WO2019242104A1 - 一种疲劳试验考核方法 - Google Patents
一种疲劳试验考核方法 Download PDFInfo
- Publication number
- WO2019242104A1 WO2019242104A1 PCT/CN2018/103766 CN2018103766W WO2019242104A1 WO 2019242104 A1 WO2019242104 A1 WO 2019242104A1 CN 2018103766 W CN2018103766 W CN 2018103766W WO 2019242104 A1 WO2019242104 A1 WO 2019242104A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suspension point
- cylinder block
- load
- test
- fatigue test
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 238000009661 fatigue test Methods 0.000 title claims abstract description 31
- 239000000725 suspension Substances 0.000 claims abstract description 60
- 238000012360 testing method Methods 0.000 claims abstract description 31
- 238000009434 installation Methods 0.000 claims abstract description 5
- 238000011068 loading method Methods 0.000 claims description 16
- 230000003068 static effect Effects 0.000 claims description 10
- 238000011156 evaluation Methods 0.000 claims description 6
- 238000013100 final test Methods 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 3
- 230000001133 acceleration Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/027—Specimen mounting arrangements, e.g. table head adapters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
- G01M17/04—Suspension or damping
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0033—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0075—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by means of external apparatus, e.g. test benches or portable test systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
- G01M7/06—Multidirectional test stands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
- G01M99/007—Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0641—Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
Definitions
- the invention relates to the technical field of mechanical design and manufacturing, in particular to a fatigue test evaluation method for performing a fatigue test evaluation on a cylinder block suspension point.
- the cylinder block which is the main body of the engine, connects each cylinder and the crankcase as a whole, and is a supporting skeleton for mounting pistons, crankshafts, and other parts and accessories.
- the engine suspension system is mainly used to reduce the vibration transmitted to the vehicle body by the powertrain and improve the ride comfort, while ensuring that the engine assembly is always in the correct position, controlling the displacement of the engine assembly, and avoiding the dynamics of the engine assembly and peripheral components Interference, causing damage to the engine assembly or parts.
- An object of the present invention is to provide a fatigue test assessment method, which can perform fatigue assessment on a cylinder block suspension point, so that it can be known at the component test stage whether the structural strength meets the requirements for use.
- the present invention provides the following technical solutions:
- a fatigue test assessment method is used for fatigue test assessment of a cylinder block mounting point. The method includes the following steps:
- the method further includes the following steps:
- the damage location is checked by using a fluorescent flaw detection method, and the damage location includes a crack site.
- the preset direction includes:
- the X direction is the front and rear horizontal direction that simulates the forward and backward movements of the engine under the acceleration and braking conditions of the entire vehicle to impact the cylinder block suspension point;
- the Z direction is a vertical direction which simulates the bump of the engine up and down to cause a shock to the suspension point of the cylinder block under the bump condition of the whole vehicle;
- the Y direction is a left-right horizontal direction of a side force caused by the engine to the suspension point of the cylinder block due to inertia of the vehicle under simulated turning conditions.
- step b of the above method loads in different preset directions are applied in sequence.
- the applied load includes a cyclically loaded dynamic load and a static single-loaded static load.
- the cyclic base of the dynamic load is 250,000 times, and / or the calibration load of the static load is calculated in advance according to a vehicle powertrain suspension method.
- the suspension point fails by monitoring an abnormal change in the displacement amplitude of the suspension point.
- a pass method is used as an evaluation criterion, the pass method is: a preset number of the cylinder block samples are taken as a group, and all the cylinder block samples in a group have completed the steps In the process of applying the load in b without failure, it is determined that the strength target is satisfied.
- the fatigue test evaluation method is performed on a hydraulically driven four-column test bench.
- the fatigue test assessment method provided by the present invention can perform fatigue test assessment on the cylinder block mounting point during the component test stage, accurately assess whether the structural strength of the cylinder block mounting point meets the requirements, and thus advance Predict and avoid the occurrence of fracture failure of the cylinder block mounting point, and control the effectiveness of the whole machine test.
- FIG. 1 is a schematic structural diagram of a cylinder block suspension point in an X-direction loading in a fatigue test assessment method according to an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a cylinder block suspension point in a Z-direction loading method in a fatigue test assessment method according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a cylinder block suspension point in a Y-direction loading method in a fatigue test assessment method according to an embodiment of the present invention.
- the invention discloses a fatigue test assessment method, which can perform fatigue assessment on a cylinder block suspension point, so that it can be known at the component test stage whether the structural strength meets the requirements for use.
- FIG. 1 is a structural schematic diagram of a cylinder block suspension point under X-direction loading in the fatigue test assessment method provided by an embodiment of the present invention
- FIG. 2 is a fatigue test assessment method provided by an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a cylinder block suspension point when being loaded in the Z direction
- FIG. 3 is a structural schematic diagram of a cylinder block suspension point when being loaded in the Y direction in the fatigue test assessment method provided by an embodiment of the present invention.
- the fatigue test assessment method provided by the embodiment of the present invention is used to perform fatigue test assessment on a cylinder block mounting point (specifically, a front mounting point), and specifically includes the following steps:
- the suspension point of the cylinder block sample 1 is fixed according to the power assembly installation method, and can be fixed on a rigid floor or other fixed frame;
- the embodiment of the present invention provides a fatigue test assessment method for the cylinder block mounting point, which can perform fatigue test assessment on the cylinder block mounting point during the component test stage, and accurately evaluate whether the structural strength of the cylinder block mounting point is correct. Meet the requirements, so as to predict and avoid the occurrence of fracture failure of the cylinder block mounting point in advance, and control the effectiveness of the whole machine test.
- the above fatigue test assessment method further includes the following steps:
- suspension point fails, check its damage position, bolt elongation and torque, and record the final test data. Specifically, it is preferable to use fluorescence inspection to check the damage position (such as the crack location);
- a three-way loading test is performed on the suspension point of the cylinder block, that is, the above-mentioned "predetermined directions" include X, Y, and Z directions that are perpendicular to each other (take the cylinder block sample 1 as a reference ). among them:
- the X direction is the horizontal direction that simulates the forward and backward movement of the engine during the acceleration and braking conditions of the vehicle, which will impact the suspension point of the cylinder block.
- the Z direction is a vertical direction that simulates the impact of the engine's ups and downs on the cylinder block suspension point under the bumpy conditions of the vehicle;
- the Y direction is the left-right horizontal direction that simulates the lateral force caused by the engine to the suspension point of the cylinder block due to the inertia of the vehicle under turning conditions.
- the loading method adopted in the above step b is uniaxial loading, that is, loads in different preset directions are sequentially applied respectively, and the loading methods are specifically shown in FIG. 1, FIG. 2, and FIG. 3.
- the cylinder block prototype 1 is fixed by a tooling support 2, and a hydraulic actuator is connected to the rear end of the cylinder block prototype 1 to apply a load.
- the tooling bracket 2 may adopt the same structure, or a pair of tooling brackets 2 may be respectively used for different fixing methods of the cylinder block sample 1. It should be noted that each time the cylinder block sample 1 is fixed, its suspension point is fixed in accordance with the power assembly installation method.
- the load applied to the suspension point of the cylinder block in the above step b includes a cyclic loading dynamic load and a static single loading static load.
- the cyclic base of the dynamic load is preferably set to 250,000 times, and the calibration load of the static load is calculated in advance according to the suspension mode of the vehicle powertrain.
- the load limit in the direction can terminate the dynamic load test in the preset direction.
- Test load refers to the pulsating load amplitude used in the i-th independent test in a group of tests with a total of n samples.
- Cycle base refers to the limit of the number of cycles under a fixed load when measuring fatigue strength. The test is terminated when the limit is exceeded. It is considered that the test piece will never produce fatigue damage under this load.
- Fatigue strength refers to the resistance of the sample to fatigue damage, which is expressed by the load level corresponding to a certain fatigue life.
- Fatigue life refers to the number of cycles that the sample passes before fatigue failure at the specified load level.
- the above-mentioned fatigue test assessment method uses the pass method as an evaluation standard, and the pass method is specifically: a preset number (for example, three) of the cylinder block samples 1 are set as a group, and all the cylinder block samples 1 in a group are If the load application process in step b is completed without failure, it is determined that the strength target is satisfied.
- three cylinder block prototypes are used as a group.
- the maximum number of cycles specified in each direction was completed during the dynamic load assessment process, and the maximum loads specified in each direction were completed during the static load assessment process, and none of them failed.
- the above-mentioned fatigue test assessment method is performed on a hydraulically driven four-column test bench (also referred to as a four-column vibration bench).
- the fatigue test assessment method adopts a newly designed three-way loading fatigue test system and method, which can fatigue the cylinder block mounting point (specifically, the front mounting point) during the component test stage. Test and assessment, accurately assess whether the structural strength of the cylinder block mounting point meets the requirements, thereby predicting and avoiding the occurrence of fracture failure of the cylinder block mounting point in advance, and controlling the effectiveness of the whole machine test.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
一种疲劳试验考核方法,用于对气缸体悬置点进行疲劳试验考核,该方法包括:将气缸体样件(1)的悬置点按照动力总成安装方式进行固定;在预设方向上对气缸体样件(1)的悬置点施加载荷;判断气缸体悬置点是否失效。该方法可在零部件试验阶段考核得知气缸体悬置点的结构强度是否满足使用要求,从而提前预测并避免气缸体悬置点断裂故障的发生,从而可以控制整机试验的有效性。
Description
本申请要求于2018年06月22日提交中国专利局、申请号为201810653089.X、发明名称为“一种疲劳试验考核方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及机械设计和制造技术领域,特别涉及一种用于对气缸体悬置点进行疲劳试验考核的疲劳试验考核方法。
气缸体,即发动机的主体,它将各个气缸和曲轴箱连成一体,是安装活塞、曲轴以及其他零件、附件的支承骨架。
发动机悬置系统主要用于减小动力总成传递给车身的振动,提高乘坐舒适性,同时保证发动机总成始终处于正确的位置,控制发动机总成位移量,避免发动机总成与周边零部件动态干涉,造成发动机总成或零部件的损坏。
在使用过程中,发现气缸体上与悬置系统安装位置对应的点(即“气缸体悬置点”,简称“悬置点”)容易发生损坏。但是,现有技术中,没有一套成熟适用的系统和方法对气缸体悬置点进行疲劳考核,在零部件试验阶段,无法得知气缸体悬置点的结构强度是否满足使用要求。
因此,如何对气缸体悬置点进行疲劳考核,使其在零部件试验阶段便可考核得知结构强度是否满足使用要求,是目前本领域技术人员亟待解决的技术问题。
发明内容
本发明的目的在于提供一种疲劳试验考核方法,能够对气缸体悬置点进行疲劳考核,使其在零部件试验阶段便可考核得知结构强度是否满足使用要求。
为实现上述目的,本发明提供如下技术方案:
一种疲劳试验考核方法,用于对气缸体悬置点进行疲劳试验考核,该方法包括如下步骤:
a,将气缸体样件的悬置点按照动力总成安装方式进行固定;
b,在预设方向上对所述悬置点施加载荷;
c,判断所述悬置点是否失效。
优选地,在上述方法中,还包括如下步骤:
d,若所述悬置点失效,则检查其破坏位置、螺栓伸长量及扭矩大小,并记录最终试验数据;
e,若所述悬置点通过加载考核,则终止试验,并对螺栓伸长量进行测量,并记录最终试验数据。
优选地,在上述方法中,采用荧光探伤法检查所述破坏位置,所述破坏位置包括裂纹部位。
优选地,在上述方法的步骤b中,所述预设方向包括:
X向,所述X向为模拟整车加速与制动工况下发动机前后窜动对气缸体悬置点造成冲击的前后水平方向;
和/或,Z向,所述Z向为模拟整车颠簸工况下发动机上下颠簸对气缸体悬置点造成冲击的竖直方向;
和/或,Y向,所述Y向为模拟整车转弯工况下发动机由于惯性对气缸体悬置点造成侧向力的左右水平方向。
优选地,在上述方法的步骤b中,不同预设方向的载荷分别依次施加。
优选地,在上述方法的步骤b中,施加的载荷包括循环加载的动载荷和静态单次加载的静载荷。
优选地,在上述方法中,所述动载荷的循环基数为25万次,和/或,所述静载荷的标定载荷根据整车动力总成悬置方式先行计算得出。
优选地,在上述方法中,通过监控所述悬置点的位移幅值异常变化来确定所述悬置点是否失效。
优选地,在上述方法中,以通过法作为评价标准,所述通过法为:以预设数量的所述气缸体样件为一组,一组中的所有所述气缸体样件均完成步骤b中的载荷施加过程且没有失效,则判定为满足强度目标。
优选地,在上述方法中,所述疲劳试验考核方法在液压驱动的四立柱试验台架上进行。
从上述技术方案可以看出,本发明提供的疲劳试验考核方法,能够在零部 件试验阶段针对气缸体悬置点进行疲劳试验考核,准确评估气缸体悬置点的结构强度是否满足要求,从而提前预测并避免气缸体悬置点断裂故障的发生,控制整机试验的有效性。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的疲劳试验考核方法中对气缸体悬置点进行X向加载时的结构示意图;
图2为本发明实施例提供的疲劳试验考核方法中对气缸体悬置点进行Z向加载时的结构示意图;
图3为本发明实施例提供的疲劳试验考核方法中对气缸体悬置点进行Y向加载时的结构示意图。
其中:1-气缸体样件,2-支架。
本发明公开了一种疲劳试验考核方法,能够对气缸体悬置点进行疲劳考核,使其在零部件试验阶段便可考核得知结构强度是否满足使用要求。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1至图3,图1为本发明实施例提供的疲劳试验考核方法中对气缸体悬置点进行X向加载时的结构示意图,图2为本发明实施例提供的疲劳试验考核方法中对气缸体悬置点进行Z向加载时的结构示意图,图3为本发明实施例提供的疲劳试验考核方法中对气缸体悬置点进行Y向加载时的结构示意图。
本发明实施例提供的疲劳试验考核方法,用于对气缸体悬置点(具体为前悬置点)进行疲劳试验考核,具体包括如下步骤:
a,将气缸体样件1的悬置点按照动力总成安装方式进行固定,可固定在刚性地板或其他固定机架上;
b,在预设方向上对气缸体样件1的悬置点施加载荷,并以力参数控制载荷的施加过程;
c,观察判断该悬置点是否失效,具体通过监控气缸体悬置点的位移幅值异常变化来确定该悬置点是否失效。
可见,本发明实施例针对气缸体悬置点,提供了一种疲劳试验考核方法,能够在零部件试验阶段针对气缸体悬置点进行疲劳试验考核,准确评估气缸体悬置点的结构强度是否满足要求,从而提前预测并避免气缸体悬置点断裂故障的发生,控制整机试验的有效性。
进一步地,上述疲劳试验考核方法,还包括如下步骤:
d,若悬置点失效,则检查其破坏位置、螺栓伸长量及扭矩大小,并记录最终试验数据,具体地,优选采用荧光探伤法检查破坏位置(例如裂纹部位);
e,若悬置点通过加载考核,则终止试验,并对螺栓伸长量进行测量,并记录最终试验数据。
具体地,在上述步骤b中,对气缸体悬置点进行三向加载试验,即上述“预设方向”包括彼此垂直的X向、Y向、Z向(以气缸体样件1为参照基准)。其中:
X向为模拟整车加速与制动工况下发动机前后窜动对气缸体悬置点造成冲击的前后水平方向;
Z向为模拟整车颠簸工况下发动机上下颠簸对气缸体悬置点造成冲击的竖直方向;
Y向为模拟整车转弯工况下发动机由于惯性对气缸体悬置点造成侧向力的左右水平方向。
具体实施时,上述步骤b中采用的加载方式为单轴加载,即不同预设方向的载荷分别依次施加,其加载方式具体如图1、图2、图3所示。
具体实施时,通过工装支架2固定气缸体样件1,并且,气缸体样件1的后端连接液压作动器施加载荷。其中,在对气缸体悬置点施加不同方向的试验 载荷时,工装支架2可采用相同的结构,或者,也可以针对气缸体样件1的不同固定方式分别使用一对工装支架2。需要注意的是,每次固定气缸体样件1时,其悬置点均按照动力总成安装方式进行固定。
在具体实施例中,上述步骤b中对气缸体悬置点施加的载荷包括循环加载的动载荷和静态单次加载的静载荷。动载荷的循环基数优选设置为25万次,静载荷的标定载荷根据整车动力总成悬置方式先行计算得出。
具体地,在某预设方向上对气缸体悬置点施加动载荷时,当试验循环次数大于循环基数25万次,则可以认为本次试验载荷水平低于气缸体悬置点在该预设方向上的载荷极限,可终止该预设方向的动载荷试验。
其中:
试验载荷:是指子样总数为n的一组试验中,第i次独立试验所使用的脉动载荷幅。
循环基数:是指测定疲劳强度时在一个固定载荷下循环次数的界限,超过该界限即终止试验,认为在这个载荷下试件永远不会产生疲劳损伤。
疲劳强度:是指样件对疲劳破坏的抵抗能力,以对应某一疲劳寿命的载荷水平表示。
疲劳寿命:是指在指定载荷水平下,样件疲劳破坏前所经过的循环数。
具体地,施加载荷时,油压通过液压缸、模拟连杆活塞组及模拟轴传递到气缸体悬置点上,实现对气缸体悬置点的加载。脉动液压载荷通过液压放大器放大后,直接作用在活塞上。
具体地,上述疲劳试验考核方法以通过法作为评价标准,该通过法具体为:以预设数量(例如3个)的气缸体样件1为一组,一组中的所有气缸体样件1均完成步骤b中的载荷施加过程且没有失效,则判定为满足强度目标。
例如,优选实施例中,以3个气缸体样件为一组。3个气缸体样件,在动载荷考核过程中均完成各方向规定的最大循环次数、在静载荷考核过程中均完成各方向规定的最大载荷,且均没有失效,则判定其满足强度目标。
具体地,上述疲劳试验考核方法在液压驱动的四立柱试验台架(又称四立柱振动台架)上进行。
综上可见,本发明实施例提供的疲劳试验考核方法,采用全新设计的三向加载疲劳试验系统和方法,能够在零部件试验阶段针对气缸体悬置点(具体为 前悬置点)进行疲劳试验考核,准确评估气缸体悬置点的结构强度是否满足要求,从而提前预测并避免气缸体悬置点断裂故障的发生,控制整机试验的有效性。
在此需要说明的是,本发明对于上述加载顺序、加载系统及工装支架2的具体结构均不作具体限定,本领域技术人员可根据实际需要进行具体实施。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种疲劳试验考核方法,其特征在于,用于对气缸体悬置点进行疲劳试验考核,该方法包括如下步骤:a,将气缸体样件(1)的悬置点按照动力总成安装方式进行固定;b,在预设方向上对所述悬置点施加载荷;c,判断所述悬置点是否失效。
- 根据权利要求1所述的方法,其特征在于,还包括如下步骤:d,若所述悬置点失效,则检查其破坏位置、螺栓伸长量及扭矩大小,并记录最终试验数据;e,若所述悬置点通过加载考核,则终止试验,并对螺栓伸长量进行测量,并记录最终试验数据。
- 根据权利要求2所述的方法,其特征在于,采用荧光探伤法检查所述破坏位置,所述破坏位置包括裂纹部位。
- 根据权利要求1所述的方法,其特征在于,步骤b中,所述预设方向包括:X向,所述X向为模拟整车加速与制动工况下发动机前后窜动对所述悬置点造成冲击的前后水平方向;和/或,Z向,所述Z向为模拟整车颠簸工况下发动机上下颠簸对所述悬置点造成冲击的竖直方向;和/或,Y向,所述Y向为模拟整车转弯工况下发动机由于惯性对所述悬置点造成侧向力的左右水平方向。
- 根据权利要求4所述的方法,其特征在于,步骤b中,不同预设方向的载荷分别依次施加。
- 根据权利要求1-5任一项所述的方法,其特征在于,步骤b中施加的载荷包括循环加载的动载荷和静态单次加载的静载荷。
- 根据权利要求6所述的方法,其特征在于,所述动载荷的循环基数为25万次;和/或,所述静载荷的标定载荷根据整车动力总成悬置方式先行计算得出。
- 根据权利要求6所述的方法,其特征在于,步骤c中,通过监控所述 悬置点的位移幅值异常变化来确定所述悬置点是否失效。
- 根据权利要求1-5任一项所述的方法,其特征在于,以通过法作为评价标准,所述通过法为:以预设数量的所述气缸体样件(1)为一组,一组中的所有所述气缸体样件(1)均完成步骤b中的载荷施加过程且没有失效,则判定为满足强度目标。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述疲劳试验考核方法在液压驱动的四立柱试验台架上进行。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18923698.7A EP3812734A4 (en) | 2018-06-22 | 2018-09-03 | FATIGUE TEST EVALUATION PROCEDURE |
US17/044,267 US11346745B2 (en) | 2018-06-22 | 2018-09-03 | Fatigue test assessment method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810653089.XA CN108444694A (zh) | 2018-06-22 | 2018-06-22 | 一种疲劳试验考核方法 |
CN201810653089.X | 2018-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019242104A1 true WO2019242104A1 (zh) | 2019-12-26 |
Family
ID=63207242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/103766 WO2019242104A1 (zh) | 2018-06-22 | 2018-09-03 | 一种疲劳试验考核方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11346745B2 (zh) |
EP (1) | EP3812734A4 (zh) |
CN (1) | CN108444694A (zh) |
WO (1) | WO2019242104A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111965029A (zh) * | 2020-08-25 | 2020-11-20 | 中车青岛四方机车车辆股份有限公司 | 托盘式轴箱体强度试验装置及方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108444694A (zh) * | 2018-06-22 | 2018-08-24 | 潍柴动力股份有限公司 | 一种疲劳试验考核方法 |
CN110044585B (zh) * | 2019-03-05 | 2021-08-03 | 中国航发北京航空材料研究院 | 一种球形隔片疲劳试验装置及试验方法 |
CN112340057B (zh) * | 2020-11-05 | 2022-06-28 | 燕山大学 | 一种用于舰载直升机着舰辅助设备的可靠性增长平台 |
CN114235361A (zh) * | 2021-11-30 | 2022-03-25 | 潍柴动力股份有限公司 | 一种发动机活塞及发动机活塞疲劳试验装置 |
CN114199487A (zh) * | 2021-12-07 | 2022-03-18 | 中国第一汽车股份有限公司 | 一种电机壳体振动疲劳试验装置及试验方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007178151A (ja) * | 2005-12-27 | 2007-07-12 | Shimadzu Corp | 疲労試験機 |
CN103018056A (zh) * | 2012-12-14 | 2013-04-03 | 奇瑞汽车股份有限公司 | 一种汽车滑柱总成的疲劳试验装置及其实验方法 |
CN103018032A (zh) * | 2012-12-21 | 2013-04-03 | 清华大学 | 一种用于悬臂件寿命测量的疲劳试验机 |
CN105067238A (zh) * | 2015-07-30 | 2015-11-18 | 株洲时代新材料科技股份有限公司 | 一种弹性元件大载荷疲劳试验装置及试验方法及安装方法 |
CN205426499U (zh) * | 2016-02-26 | 2016-08-03 | 广州汽车集团股份有限公司 | 多轴疲劳试验台架 |
CN107290150A (zh) * | 2017-05-18 | 2017-10-24 | 奇瑞汽车股份有限公司 | 发动机悬置总成垂向多级谱试验台架及其试验方法 |
CN108088672A (zh) * | 2017-11-29 | 2018-05-29 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机前起落架外筒悬挂接头静力试验夹具 |
CN108444694A (zh) * | 2018-06-22 | 2018-08-24 | 潍柴动力股份有限公司 | 一种疲劳试验考核方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH473385A (de) * | 1967-01-26 | 1969-05-31 | Eidgenoess Flugzeugwerk Emmen | Ermüdungsprüfmaschine |
SU473079A1 (ru) * | 1974-06-10 | 1975-06-05 | Коломенский тепловозостроительный завод им.В.В.Куйбышева | Стенд дл испытаний на прочность цилиндровой втулки с силовым буртом |
DE7629275U1 (de) * | 1976-09-20 | 1988-05-19 | Carl Schenck Ag, 6100 Darmstadt | Prüfeinrichtung für Fahrzeugachsen, Radaufhängungen und ähnliche Bauteile |
WO2009097055A2 (en) * | 2007-12-13 | 2009-08-06 | Alliance For Sustainable Energy, Llc | Wind turbine blade testing system using base excitation |
DE102012022327A1 (de) * | 2012-11-15 | 2014-05-15 | Daimler Ag | Verfahren zur Prüfung von Antriebsbauteilen eines Antriebsstranges |
CN103528808B (zh) * | 2013-10-25 | 2016-03-30 | 河南科技大学 | 基于高频疲劳试验机的气缸套疲劳试验系统及试验方法 |
CN203561509U (zh) | 2013-10-28 | 2014-04-23 | 上海汇众汽车制造有限公司 | 全框式副车架的试验组合台架 |
CN103698117B (zh) * | 2013-12-17 | 2017-02-01 | 中国北方发动机研究所(天津) | 一种发动机气缸盖高周机械疲劳试验装置和试验方法 |
CN205120365U (zh) * | 2015-11-19 | 2016-03-30 | 安徽江淮汽车股份有限公司 | 一种发动机悬置装置试验台架 |
CN205879501U (zh) * | 2016-05-25 | 2017-01-11 | 潍柴动力股份有限公司 | 一种悬置软垫的静态刚度检测装置 |
-
2018
- 2018-06-22 CN CN201810653089.XA patent/CN108444694A/zh active Pending
- 2018-09-03 WO PCT/CN2018/103766 patent/WO2019242104A1/zh active Application Filing
- 2018-09-03 EP EP18923698.7A patent/EP3812734A4/en active Pending
- 2018-09-03 US US17/044,267 patent/US11346745B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007178151A (ja) * | 2005-12-27 | 2007-07-12 | Shimadzu Corp | 疲労試験機 |
CN103018056A (zh) * | 2012-12-14 | 2013-04-03 | 奇瑞汽车股份有限公司 | 一种汽车滑柱总成的疲劳试验装置及其实验方法 |
CN103018032A (zh) * | 2012-12-21 | 2013-04-03 | 清华大学 | 一种用于悬臂件寿命测量的疲劳试验机 |
CN105067238A (zh) * | 2015-07-30 | 2015-11-18 | 株洲时代新材料科技股份有限公司 | 一种弹性元件大载荷疲劳试验装置及试验方法及安装方法 |
CN205426499U (zh) * | 2016-02-26 | 2016-08-03 | 广州汽车集团股份有限公司 | 多轴疲劳试验台架 |
CN107290150A (zh) * | 2017-05-18 | 2017-10-24 | 奇瑞汽车股份有限公司 | 发动机悬置总成垂向多级谱试验台架及其试验方法 |
CN108088672A (zh) * | 2017-11-29 | 2018-05-29 | 中国航空工业集团公司沈阳飞机设计研究所 | 一种飞机前起落架外筒悬挂接头静力试验夹具 |
CN108444694A (zh) * | 2018-06-22 | 2018-08-24 | 潍柴动力股份有限公司 | 一种疲劳试验考核方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3812734A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111965029A (zh) * | 2020-08-25 | 2020-11-20 | 中车青岛四方机车车辆股份有限公司 | 托盘式轴箱体强度试验装置及方法 |
CN111965029B (zh) * | 2020-08-25 | 2024-03-29 | 中车青岛四方机车车辆股份有限公司 | 托盘式轴箱体强度试验装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3812734A1 (en) | 2021-04-28 |
EP3812734A4 (en) | 2022-03-23 |
CN108444694A (zh) | 2018-08-24 |
US20210055181A1 (en) | 2021-02-25 |
US11346745B2 (en) | 2022-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019242104A1 (zh) | 一种疲劳试验考核方法 | |
CN104535335B (zh) | 一种多轴加载车桥总成耐久试验台架 | |
CN112179595B (zh) | 一种直升机机身整流罩振动疲劳试验验证方法 | |
CN103761363A (zh) | 乘用车副车架强度和疲劳分析方法 | |
CN109115523B (zh) | 一种横向稳定杆标定试验及疲劳耐久试验台架和试验方法 | |
CN111964925A (zh) | 悬架系统八通道道路模拟试验系统及试验方法 | |
US7677094B1 (en) | Method and system for testing road load durability of truck rear bed | |
JP2011002435A (ja) | 風洞天秤較正装置 | |
WO2018054480A1 (en) | Method and system for efficient load identification | |
CN109781557B (zh) | 列车车体焊接组件的焊缝疲劳测试方法 | |
US20220299403A1 (en) | Testing device for precision retaining ability and fatigue life of rv reducer | |
CN113255187B (zh) | 一种基于测试和有限元仿真的客车后视镜疲劳耐久分析方法 | |
CN115270296A (zh) | 一种商用车驾驶室疲劳耐久性分析方法及系统 | |
CN109186901A (zh) | 一种汽车拖车钩固定点刚度测试方法 | |
CN112014125A (zh) | 动力总成悬置虚拟载荷耐久试验装置以及试验方法 | |
CN106226177B (zh) | 特高压直流复合穿墙套管内外抗震试验装置及试验方法 | |
CN109238603B (zh) | 一种发动机悬置动静刚度自动测试装置 | |
CN102809470B (zh) | 重型汽车边梁式车架总成弯曲试验方法 | |
CN116793650A (zh) | 后悬置下支架疲劳寿命分析方法、装置、设备和介质 | |
CN112924181A (zh) | 一种车架局部疲劳寿命测试方法和测试装置 | |
CN114781068A (zh) | 一种驾驶室寿命分析方法、装置、电子设备和存储介质 | |
KR20080052876A (ko) | 차량용 인터쿨러 내구성 시험장치 | |
CN204903182U (zh) | 自卸车车架检测实验台 | |
CN105067364A (zh) | 风力发电机整体强度试验方法及装置 | |
CN221426296U (zh) | 运输车车架试验装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18923698 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018923698 Country of ref document: EP |