by EXV1 and EXV2, it is evaporated into low-pressure gaseous refrigerant in the outdoor heat exchanger and merges with the low-pressure gaseous refrigerant returned by the low-pressure gas pipe After that, it returns to the suction side of the compressor 11.
  • EXV3 When it is judged that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, EXV3 is fully opened, the controller controls Sv3 to be turned off, and the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent to the condenser 212 through the high-pressure air pipes L3 and Svb to condense, resulting in low-temperature and high-pressure liquid refrigerant.
  • a part returns to the outdoor unit 1 through the high-pressure liquid pipe L1, and after throttling by EXV1 and EXV2, evaporates into a low-pressure gaseous refrigerant in the outdoor heat exchanger, and merges with the low-pressure gaseous refrigerant returned by the low-pressure gas pipe, Return to the suction side of the compressor 11.
  • a part of it passes through the throttling of EXV4 to become medium-pressure liquid refrigerant, and the evaporator 211 evaporates.
  • the generated medium-pressure gaseous refrigerant is throttled by the one-way valve D and EXV7 and flows into the second heat exchange component 31 of the refrigerant distribution device.
  • the flow path L5 and the low-pressure air pipe L2 return to the outdoor unit 1. It can be understood that when it is judged that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the EXV7 throttling can create an intermediate pressure state between the EXV7 and the low-pressure air pipe L2. By changing the opening degree of the EXV7, the EXV7 and the low-pressure air pipe L2 can be changed. The pressure difference between them can change the evaporation temperature of the refrigeration indoor unit, so as to effectively respond to the cooling demand on the inside under low temperature conditions, avoid the indoor unit from freezing, and ensure the reliability and comfort of the system.
  • the controller when the controller further determines that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the controller obtains the evaporation temperature of the refrigeration indoor unit, and if the evaporation temperature of the refrigeration indoor unit is less than or equal to If the first preset temperature T1 and the duration reach the first preset time t1, or the indoor unit has antifreeze protection, the opening degree of the first throttle valve EXV6 is reduced by the first preset opening degree X; if the indoor unit is cooled, If the evaporation temperature of the indoor unit is higher than the first preset temperature T1 and the indoor unit does not have anti-freeze protection, the opening degree of the first throttle valve EXV6 is kept unchanged. If the indoor unit does not have anti-freeze protection within the second preset time t2, the opening degree of the first throttle valve EXV6 is increased by the first preset opening degree X, where the first preset temperature T1 is smaller than the second preset temperature T2.
  • the controller when the controller determines that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the controller obtains the evaporation temperature of the refrigeration indoor unit, and if the evaporation temperature of the refrigeration indoor unit is less than or equal to If the first preset temperature T1 and the duration reach the first preset time t1, or the indoor unit has anti-freeze protection, the opening degree of the second throttle valve EXV7 is reduced by the first preset opening degree X; if the indoor unit is cooled, If the evaporation temperature of the indoor unit is higher than the first preset temperature T1, and the indoor unit is not protected against freezing, the opening degree of the second throttle valve EXV7 is maintained.
  • the opening degree of the second throttle valve EXV7 is increased by the first preset opening degree X.
  • the first preset opening degree X may be preset according to an actual situation.
  • the first preset temperature T1, the second preset temperature T2, the first preset time t1, and the second preset time t2 can be preset according to actual conditions.
  • T1 can be 1 ° C
  • T2 can be 12 ° C
  • t1 can be 5min
  • t2 can be 30-60min.
  • the adjustment period of the throttle valve can be 1 minute, that is, when the controller judges that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, it obtains the evaporation temperature of the refrigeration indoor unit every 1 minute to adjust the opening degree of EXV6 or EXV7.
  • EXV3 is fully opened.
  • ST4 commutation connects the first end and the second end, Sv3 is closed in FIG. 2, and the controller also controls the first The opening degree of the throttle valve EXV6 or the second throttle valve EXV7 is adjusted.
  • the initial opening degree of EXV6 or EXV7 is K, and K can be preset in advance according to the actual situation.
  • the controller reduces the opening degree of EXV6 or EXV7 by X, that is, the opening degree is KX.
  • the opening degree of EXV6 or EXV7 decreases, the pressure difference between the low-pressure gas pipe L2 and the evaporator 211 increases.
  • the pressure of the gas pipe L2 is a constant value, so the evaporation pressure of the evaporator 211 will increase, which will increase the evaporation temperature of the refrigeration indoor unit, effectively respond to the cooling demand on the inside under low-temperature conditions, avoid the indoor unit from freezing, and ensure the reliability and reliability of the system. Comfort.
  • the controller will increase the opening degree of EXV6 or EXV7 by X, that is, the opening degree is K + X.
  • the opening degree of EXV6 or EXV7 is increased, the pressure difference between the low-pressure gas pipe L2 and the evaporator 211 will be increased. It is small.
  • the evaporation pressure of the evaporator 211 will decrease, which will reduce the evaporation temperature of the refrigeration indoor unit, so as to avoid the phenomenon that the refrigerant passage is blocked due to the excessively high evaporation temperature.
  • the controller when the three-tube heat recovery multi-connected system is operating in a cooling mode or a mixed operation mode, the controller obtains the evaporation temperature and outdoor ambient temperature of the refrigeration indoor unit. And determine whether the evaporation temperature of the refrigeration indoor unit needs to be adjusted according to the evaporation temperature and the ambient temperature of the refrigeration indoor unit, and when determining that the evaporation temperature of the indoor unit needs to be adjusted, control the low-temperature refrigeration anti-freeze module to make the second An intermediate pressure state is generated between the end and the low-pressure air pipe to adjust the evaporation temperature of the refrigerating indoor unit.
  • the system can adjust the evaporation temperature of the refrigeration indoor unit through the low-temperature refrigeration anti-freezing module, so that it can effectively respond to the internal cooling demand under low-temperature conditions, and at the same time can prevent the indoor unit from freezing, ensuring the reliability and comfort of the system.
  • the embodiment of the present application also proposes a control method of the three-pipe heat recovery multi-online system.
  • FIG. 5 is a flowchart of a control method of a three-tube heat recovery multi-connection system according to an embodiment of the present application. As shown in Figure 5, the method includes the following steps:
  • Evaporation temperature and outdoor ambient temperature of the refrigerating indoor unit can be obtained by setting corresponding temperature sensors.
  • the evaporation temperature of the refrigerating indoor unit needs to be adjusted according to the evaporation temperature of the refrigerating indoor unit and the outdoor environment temperature, including: if the three-pipe heat recovery multi-line system has cooling demand on the indoor side, the system operates in a cooling mode or In the mixed operation mode, and the evaporation temperature of the refrigeration indoor unit is less than or equal to the first preset temperature T1 and the duration reaches the first preset time t1, and the outdoor ambient temperature is less than or equal to the third preset temperature T3, the The evaporation temperature needs to be adjusted; if the three-pipe heat recovery multi-line system is operating in heating mode, or the outdoor ambient temperature is greater than the third preset temperature T3, or the evaporation temperature of the refrigeration indoor unit is greater than the first preset temperature T1 and the indoor unit is at the first When the anti-freezing protection does not occur within a preset time t1, it is determined that the evaporation temperature of the refrigeration indoor unit does not need to be adjusted.
  • the third preset temperature T3 is greater than the first preset temperature T1.
  • the first preset temperature T1, the third preset temperature T3, and the first preset time can be preset according to actual conditions.
  • T1 can be 1 ° C
  • T3 can be 8 ° C
  • t1 can be 5min.
  • control the low-temperature refrigeration anti-freezing module to adjust the evaporation temperature of the refrigerating indoor unit.
  • a low-temperature refrigeration anti-freezing module is provided in the refrigerant distribution device.
  • the module is arranged on a low-pressure gas pipe, one end is connected to the low-pressure gas pipe, and one end is arranged on the secondary heat exchange flow path of the heat exchange component.
  • the third end is set in front of the cooling and heating switching valve.
  • the controller can determine that the evaporation temperature of the refrigeration indoor unit needs to be adjusted. If the three-pipe heat recovery multi-line system is operating in heating mode, or the outdoor ambient temperature is greater than 8 ° C, or the evaporation temperature of the refrigeration indoor unit is greater than 1 ° C, and the indoor unit does not have antifreeze protection within 5min, the controller can judge the refrigeration The evaporation temperature of the indoor unit does not need to be adjusted.
  • the refrigeration room will automatically enter the anti-freeze protection to prevent the heat exchange of the refrigeration indoor unit.
  • the heat exchanger frosts and freezes for a long time, causing damage to the heat exchanger.
  • the judging period can be 10-15min, that is, whether the evaporation temperature of the refrigeration indoor unit needs to be adjusted every 10-15min.
  • the evaporation temperature of the refrigeration indoor unit can be adjusted by adjusting the pressure difference between the third end c of the low-temperature refrigeration anti-freezing module and the low-pressure air pipe. For example, if the evaporation temperature is low, the temperature of the low-temperature refrigeration anti-freezing module can be increased. The pressure difference between the third end c and the low-pressure gas pipe.
  • the pressure difference can be increased.
  • the pressure on the third end c of the low-temperature refrigeration antifreeze module can be increased, thereby increasing the evaporation of the evaporator. Pressure, which in turn can increase the evaporation temperature.
  • This method can adjust the evaporation temperature of the refrigerating indoor unit through the refrigerating and anti-freezing module, so that it can effectively respond to the cooling demand of the inner side at low temperature conditions, and at the same time can prevent the indoor unit from freezing and ensure the reliability and comfort of the system.
  • the above method may further include: if it is determined that the evaporation temperature of the refrigerating indoor unit does not need to be adjusted, the first end of the first four-way valve ST4 controlled is connected to the second end; When the indoor unit evaporation temperature needs to be adjusted, the second end of the first four-way valve ST4 is controlled to communicate with the fourth end.
  • the first end of the control ST4 is communicated with the second end, the EXV6 is fully opened, and the low-temperature refrigeration anti-freezing module 33 is completely ineffective.
  • the high-temperature and high-pressure refrigerant discharged from the compressor is sent to the condenser 212 for condensing through the high-pressure gas pipes L3 and Svb.
  • the low-temperature and high-pressure liquid refrigerant produced is returned to the refrigerant distribution device 3, and a part is sent to the evaporator 211 for evaporation.
  • the low-pressure gas pipe L2 returns to the outdoor unit 1; a part returns to the outdoor unit 1 through the high-pressure liquid pipe L1, and after throttling by EXV1 and EXV2, it is evaporated into a low-pressure gaseous refrigerant in the outdoor heat exchanger, and merges with the low-pressure gaseous refrigerant returned by the low-pressure gas pipe. To return to the suction side of the compressor 11.
  • EXV3 When it is judged that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, EXV3 is fully opened, and the ST4 direction is controlled to communicate the second end and the fourth end.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent to the condenser through the high-pressure air pipes L3 and Svb. 212 condensed, the low-temperature and high-pressure liquid refrigerant produced is returned to the refrigerant distribution device 3, and a part is returned to the outdoor unit 1 through the high-pressure liquid pipe L1, and after throttling by EXV1 and EXV2, it is evaporated into the low-pressure gaseous refrigerant in the outdoor heat exchanger.
  • the low-pressure gaseous refrigerant returned from the gas pipe merges, it returns to the suction end of the compressor 11. A part of it passes through the throttling of EXV4 to become medium-pressure liquid refrigerant, and the evaporator 211 evaporates.
  • the generated medium-pressure gaseous refrigerant is throttled by ST4 and EXV6 and flows into the second heat exchange flow path L5 of the heat exchanger assembly 31 of the refrigerant distribution device.
  • the low-pressure air pipe L2 returns to the outdoor unit 1. It can be understood that when it is judged that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the EXV6 throttling can create an intermediate pressure state between the EXV6 and the low-pressure air pipe L2.
  • the EXV6 and the low-pressure air pipe L2 can be changed.
  • the pressure difference between them can change the evaporation temperature of the refrigeration indoor unit, so as to effectively respond to the cooling demand on the inside under low temperature conditions, avoid the indoor unit from freezing, and ensure the reliability and comfort of the system.
  • the above method may further include: if it is determined that the evaporation temperature of the refrigeration indoor unit does not need to be adjusted, controlling the third solenoid valve Sv3 to open; if it is determined that the evaporation temperature of the indoor unit needs to be adjusted, control the first The three solenoid valves Sv3 are closed.
  • the flow of the check valve D is shown by the arrow in FIG. 2.
  • control Sv3 to open, EXV7 to be fully opened, and the low-temperature refrigeration anti-freezing module. 33 doesn't work at all.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent to the condenser 212 for condensation by the high-pressure gas pipes L3 and Svb.
  • the generated low-temperature and high-pressure liquid refrigerant is returned to the refrigerant distribution device 3, and a part is sent to the evaporator 211 for evaporation.
  • the low-pressure steam generated is passed through Sva and Sv3.
  • low-pressure gas pipe L2 return to outdoor unit 1; part returns to outdoor unit 1 through high-pressure liquid pipe L1, and after throttling by EXV1 and EXV2, it is evaporated into low-pressure gaseous refrigerant in the outdoor heat exchanger and merges with the low-pressure gaseous refrigerant returned by the low-pressure gas pipe After that, it returns to the suction side of the compressor 11.
  • EXV3 When it is judged that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, EXV3 is fully opened, Sv3 is controlled to be closed, and the high-temperature and high-pressure refrigerant discharged from the compressor 11 is sent to the condenser 212 through the high-pressure gas pipes L3 and Svb to condense, and the low-temperature and high-pressure liquid refrigerant generated is returned.
  • the refrigerant distribution device 3 returns a part to the outdoor unit 1 through the high-pressure liquid pipe L1, and after being throttled by EXV1 and EXV2, it is evaporated into a low-pressure gaseous refrigerant in the outdoor heat exchanger, merges with the low-pressure gaseous refrigerant returned by the low-pressure gas pipe, and returns to The suction end of the compressor 11. A part of it passes through the throttling of EXV4 to become medium-pressure liquid refrigerant, and the evaporator 211 evaporates. The generated medium-pressure gaseous refrigerant is throttled by the one-way valve D and EXV7 and flows into the second heat exchange component 31 of the refrigerant distribution device.
  • the flow path L5 and the low-pressure air pipe L2 return to the outdoor unit 1. It can be understood that when it is judged that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the EXV7 throttling can create an intermediate pressure state between the EXV7 and the low-pressure air pipe L2. By changing the opening degree of the EXV7, the EXV7 and the low-pressure air pipe L2 can be changed. The pressure difference between them can change the evaporation temperature of the refrigeration indoor unit, so as to effectively respond to the cooling demand on the inside under low temperature conditions, avoid the indoor unit from freezing, and ensure the reliability and comfort of the system.
  • the method when determining that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the method further includes: obtaining the evaporation temperature of the refrigeration indoor unit, and if the evaporation temperature of the refrigeration indoor unit is less than or equal to the first preset temperature T1 and continues If the time reaches the first preset time t1, or the indoor unit has anti-freeze protection, the opening degree of the first throttle valve EXV6 is reduced by the first preset opening degree X; if the evaporation temperature of the refrigeration indoor unit is greater than the first preset Temperature T1, and the indoor unit does not have anti-freeze protection, then the opening degree of the first throttle valve EXV6 is kept unchanged; if the evaporation temperature of the refrigerating indoor unit is greater than the second preset temperature T2 and the indoor is within the second preset time t2 If the machine does not have anti-freeze protection, the opening degree of the first throttle valve EXV6 is increased by a first preset opening degree X,
  • the method when determining that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, the method further includes: obtaining the evaporation temperature of the refrigeration indoor unit, wherein if the evaporation temperature of the refrigeration indoor unit is less than or equal to If the first preset temperature T1 and the duration reach the first preset time t1, or the indoor unit has anti-freeze protection, the opening degree of the second throttle valve EXV7 is reduced by the first preset opening degree X; if the indoor unit is cooled, If the evaporation temperature of the indoor unit is higher than the first preset temperature T1, and the indoor unit is not protected against freezing, the opening degree of the second throttle valve EXV7 is maintained.
  • the opening degree of the second throttle valve EXV7 is increased by the first preset opening degree X.
  • the first preset opening degree X may be preset according to an actual situation.
  • the first preset temperature T1, the second preset temperature T2, the first preset time t1, and the second preset time t2 can be preset according to actual conditions.
  • T1 can be 1 ° C
  • T2 can be 12 ° C
  • t1 can be 5min
  • t2 can be 30-60min.
  • the adjustment period of the throttle valve can be 1 minute, that is, when the controller judges that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, it obtains the evaporation temperature of the refrigeration indoor unit every 1 minute to adjust the opening degree of EXV6 or EXV7.
  • EXV3 when it is judged that the evaporation temperature of the refrigerating indoor unit needs to be adjusted, EXV3 is fully open.
  • ST4 commutation connects the first end and the second end, Sv3 in FIG. 2 is closed, and the first throttle is also throttled.
  • the opening degree of the valve EXV6 or the second throttle valve EXV7 is adjusted.
  • the initial opening degree of EXV6 or EXV7 is K, and K can be preset in advance according to the actual situation.
  • the controller reduces the opening degree of EXV6 or EXV7 by X, that is, the opening degree is KX.
  • the opening degree of EXV6 or EXV7 decreases, the pressure difference between the low-pressure gas pipe L2 and the evaporator 211 increases.
  • the pressure of the gas pipe L2 is a constant value, so the evaporation pressure of the evaporator 211 will increase, which will increase the evaporation temperature of the refrigeration indoor unit, effectively respond to the cooling demand on the inside under low-temperature conditions, avoid the indoor unit from freezing, and ensure the reliability and reliability of the system. Comfort.
  • the opening degree of EXV6 or EXV7 is maintained. If the evaporating temperature of the refrigerating indoor unit is> T2 and the system has no anti-freezing within t3 Action, the opening degree of EXV6 or EXV7 is increased by X, that is, the opening degree is K + X.
  • the pressure difference between the low-pressure gas pipe L2 and the evaporator 211 is smaller, because The pressure of the low-pressure gas pipe L2 is a constant value, so the evaporation pressure of the evaporator 211 will decrease, which will reduce the evaporation temperature of the refrigerating indoor unit, so as to avoid the phenomenon that the refrigerant passage is blocked due to the excessively high evaporation temperature.
  • the control method of the three-pipe heat recovery multi-connected system firstly, the evaporation temperature and outdoor environment temperature of the refrigerating indoor unit are obtained; and whether the evaporation temperature of the refrigerating indoor unit is needed according to the evaporation temperature and outdoor environment temperature of the refrigerating indoor unit Adjustment; if it is judged that the evaporation temperature of the refrigerating indoor unit needs to be adjusted, the low-temperature refrigeration anti-freezing module is controlled to generate an intermediate pressure state between the second end of the low-temperature refrigeration anti-freezing module and the low-pressure air pipe to adjust the evaporation temperature of the refrigerating indoor unit.
  • the method can adjust the evaporation temperature of the refrigerating indoor unit through the low-temperature refrigeration anti-freezing module, so that it can effectively respond to the cooling needs of the inner side under low-temperature conditions, and at the same time can prevent the indoor unit from freezing, ensuring the reliability and comfort of the system.
  • the present application also proposes a non-transitory computer-readable storage medium on which a computer program is stored, and the program implements the above-mentioned control method when executed by a processor.
  • the non-transitory computer-readable storage medium in the embodiment of the present application first obtains the evaporation temperature and outdoor environment temperature of the refrigerating indoor unit; determines whether the evaporation temperature of the refrigerating indoor unit needs to be adjusted according to the evaporation temperature of the refrigerating indoor unit and the outdoor environment temperature; if Determine that the evaporation temperature of the refrigeration indoor unit needs to be adjusted, then control the low-temperature refrigeration antifreeze module to generate an intermediate pressure state between the second end of the low-temperature refrigeration antifreeze module and the low-pressure air pipe to adjust the evaporation temperature of the refrigeration indoor unit, which can effectively respond to Under low temperature conditions, the cooling requirements on the inside can also prevent the indoor unit from freezing and ensure the reliability and comfort of the system.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality” is two or more, unless it is specifically and specifically defined otherwise.
  • the terms “installation,” “connected,” “connected,” and “fixed” should be understood broadly unless otherwise specified and limited, for example, they may be fixed connections or removable connections Or integrated; it can be mechanical or electrical; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements.
  • installation should be understood broadly unless otherwise specified and limited, for example, they may be fixed connections or removable connections Or integrated; it can be mechanical or electrical; it can be directly connected or indirectly connected through an intermediate medium; it can be the internal connection of two elements or the interaction between two elements.
  • the first feature "on” or “down” of the second feature may be the first and second features in direct contact, or the first and second features indirectly through an intermediate medium. contact.
  • the first feature is “above”, “above”, and “above” the second feature.
  • the first feature is directly above or obliquely above the second feature, or it only indicates that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below”, and “below” of the second feature.
  • the first feature may be directly below or obliquely below the second feature, or it may simply indicate that the first feature is less horizontal than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种三管热回收多联机系统及其控制方法,所述系统包括:室外机(1)和室内机(2);冷媒分配装置(3),包括换热组件(31)、制冷制热切换阀(32)和低温制冷防冻结模块(33);控制器,控制器用于在三管热回收多联机系统运行在制冷模式或混合运行模式时,获取制冷室内机的蒸发温度和室外环境温度,并根据制冷室内机的蒸发温度和环境温度判断制冷室内机的蒸发温度是否需要调节,以及在判断室内机蒸发温度需要调节时,通过控制低温制冷防冻结模块(33)以调节制冷室内机的蒸发温度。

Description

三管热回收多联机系统及其控制方法
相关申请的交叉引用
本申请基于申请号为201810635734.5,申请日为2018年06月20日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调技术领域,特别涉及一种三管热回收多联机系统、一种三管热回收多联机系统的控制方法和一种非临时性计算机可读存储介质。
背景技术
三管制热回收多联机系统,同时运行制冷和制热,在多联机系统的部分或全部外换热器作为蒸发器时,系统的低压饱和温度必须低于室外环境温度,才能保证室外换热器中的液态冷媒能够吸收热量。但如果室外环境温度低于一定温度(例如5℃以下),多联机系统的低压饱和温度就会低于水的冰点,此时若室内侧有制冷需求,制冷内机盘管内的冷媒温度接近系统低压饱和温度,导致制冷内机盘管内的冷媒温度也会低于冰点,盘管和翅片结霜,室内机频繁进入防冻结保护,影响制冷内机的舒适性,同时有吹冷凝水和冻坏内机管路的可能性。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请提出一种三管热回收多联机系统,该系统可以通过低温制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
本申请还提出一种三管热回收多联机系统的控制方法。
本申请还提出一种非临时性计算机可读存储介质。
本申请第一方面实施例提出了一种三管热回收多联机系统,包括:室外机和室内机,其中,室外机包括至少一个压缩机、低压储液罐、室外换热器,室内机包括室内换热器;冷媒分配装置,所述冷媒分配装置的一侧通过高压液管、低压气管和高压气管与所述室外机相连,所述冷媒分配装置的另一侧与所述室内机相连,所述冷媒分配装置包括换热组件、制冷制热切换阀和低温制冷防冻结模块,所述换热组件包括第一流路和第二流路,所述低温制冷防冻结模块的第一端与所述低压气管相连,所述低温制冷防冻结模块的第二端与所述换热组件的第二换热流路相连,所述低温制冷防冻结模块的第三端与所述制冷制热切换阀相连;控制器,所述控制器用于在所述三管热回收多联机系统运行在制冷模式或混合运行模式时,获取所述 制冷室内机的蒸发温度和室外环境温度,并根据所述制冷室内机的蒸发温度和室外环境温度判断所述制冷室内机的蒸发温度是否需要调节,以及在判断所述室内机蒸发温度需要调节时,通过控制所述低温制冷防冻结模块使所述低温制冷防冻结模块的第二端与所述低压气管之间产生中间压力状态,以调节所述制冷室内机的蒸发温度。
根据本申请实施例的三管热回收多联机系统,控制器在三管热回收多联机系统运行在制冷模式或混合运行模式时,获取制冷室内机的蒸发温度和室外环境温度,并根据制冷室内机的蒸发温度和环境温度判断制冷室内机的蒸发温度是否需要调节,以及在判断室内机蒸发温度需要调节时,通过控制低温制冷防冻结模块使低温制冷防冻结模块的第二端与低压气管之间产生中间压力状态,以调节制冷室内机的蒸发温度。由此,系统可以通过低温制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
本申请的第二方面实施例提出了一种三管热回收多联机系统的控制方法,包括以下步骤:获取所述制冷室内机的蒸发温度和室外环境温度;根据所述制冷室内机的蒸发温度和室外环境温度判断所述制冷室内机的蒸发温度是否需要调节;如果判断所述制冷室内机的蒸发温度需要调节,则控制所述低温制冷防冻结模块使所述低温制冷防冻结模块的第二端与所述低压气管之间产生中间压力状态,以调节所述制冷室内机的蒸发温度。
根据本申请实施例的三管热回收多联机系统的控制方法,首先获取制冷室内机的蒸发温度和室外环境温度;根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节;如果判断制冷室内机的蒸发温度需要调节,则控制低温制冷防冻结模块使低温制冷防冻结模块的第二端与低压气管之间产生中间压力状态,以调节制冷室内机的蒸发温度。由此,该方法可以通过低温制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
本申请第三方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请第二方面实施例所述的控制方法。
本申请实施例的非临时性计算机可读存储介质,首先获取制冷室内机的蒸发温度和室外环境温度;根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节;如果判断制冷室内机的蒸发温度需要调节,则控制低温制冷防冻结模块使低温制冷防冻结模块的第二端与低压气管之间产生中间压力状态,以调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中,
图1是根据本申请一个实施例的三管热回收多联机系统的结构示意图;
图2是根据本申请另一个实施例的三管热回收多联机系统的结构示意图;
图3是根据本申请一个实施例的制冷室内机的蒸发温度调节判断原理图;
图4是根据本申请一个实施例的节流阀开度调节的原理图;以及
图5是根据本申请一个实施例的三管热回收多联机系统的控制方法的流程图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参照附图来描述根据本申请实施例提出的三管热回收多联机系统、三管热回收多联机系统的控制方法和非临时性计算机可读存储介质。
图1-图2是根据本申请一个实施例的三管热回收多联机系统的结构示意图。如图1-图2所示,该系统包括:室外机1、室内机2、冷媒分配装置3和控制器(图中未具体示出)。
其中,室外机1包括至少一个压缩机11、低压储液罐12、室外换热器13,室内机2包括室内换热器21。压缩机11的排气端分别与室外换热器13和室内换热器21相连,压缩机11的吸气端与低压储液罐12的一端相连,低压储液罐12的另一端与室外换热器13相连。冷媒分配装置3的一侧通过高压液管L1、低压气管L2和高压气管L3与室外机1相连,冷媒分配装置3的另一侧与室内机2相连,冷媒分配装置3包括换热组件31、制冷制热切换阀32和低温制冷防冻结模块33,换热组件31包括第一流路L4和第二流路L5,低温制冷防冻结模33块的第一端a与低压气管L2相连,低温制冷防冻结模块33的第二端b与换热组件31的第二换热流路L5相连,低温制冷防冻结模块33的第三端c与制冷制热切换阀32相连。控制器用于在三管热回收多联机系统运行在制冷模式或混合运行时,获取制冷室内机的蒸发温度和室外环境温度,并根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节,以及在判断室内机的蒸发温度需要调节时,通过控制低温制冷防冻结模块33使低温制冷防冻结模块的第三端c与低压气管L2之间产生中间压力状态,以调节制冷室内机的蒸发温度。
如图1-图2所示,第一流路L4的一端通过高压液管L1与室外换热器13相连,第一流路L4的另一端与室内机2相连,第二流路L5的一端通过低压气管L2与低压储液罐12相连,第二流路L5的另一端与第一换热流路L4的另一端相连。室内换热器21包括蒸发器211 和冷凝器212,制冷制热切换阀32包括至少一个,图1-图2中以2个为例,每个制冷制热切换阀32包括第一电磁阀Sva、第二电磁阀Svb。第一电磁阀Sva的一端与低温制冷防冻结模块的第三端c相连,第二电磁阀Svb的一端与高压气管L3相连,每个制冷制热切换阀中的第一电磁阀Sva和第二电磁阀Svb的另一端与蒸发器或冷凝器对应相连。
具体地,如图1-图2所示,室外机1还可包括四通阀ST1-ST3和节流阀EXV1-EXV2,室外换热器13包括第一室外换热器131和第二室外换热器132,室外机1与各元器件之间的连接方式如图1-2所示,第一室外换热器131的一端通过四通阀ST2、ST1与低压储液罐12的一端相连,第一室外换热器131的另一端与节流阀EXV1的一端相连,节流阀EXV1的另一端与高压液管L1相连,第二室外换热器132的一端通过四通阀ST3与低压储液罐12的一端相连,第二室外换热器的另一端与节流阀EXV2的一端相连,节流阀EXV2的另一端与高压液管L2相连,低压储液罐12的另一端与压缩机11的吸气端相连,压缩机11的吸气端通过四通阀ST2与第一换热器131的一端相连,并通过四通阀ST3与第二换热器132的一端相连,以及通过四通阀ST1与高压气管L3相连,为方便理解,各元器件之间的连接方式可直接参照图1-2所示,此处不再赘述。在冷媒分配装置3中换热组件31的第二换热流路L5上还设置节流阀EXV3,换热组件31的第一换热流路L4为主换热流路,第二换热流路L5为从换热流路。室内机2还包括节流阀EXV4、EXV5。蒸发器211作为制冷内机,冷凝器212作为制热内机。一般第一电磁阀Sva为制冷电磁阀,第二电磁阀Svb为制热电磁阀,当与制冷制热切换阀对应连接的内机开制冷,则控制第一电磁阀Sva打开、第二电磁阀Svb关闭;当与制冷制热切换阀对应连接的内机开制热,则控制第一电磁阀Sva关闭、第二电磁阀Svb打开。
压缩机11出口的高温高压冷媒,经过四通阀ST1流向冷媒分配装置3,进入冷凝器212,向室内放出热量,冷媒自身被冷却为低温高压的液态,一部分流向室外换热器13进行蒸发,一部分流向蒸发器211进行蒸发,蒸发器211蒸发后的气态冷媒和室外换热器出来的气态冷媒在室外机汇合后回到压缩机11。由于室内机与室外蒸发器为并联关系,两者的蒸发温度接近。在外界温度较低时(如低于5度),为保证蒸发器211的吸热,蒸发温度会低于冰点。
为此,在本申请中,在冷媒分配装置3中设置低温制冷防冻结模块33,该模块设置在低压气管L2上,一端与低压气管L2连通,一端设置在换热组件31的从换热流路上,第三端设置在制冷制热切换阀前。在三管热回收多联机系统运行在制冷模式或混合运行模式时,控制器获取制冷室内机的蒸发温度和室外环境温度,并根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节,例如,如果制冷室内机的蒸发温度低于1℃且室外环境温度低于8℃,则控制器可以判断制冷室内机的蒸发温度需要调节。在 判断室内机蒸发温度需要调节时,控制器通过控制低温制冷防冻结模块33使低温制冷防冻结模块33的第三端c与低压气管L2之间产生中间压力状态,由于制冷室内机的蒸发温度与压力呈正相关关系,因此,控制器可以通过调节低温制冷防冻结模块33的第三端c与低压气管L2之间压差调节以调节制冷室内机的蒸发温度,例如,如果蒸发温度较低,可以增大低温制冷防冻结模块33的第三端c与低压气管L2之间压差,由于低压气管L2侧的压力不变,因此可以增大压差可增大低温制冷防冻结模块33的第三端c的压力,从而可以增加蒸发器的蒸发压力,进而可以增大蒸发温度。该系统可以通过低温制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
在本申请中,节流阀可以是电子膨胀阀或电磁阀或者电子膨胀阀和电磁阀的组合构成
根据本申请的一个实施实例,三管热回收多联机系统在室内侧有制冷需求,系统运行在制冷模式或混合运行模式、且制冷室内机的蒸发温度小于等于第一预设温度T3且持续时间达到第一预设时间t1、且室外环境温度小于等于第三预设温度T时,控制器判断制冷室内机的蒸发温度需要调节;当三管热回收多联机系统运行在制热模式,或者室外环境温度大于第三预设温度T3,或者制冷室内机的蒸发温度大于第一预设温度T1且室内机在第一预设时间t1内未出现防冻结保护时,控制器判断制冷室内机的蒸发温度不需要调节。其中,第三预设温度T3大于第一预设温度T1。
在本申请的中,第一预设温度T1、第三预设温度T3和第一预设时间可以根据实际情况进行预设,例如,T1可以为1℃,T3可以为8℃,t1可以为5min。
具体地,如图3所示,如果三管热回收多联机系统在室内侧有制冷需求,系统运行在制冷模式或混合运行模式,且制冷室内机的蒸发温度小于等于T1且持续时间达到t1,且室外环境温度小于等于T3,则控制器可以判断制冷室内机的蒸发温度需要调节。如果三管热回收多联机系统运行在制热模式,或者室外环境温度大T3,或者制冷室内机的蒸发温度大于T1且室内机在t1内未出现防冻结保护,则控制器可以判断制冷室内机的蒸发温度不需要调节。其中,在三管热回收多联机系统中,如果制冷室内机换热器温度低于某一温度(一般为-5℃),则制冷室内机会自动进入防冻结保护,以防止制冷室内机换热器长时间结霜、冻结,造成换热器损坏。控制器的判断周期可以为10-15min,也就是说,控制器可以每隔10-15min判断一次制冷室内机的蒸发温度是否需要调节。
作为一种示例,如图1所示,低温制冷防冻结模块33可以包括:第一四通阀ST4、第一节流阀EXV6。第一四通阀ST4的第一端与低压气管L2相连,四通阀ST4的第二端与第一电磁阀Sva的一端相连,第一四通阀ST4的第三端通过毛细管L6与低压气管L2相连。第一节流阀EXV6的一端与第一四通阀ST4的第四端相连,第一节流阀EXV6的另一端与 换热组件31的第二换热流路L5相连。
控制器还用于:在判断制冷室内机的蒸发温度不需要调节时,控制的第一四通阀ST4的第一端与第二端相连通,以及在判断室内机蒸发温度需要调节时,控制第一四通阀ST4的第二端与第四端相连通。
具体地,如图1所示,在判断制冷室内机的蒸发温度不需要调节时,控制器控制ST4的第一端与第二端相连通,EXV6完全打开,低温制冷防冻结模块33完全不起作用。压缩机排出的高温高压冷媒经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分送去蒸发器211蒸发,产生的低压蒸汽经Sva、ST4和低压气管L2返回室外机1;一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。
在判断制冷室内机的蒸发温度需要调节时,EXV3全开,控制器控制ST4换向使第二端与第四端相连通,压缩机11排出的高温高压冷媒,经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。一部分流经EXV4节流,变成中压液态冷媒,蒸发器211蒸发,产生的中压气态冷媒,经ST4、EXV6节流后流入冷媒分配装置的换热组件31的第二换热流路L5和低压气管L2返回室外机1。可以理解的是,在判断制冷室内机的蒸发温度需要调节时,通过EXV6节流,可以使EXV6与低压气管L2之间产生一个中间压力状态,通过改变EXV6的开度可以改变EXV6与低压气管L2之间的压差,从而改变制冷室内机的蒸发温度,以有效应对低温工况下内侧的制冷需求,避免室内机冻结,保证系统的可靠性和舒适性。
作为另一种示例,如图2所示,低温制冷防冻结模块33也可以包括:第三电磁阀Sv3、单向阀D、第二节流阀EXV7。其中,第三电磁阀Sv3的一端与低压气管L2相连,第三电磁阀Sv3的另一端与第一电磁阀Sva的一端相连;单向阀D的一端与第三电磁阀Sv3的另一端相连;第二节流阀EXV7的一端与单向阀D的另一端相连,第二节流阀EXV7的另一端与换热组件31的第二换热流路L5相连。
进一步地,控制器还可以用于:在判断制冷室内机的蒸发温度不需要调节时,控制第三电磁阀Sv3打开,以及在判断室内机蒸发温度不需要调节时,控制第三电磁阀Sv3关闭。
具体地,如图2所示,单向阀D的流向如图2中的箭头所示,在判断制冷室内机的蒸发温度不需要调节时,控制器控制Sv3打开,EXV7完全打开,低温制冷防冻结模块33完全不起作用。压缩机11排出的高温高压冷媒经高压气管L3、Svb送去冷凝器212冷凝,产生 的低温高压液态冷媒,返回冷媒分配装置3,一部分送去蒸发器211蒸发,产生的低压蒸汽经Sva、Sv3和低压气管L2返回室外机1;一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。
在判断制冷室内机的蒸发温度需要调节时,EXV3全开,控制器控制Sv3关闭,压缩机11排出的高温高压冷媒,经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。一部分流经EXV4节流,变成中压液态冷媒,蒸发器211蒸发,产生的中压气态冷媒,经单向阀D、EXV7节流后流入冷媒分配装置的换热组件31的第二换热流路L5和低压气管L2返回室外机1。可以理解的是,在判断制冷室内机的蒸发温度需要调节时,通过EXV7节流,可以使EXV7与低压气管L2之间产生一个中间压力状态,通过改变EXV7的开度可以改变EXV7与低压气管L2之间的压差,从而改变制冷室内机的蒸发温度,以有效应对低温工况下内侧的制冷需求,避免室内机冻结,保证系统的可靠性和舒适性。
根据本申请的一个实施例,对于图1所示的系统,控制器还在判断制冷室内机的蒸发温度需要调节时,获取制冷室内机的蒸发温度,其中,如果制冷室内机的蒸发温度小于等于第一预设温度T1且持续时间达到第一预设时间t1,或者室内机发生防冻结保护,则将第一节流阀EXV6的开度减小第一预设开度X;如果制冷室内机的蒸发温度大于第一预设温度T1,且室内机未发生防冻结保护,则保持第一节流阀EXV6的开度不变;如果制冷室内机的蒸发温度大于第二预设温度T2且在第二预设时间t2内室内机未发生防冻结保护,则将第一节流阀EXV6的开度增大第一预设开度X,其中,第一预设温度T1小于第二预设温度T2。
根据本申请的一个实施例,对于图2所示的系统,控制器还在判断制冷室内机的蒸发温度需要调节时,获取制冷室内机的蒸发温度,其中,如果制冷室内机的蒸发温度小于等于第一预设温度T1且持续时间达到第一预设时间t1,或者室内机发生防冻结保护,则将第二节流阀EXV7的开度减小第一预设开度X;如果制冷室内机的蒸发温度大于第一预设温度T1,且室内机未发生防冻结保护,则保持第二节流阀EXV7的开度不变;如果制冷室内机的蒸发温度大于第二预设温度T2且在第二预设时间t2内室内机未发生防冻结保护,则将第二节流阀EXV7的开度增大第一预设开度X。第一预设开度X可以根据实际情况进行预设。
在本申请中,第一预设温度T1、第二预设温度T2、第一预设时间t1和第二预设时间t2可以根据实际情况进行预设,例如,T1可以为1℃,T2可以为12℃,t1可以为5min,t2可以为30-60min。节流阀的调节周期可以为1min,即控制器在判断制冷室内机的蒸发温度需要调节时,每隔1min获取制冷室内机的蒸发温度,以对EXV6或EXV7的开度进行调节。
具体地,在判断制冷室内机的蒸发温度需要调节时,EXV3全开,图1中,ST4换向使第一端与第二端相连通,图2中Sv3关闭,且控制器还对第一节流阀EXV6或第二节流阀EXV7的开度进行调节。如图4所示,EXV6或EXV7的初始开度为K,K可以根据实际情况提前进行预设,若期间制冷室内机的蒸发温度≤T1且持续时间达到t1,或者室内机发生防冻结保护,则控制器将EXV6或EXV7的开度减小X,即开度为K-X,当EXV6或EXV7的开度减小时,会使低压气管L2与蒸发器211的之间的压差增大,由于低压气管L2的压力为定值,所以蒸发器211的蒸发压力会增加,从而会提高制冷室内机的蒸发温度,有效应对低温工况下内侧的制冷需求,避免室内机冻结,保证系统的可靠性和舒适性。如果制冷室内机的蒸发温度>T1,且系统在t3时间内未发生防冻结保护,则保持EXV6或EXV7的开度不变;若制冷室内机的蒸发温度>T2且系统在t3时间内未有防冻结动作,则控制器将EXV6或EXV7的开度增加X,即开度为K+X,当EXV6或EXV7的开度增加时,会使低压气管L2与蒸发器211的之间的压差较小,由于低压气管L2的压力为定值,所以蒸发器211的蒸发压力会减小,从而会降低制冷室内机的蒸发温度,以避免发生由于蒸发温度过高堵塞冷媒通道现象的发生。
综上所述,根据本申请实施例的三管热回收多联机系统,控制器在三管热回收多联机系统运行在制冷模式或混合运行模式时,获取制冷室内机的蒸发温度和室外环境温度,并根据制冷室内机的蒸发温度和环境温度判断制冷室内机的蒸发温度是否需要调节,以及在判断室内机蒸发温度需要调节时,通过控制低温制冷防冻结模块使低温制冷防冻结模块的第二端与低压气管之间产生中间压力状态,以调节制冷室内机的蒸发温度。由此,系统可以通过低温制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
基于上述的三管热回收多联机系统,本申请的实施例还提出一种三管热回收多联机系统的控制方法。
图5是根据本申请一个实施例的三管热回收多联机系统的控制方法的流程图。如图5所示,该方法包括以下步骤:
S1,获取制冷室内机的蒸发温度和室外环境温度。
可以通过设置相应的温度传感器获取制冷室内机的蒸发温度和室外环境温度。
S2,根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节。
进一步地,根据制冷室内机的蒸发温度和室外环境温度判断所述制冷室内机的蒸发温度是否需要调节,包括:如果三管热回收多联机系统在室内侧有制冷需求,系统运行在制冷模 式或混合运行模式、且制冷室内机的蒸发温度小于等于第一预设温度T1且持续时间达到第一预设时间t1、且室外环境温度小于等于第三预设温度T3时,则判断制冷室内机的蒸发温度需要调节;如果三管热回收多联机系统运行在制热模式,或者室外环境温度大于第三预设温度T3,或者制冷室内机的蒸发温度大于第一预设温度T1且室内机在第一预设时间t1内未出现防冻结保护时,则判断制冷室内机的蒸发温度不需要调节。其中,第三预设温度T3大于第一预设温度T1。第一预设温度T1、第三预设温度T3和第一预设时间可以根据实际情况进行预设,例如,T1可以为1℃,T3可以为8℃,t1可以为5min。
S3,如果判断制冷室内机的蒸发温度需要调节,则控制低温制冷防冻结模块以调节制冷室内机的蒸发温度。
具体地,如图1-图2所示,在冷媒分配装置中设置低温制冷防冻结模块,该模块设置在低压气管上,一端与低压气管连通,一端设置在换热组件的从换热流路上,第三端设置在制冷制热切换阀前。在三管热回收多联机系统运行在制冷模式或混合运行模式时,获取制冷室内机的蒸发温度和室外环境温度,并根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节。如图3所示,如果三管热回收多联机系统运行在制冷模式或混合运行模式,且制冷室内机的蒸发温度小于等于1℃,且室外环境温度小于等于8℃,且持续时间达到5min,则控制器可以判断制冷室内机的蒸发温度需要调节。如果三管热回收多联机系统运行在制热模式,或者室外环境温度大于8℃,或者制冷室内机的蒸发温度大于1℃且室内机在5min内未出现防冻结保护,则控制器可以判断制冷室内机的蒸发温度不需要调节。其中,在三管热回收多联机系统中,如果制冷室内机换热器温度低于某一温度(一般为-5℃),则制冷室内机会自动进入防冻结保护,以防止制冷室内机换热器长时间结霜、冻结,造成换热器损坏。判断周期可以为10-15min,也就是说,可以每隔10-15min判断一次制冷室内机的蒸发温度是否需要调节。
在判断室内机蒸发温度需要调节时,通过控制低温制冷防冻结模块使低温制冷防冻结模块的第三端c与低压气管之间产生中间压力状态,由于制冷室内机的蒸发温度与压力呈正相关关系,因此,可以通过调节低温制冷防冻结模块的第三端c与低压气管之间压差调节以调节制冷室内机的蒸发温度,例如,如果蒸发温度较低,可以增大低温制冷防冻结模块的第三端c与低压气管之间压差,由于低压气管侧的压力不变,因此可以增大压差可增大低温制冷防冻结模块的第三端c的压力,从而可以增加蒸发器的蒸发压力,进而可以增大蒸发温度。该方法可以通过制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
根据本申请的一个实施例,上述的方法还可以包括:如果判断制冷室内机的蒸发温度不需要调节时,则控制的第一四通阀ST4的第一端与第二端相连通;如果判断室内机蒸发温 度需要调节时,则控制第一四通阀ST4的第二端与第四端相连通。
具体地,如图1所示,在判断制冷室内机的蒸发温度不需要调节时,控制ST4的第一端与第二端相连通,EXV6完全打开,低温制冷防冻结模块33完全不起作用。压缩机排出的高温高压冷媒经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分送去蒸发器211蒸发,产生的低压蒸汽经Sva、ST4和低压气管L2返回室外机1;一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。
在判断制冷室内机的蒸发温度需要调节时,EXV3全开,控制ST4换向使第二端与第四端相连通,压缩机11排出的高温高压冷媒,经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。一部分流经EXV4节流,变成中压液态冷媒,蒸发器211蒸发,产生的中压气态冷媒,经ST4、EXV6节流后流入冷媒分配装置的换热组件31的第二换热流路L5和低压气管L2返回室外机1。可以理解的是,在判断制冷室内机的蒸发温度需要调节时,通过EXV6节流,可以使EXV6与低压气管L2之间产生一个中间压力状态,通过改变EXV6的开度可以改变EXV6与低压气管L2之间的压差,从而改变制冷室内机的蒸发温度,以有效应对低温工况下内侧的制冷需求,避免室内机冻结,保证系统的可靠性和舒适性。
根据本申请的另一个实施例,上述的方法还可以包括:如果判断制冷室内机的蒸发温度不需要调节时,控制第三电磁阀Sv3打开;如果判断室内机蒸发温度需要调节时,则控制第三电磁阀Sv3关闭。
具体地,如图2所示,单向阀D的流向如图2中的箭头所示,在判断制冷室内机的蒸发温度不需要调节时,控制Sv3打开,EXV7完全打开,低温制冷防冻结模块33完全不起作用。压缩机11排出的高温高压冷媒经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分送去蒸发器211蒸发,产生的低压蒸汽经Sva、Sv3和低压气管L2返回室外机1;一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后,在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。
在判断制冷室内机的蒸发温度需要调节时,EXV3全开,控制Sv3关闭,压缩机11排出的高温高压冷媒,经高压气管L3、Svb送去冷凝器212冷凝,产生的低温高压液态冷媒,返回冷媒分配装置3,一部分经高压液管L1返回室外机1,并经EXV1和EXV2节流后, 在室外换热器中蒸发为低压气态冷媒,与低压气管返回的低压气态冷媒汇合后,回到压缩机11的吸气端。一部分流经EXV4节流,变成中压液态冷媒,蒸发器211蒸发,产生的中压气态冷媒,经单向阀D、EXV7节流后流入冷媒分配装置的换热组件31的第二换热流路L5和低压气管L2返回室外机1。可以理解的是,在判断制冷室内机的蒸发温度需要调节时,通过EXV7节流,可以使EXV7与低压气管L2之间产生一个中间压力状态,通过改变EXV7的开度可以改变EXV7与低压气管L2之间的压差,从而改变制冷室内机的蒸发温度,以有效应对低温工况下内侧的制冷需求,避免室内机冻结,保证系统的可靠性和舒适性。
根据本申请的一个实施例,在判断制冷室内机的蒸发温度需要调节时,还包括:获取制冷室内机的蒸发温度,其中,如果制冷室内机的蒸发温度小于等于第一预设温度T1且持续时间达到第一预设时间t1,或者室内机发生防冻结保护,则将第一节流阀EXV6的开度减小第一预设开度X;如果制冷室内机的蒸发温度大于第一预设温度T1,且室内机未发生防冻结保护,则保持第一节流阀EXV6的开度不变;如果制冷室内机的蒸发温度大于第二预设温度T2且在第二预设时间t2内室内机未发生防冻结保护,则将第一节流阀EXV6的开度增大第一预设开度X,其中,第一预设温度T1小于第二预设温度T2。
根据本申请的一个实施例,对于图2所示的系统,在判断制冷室内机的蒸发温度需要调节时,还包括:获取制冷室内机的蒸发温度,其中,如果制冷室内机的蒸发温度小于等于第一预设温度T1且持续时间达到第一预设时间t1,或者室内机发生防冻结保护,则将第二节流阀EXV7的开度减小第一预设开度X;如果制冷室内机的蒸发温度大于第一预设温度T1,且室内机未发生防冻结保护,则保持第二节流阀EXV7的开度不变;如果制冷室内机的蒸发温度大于第二预设温度T2且在第二预设时间t2内室内机未发生防冻结保护,则将第二节流阀EXV7的开度增大第一预设开度X。第一预设开度X可以根据实际情况进行预设。
在本申请中,第一预设温度T1、第二预设温度T2、第一预设时间t1和第二预设时间t2可以根据实际情况进行预设,例如,T1可以为1℃,T2可以为12℃,t1可以为5min,t2可以为30-60min。节流阀的调节周期可以为1min,即控制器在判断制冷室内机的蒸发温度需要调节时,每隔1min获取制冷室内机的蒸发温度,以对EXV6或EXV7的开度进行调节。
具体地,在判断制冷室内机的蒸发温度需要调节时,EXV3全开,图1中,ST4换向使第一端与第二端相连通,图2中Sv3关闭,且还对第一节流阀EXV6或第二节流阀EXV7的开度进行调节。如图4所示,EXV6或EXV7的初始开度为K,K可以根据实际情况提前进行预设,若期间制冷室内机的蒸发温度≤T1且持续时间达到t1,或者室内机发生防冻结保护,则控制器将EXV6或EXV7的开度减小X,即开度为K-X,当EXV6或EXV7的开度减小时,会使低压气管L2与蒸发器211的之间的压差增大,由于低压气管L2的压力为定值,所以蒸发器211的蒸发压力会增加,从而会提高制冷室内机的蒸发温度,有效应对低 温工况下内侧的制冷需求,避免室内机冻结,保证系统的可靠性和舒适性。如果制冷室内机的蒸发温度>T1,且室内机未发生防冻结保护,则保持第EXV6或EXV7的开度不变;若制冷室内机的蒸发温度>T2且系统在t3时间内未有防冻结动作,则将EXV6或EXV7的开度增加X,即开度为K+X,当EXV6或EXV7的开度增加时,会使低压气管L2与蒸发器211的之间的压差较小,由于低压气管L2的压力为定值,所以蒸发器211的蒸发压力会减小,从而会降低制冷室内机的蒸发温度,以避免发生由于蒸发温度过高堵塞冷媒通道现象的发生。
根据本申请实施例的三管热回收多联机系统的控制方法,首先获取制冷室内机的蒸发温度和室外环境温度;根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节;如果判断制冷室内机的蒸发温度需要调节,则控制低温制冷防冻结模块使低温制冷防冻结模块的第二端与低压气管之间产生中间压力状态,以调节制冷室内机的蒸发温度。由此,该方法可以通过低温制冷防冻结模块调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
此外,本申请还提出一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的控制方法。
本申请实施例的非临时性计算机可读存储介质,首先获取制冷室内机的蒸发温度和室外环境温度;根据制冷室内机的蒸发温度和室外环境温度判断制冷室内机的蒸发温度是否需要调节;如果判断制冷室内机的蒸发温度需要调节,则控制低温制冷防冻结模块使低温制冷防冻结模块的第二端与低压气管之间产生中间压力状态,以调节制冷室内机的蒸发温度,从而可以有效应对低温工况下内侧的制冷需求,同时可以避免室内机冻结,保证系统的可靠性和舒适性。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术 语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种三管热回收多联机系统,其特征在于,包括:
    室外机和室内机,其中,室外机包括至少一个压缩机、低压储液罐、室外换热器,所述室内机包括室内换热器,所述压缩机的排气端分别与所述室外换热器和所述室内换热器相连,所述压缩机的吸气端与所述低压储液罐的一端相连,所述低压储液罐的另一端与所述室外换热器相连;
    冷媒分配装置,所述冷媒分配装置的一侧通过高压液管、低压气管和高压气管与所述室外机相连,所述冷媒分配装置的另一侧与所述室内机相连,所述冷媒分配装置包括换热组件、制冷制热切换阀和低温制冷防冻结模块,所述换热组件包括第一流路和第二流路,所述低温制冷防冻结模块的第一端与所述低压气管相连,所述低温制冷防冻结模块的第二端与所述换热组件的第二换热流路相连,所述低温制冷防冻结模块的第三端与所述制冷制热切换阀相连;
    控制器,所述控制器用于获取所述制冷室内机的蒸发温度和室外环境温度,并根据所述制冷室内机的蒸发温度和室外环境温度确定所述制冷室内机的蒸发温度需要调节,通过控制所述低温制冷防冻结模块以调节所述制冷室内机的蒸发温度。
  2. 如权利要求1所述的三管热回收多联机系统,其特征在于,所述第一换热流路的一端通过所述高压液管与所述室外换热器相连,所述第一换热流路的另一端与所述室内机相连,所述第二换热流路的一端通过所述低压气管与所述低压储液罐相连,所述第二换热流路的另一端与所述第一换热流路的另一端相连。
  3. 如权利要求2所述的三管热回收多联机系统,其特征在于,所述室内换热器包括蒸发器和冷凝器,所述制冷制热切换阀包括至少一个,每个所述制冷制热切换阀包括:第一电磁阀和第二电磁阀,所述第一电磁阀的一端与所述低温制冷防冻结模块的第三端相连,所述第二电磁阀的一端与所述高压气管相连,每个所述制冷制热切换阀中的第一电磁阀和第二电磁阀的另一端与所述蒸发器或冷凝器对应相连。
  4. 如权利要求3所述的三管热回收多联机系统,其特征在于,所述低温制冷防冻结模块包括:
    第一四通阀,所述第一四通阀的第一端与所述低压气管相连,所述四通阀的第二端与所述第一电磁阀的一端相连,所述第一四通阀的第三端通过毛细管与所述低压气管相连;
    第一节流阀,所述第一节流阀的一端与所述第一四通阀的第四端相连,所述第一节流阀的另一端与所述换热组件的第二换热流路相连。
  5. 如权利要求3所述的三管热回收多联机系统,其特征在于,所述低温制冷防冻结模 块包括:
    第三电磁阀,所述第三电磁阀的一端与所述低压气管相连,所述第三电磁阀的另一端与所述第一电磁阀的一端相连;
    单向阀,所述单向阀的一端与所述第三电磁阀的另一端相连;
    第二节流阀,所述第二节流阀的一端与所述单向阀的另一端相连,所述第二节流阀的另一端与所述换热组件的第二换热流路相连。
  6. 如权利要求4所述的三管热回收多联机系统,其特征在于,所述控制器还用于:所述制冷室内机的蒸发温度不需要调节,控制所述的第一四通阀的第一端与第二端相连通,以及所述制冷室内机蒸发温度需要调节,控制所述第一四通阀的第二端与第四端相连通。
  7. 如权利要求5所述的三管热回收多联机系统,其特征在于,所述控制器还用于:所述制冷室内机的蒸发温度不需要调节,控制所述第三电磁阀打开,以及所述制冷室内机蒸发温度需要调节,控制所述第三电磁阀关闭。
  8. 如权利要求6所述的三管热回收多联机系统,其特征在于,所述控制器用于确定所述制冷室内机的蒸发温度需要调节,获取所述制冷室内机的蒸发温度,其中,
    所述制冷室内机的蒸发温度小于等于第一预设温度且持续时间达到第一预设时间,或者所述制冷室内机发生防冻结保护,则将所述第一节流阀的开度减小第一预设开度;
    所述制冷室内机的蒸发温度大于第一预设温度,且所述制冷室内机未发生所述防冻结保护,保持所述第一节流阀的开度不变;
    所述制冷室内机的蒸发温度大于第二预设温度且在第二预设时间内所述制冷室内机未发生防冻结保护,将所述第一节流阀的开度增大第一预设开度,其中,所述第一预设温度小于所述第二预设温度。
  9. 如权利要求7所述的三管热回收多联机系统,其特征在于,所述控制器用于所述制冷室内机的蒸发温度需要调节,获取所述制冷室内机的蒸发温度,其中,
    所述制冷室内机的蒸发温度小于等于第一预设温度且持续时间达到第一预设时间,或者所述制冷室内机发生防冻结保护,将所述第二节流阀的开度减小第一预设开度;
    所述制冷室内机的蒸发温度大于第一预设温度,且所述制冷室内机未发生所述防冻结保护,保持所述第二节流阀的开度不变;
    所述制冷室内机的蒸发温度大于第二预设温度且在第二预设时间内所述制冷室内机未发生防冻结保护,将所述第二节流阀的开度增大第一预设开度。
  10. 如权利要求1-9中任一项所述的三管热回收多联机系统,其特征在于,所述三管热回收多联机系统在室内侧有制冷需求,系统运行在制冷模式或混合运行模式、且所述制冷室内机的蒸发温度小于等于第一预设温度且持续时间达到第一预设时间、且所述室外环境温度 小于等于第三预设温度,所述控制器确定所述制冷室内机的蒸发温度需要调节;所述三管热回收多联机系统运行在制热模式,或者所述室外环境温度大于所述第三预设温度,或者所述制冷室内机的蒸发温度大于第一预设温度且所述制冷室内机在第一预设时间内未出现防冻结保护,所述控制器确定所述制冷室内机的蒸发温度不需要调节,其中,所述第三预设温度大于所述第一预设温度。
  11. 一种如权利要求1-10中任一项所述的三管热回收多联机系统的控制方法,其特征在于,包括以下步骤:
    获取所述制冷室内机的蒸发温度和室外环境温度;
    根据所述制冷室内机的蒸发温度和室外环境温度确定所述制冷室内机的蒸发温度需要调节;
    控制所述低温制冷防冻结模块以调节所述制冷室内机的蒸发温度。
  12. 如权利要求11所述的控制方法,其特征在于,还包括:
    所述制冷室内机的蒸发温度不需要调节,控制所述的第一四通阀的第一端与第二端相连通;
    所述制冷室内机蒸发温度需要调节,控制所述第一四通阀的第二端与第四端相连通。
  13. 如权利要求11所述的控制方法,其特征在于,还包括:
    所述制冷室内机的蒸发温度不需要调节,控制所述第三电磁阀打开;
    所述制冷室内机蒸发温度不需要调节,控制所述第三电磁阀关闭。
  14. 如权利要求12所述的控制方法,其特征在于,确定所述室内机的蒸发温度需要调节,还包括:获取所述制冷室内机的蒸发温度,其中,
    所述制冷室内机的蒸发温度小于等于第一预设温度且持续时间达到第一预设时间,或者所述制冷室内机发生防冻结保护,将所述第一节流阀的开度减小第一预设开度;
    所述制冷室内机的蒸发温度大于第一预设温度,且所述制冷室内机未发生所述防冻结保护,保持所述第一节流阀的开度不变;
    所述制冷室内机的蒸发温度大于第二预设温度且在第二预设时间内所述制冷室内机未发生防冻结保护,将所述第一节流的开度增大第一预设开度,其中,所述第一预设温度小于所述第二预设温度。
  15. 如权利要求13所述的控制方法,其特征在于,确定所述制冷室内机的蒸发温度需要调节,还包括:获取所述制冷室内机的蒸发温度,其中,
    所述制冷室内机的蒸发温度小于等于第一预设温度且持续时间达到第一预设时间,或者所述制冷室内机发生防冻结保护,将所述第二节流阀的开度减小第一预设开度;
    所述制冷室内机的蒸发温度大于第一预设温度,且所述制冷室内机未发生所述防冻结保 护,保持所述第二节流阀的开度不变;
    所述制冷室内机的蒸发温度大于第二预设温度且在第二预设时间内所述室内机未发生防冻结保护,将所述第二节流阀的开度增大第一预设开度。
  16. 如权利要求11所述的控制方法,其特征在于,还包括:
    所述三管热回收多联机系统运行在制冷或者混合运行模式、且所述室内机的蒸发温度小于等于第一预设温度且持续时间达到第一预设时间、且所述室外环境温度小于等于第三预设温度,确定所述室内机的蒸发温度需要调节;
    所述三管热回收多联机系统运行在制热模式,或者所述室外环境温度大于所述第三预设温度,或者所述室内机的蒸发温度大于第一预设温度且所述室内机在第一预设时间内未出现防冻结保护,确定所述室内机的蒸发温度不需要调节,其中,所述第三预设温度大于所述第一预设温度。
  17. 一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求11-16中任一项所述的控制方法。
PCT/CN2018/122229 2018-06-20 2018-12-20 三管热回收多联机系统及其控制方法 WO2019242264A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3065399A CA3065399A1 (en) 2018-06-20 2018-12-20 Three-tube heat recovery multi-split air conditioning system and control method for the same
US16/625,753 US20210356185A1 (en) 2018-06-20 2018-12-20 Three-tube heat recovery multi-split air conditioning system and control method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810635734.5A CN108731187B (zh) 2018-06-20 2018-06-20 三管热回收多联机系统及其控制方法
CN201810635734.5 2018-06-20

Publications (1)

Publication Number Publication Date
WO2019242264A1 true WO2019242264A1 (zh) 2019-12-26

Family

ID=63930313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122229 WO2019242264A1 (zh) 2018-06-20 2018-12-20 三管热回收多联机系统及其控制方法

Country Status (4)

Country Link
US (1) US20210356185A1 (zh)
CN (1) CN108731187B (zh)
CA (1) CA3065399A1 (zh)
WO (1) WO2019242264A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370693A (zh) * 2021-12-17 2022-04-19 珠海格力电器股份有限公司 一种控制空调系统的方法及装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108731187B (zh) * 2018-06-20 2020-05-08 广东美的暖通设备有限公司 三管热回收多联机系统及其控制方法
CN109405336B (zh) * 2018-11-07 2023-08-18 珠海格力电器股份有限公司 空调系统及控制方法
CN109297136B (zh) * 2018-11-14 2021-02-02 宁波奥克斯电气股份有限公司 一种膨胀阀堵塞判定方法及空调器
CN109579356B (zh) * 2018-12-21 2020-10-27 广东志高暖通设备股份有限公司 一种带有热回收功能的温控多联机热泵系统及控制方法
CN109579357B (zh) * 2018-12-21 2020-10-27 广东志高暖通设备股份有限公司 一种具有高效热回收的多联机热泵系统及控制方法
CN109611992B (zh) * 2018-12-21 2020-11-20 广东志高暖通设备股份有限公司 一种具有多种运行模式的热回收式多联机系统及控制方法
CA3127887C (en) * 2019-06-24 2023-06-27 Guangdong Meizhi Precision-Manufacturing Co., Ltd. Compressor and heat exchange system
WO2021005737A1 (ja) * 2019-07-10 2021-01-14 三菱電機株式会社 室外機および空気調和装置
CN111473500B (zh) * 2020-04-29 2021-11-02 广东美的暖通设备有限公司 空调器及其控制方法和装置
CN112594866A (zh) * 2020-12-31 2021-04-02 广东积微科技有限公司 一种多联机水力模块防冻控制系统及其控制方法
CN113531783B (zh) * 2021-07-21 2022-06-28 四川虹美智能科技有限公司 多联式空调系统的制冷防冻结控制方法及装置
CN113883655A (zh) * 2021-11-12 2022-01-04 宁波奥克斯电气股份有限公司 空调运行控制方法、装置及空调器
CN114992778B (zh) * 2022-05-23 2024-02-20 青岛海尔空调电子有限公司 空调机组的防冻控制方法
CN115111723B (zh) * 2022-06-21 2023-12-19 珠海格力电器股份有限公司 一种空调器的控制方法、控制装置和空调器
CN115095931B (zh) * 2022-06-29 2023-09-05 美的集团(上海)有限公司 一种热气旁通组件、空调器及其控制方法和控制装置
CN115751655A (zh) * 2022-12-23 2023-03-07 珠海格力电器股份有限公司 多联机及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110105A (ja) * 1994-10-07 1996-04-30 Sanyo Electric Co Ltd 空気調和機
CN104154673A (zh) * 2014-09-01 2014-11-19 广东志高暖通设备股份有限公司 一种三管制热回收多联机系统的制冷方法及系统
CN205481970U (zh) * 2016-02-05 2016-08-17 广州万居隆电器有限公司 一种防冻保护装置
CN106196684A (zh) * 2016-10-08 2016-12-07 广东美的暖通设备有限公司 一种三管制多功能多联式空调系统及其控制方法
CN107559955A (zh) * 2017-08-18 2018-01-09 广东美的暖通设备有限公司 多联机系统及其低温控制方法
CN108105912A (zh) * 2017-12-11 2018-06-01 广东美的暖通设备有限公司 多联机系统及其防冷媒偏流控制方法、控制装置
CN108731187A (zh) * 2018-06-20 2018-11-02 广东美的暖通设备有限公司 三管热回收多联机系统及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02213639A (ja) * 1989-02-10 1990-08-24 Mitsubishi Electric Corp 多室用空気調和機
KR100215821B1 (ko) * 1997-06-27 1999-08-16 구자홍 복합 멀티 공기조화기의 냉매 균일화 제어방법
KR100550316B1 (ko) * 2002-03-18 2006-02-07 다이킨 고교 가부시키가이샤 공기 조화 장치의 압력 조정 장치 및 그것을 구비한 공기조화 장치
KR100652799B1 (ko) * 2004-12-20 2006-12-01 삼성전자주식회사 멀티형 공기조화기의 제어방법
KR101176635B1 (ko) * 2007-06-22 2012-08-24 삼성전자주식회사 동시 냉난방형 멀티 공기조화기 및 그 제어방법
JP6207982B2 (ja) * 2013-11-13 2017-10-04 三菱重工サーマルシステムズ株式会社 冷暖フリーマルチ形空気調和機の冷媒配管洗浄方法
CN105091392B (zh) * 2014-04-15 2018-06-05 珠海格力电器股份有限公司 热回收多联机系统及其控制方法
CN104197581A (zh) * 2014-09-01 2014-12-10 广东志高暖通设备股份有限公司 一种三管制热回收多联机系统同时制冷制热的方法及系统
CN107356009B (zh) * 2017-07-25 2021-05-04 广东美的暖通设备有限公司 多联机系统及其低温控制方法
CN107763876A (zh) * 2017-10-31 2018-03-06 广东美的暖通设备有限公司 多联机系统
CN108151350B (zh) * 2017-12-20 2020-05-08 广东美的暖通设备有限公司 三管制多联机系统及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08110105A (ja) * 1994-10-07 1996-04-30 Sanyo Electric Co Ltd 空気調和機
CN104154673A (zh) * 2014-09-01 2014-11-19 广东志高暖通设备股份有限公司 一种三管制热回收多联机系统的制冷方法及系统
CN205481970U (zh) * 2016-02-05 2016-08-17 广州万居隆电器有限公司 一种防冻保护装置
CN106196684A (zh) * 2016-10-08 2016-12-07 广东美的暖通设备有限公司 一种三管制多功能多联式空调系统及其控制方法
CN107559955A (zh) * 2017-08-18 2018-01-09 广东美的暖通设备有限公司 多联机系统及其低温控制方法
CN108105912A (zh) * 2017-12-11 2018-06-01 广东美的暖通设备有限公司 多联机系统及其防冷媒偏流控制方法、控制装置
CN108731187A (zh) * 2018-06-20 2018-11-02 广东美的暖通设备有限公司 三管热回收多联机系统及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370693A (zh) * 2021-12-17 2022-04-19 珠海格力电器股份有限公司 一种控制空调系统的方法及装置
CN114370693B (zh) * 2021-12-17 2023-02-28 珠海格力电器股份有限公司 一种控制空调系统的方法及装置

Also Published As

Publication number Publication date
CA3065399A1 (en) 2019-12-20
CN108731187B (zh) 2020-05-08
US20210356185A1 (en) 2021-11-18
CN108731187A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
WO2019242264A1 (zh) 三管热回收多联机系统及其控制方法
CN211739588U (zh) 一种可提高换热性能的空调
CN107228439B (zh) 多联机系统及其控制方法
KR101280381B1 (ko) 히트 펌프
US8459051B2 (en) Air conditioner and method of controlling the same
US8047011B2 (en) Refrigeration system
WO2020062606A1 (zh) 冷媒循环系统及其控制方法、空气调节装置
JP2021509945A (ja) 空調機システム
CN109790995B (zh) 空调装置
CN108151350B (zh) 三管制多联机系统及其控制方法
CN107238226B (zh) 多联机系统及其控制方法
CN110925940B (zh) 一种双级压缩补气空调系统的补气控制方法
US11268737B2 (en) Refrigeration cycle apparatus
CN114322106B (zh) 一种空调系统
KR101449899B1 (ko) 히트펌프 이코노마이저, 히트펌프 및 이를 이용한 냉난방 시스템
CN110762642B (zh) 室外换热器、空调系统及其控制方法
KR20190005445A (ko) 멀티형 공기조화기
WO2019144616A1 (zh) 一种热泵系统及其除霜控制方法
CN109869941B (zh) 热泵系统、吸气过热度及气液分离器积液蒸发控制方法
WO2014029316A1 (zh) 带除霜结构的热泵及其除霜方法
WO2019017351A1 (ja) 冷凍装置
CN105890165B (zh) 热水机系统及其控制方法
JP6982692B2 (ja) 空調機システム
KR20110062455A (ko) 공기조화 시스템
CN107356009B (zh) 多联机系统及其低温控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923579

Country of ref document: EP

Kind code of ref document: A1