WO2019240479A1 - 원심 압축기 - Google Patents

원심 압축기 Download PDF

Info

Publication number
WO2019240479A1
WO2019240479A1 PCT/KR2019/007034 KR2019007034W WO2019240479A1 WO 2019240479 A1 WO2019240479 A1 WO 2019240479A1 KR 2019007034 W KR2019007034 W KR 2019007034W WO 2019240479 A1 WO2019240479 A1 WO 2019240479A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
gas
volute
passage
region
Prior art date
Application number
PCT/KR2019/007034
Other languages
English (en)
French (fr)
Inventor
김진성
김규영
한현욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to CN201980039808.1A priority Critical patent/CN112313416B/zh
Publication of WO2019240479A1 publication Critical patent/WO2019240479A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence

Definitions

  • the present invention relates to a compressor for compressing a fluid, and more particularly to a centrifugal compressor for compressing a gas using centrifugal force.
  • a centrifugal compressor is a device which rotates a vane wheel in a casing and compresses gas by the centrifugal force.
  • the centrifugal compressor may be configured to compress a gas such as a refrigerant gas.
  • a gas such as a refrigerant gas.
  • gas is introduced into the impeller by the rotating force of the impeller, and the gas is driven by the impeller
  • the kinetic energy increases, and the gas having the increased kinetic energy passes through the diffuser, and the kinetic energy is converted into a constant pressure, thereby increasing the pressure.
  • the gas whose pressure is increased is sequentially discharged through the discharge port communicating with the volute and the balltute, and then discharged outside the centrifugal compressor.
  • the diffuser is to convert the kinetic energy of the gas into a static pressure
  • one example of the diffuser may be a vaneless diffuser (Vaneless Diffuser) formed in the gas flow direction gradually smaller cross section of the flow path through the gas
  • the other example of the diffuser It may be a vane diffuser (Vane Diffuser) that the cross-sectional area of the passage passing through is gradually formed in the gas flow direction and a plurality of vanes are installed in this passage.
  • centrifugal compressor having a vane diffuser is disclosed in Korean Patent Publication No. 10-0339570 B1 (June 03, 2002), and the centrifugal compressor is formed in an arc shape having a predetermined thickness and height at the tip of the vane, It includes a flow guide member for stably guiding the flow flowing into the side, it is possible to stabilize the inflow flow between the vanes and vanes for a wider range of incidence angle by causing a micro peeling phenomenon occurs to the rear side of the flow guide member.
  • the centrifugal compressor having the flow guide member as described above forms a flow guide member separately at the tip of each vane, its structure and manufacturing process are complicated.
  • the centrifugal compressor can be configured to adjust its capacity
  • an example of a centrifugal compressor capable of adjusting the capacity is disclosed in US Patent No. US 9,157,446 B2 (October 13, 2015).
  • This centrifugal compressor includes a first impeller provided in the main refrigerant flow path, a vane diffuser disposed downstream of the first impeller and having a plurality of vanes, and a second impeller and a second impeller provided in the main refrigerant flow path downstream of the first impeller.
  • a refrigerant circulation passage connecting downstream and downstream of the first impeller, the refrigerant circulation passage comprising a plurality of circulation nozzles for injecting refrigerant, the outlets of the plurality of circulation nozzles being at least partially disposed radially outward of the leading edge of the vane .
  • Another object of the present invention is to provide a centrifugal compressor in which the pressure loss coefficient can be minimized.
  • a centrifugal compressor includes a motor having a rotating shaft; A first volute casing having a first inlet and a first volute formed therein and a gas chamber partitioned from each of the first volute and the first inlet; A first impeller connected to one side of the rotating shaft and rotatably received in the first volute casing; A diffuser forming a diffuser passage after the outlet of the first impeller and provided with a plurality of airfoil vanes spaced apart from the diffuser passage; A second volute casing having an outlet and a second volute having a second inlet through which the fluid flowing in the first volute flows; A second impeller connected to the other side of the rotation shaft and rotatably received in the second volute casing, wherein at least one of the first volute casing and the diffuser is provided with a gas control passage communicating the gas chamber and the diffuser passage, The gas outlet of the gas control passage is directed to at least one of a ring-shaped first region in which a plurality of airfoil va
  • the gas outlet may be closer to the trailing edge of the leading edge and trailing edge of the airfoil vane.
  • the gas outlet may be directed between the inner side of the airfoil vane facing the tip of the diffuser passage and the tip of the diffuser passage.
  • the gas outlet may face a boundary between the first region and the second region.
  • the gas outlet may face a virtual circle connecting the trailing edges of the plurality of airfoil vanes.
  • the gas outlet may be directed between the outer side facing the rear end of the diffuser passage of the airfoil vanes and the rear end of the diffuser passage.
  • the radial width of the first region may be shorter than the radial width of the second region.
  • the gas control passage may include a gradient path inclined obliquely with respect to the axial center of the first impeller and including a gas outlet.
  • the gradient can have an angle of inclination with the diffuser passageway.
  • the angle of inclination may be between 30 ° and 80 °.
  • the gas of the gas control passage can be injected to the optimum position around the air foil vane, it is possible to minimize the pressure loss coefficient of the centrifugal compressor and maximize the efficiency.
  • the gas passing through the gradient passage of the gas control passage is inclined to the diffuser passage to minimize the flow resistance when the gas is injected into the diffuser passage.
  • FIG. 1 is a view showing a refrigeration cycle apparatus is applied centrifugal compressor according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a centrifugal compressor according to an embodiment of the present invention
  • FIG. 3 is an enlarged cross-sectional view of portion A shown in FIG.
  • FIG. 4 is a side view showing a comparative example of the diffuser according to the embodiment of the present invention.
  • FIG. 5 is a side view showing a first example of the diffuser according to the embodiment of the present invention.
  • FIG. 6 is a side view showing a second example of the diffuser according to the embodiment of the present invention.
  • FIG. 7 is a side view showing a third example of the diffuser according to the embodiment of the present invention.
  • FIG. 1 is a view showing a refrigeration cycle apparatus is applied centrifugal compressor according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view showing a centrifugal compressor according to an embodiment of the present invention
  • Figure 3 is A shown in Figure 2 It is a section enlarged section.
  • the centrifugal compressor 1 of the present embodiment may constitute a refrigeration cycle apparatus together with the condenser 2, the expansion mechanism 3, and the evaporator 4, and is compressed in the centrifugal compressor 1. After cooling, the refrigerant discharged from the centrifugal compressor 1 may be sequentially passed through the condenser 2, the expansion mechanism 3, and the evaporator 4, and then sucked into the centrifugal compressor 1.
  • the centrifugal compressor 1 may be connected to the evaporator 4 and the suction passage 5, and may be connected to the condenser 2 and the discharge passage 6.
  • the centrifugal compressor 1 may be constituted by a multi-stage compression type centrifugal compressor capable of compressing the refrigerant in multiple stages.
  • the centrifugal compressor 1 may include a plurality of compression mechanisms C1 connected by connecting passages C3 (see FIG. 2). (C2) may be included.
  • the centrifugal compressor 1 may compress the refrigerant in the first compression mechanism C1, which is one of the plurality of compression mechanisms C1 and C2, and then discharge the refrigerant into the connection flow path C3, and the connection flow path C3.
  • the refrigerant discharged into the second compressor mechanism C2, which is another one of the plurality of compression mechanisms C1 and C2, may be compressed, and the refrigerant compressed in the second compressor C2 may be discharged to the discharge passage 6.
  • the condenser (2) Through the condenser (2).
  • the refrigeration cycle apparatus having the above-described centrifugal compressor 1 has a bypass flow path 7 (see FIG. 1) for bypassing some of the refrigerant compressed by the second compression mechanism C2 to the first compression mechanism C1.
  • the volume of the centrifugal compressor 1 may be further controlled by the amount of the refrigerant discharged from the second compression mechanism C2 and introduced into the first compression mechanism C1 through the bypass passage 7. Can be.
  • This bypass flow path 7 may be formed by a tube at least partially positioned outside of the centrifugal compressor 1.
  • the bypass passage 7 may have an inlet end 7A connected to at least one of the second compression mechanism C2, the discharge passage 6, and the condenser 2, and the first It may have an outlet end 7B connected to the compression mechanism C1.
  • the inlet end 7A can be connected to a plurality of the second compression mechanism C2, the discharge passage 6 and the condenser 2, and the second compression mechanism C2, the discharge passage 6 and the condenser 2 It is possible to connect only to any one of
  • the inlet end 7A When the inlet end 7A is connected to the second compression mechanism C2, the inlet end 7A may be connected to the outlet 52 (see FIG. 2) or the second volute V2 of the second compression mechanism C2. have.
  • the outlet end 7B may be connected to the first volute casing 20 described later of the first compression mechanism C1.
  • bypass flow path 7 is connected to the outside of the centrifugal compressor 1, the inlet end 7A is connected to the second compression mechanism C2, and the outlet end 7B is connected to the first compression mechanism C1. It can be formed by a tube.
  • the bypass flow path 7 is not limited to having the inlet end 7A and the outlet end 7B as described above, and the bypass flow path 7 is formed inside the centrifugal compressor 1 (for example, the motor housing). Of course, it is also possible to be formed in (12).
  • the bypass flow path 7 may be provided with a flow regulator 8 (see Fig. 1) for adjusting the flow rate of the gas passing through the bypass flow path 7, the flow regulator 8 is adjustable in its opening degree Valve and the like.
  • the opening degree of the flow regulator 8 is increased, the flow rate of the gas injected into the first compression mechanism C1 through the bypass passage 7 after being compressed by the second compression mechanism C2 may be increased.
  • the opening degree of the flow regulator 8 is reduced, the flow rate of the gas injected into the first compression mechanism C1 through the bypass passage 7 after being compressed by the second compression mechanism C2 may be reduced.
  • centrifugal compressor 1 will be described in detail with reference to FIGS. 2 and 3.
  • the centrifugal compressor 1 includes a motor 10, a first volute casing 20, a first impeller 30, a diffuser 40, a second volute casing 50, and a second impeller 60. ).
  • the motor 10 may have a rotation shaft 11. One side of the rotating shaft 11 may extend into the first volute casing 20, and the other side of the rotating shaft 11 may extend into the second volute casing 50.
  • the motor 10 may include a motor housing 12 having a space formed therein.
  • the motor housing 12 may be formed long in the axial direction of the rotation shaft 11.
  • the motor 10 may further include a rotor 13 and a stator 14 accommodated in the motor housing 12.
  • the rotor 13 may be disposed at the outer circumference of the rotating shaft 11 and may be rotated together with the rotating shaft 11.
  • the stator 14 may be disposed inside the motor housing 14 to surround the outer circumference of the rotor 13.
  • connection passage C3 may be formed in the motor housing 12. One end of the connection flow path C3 may face the first bulkhead casing 20, and the other end of the connection flow path C3 may face the second volute casing 50.
  • the connection passage C3 may communicate the outlet 22 of the first volute casing 20 with the inlet 51 of the second volute casing 50.
  • the gas exiting the first volute V1 of the first volute casing 20 sequentially connects the connection flow path C3 formed in the outlet 22 of the first volute casing 20 and the motor housing 12. After passing through, it may flow into the inlet 51 of the second volute casing 50.
  • the first volute casing 20 may be fastened to the motor housing 12 by a fastening member such as a screw, and a first impeller accommodation space in which the first impeller 30 may be accommodated may be formed. .
  • the first impeller accommodation space may communicate with the first inlet 21 and may be a space that is larger than the first inlet 21.
  • the first inlet 21 and the first volute V1 may be formed in the first volute casing 20, and the first inlet 21 and the first volute (the first volute casing 20) may be formed in the first volute casing 20.
  • a gas chamber S partitioned from each of V1) may be formed.
  • the first volute casing 20 may be hollow.
  • the inner circumferential surface of the first volute casing 20 may form an inlet 21 for guiding gas to the first impeller 20.
  • the first volute V1 and the gas chamber S may be formed between the inner and outer circumferential surfaces of the first volute casing 20, respectively.
  • the first volute V1 may be formed in a circular shape or an arc shape, and may be formed in a shape that gradually expands in the flow direction of the gas (that is, the turning direction of the gas).
  • the gas chamber S may be formed to be spaced apart from the first volute V1 between the inner and outer circumferential surfaces of the first volute casing 20.
  • the distance between the gas chamber S and the inlet 21 may be shorter than the distance between the first volute V1 and the inlet 21.
  • the gas chamber S may be formed in a circular shape or an arc shape.
  • Gas control passage (P) may be connected to the gas chamber (S), the gas of the gas chamber (S) may be injected into the diffuser passage (D1) of the diffuser 40 through the gas control passage (P).
  • the centrifugal compressor may include a plurality of gas control passages (P) connected to the gas chamber (S), the gas of the gas chamber (S) is distributed to a plurality of positions of the diffuser passage (D1) through the plurality of gas control passages (P). Can be sprayed (see FIGS. 5 to 7).
  • Each gas control passage (P) may include a gas outlet (T) for guiding gas to the diffuser passage (D1), the gas control passage (P) is in communication with the diffuser passage (D1) by the gas outlet (T). Can be.
  • the gas outlet T may be formed toward the periphery of the airfoil vane AFV without facing the airfoil vane AFV in the diffuser passage D1.
  • a gas in one gas chamber S may be injected into the diffuser passage D1 through a plurality of gas outlets T.
  • the cross-sectional area of the gas chamber S may be smaller than the cross-sectional area of the first volute V1 and larger than the cross-sectional area of the gas outlet T.
  • the cross-sectional area of the gas chamber S, the cross-sectional area of the first volute V1, and the cross-sectional area of the gas outlet T may be cross-sectional areas of a direction orthogonal to the axial direction (that is, the radial direction).
  • the first volute casing 20 may be formed with an outlet 22 through which the gas of the first volute V1 passes to exit the first volute casing 20.
  • One end of the outlet 22 formed in the first volute casing 20 may be connected to the first volute V1, and the other end of the outlet 22 may be connected to the connection flow path C3.
  • the first volute casing 20 has a bypass connecting passage 29 (see FIGS. 2 and 3) for communicating the gas chamber S with the outlet end 7B of the bypass passage 7 (see FIG. 1). Can be formed. Some of the gas discharged from the second volute casing 50 may pass through the bypass passage 7 and the bypass connection passage 29 sequentially, and then flow into the gas chamber S, and the gas chamber S Gas introduced into the) may be spread in the gas chamber (S), and then dispersed in a plurality of gas control passages (P).
  • the first impeller 30 may be connected to one side of the rotation shaft 11.
  • the first impeller 30 may be rotatably received in the first volute casing 20.
  • the inlet 31 through which gas is introduced may face the axial direction of the rotating shaft 11, and the outlet 32 through which the gas is taken out may face the radial direction of the rotating shaft 11, and Can be sucked in the axial direction and discharged in the centrifugal direction.
  • the first impeller 30 may be rotatably accommodated in a first impeller accommodation space formed between the diffuser body 41 and the first volute casing 20, which will be described later, of the diffuser 40.
  • the diffuser 40 may form a diffuser passage D1 after the outlet 32 of the first impeller 30.
  • the diffuser passage D1 may be a communication path for communicating the first impeller accommodation space in which the first impeller 30 is accommodated and the first volute V1, and from the outlet 32 of the first impeller 30 to the first impeller 30. It may be defined as a passage located between one volute (V1).
  • the diffuser passage D1 may have an annular shape in which the overall shape is hollow, and may be elongated in a radial direction perpendicular to the axial direction.
  • the diffuser 40 may be disposed between the motor 10 and the first volute casing 20.
  • the diffuser 40 may have a rotating shaft through hole through which the rotating shaft 11 penetrates.
  • a part of the diffuser 40 may be disposed between the motor 10 and the first impeller 30, and the diffuser 40 may include a first impeller accommodation space and a rotor 13 in which the first impeller 30 is accommodated.
  • the space of the motor 10 in which the stator 13 is accommodated can be partitioned.
  • the plurality of airfoil vanes AFV may be spaced apart in the circumferential direction from the diffuser passage D1.
  • the diffuser 40 may be provided with a plurality of airfoil vanes AFV spaced apart from the diffuser passage D1.
  • the diffuser 40 may be a vane diffuser in which gas flowed into the diffuser passage D1 is guided by a plurality of airfoil vanes AFV.
  • the diffuser 40 may be formed by a plurality of members.
  • the diffuser 40 may include a diffuser body 41.
  • the diffuser body 41 may have an inner region A facing the first impeller 30 in the axial direction, and an outer region B surrounding the inner region A and not facing the first impeller 30 in the axial direction. Can be.
  • the diffuser 40 may further include a diffuser cover 46.
  • the diffuser cover 46 may be disposed in the first volute casing 20 to face the outer region B. As shown in FIG. The gas exiting the outlet 32 of the first impeller 30 may pass between the outer region B of the diffuser body 41 and the diffuser cover 46, and the first volute in the diffuser passage D1. May flow into (V1).
  • the plurality of airfoil vanes AFV may be formed to protrude toward the diffuser passage D1 in at least one of the diffuser body 41 and the diffuser cover 46.
  • the plurality of airfoil vanes AFV may protrude from the outlet 32 of the first impeller 30.
  • the plurality of airfoil vanes AFV may have a contact end that contacts the diffuser cover 46 when protruding from the diffuser body 41.
  • the airfoil vanes AFV may contact the diffuser body 41 when protruding from the diffuser cover 46. It may have a contact end.
  • the plurality of airfoil vanes AFV may protrude toward the diffuser cover 46 in the outer region B, and radially with the outlet 32 of the first impeller 30. It can protrude spaced apart.
  • the plurality of airfoil vanes AFV may be formed to extend in the tangential direction of the outer circumference of the first impeller 30.
  • a gas regulating passage P for communicating the gas chamber S and the diffuser passage D1 to at least one of the first volute casing 20 and the diffuser 40 may be formed.
  • Gas control passage (P) may be a plurality of spaced apart in the circumferential direction.
  • Gas control passage (P) may include a gradient path (P1) inclined obliquely with respect to the axial center (C) of the first impeller 30, the gradient path (P1) may include a gas outlet (T). Can be. Gas passing through the gradient passage (P1) may be injected into the diffuser passage (D1) after passing through the gas outlet (T).
  • the gradient path P1 may be formed to have an inclination angle ⁇ of an acute angle with the diffuser passage D1.
  • the gradient path P1 may be gradientd to have an inclination angle ⁇ of 30 ° to 80 °.
  • the gas control passage P may further include a communication passage P2 connecting the gas chamber S and the gradient passage P1.
  • the communication path P2 may be elongated in a direction parallel to the axis center C.
  • the first volute casing 20, the first impeller 30, and the diffuser 40 may constitute a first compression mechanism C1 that primarily compresses the refrigerant introduced into the centrifugal compressor 1.
  • the second volute casing 50 may have a second inlet 51 into which the fluid flowing in the first volute V1 flows.
  • the second volute casing 50 may be formed with a second volute V2 and an outlet 52.
  • the second volute casing 50 may be disposed opposite to the first volute casing 50.
  • the second volute casing 50 may be fastened to the motor housing 12 by a fastening member such as a screw, and a second impeller accommodation space may be formed therein in which the second impeller 60 may be accommodated. .
  • the second impeller accommodation space may be in communication with the second inlet 51.
  • a diffuser passage D2 is formed between the second volute casing 50 and the motor housing 12 to guide the gas flowing at the outlet 62 of the second impeller 60 to the second volute V2.
  • the diffuser passage D2 formed between the second volute casing 50 and the motor housing 12 includes a second impeller accommodation space and a second ball formed between the second volute casing 50 and the motor housing 12. It may be located between the lute (V2), the gas exiting the outlet 62 of the second impeller 60 may be guided to the second volute (V2).
  • the second volute V2 may be formed in a circular shape or an arc shape, and may be formed in a shape that gradually expands in the flow direction of the gas.
  • the outlet 52 of the second volute casing 50 may be formed in communication with the second volute V2, and discharges the gas flowing in the second volute V2 to the outside of the centrifugal compressor 1. I can guide you.
  • the second impeller 60 may be connected to the other side of the rotation shaft 11.
  • the second impeller 60 may be rotatably received in the second volute casing 50.
  • the inlet 61 through which gas is introduced may face the axial direction of the rotation shaft 11, and the outlet 62 through which the gas is drawn may face the radial direction of the rotation shaft 11, and Can be sucked in the axial direction and discharged in the centrifugal direction.
  • the second impeller 60 may be rotatably accommodated in the second impeller accommodation space formed between the second volute casing 50 and the motor housing 12.
  • the second volute casing 50 and the second impeller 60 are compressed by the first compression mechanism C1 and then secondly compress the refrigerant introduced through the connection flow path C3 secondly. Can be configured.
  • the centrifugal compressor (1) configured as described above is a pressure loss according to the position where the gas control passage (P) injects gas into the diffuser passage (D1), that is, the gas outlet (T) position of the gas control passage (P). Coefficient of pressure loss and efficiency may be different, and the gas outlet T of the gas control passage is preferably formed at a position capable of maximizing the efficiency while minimizing the pressure loss coefficient.
  • FIG. 4 is a side view showing a comparative example of a diffuser according to an embodiment of the present invention
  • Figure 5 is a side view showing a first example of a diffuser according to an embodiment of the present invention
  • Figure 6 is a diffuser according to an embodiment of the present invention A second example of the side view is shown
  • Figure 7 is a side view showing a third example of the diffuser according to an embodiment of the present invention.
  • 8 is a graph in which the pressure loss coefficients of the examples of the present invention and the comparative example are shown in comparison
  • FIG. 9 is a graph in which the efficiency of the examples of the present invention is compared with the comparative example.
  • the diffuser passage D1 may be divided into a plurality of regions B1, B2, and B3 in a radial direction, and include a first region B1 in which a plurality of airfoil vanes AFV are located and an outside of the vane region B1.
  • the second region B2 may be divided into a third region B3 inside the vane region B1.
  • the first region B1 may be a vane region disposed between the second region B2 and the third region B3 and spaced apart from the plurality of air foil vanes AFV in the circumferential direction.
  • the airfoil vane AFV may be elongated in an oblique direction between the front end Pa of the diffuser passage D1 and the rear end Pb of the diffuser passage D1.
  • leading edge LE and the trailing edge TE may be connected to the inner side IS and the outer side OS.
  • the leading edge LE may be an end closest to the tip Pa of the diffuser passage D1 in the longitudinal direction of the airfoil vane AFV.
  • the tip Pa of the diffuser passage D1 may be defined as the outlet 32 of the first impeller 30.
  • the trailing edge TE may be an end closest to the rear end Pb of the diffuser passage D1 in the longitudinal direction of the airfoil vane AFV.
  • the rear end Pb of the diffuser passage D1 may be defined as the outermost circumference of the diffuser 40, in particular, the diffuser body 41.
  • the inner side surface IS may face the front end Pa of the diffuser passage D1, and the outer side surface OS may face the rear end Pb of the diffuser passage D1.
  • the second region B2 may be an outer region through which the gas guided to the plurality of air foil vanes AFV passes.
  • the second area B2 may be an area between the first area B1 and the rear end Pb of the diffuser passage D1.
  • the third region B3 may be an inner region through which gas exiting the outlet 32 of the first impeller 30 passes before being guided to the plurality of air foil vanes AFV.
  • the third region B3 may be an area between the leading edge Pa of the diffuser passage D1 and the first region B1.
  • Each of the first region B1, the second region B2, and the third region B3 may have a ring shape.
  • the radial width L1 of the first region B1 may be shorter than the radial width L2 of the second region B2.
  • the radial width L1 of the first region B1 may be longer than or equal to the radial width L3 of the third region B3.
  • the gas outlet T ' is directed toward the first area B1 in the radial direction of the diffuser passage D1.
  • the gas outlet T' is the diffuser. It may be the case formed to face the front end Pa of the passage (D1).
  • the gas outlet T of the present embodiment may face at least one of the first region B1 and the second region B2, as shown in FIGS. 5 to 7, and the third region B3. May not face).
  • the gas outlet T of the present exemplary embodiment is formed only in the first region B1 and is not formed in the second region B2 and the third region B3.
  • the gas outlet T has an inner surface IS facing the tip Pa of the diffuser passage D1 and the tip of the diffuser passage D1 among the airfoil vanes AFV. Pa).
  • the second example of the gas outlet T of the present embodiment is formed over the first region B1 and the second region B2 and is not formed in the third region B3.
  • the gas outlet T may face the boundary between the first region B1 and the second region B2. That is, the gas outlet T may face the virtual circle O connecting the trailing edge TE of the plurality of airfoil vanes AFV.
  • the third example of the gas outlet T of the present embodiment is formed only in the second region B2 and is not formed in the first region B1 and the third region B3.
  • the gas outlet T may be closer to the trailing edge TE of the leading edge LE and the trailing edge TE of the airfoil vane AFV.
  • the gas outlet T has an outer surface OS facing the rear end Pb of the diffuser passage D1 and the diffuser passage D1 of the airfoil vanes AFV AFAF. It may face between the rear end (Pb) of).
  • the pressure loss coefficient is 60% and the efficiency is less than 70%.
  • the first example (see Fig. 5) has a high pressure loss coefficient of more than 80% but an efficiency of more than 70%.
  • the pressure loss coefficient is lower than 60% and the efficiency is higher than 71%, which is the highest among the first and third cases.
  • the pressure loss coefficient is higher than 80%, but the efficiency is higher than 71% in the first example.
  • the gas outlet T when the gas outlet T is formed to face at least one of the first region B1 and the second region B2 (FIGS. 5 to 7), the efficiency is 70%. While the efficiency of the comparative example is higher than that of the comparative example (see FIG. 4), which is lower than that of the present embodiments, the gas outlet T is the first region B1 and the second region. It is preferably formed in at least one of (B2), the third region (B3) is preferably formed so as not to face.
  • the second and third examples have higher efficiency than the first example, so the preferred example of the present embodiment is the second example with relatively high efficiency (see Fig. 6).
  • a third example see FIG. 7
  • the most preferable example of the present embodiment may be a second example (see FIG. 6) having a lower pressure loss coefficient and higher efficiency than that of the comparative example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

원심 압축기는 회전축을 갖는 모터와; 제1인렛 및 제1볼류트가 형성되고 제1볼류트 및 제1인렛 각각과 구획된 가스챔버가 형성된 제1볼류트 케이싱과; 회전축의 일측에 연결되고 제1볼류트 케이싱에 회전 가능하게 수용된 제1임펠러와; 제1임펠러의 출구 이후에 디퓨저 통로를 형성하고 디퓨저 통로에 복수개 에어포일 베인이 이격되게 제공된 디퓨저와; 아웃렛 및 제2볼류트가 형성되고 제1볼류트에서 유동된 유체가 유입되는 제2인렛을 갖는 제2볼류트 케이싱과; 회전축의 타측에 연결되고 제2볼류트 케이싱에 회전 가능하게 수용된 제2임펠러를 포함하고, 제1볼류트 케이싱과, 디퓨저 중 적어도 하나에는 가스챔버와 디퓨저 통로를 연통시키는 가스조절통로가 형성되고, 가스조절통로의 가스출구는 복수개 에어포일 베인이 위치하는 링 형상의 제1영역과, 제1영역과 디퓨저 통로의 후단 사이의 제2영역 중 적어도 하나를 향한다.

Description

원심 압축기
본 발명은 유체를 압축하는 압축기에 관한 것으로, 더욱 상세하게는 원심력을 이용하여 가스를 압축하는 원심 압축기에 관한 것이다.
원심 압축기는 케이싱 내에 날개 바퀴를 회전해서 그 원심력으로 가스를 압축하는 기기이다.
원심 압축기는 냉매가스 등의 가스를 압축하게 구성될 수 있고, 이러한 원심 압축기는 모터의 구동력이 임펠러에 전달되어 임펠러가 회전되면 그 임펠러의 회전력에 의해 임펠러로 가스가 유입되고, 가스는 임펠러에 의해 유동되면서 운동에너지가 증가되며, 그 운동에너지가 증가된 가스는 디퓨저를 지나면서 운동에너지가 정압으로 변환되어 압력이 상승하게 된다. 이렇게 압력이 상승된 가스는 볼류트 및 볼튜트와 연통된 토출구를 순차적으로 통과 한 후 원심 압축기 외부로 토출된다.
디퓨저는 가스의 운동에너지를 정압으로 변환시키는 것으로서, 디퓨저의 일예는 가스가 통과하는 유로의 단면적이 가스 유동방향으로 점차 작게 형성된 베인리스 디퓨저(Vaneless Diffuser)일 수 있고, 디퓨저의 다른예는 가스가 통과하는 유로의 단면적이 가스 유동방향으로 점차 작게 형성되고 이러한 유로에 복수개의 베인이 설치된 베인 디퓨저(Vane Diffuser)일 수 있다.
베인 디퓨저를 갖는 원심 압축기의 일예는 대한민국 등록 특허공보 10-0339570 B1(2002년06월03일)에 개시되어 있고, 이러한 원심 압축기는 베인의 선단부에 일정 두께와 높이를 갖는 원호 형상으로 형성되어 베인측으로 유입되는 유동을 안정적으로 안내하는 유동 안내부재를 포함하고, 유동 안내부재의 후측으로 미소 박리 현상이 발생되게 하여 보다 넓은 범위의 입사각에 대하여 베인과 베인 사이의 유입 유동을 안정화시킬 수 있다. 그러나, 상기와 같은 유동 안내부재를 갖는 원심 압축기는 각각의 베인의 선단부에 유동 안내부재를 별도로 형성하므로 그 구조 및 제조공정이 복잡한 문제점이 있다.
한편, 원심 압축기는 그 용량이 조절되게 구성되는 것이 가능하고, 용량 조절이 가능한 원심 압축기의 일예는 미국 등록특허공보 US9,157,446 B2(2015년10월13일)에 개시되어 있다. 이러한 원심 압축기는 주 냉매 유로에 제공된 제 1 임펠러와, 제 1 임펠러의 하류에 배치되고 복수개의 베인을 갖는 베인 디퓨저와, 제 1 임펠러의 하류 측 주 냉매 유로에 제공된 제 2 임펠러 및 제 2 임펠러의 하류와 제 1 임펠러의 하류를 잇는 냉매순환유로를 포함하고, 냉매순환유로는 냉매를 분사하는 복수개 순환노즐을 포함하며, 복수개 순환노즐의 출구는 적어도 부분적으로 베인의 리딩 에지 반경 방향 외측에 배치된다.
본 발명은 효율이 최대화될 수 있는 원심 압축기를 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 압력손실계수가 최소화될 수 있는 원심 압축기를 제공하는데 있다.
본 발명의 실시예에 따른 원심 압축기는 회전축을 갖는 모터와; 제1인렛 및 제1볼류트가 형성되고 제1볼류트 및 제1인렛 각각과 구획된 가스챔버가 형성된 제1볼류트 케이싱과; 회전축의 일측에 연결되고 제1볼류트 케이싱에 회전 가능하게 수용된 제1임펠러와; 제1임펠러의 출구 이후에 디퓨저 통로를 형성하고 디퓨저 통로에 복수개 에어포일 베인이 이격되게 제공된 디퓨저와; 아웃렛 및 제2볼류트가 형성되고 제1볼류트에서 유동된 유체가 유입되는 제2인렛을 갖는 제2볼류트 케이싱과; 회전축의 타측에 연결되고 제2볼류트 케이싱에 회전 가능하게 수용된 제2임펠러를 포함하고, 제1볼류트 케이싱과, 디퓨저 중 적어도 하나에는 가스챔버와 디퓨저 통로를 연통시키는 가스조절통로가 형성되고, 가스조절통로의 가스출구는 복수개 에어포일 베인이 위치하는 링 형상의 제1영역과, 제1영역과 디퓨저 통로의 후단 사이의 제2영역 중 적어도 하나를 향한다. 가스출구는 디퓨저 통로의 선단과 제1영역 사이의 제3영역을 향하지 않을 수 있다.
가스출구는 에어포일 베인의 리딩 에지와 트레일링 에지 중 트레일링 에지에 더 가까울 수 있다.
가스출구는 에어포일 베인 중 디퓨저 통로의 선단을 향하는 내측면과 디퓨저 통로의 선단 사이를 향할 수 있다.
가스출구는 제1영역과 제2영역의 경계를 향할 수 있다.
가스출구는 복수개 에어포일 베인의 트레일링 에지를 잇는 가상원을 향할 수 있다.
가스출구는 에어포일 베인 중 디퓨저 통로의 후단을 향하는 외측면과 디퓨저 통로의 후단 사이를 향할 수 있다.
제1영역의 반경 방향 폭은 제2영역의 반경 방향 폭 보다 짧을 수 있다.
가스조절통로는 제1임펠러의 축중심에 대해 비스듬하게 경사지고 가스출구를 포함하는 구배로를 포함할 수 있다. 구배로는 디퓨저 통로와 예각의 경사각을 갖을 수 있다. 경사각은 30°내지 80°일 수 있다.
본 발명의 실시예에 따르면, 가스조절통로의 가스가 에어포일 베인 주변의 최적 위치로 분사될 수 있어, 원심 압축기의 압력손실계수를 최소화할 수 있고 효율을 최대화할 수 있다.
또한, 가스조절통로의 구배로를 통과한 가스가 디퓨저 통로로 비스듬하게 분사되어 가스가 디퓨져 통로로 분사될 때의 유동저항이 최소화될 수 있다.
도 1은 본 발명의 실시예에 따른 원심 압축기가 적용된 냉동사이클 장치가 도시된 도,
도 2는 본 발명의 실시예에 따른 원심 압축기가 도시된 단면도,
도 3은 도 2에 도시된 A부 확대 단면도,
도 4는 본 발명의 실시예에 따른 디퓨저의 비교예가 도시된 측면도,
도 5는 본 발명의 실시예에 따른 디퓨저의 제1예가 도시된 측면도,
도 6은 본 발명의 실시예에 따른 디퓨저의 제2예가 도시된 측면도,
도 7은 본 발명의 실시예에 따른 디퓨저의 제3예가 도시된 측면도,
도 8은 본 발명의 실시예와 비교예의 압력손실계수가 비교 도시된 그래프,
도 9는 본 발명의 실시예와 비교예의 효율이 비교 도시된 그래프이다.
이하에서는 본 발명의 구체적인 실시예를 도면과 함께 상세히 설명하도록 한다.
도 1은 본 발명의 실시예에 따른 원심 압축기가 적용된 냉동사이클 장치가 도시된 도이고, 도 2는 본 발명의 실시예에 따른 원심 압축기가 도시된 단면도이며, 도 3은 도 2에 도시된 A부 확대 단면도이다.
본 실시예의 원심 압축기(1)는 도 1에 도시된 바와 같이, 응축기(2)와 팽창기구(3) 및 증발기(4)와 함께 냉동사이클 장치를 구성할 수 있고, 원심 압축기(1)에서 압축된 후 원심 압축기(1)에서 토출된 냉매는 응축기(2)와 팽창기구(3) 및 증발기(4)를 순차적으로 통과한 후 원심 압축기(1)로 흡입될 수 있다.
원심 압축기(1)는 증발기(4)와 흡입유로(5)로 연결될 수 있고, 응축기(2)와 토출유로(6)로 연결될 수 있다.
원심 압축기(1)는 냉매를 다단 압축할 수 있는 다단 압축식 원심 압축기로 구성될 수 있고, 이 경우, 원심 압축기(1)는 연결유로(C3, 도 2 참조)로 연결된 복수개 압축기구(C1)(C2)를 포함할 수 있다.
원심 압축기(1)는 복수개의 압축기구(C1)(C2) 중 어느 하나인 제1압축기구(C1)에서 냉매를 압축한 후, 연결유로(C3)로 토출할 수 있고, 연결유로(C3)로 토출된 냉매는 복수개의 압축기구(C1)(C2) 중 다른 하나인 제2압축기구(C2)로 유입되어 압축될 수 있으며, 제2압축기(C2)에서 압축된 냉매는 토출유로(6)을 통해 응축기(2)로 유동될 수 있다.
상기와 같은 원심 압축기(1)를 갖는 냉동사이클 장치는 제2압축기구(C2)에서 압축된 냉매 중 일부를 제1압축기구(C1)로 바이패스시키는 바이패스 유로(7, 도 1 참조)를 더 포함할 수 있고, 제2압축기구(C2)에서 토출된 후 바이패스 유로(7)를 통해 제1압축기구(C1)로 유입되는 냉매의 양에 의해 원심 압축기(1)의 용량이 조절될 수 있다.
이러한 바이패스 유로(7)는 적어도 일부가 원심 압축기(1)의 외부에 위치하는 튜브에 의해 형성될 수 있다.
바이패스 유로(7)는 도 1에 도시된 바와 같이, 제2압축기구(C2)와 토출유로(6)와 응축기(2) 중 적어도 하나에 연결된 입구단(7A)을 갖을 수 있고, 제1압축기구(C1)에 연결되는 출구단(7B)을 갖을 수 있다.
입구단(7A)은 제2압축기구(C2)와 토출유로(6)와 응축기(2) 중 복수개에 연결되는 것이 가능하고, 제2압축기구(C2)와 토출유로(6)와 응축기(2) 중 어느 하나에만 연결되는 것이 가능하다.
입구단(7A)이 제2압축기구(C2)에 연결될 경우, 입구단(7A)은 제2압축기구(C2)의 아웃렛(52, 도 2 참조)나 제2볼류트(V2)에 연결될 수 있다. 그리고, 출구단(7B)은 제1압축기구(C1)의 후술하는 제1볼류트 케이싱(20)에 연결될 수 있다.
바이패스 유로(7)는 적어도 일부가 원심 압축기(1)의 외부에 위치하고 입구단(7A)이 제2압축기구(C2)에 연결되고 출구단(7B)가 제1압축기구(C1)에 연결된 튜브에 의해 형성될 수 있다.
바이패스 유로(7)는 상기와 같은 입구단(7A)과 출구단(7B)를 갖는 것에 한정되지 않고, 바이패스 유로(7)가 원심식 압축기(1)의 내부(예를 들면, 모터 하우징(12))에 형성되는 것도 가능함은 물론이다.
한편, 바이패스 유로(7)에는 바이패스 유로(7)를 통과하는 가스의 유량을 조절하는 유량조절기(8, 도 1 참조)가 배치될 수 있고, 유량조절기(8)는 그 개도 조절이 가능한 밸브 등으로 구성될 수 있다. 유량조절기(8)의 개도가 증가되면 제2압축기구(C2)에서 압축된 후 바이패스 유로(7)를 통해 제1압축기구(C1) 내부로 분사되는 가스의 유량은 증가될 수 있다. 반대로, 유량조절기(8)의 개도가 감소되면 제2압축기구(C2)에서 압축된 후 바이패스 유로(7)를 통해 제1압축기구(C1) 내부로 분사되는 가스의 유량은 감소될 수 있다.
이하, 원심 압축기(1)에 대해 도 2 및 도 3을 참조하여 상세히 설명하면 다음과 같다.
원심 압축기(1)는 모터(10)와, 제1볼류트 케이싱(20), 제1임펠러(30)와, 디퓨저(40)와, 제2볼류트 케이싱(50)와, 제2임펠러(60)를 포함한다.
모터(10)는 회전축(11)을 갖을 수 있다. 회전축(11)의 일측은 제1볼류트 케이싱(20)의 내부로 연장될 수 있고, 회전축(11)의 타측은 제2볼류트 케이싱(50)의 내부로 연장될 수 있다.
모터(10)은 내부에 공간이 형성된 모터 하우징(12)을 포함할 수 있다. 모터 하우징(12)은 회전축(11)의 축방향으로 길게 형성될 수 있다.
모터(10)는 모터 하우징(12)의 내부에 수용된 로터(13) 및 스테이터(14)를 더 포함할 수 있다. 로터(13)은 회전축(11)의 외둘레에 배치될 수 있고, 회전축(11)과 함께 회전될 수 있다. 스테이터(14)는 로터(13)의 외둘레를 둘러싸게 모터 하우징(14)의 내부에 배치될 수 있다.
모터 하우징(12)에는 연결유로(C3)가 형성될 수 있다. 연결유로(C3)의 일단은 제1벌튜트 케이싱(20)을 향하고, 연결유로(C3)의 타단은 제2볼류트 케이싱(50)을 향할 수 있다. 연결유로(C3)는 제1볼류트 케이싱(20)의 아웃렛(22)를 제2볼류트 케이싱(50)의 인렛(51)과 연통시킬 수 있다. 제1볼류트 케이싱(20)의 제1볼류트(V1)를 빠져 나온 가스는 제1볼류트 케이싱(20)의 아웃렛(22)과 모터 하우징(12)에 형성된 연결유로(C3)를 순차적으로 통과한 후 제2볼류트 케이싱(50)의 인렛(51)으로 유입될 수 있다.
제1볼류트 케이싱(20)은 모터 하우징(12)에 스크류 등의 체결부재로 체결될 수 있고, 그 내부에는 제1임펠러(30)가 수용될 수 있는 제1임펠러 수용공간이 형성될 수 있다. 제1임펠러 수용공간은 제1인렛(21)과 연통될 수 있고, 제1인렛(21) 보다 크게 확장된 공간일 수 있다.
제1볼류트 케이싱(20)에는 제1인렛(21) 및 제1볼류트(V1)가 형성될 수 있고, 제1볼류트 케이싱(20)에는 제1인렛(21) 및 제1볼류트(V1) 각각과 구획된 가스챔버(S)가 형성될 수 있다.
제1볼류트 케이싱(20)는 중공 형상일 수 있다. 제1볼류트 케이싱(20)의 내둘레면은 가스를 제1임펠러(20)로 안내하는 인렛(21)을 형성할 수 있다. 제1볼류트(V1) 및 가스챔버(S)은 제1볼류트 케이싱(20)의 내둘레면과 외둘레면 사이에 각각 형성될 수 있다.
제1볼류트(V1)는 원 형상 또는 호 형상으로 형성될 수 있고, 가스의 유동방향(즉, 가스의 선회 방향)으로 점차 확장되는 형상으로 형성될 수 있다.
가스챔버(S)은 제1볼류트 케이싱(20)의 내둘레면과 외둘레면 사이에 제1볼류트(V1)와 이격되게 형성될 수 있다. 가스챔버(S)과 인렛(21) 사이의 거리는 제1볼류트(V1)과 인렛(21) 사이의 거리 보다 짧을 수 있다. 가스챔버(S)은 원 형상 또는 호 형상으로 형성될 수 있다.
가스챔버(S)에는 가스조절통로(P)가 연결될 수 있고, 가스챔버(S)의 가스는 가스조절통로(P)를 통해 디퓨저(40)의 디퓨저 통로(D1)로 분사될 수 있다.
원심 압축기는 가스챔버(S)에 연결된 복수개 가스조절통로(P)를 포함할 수 있고, 가스챔버(S)의 가스는 복수개 가스조절통로(P)를 통해 디퓨저 통로(D1)의 복수 위치로 분산되면서 분사될 수 있다.(도 5 내지 도 7 참조)
가스조절통로(P) 각각은 가스를 디퓨저 통로(D1)로 안내하는 가스출구(T)를 포함할 수 있고, 가스조절통로(P)는 가스출구(T)에 의해 디퓨저 통로(D1)와 연통될 수 있다. 가스출구(T)는 디퓨저 통로(D1) 중 에어포일 베인(AFV)를 향하지 않고, 에어포일 베인(AFV)의 주변을 향하게 형성될 수 있다.
원심 압축기는 하나의 가스챔버(S) 내 가스가 복수개의 가스출구(T)를 통해 디퓨저 통로(D1)로 분사될 수 있다. 가스챔버(S)의 단면적은 제1볼류트(V1)의 단면적 보다 작을 수 있고, 가스출구(T)의 단면적보다 클 수 있다.
여기서, 가스챔버(S)의 단면적과, 제1볼류트(V1)의 단면적과, 가스출구(T)의 단면적 각각은 축 방향과 직교한 방향(즉, 반경 방향)의 단면적일 수 있다.
제1볼류트 케이싱(20)에는 제1볼류트(V1)의 가스가 제1볼류트 케이싱(20)을 빠져 나오기 위해 통과하는 아웃렛(22)이 형성될 수 있다. 제1볼류트 케이싱(20)에 형성된 아웃렛(22)의 일단은 제1볼류트(V1)에 연결될 수 있고, 아웃렛(22)의 타단은 연결유로(C3)에 연결될 수 있다.
한편, 제1볼류트 케이싱(20)에는 바이패스 유로(7, 도 1 참조)의 출구단(7B)과 가스챔버(S)을 연통시키는 바이패스 연결유로(29, 도 2 및 도 3 참조)가 형성될 수 있다. 제2볼류트 케이싱(50)에서 토출된 가스 중 일부는 바이패스 유로(7)과 바이패스 연결유로(29)를 순차적으로 통과한 후 가스챔버(S)으로 유입될 수 있고, 가스챔버(S)으로 유입된 가스는 가스챔버(S)에서 넓게 퍼진 후, 복수개 가스조절통로(P)로 분산될 수 있다.
제1임펠러(30)는 회전축(11)의 일측에 연결될 수 있다. 제1임펠러(30)는 제1볼류트 케이싱(20)에 회전 가능하게 수용될 수 있다. 제1임펠러(30)는 가스가 유입되는 입구(31)가 회전축(11)의 축 방향을 향할 수 있고, 가스가 취출되는 출구(32)가 회전축(11)의 반경 방향을 향할 수 있고, 가스를 축 방향으로 흡입하여 원심 방향으로 토출할 수 있다. 제1임펠러(30)는 디퓨저(40)의 후술하는 디퓨저 바디(41)와 제1볼류트 케이싱(20)의 사이에 형성된 제1임펠러 수용공간에 회전 가능하게 수용될 수 있다.
디퓨저(40)는 제1임펠러(30)의 출구(32) 이후에 디퓨저 통로(D1)를 형성할 수 있다. 디퓨저 통로(D1)는 제1임펠러(30)가 수용되는 제1임펠러 수용공간과 제1볼류트(V1)을 연통시키는 연통로일 수 있고, 제1임펠러(30)의 출구(32)부터 제1볼류트(V1)의 사이에 위치하는 통로로 정의될 수 있다.
디퓨저 통로(D1)는 전체적인 형상이 중공된 고리 형상일 수 있고, 축방향과 직교한 반경 방향으로 길게 형성될 수 있다.
디퓨저(40)는 모터(10)와 제1볼류트 케이싱(20)의 사이에 배치될 수 있다. 디퓨저(40)에는 회전축(11)이 관통되는 회전축 관통공이 형성될 수 있다. 디퓨저(40)의 일부는 모터(10)와 제1임펠러(30) 사이에 배치될 수 있고, 디퓨저(40)는 제1임펠러(30)가 수용되는 제1임펠러 수용공간과 로터(13) 및 스테이터(13)가 수용되는 모터(10)의 공간을 구획할 수 있다.
복수개 에어포일 베인(AFV)은 디퓨저 통로(D1)에 원주 방향으로 이격될 수 있다.
디퓨저(40)는 디퓨저 통로(D1)에 복수개 에어포일 베인(AFV)이 이격되게 제공될 수 있다. 디퓨저(40)는 디퓨저 통로(D1)로 유동된 가스가 복수개 에어포일 베인(AFV)에 의해 안내되는 베인 디퓨져일 수 있다.
디퓨저(40)는 복수개 부재에 의해 형성될 수 있다. 디퓨저(40)는 디퓨저 바디(41)를 포함할 수 있다.
디퓨저 바디(41)는 축방향으로 제1임펠러(30)를 향하는 내측 영역(A)과, 내측 영역(A)를 둘러싸고 축방향으로 제1임펠러(30)를 향하지 않는 외측 영역(B)을 갖을 수 있다.
디퓨저(40)는 디퓨저 커버(46)를 더 포함할 수 있다. 디퓨저 커버(46)는 외측 영역(B)을 향하게 제1볼류트 케이싱(20)에 배치될 수 있다. 제1임펠러(30)의 출구(32)를 빠져 나온 가스는 디퓨저 바디(41)의 외측 영역(B)과 디퓨저 커버(46) 사이를 통과할 수 있고, 디퓨저 통로(D1)에서 제1볼류트(V1)로 유입될 수 있다.
복수개 에어포일 베인(AFV)은 디퓨저 바디(41)와 디퓨저 커버(46) 중 적어도 하나에 디퓨저 통로(D1)를 향해 돌출되게 형성될 수 있다.
복수개 에어포일 베인(AFV)는 제1임펠러(30)의 출구(32)와 이격되게 돌출될 수 있다.
복수개 에어포일 베인(AFV)은 디퓨저 바디(41)에 돌출될 경우 디퓨저 커버(46)에 접촉되는 접촉단을 갖을 수 있고, 반대로 디퓨저 커버(46)에 돌출될 경우, 디퓨저 바디(41)에 접촉되는 접촉단을 갖을 수 있다.
복수개 에어포일 베인(AFV)은 디퓨저 바디(41)에 돌출될 경우, 외측 영역(B)에서 디퓨저 커버(46)에 향해 돌출될 수 있고, 제1임펠러(30)의 출구(32)와 반경방향으로 이격되게 돌출될 수 있다.
복수개 에어포일 베인(AFV)은 제1임펠러(30) 외둘레의 접선 방향으로 길게 형성될 수 있다.
원심 압축기는 제1볼류트 케이싱(20)과, 디퓨저(40) 중 적어도 하나에 가스챔버(S)과 디퓨저 통로(D1)를 연통시키는 가스조절통로(P)가 형성될 수 있다.
가스조절통로(P)는 복수개가 원주 방향으로 이격될 수 있다.
가스조절통로(P)는 제1임펠러(30)의 축중심(C)에 대해 비스듬하게 경사진 구배로(P1)를 포함할 수 있고, 구배로(P1)는 가스출구(T)를 포함할 수 있다. 구배로(P1)를 통과한 가스는 가스출구(T)를 통과한 후 디퓨저 통로(D1)로 분사될 수 있다.
구배로(P1)는 디퓨저 통로(D1)와 예각의 경사각(θ)을 갖게 형성될 수 있다. 구배로(P1)는 30°내지 80°인 경사각(θ)을 갖게 구배질 수 있다.
가스조절통로(P)는 가스챔버(S)과 구배로(P1)를 잇는 연통로(P2)를 더 포함할 수 있다. 연통로(P2)는 축중심(C)에 나란한 방향으로 길게 형성될 수 있다.
제1볼류트 케이싱(20)와, 제1임펠러(30) 및 디퓨저(40)는 원심 압축기(1)로 유입된 냉매를 1차적으로 압축하는 제1압축기구(C1)을 구성할 수 있다.
제2볼류트 케이싱(50)은 제1볼류트(V1)에서 유동된 유체가 유입되는 제2인렛(51)을 갖을 수 있다. 제2볼류트 케이싱(50)은 제2볼류트(V2) 및 아웃렛(52)이 형성될 수 있다.
제2볼류트 케이싱(50)은 제1볼류트 케이싱(50)의 반대편에 배치될 수 있다. 제2볼류트 케이싱(50)은 모터 하우징(12)에 스크류 등의 체결부재로 체결될 수 있고, 그 내부에는 제2임펠러(60)가 수용될 수 있는 제2임펠러 수용공간이 형성될 수 있다.
제2임펠러 수용공간은 제2인렛(51)과 연통될 수 있다.
제2볼류트 케이싱(50)과 모터 하우징(12)의 사이에는 제2임펠러(60)의 출구(62)에서 유동된 가스를 제2볼류트(V2)로 안내하는 디퓨저 통로(D2)가 형성될 수 있다. 제2볼류트 케이싱(50)과 모터 하우징(12)의 사이에 형성된 디퓨저 통로(D2)는 제2볼류트 케이싱(50)와 모터 하우징(12) 사이에 형성된 제2임펠러 수용공간과 제2볼류트(V2) 사이에 위치될 수 있고, 제2임펠러(60)의 출구(62)를 빠져 나온 가스를 제2볼류트(V2)로 안내할 수 있다.
제2볼류트(V2)는 원 형상 또는 호 형상으로 형성될 수 있고, 가스의 유동방향으로 점차 확장되는 형상으로 형성될 수 있다.
제2볼류트 케이싱(50)의 아웃렛(52)은 제2볼류트(V2)에 연통되게 형성될 수 있고, 제2볼류트(V2)에서 유동된 가스를 원심 압축기(1)의 외부로 토출 안내할 수 있다.
제2임펠러(60)는 회전축(11)의 타측에 연결될 수 있다. 제2임펠러(60)는 제2볼류트 케이싱(50)에 회전 가능하게 수용될 수 있다. 제2임펠러(60)는 가스가 유입되는 입구(61)가 회전축(11)의 축 방향을 향할 수 있고, 가스가 취출되는 출구(62)가 회전축(11)의 반경 방향을 향할 수 있고, 가스를 축 방향으로 흡입하여 원심 방향으로 토출할 수 있다. 제2임펠러(60)는 제2볼류트 케이싱(50)와 모터 하우징(12) 사이에 형성된 제2임펠러 수용공간에 회전 가능하게 수용될 수 있다.
제2볼류트 케이싱(50)와 제2임펠러(60)는 제1압축기구(C1)에서 압축된 후 연결유로(C3)를 통해 유입된 냉매를 2차적으로 압축하는 제2압축기구(C2)를 구성할 수 있다.
한편, 상기와 같이 구성된 원심식 압축기(1)는 가스조절통로(P)가 디퓨저 통로(D1)로 가스를 분사하는 위치 즉, 가스조절통로(P)의 가스출구(T) 위치에 따라 압력손실계수(coefficient of pressure loss)와 효율이 상이할 수 있고, 가스조절통로의 가스출구(T)는 압력손실계수를 최소화할 수 있으면서 효율을 최대화할 수 있는 위치에 형성되는 것이 바람직하다.
도 4는 본 발명의 실시예에 따른 디퓨저의 비교예가 도시된 측면도이고, 도 5는 본 발명의 실시예에 따른 디퓨저의 제1예가 도시된 측면도이며, 도 6은 본 발명의 실시예에 따른 디퓨저의 제2예가 도시된 측면도이고, 도 7은 본 발명의 실시예에 따른 디퓨저의 제3예가 도시된 측면도이다. 그리고, 도 8은 본 발명의 실시예와 비교예의 압력손실계수가 비교 도시된 그래프이고, 도 9는 본 발명의 실시예와 비교예의 효율이 비교 도시된 그래프이다.
디퓨저 통로(D1)는 반경 방향으로 복수개 영역(B1)(B2)(B3)으로 구분될 수 있고, 복수개 에어포일 베인(AFV)가 위치하는 제1영역(B1)과, 베인영역(B1) 외측의 제2영역(B2)과, 베인영역(B1) 내측의 제3영역(B3)으로 구분될 수 있다.
제1영역(B1)은 제2영역(B2)와 제3영역(B3) 사이에 위치하고 복수개 에어포일 베인(AFV)이 원주방향으로 이격되게 위치하는 베인영역일 수 있다.
에어포일 베인(AFV)은 디퓨저 통로(D1)의 선단(Pa)과 디퓨저 통로(D1)의 후단(Pb) 사이에 비스듬한 방향으로 길게 형성될 수 있다.
에어포일 베인(AFV)은 리딩 에지(LE)와 트레일링 에지(TE)가 내측면(IS) 및 외측면(OS)으로 연결될 수 있다.
리딩 에지(LE)는 에어포일 베인(AFV)의 길이 방향으로 디퓨저 통로(D1)의 선단(Pa)과 가장 근접한 단부일 수 있다. 여기서, 디퓨저 통로(D1)의 선단(Pa)는 제1임펠러(30)의 출구(32)로 정의될 수 있다.
트레일링 에지(TE)는 에어포일 베인(AFV)의 길이 방향으로 디퓨저 통로(D1)의 후단(Pb)과 가장 근접한 단부일 수 있다. 여기서, 디퓨저 통로(D1)의 후단(Pb)는 디퓨저(40) 특히, 디퓨져 바디(41)의 최외곽 둘레로 정의될 수 있다.
내측면(IS)는 디퓨저 통로(D1)의 선단(Pa)을 향할 수 있고, 외측면(OS)는 디퓨저 통로(D1)의 후단(Pb)을 향할 수 있다.
제2영역(B2)은 복수개 에어포일 베인(AFV)에 안내된 가스가 통과하는 외측영역일 수 있다. 제2영역(B2)는 제1영역(B1)과 디퓨저 통로(D1)의 후단(Pb) 사이의 영역일 수 있다.
제3영역(B3)은 제1임펠러(30)의 출구(32)를 빠져 나온 가스가 복수개 에어포일 베인(AFV)에 안내되기 이전에 통과하는 내측영역일 수 있다. 제3영역(B3)는 디퓨저 통로(D1)의 선단(Pa)과 제1영역(B1) 사이의 영역일 수 있다.
제1영역(B1)과 제2영역(B2) 및 제3영역(B3) 각각은 링 형상일 수 있다.
제1영역(B1)의 반경 방향 폭(L1)은 제2영역(B2)의 반경 방향 폭(L2) 보다 짧을 수 있다. 제1영역(B1)의 반경 방향 폭(L1)은 제3영역(B3)의 반경 방향 폭(L3) 보다 길거나 같을 수 있다.
본 실시예의 비교예는 가스출구(T')가 디퓨저 통로(D1)의 반경 방향으로 제1영역(B1) 이전을 향하는 예로서, 도 4에 도시된 바와 같이, 가스출구(T')가 디퓨저 통로(D1)의 선단(Pa)을 향하게 형성된 경우일 수 있다.
반면에, 본 실시예의 가스출구(T)는 도 5 내지 도 7에 도시된 바와 같이, 제1영역(B1)과, 제2영역(B2) 중 적어도 하나를 향할 수 있고, 제3영역(B3)을 향하지 않을 수 있다.
본 실시예의 가스출구(T) 일예는 도 5에 도시된 바와 같이, 제1영역(B1)에만 형성되고 제2영역(B2) 및 제3영역(B3)에 형성되지 않는 경우이다. 이 경우, 가스출구(T)는 도 5에 도시된 바와 같이, 에어포일 베인(AFV) 중 디퓨저 통로(D1)의 선단(Pa)을 향하는 내측면(IS)과 디퓨저 통로(D1)의 선단(Pa) 사이를 향할 수 있다.
본 실시예의 가스출구(T) 제2예는 도 6에 도시된 바와 같이, 제1영역(B1)과 제2영역(B2)에 걸쳐 형성되고, 제3영역(B3)에 형성되지 않는 경우이며, 이 경우, 가스출구(T)는 제1영역(B1)과 제2영역(B2)의 경계를 향할 수 있다. 즉, 가스출구(T)는 복수개 에어포일 베인(AFV)의 트레일링 에지(TE)를 잇는 가상원(O)을 향할 수 있다.
본 실시예의 가스출구(T) 제3예는 도 7에 도시된 바와 같이, 제2영역(B2)에만 형성되고 제1영역(B1) 및 제3영역(B3)에 형성되지 않는 경우이다.
가스출구(T)는 도 6 및 도 7에 도시된 바와 같이, 에어포일 베인(AFV)의 리딩 에지(LE)와 트레일링 에지(TE) 중 트레일링 에지(TE)에 더 가까울 수 있다.
가스출구(T)는 도 6 및 도 7에 도시된 바와 같이, 에어포일 베인(AFV)(AFV) 중 디퓨저 통로(D1)의 후단(Pb)을 향하는 외측면(OS)과 상기 디퓨저 통로(D1)의 후단(Pb) 사이를 향할 수 있다.
도 8 및 도 9에는 본 실시예와 비교예의 가스출구(T',T)의 형성 위치만 상이하고, 기타의 구성이 모두 동일한 조건에서 측정된 압력손실계수계수와 효율 각각을 비교한 결과이다.
비교예(도 4 참조)의 경우 압력손실계수가 60%이고, 효율이 70% 미만이다.
반면에, 제1예(도 5 참조)는 압력손실계수가 80% 초과로 높지만 효율이 70% 초과로 높다.
그리고, 제2예(도 6 참조)는 압력손실계수가 60% 미만으로 낮고 효율이 71% 초과로 제1예와 제3예 중 가장 높다.
그리고, 제3예(도 7 참조)는 압력손실계수가 80% 초과로 높지만 효율이 71% 초과로 제1예의 경우 보다 높다.
본 실시예와 같이, 가스출구(T)가 제1영역(B1)과 제2영역(B2) 중 적어도 하나를 향하게 형성될 경우(도 5 내지 도 7)는 도 9를 참조하면 효율이 70% 초과로 비교예의 경우 보다 높은 반면에, 비교예(도 4 참조)의 효율은 70% 미만으로, 본 실시예들의 효율 보다 낮으며, 가스출구(T)는 제1영역(B1)과 제2영역(B2) 중 적어도 하나에 형성하게 형성되되, 제3영역(B3)은 향하지 않게 형성되는 것이 바람직하다.
한편, 본 실시예의 제1예 내지 제3예 중, 제2예와 제3예의 경우 제1예의 경우 보다 효율이 높기 때문에, 본 실시예의 바람직한 예는 효율이 비교적 높은 제2예(도 6 참조) 및 제3예(도 7 참조)일 수 있고, 본 실시예의 가장 바람직한 예는 압력손실계수가 비교예의 경우 보다 낮고 효율이 가장 높은 제2예(도 6 참조)일 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 회전축을 갖는 모터와;
    제1인렛 및 제1볼류트가 형성되고, 상기 제1볼류트 및 제1인렛 각각과 구획된 가스챔버가 형성된 제1볼류트 케이싱과;
    상기 회전축의 일측에 연결되고 상기 제1볼류트 케이싱에 회전 가능하게 수용된 제1임펠러와;
    상기 제1임펠러의 출구 이후에 디퓨저 통로를 형성하고 상기 디퓨저 통로에 복수개 에어포일 베인이 이격되게 제공된 디퓨저와;
    아웃렛 및 제2볼류트가 형성되고 상기 제1볼류트에서 유동된 유체가 유입되는 제2인렛을 갖는 제2볼류트 케이싱과;
    상기 회전축의 타측에 연결되고 상기 제2볼류트 케이싱에 회전 가능하게 수용된 제2임펠러를 포함하고,
    상기 제1볼류트 케이싱과, 디퓨저 중 적어도 하나에는 상기 가스챔버와 디퓨저 통로를 연통시키는 가스조절통로가 형성되고,
    상기 가스조절통로의 가스출구는 상기 복수개 에어포일 베인이 위치하는 링 형상의 제1영역과, 상기 제1영역과 상기 디퓨저 통로의 후단 사이의 제2영역 중 적어도 하나를 향하는 원심 압축기.
  2. 제 1 항에 있어서,
    상기 가스출구는 상기 에어포일 베인의 리딩 에지와 트레일링 에지 중 트레일링 에지에 더 가까운 원심 압축기.
  3. 제 1 항에 있어서,
    상기 가스출구는 상기 에어포일 베인 중 상기 디퓨저 통로의 선단을 향하는 내측면과 상기 디퓨저 통로의 선단 사이를 향하는 원심 압축기.
  4. 제 1 항에 있어서,
    상기 가스출구는 상기 제1영역과 제2영역의 경계를 향하는 원심 압축기.
  5. 제 1 항에 있어서,
    상기 가스출구는 상기 복수개 에어포일 베인의 트레일링 에지를 잇는 가상원을 향하는 원심 압축기.
  6. 제 1 항과 제 4 항 및 제 5 항 중 어느 한 항에 있어서,
    상기 가스출구는 상기 에어포일 베인 중 상기 디퓨저 통로의 후단을 향하는 외측면과 상기 디퓨저 통로의 후단 사이를 향하는 원심 압축기.
  7. 제 1 항에 있어서,
    상기 제1영역의 반경 방향 폭은 상기 제2영역의 반경 방향 폭 보다 짧은 원심 압축기.
  8. 제 1 항에 있어서,
    상기 가스조절통로는
    상기 제1임펠러의 축중심에 대해 비스듬하게 경사지고 상기 가스출구를 포함하는 구배로를 포함하는 원심 압축기.
  9. 제 8 항에 있어서,
    상기 구배로는 상기 디퓨저 통로와 예각의 경사각을 갖는 원심 압축기.
  10. 제 9 항에 있어서,
    상기 경사각은 30°내지 80°인 원심 압축기.
PCT/KR2019/007034 2018-06-12 2019-06-11 원심 압축기 WO2019240479A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980039808.1A CN112313416B (zh) 2018-06-12 2019-06-11 离心压缩机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180067587A KR102545555B1 (ko) 2018-06-12 2018-06-12 원심 압축기
KR10-2018-0067587 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019240479A1 true WO2019240479A1 (ko) 2019-12-19

Family

ID=68843488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/007034 WO2019240479A1 (ko) 2018-06-12 2019-06-11 원심 압축기

Country Status (3)

Country Link
KR (1) KR102545555B1 (ko)
CN (1) CN112313416B (ko)
WO (1) WO2019240479A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119396A (ja) * 1995-08-21 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd ディフューザつき遠心圧縮機
KR100356506B1 (ko) * 2000-09-27 2002-10-18 엘지전자 주식회사 터보 압축기
US20080232952A1 (en) * 2004-06-07 2008-09-25 Ronglei Gu Compressor with Controllable Recirculation and Method Therefor
KR20150046181A (ko) * 2012-12-07 2015-04-29 미츠비시 쥬고교 가부시키가이샤 원심 압축기
CN107664143A (zh) * 2017-10-16 2018-02-06 珠海格力电器股份有限公司 压缩机及具有其的空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100339570B1 (ko) 1999-11-15 2002-06-03 구자홍 베인 디퓨져 구조
GB2412695A (en) * 2004-04-02 2005-10-05 Trivista Engineering Ltd Centrifugal compressor with multiple diffuser passages
CN105051372B (zh) 2013-01-31 2017-05-31 丹佛斯公司 具有扩展的操作范围的离心压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09119396A (ja) * 1995-08-21 1997-05-06 Ishikawajima Harima Heavy Ind Co Ltd ディフューザつき遠心圧縮機
KR100356506B1 (ko) * 2000-09-27 2002-10-18 엘지전자 주식회사 터보 압축기
US20080232952A1 (en) * 2004-06-07 2008-09-25 Ronglei Gu Compressor with Controllable Recirculation and Method Therefor
KR20150046181A (ko) * 2012-12-07 2015-04-29 미츠비시 쥬고교 가부시키가이샤 원심 압축기
CN107664143A (zh) * 2017-10-16 2018-02-06 珠海格力电器股份有限公司 压缩机及具有其的空调器

Also Published As

Publication number Publication date
KR102545555B1 (ko) 2023-06-20
CN112313416A (zh) 2021-02-02
CN112313416B (zh) 2023-06-09
KR20190140728A (ko) 2019-12-20

Similar Documents

Publication Publication Date Title
WO2018097511A1 (ko) 인터쿨러를 구비한 터보 압축기
WO2018088778A1 (ko) 분리된 냉각 기로를 구비한 터보 압축기
WO2017039330A1 (ko) 흡입 유닛
WO2016195238A1 (ko) 직결 구동형 터보 블로워 냉각 구조
US5857337A (en) Turbocharger
KR20010020924A (ko) 터빈 내의 회전 부품 냉각용 방법 및 장치
WO1996018818A1 (en) Modular shaftless compressor
WO2017152565A1 (zh) 一种离心压缩机扩稳装置
WO2018117682A1 (ko) 스크롤 압축기
WO2018194294A1 (ko) 로터리 압축기
WO2014171631A1 (en) Air blower for fuel cell vehicle
EP3318762B1 (en) Two-stage compressor with asymmetric second-stage inlet duct
WO2019240480A1 (ko) 원심 압축기
WO2019240479A1 (ko) 원심 압축기
WO2017010578A1 (ko) 송풍기 및 이를 갖는 공기조화기
WO2022009600A1 (ja) タービンおよび過給機
WO2016167456A1 (ko) 볼류트 케이싱 및 이를 구비한 회전 기계
WO2015020296A1 (ko) 송풍 장치
CN115702285A (zh) 回收循环飞行器涡轮机
WO2013176404A1 (ko) 터보 블로워장치
WO2019182387A1 (ko) 공기 조화기의 실외기
WO2013176405A1 (ko) 터보 블로워장치
WO2023015737A1 (zh) 一种磁悬浮离心机鼓风机
WO2020138807A1 (ko) 2단 원심식 압축기
CN209800301U (zh) 一种高速电机驱动的离心式压缩机和鼓风机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19818677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19818677

Country of ref document: EP

Kind code of ref document: A1