WO2019239775A1 - 車両用物体検知装置 - Google Patents

車両用物体検知装置 Download PDF

Info

Publication number
WO2019239775A1
WO2019239775A1 PCT/JP2019/019220 JP2019019220W WO2019239775A1 WO 2019239775 A1 WO2019239775 A1 WO 2019239775A1 JP 2019019220 W JP2019019220 W JP 2019019220W WO 2019239775 A1 WO2019239775 A1 WO 2019239775A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
distance
detection
vehicle
error amount
Prior art date
Application number
PCT/JP2019/019220
Other languages
English (en)
French (fr)
Inventor
一野瀬 昌則
茂規 早瀬
栗山 哲
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US17/054,240 priority Critical patent/US11914028B2/en
Priority to DE112019002050.1T priority patent/DE112019002050T5/de
Publication of WO2019239775A1 publication Critical patent/WO2019239775A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/865Combination of radar systems with lidar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • G01S13/867Combination of radar systems with cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/77Determining position or orientation of objects or cameras using statistical methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/86Combinations of sonar systems with lidar systems; Combinations of sonar systems with systems not using wave reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle
    • G06T2207/30261Obstacle

Definitions

  • the present disclosure relates to a vehicle object detection device.
  • Patent Document 1 an invention relating to a distance measuring method for measuring a distance by recognizing a specific object in a three-dimensional space is known (see Patent Document 1 below).
  • the distance measuring method described in Patent Document 1 includes one or a plurality of imaging means, image processing means, and laser distance measuring means, and measures a specific point in a three-dimensional space at high speed and with high accuracy. (Refer to the same document, claims, (1)).
  • the imaging means captures a target range that falls within the field of view and outputs image data.
  • the image processing means performs image processing on the image data obtained from the imaging means to extract feature points to be watched.
  • the laser distance measuring unit has a mechanism capable of moving and controlling the laser beam vertically and horizontally, and measures the distance to the feature point by aligning the target with the feature point obtained from the image processing unit.
  • a specific point (specific region) to be noticed is recognized and extracted by image processing of an image captured by a TV camera, and laser ranging is performed on this specific point, thereby Recognition and measurement of the distance to an object can be performed at high speed and with high accuracy.
  • recognition and measurement of the distance to an object can be performed at high speed and with high accuracy.
  • it can be applied to a vision system that autonomously travels by immediately determining the distance between an obstacle on a road (See ibid, page 5, effect of invention, etc.).
  • a feature point is extracted by the imaging means, and the distance to the feature point is measured by the laser distance measuring means.
  • the image pickup means does not perform distance measurement
  • the laser distance measurement means performs distance measurement, it becomes difficult to perform distance measurement on an object, environment, or range that is not suitable for laser distance measurement, and there is redundancy in distance measurement. There is a problem that it is low.
  • This disclosure provides a vehicle object detection device that can perform distance measurement more reliably than before and has high redundancy for distance measurement.
  • One aspect of the present disclosure is a vehicle object detection device that detects the distance of an object around a vehicle, the first detection unit detecting the distance of an object existing in a first detection range, and the first detection range.
  • the second detection unit that detects the distance of the object existing in the second detection range including at least a part of the error, and the distance of the same object detected by the first detection unit and the second detection unit
  • An error amount calculation unit that calculates an amount; a correction amount calculation unit that calculates a correction amount for correcting the distance of the object detected by the second detection unit based on the error amount; and the second detection unit.
  • a vehicle object detection device comprising: a distance correction unit that corrects a detected distance of the object based on the correction amount.
  • FIG. 1 is a block diagram of a vehicle object detection device according to a first embodiment.
  • the top view which shows an example of the detection range of the 1st detection part and 2nd detection part which are shown in FIG.
  • the flowchart which shows an example of the process by the vehicle object detection apparatus shown in FIG.
  • the top view of the 2nd detection range which concerns on the modification of the vehicle object detection apparatus shown in FIG.
  • FIG. 3 is a block diagram of a vehicle object detection device according to a second embodiment.
  • the flowchart which shows an example of the process by the vehicle object detection apparatus shown in FIG.
  • FIG. 1 is a block diagram of a vehicle object detection device 100 according to the first embodiment.
  • FIG. 2 is a plan view illustrating an example of a detection range of the first detection unit 10 and the second detection unit 20 of the vehicle object detection device 100 illustrated in FIG. 1.
  • the vehicle object detection device 100 according to the present embodiment mainly has the following configuration.
  • the vehicle object detection device 100 is a device that is mounted on a vehicle V such as an automobile and detects the distance between an object around the vehicle V and the vehicle V, and includes a first detection unit 10 and a second detection unit 20.
  • the first detection unit 10 is configured to detect a distance D1 of an object existing in the first detection range R1.
  • the second detection unit 20 is configured to detect the distances D1 and D2 of the objects existing in the second detection range R2 including at least a part of the first detection range R1.
  • the error amount calculation unit 30 is configured to calculate the error amount ⁇ D by comparing the distances D1, D1 ′ of the same object detected by the first detection unit 10 and the second detection unit 20.
  • Correction amount calculation unit 40 is configured a correction amount CA t for correcting the distances D1 'of the detected object by the second detecting unit 20 to calculate on the basis of the error amount [Delta] D.
  • Distance correcting unit 50 the distance of an object detected by the second detection unit 20 D1 ', D2' is configured to correct, based on the correction amount CA t a.
  • the vehicle object detection device 100 includes, for example, a correction amount update unit 60 in addition to the first detection unit 10, the second detection unit 20, the error amount calculation unit 30, the correction amount calculation unit 40, and the distance correction unit 50 described above. It has.
  • the error amount calculation unit 30, the correction amount calculation unit 40, the distance correction unit 50, and the correction amount update unit 60 are, for example, an electronic control unit (ECU :) related to an advanced driving assistance system (ADAS) of the vehicle V. It consists of a part of Electronic (Control Unit).
  • ECU electronice control unit
  • ADAS advanced driving assistance system
  • the first detection unit 10 is, for example, a millimeter wave sensor, transmits an electromagnetic wave signal, receives a signal reflected by an object on the path, and can determine the distance, speed, and angle of the object.
  • the millimeter wave is a radio wave having a frequency of 30 GHz to 300 GHz and a wavelength of 1 mm to 1 cm, for example.
  • the first detection unit 10 is provided so as to detect the distance of an object in front of the vehicle V.
  • the vehicle object detection device 100 may include a plurality of first detection units 10 that detect the distance between an object behind the vehicle V and a side object of the vehicle V.
  • the 1st detection part 10 is not limited to a millimeter wave sensor, For example, a monocular camera and an ultrasonic sensor may be sufficient.
  • the objects detected by the first detection unit 10 include other vehicles OV around the vehicle V, pedestrians, obstacles, buildings, guardrails, signs, utility poles, signals, and the like.
  • the second detection unit 20 includes, for example, one or a plurality of imaging units, and detects the distance of the object based on the image of the object photographed by the imaging unit. That is, the imaging unit is, for example, a monocular camera or a stereo camera for distance measurement. For example, the second detection unit 20 detects the distance of the object based on the image of the object photographed by a monocular camera equipped with a filter for acquiring a distance image. Moreover, the 2nd detection part 20 detects the distance of the object by a trigonometry based on the some image of the object image
  • the second detection unit 20 may be configured to detect not only the distances D1 ′ and D2 ′ of the object but also features such as the position, shape, size, and color of the object.
  • the vehicle object detection device 100 may include a plurality of second detection units 20 that detect the distance between an object behind the vehicle V and a side object of the vehicle V.
  • the 2nd detection part 20 is not limited to the structure provided with an imaging part,
  • LIDAR Laser
  • LIDAR is an apparatus that measures the scattered light in response to laser irradiation that emits light in pulses, and analyzes the distance to the object and the properties of the object.
  • the detection accuracy of the distance D1 by the first detection unit 10 is higher than the detection accuracy of the distance D1 'by the second detection unit 20, for example. More specifically, for example, it is assumed that the first detection unit 10 is a millimeter wave sensor and the second detection unit 20 is configured by a stereo camera. In this case, the detection accuracy of the distance D1 of the first detection unit 10 of the TOF (Time Of Flight) method using millimeter waves is higher than the detection accuracy of the distance D1 ′ of the second detection unit 20 based on the parallax of the stereo camera. Tend to be.
  • the angle range in which the viewing angle ⁇ 1 of the first detection unit 10, that is, the distance of the object can be detected is, for example, the viewing angle ⁇ 2 of the second detection unit 20, that is, the object. It is narrower than the angular range in which the distance can be detected.
  • the first detection unit 10 can detect the distance of an object farther than the second detection unit 20, for example.
  • a part of the first detection range R1 of the first detection unit 10 is included in the second detection range R2 of the second detection unit 20,
  • the entire first detection range R1 of the detection unit 10 may be included in the second detection range R2 of the second detection unit 20.
  • the error amount calculation unit 30 compares the distances D1 and D1 ′ of the same object (for example, another vehicle OV) detected by the first detection unit 10 and the second detection unit 20 and compares the error amount ⁇ D. Is calculated.
  • the error amount ⁇ D calculated by the error amount calculation unit 30 is not particularly limited.
  • the distance D1 of the vehicle OV ahead detected by the first detection unit 10 and the second detection unit 20 detect the error amount ⁇ D. This is the difference from the distance D1 ′ of the same vehicle OV.
  • the error amount ⁇ D may be a ratio D1 / D1 ′ between the distance D1 and the distance D1 ′. That is, the error amount calculation unit 30 can calculate the ratio D1 / D1 ′ of the distances D1 and D1 ′ of the same object detected by the first detection unit 10 and the second detection unit 20 as the error amount ⁇ D. .
  • the vehicle object detection device 100 of the present embodiment includes the correction amount update unit 60 as described above.
  • Correction amount updating unit 60 stores and updates a correction amount CA t calculated by the correction amount calculation unit 40.
  • Correction amount updating unit 60 has, for example, a storage device such as a hard disk or a memory, stored in the storage device the correction amount CA t can be configured to update little by little to a predetermined cycle.
  • the correction amount update unit 60 for example, the correction amount CA t ⁇ n updated and stored in the past processing at time t ⁇ n, and the correction amount CA t ⁇ n stored in the latest processing at time t.
  • the correction amount updating unit 60 for example, based on the following equation (1), and stores the updated correction amount CA t at time t.
  • N is an update gain, which is a number of 1 or more.
  • CA t CA t ⁇ n + ⁇ CA / N (1)
  • the distance correcting unit 50 as described above, the distance of an object detected by the second detection unit 20 D1 ', D2' is corrected based on the correction amount CA t a.
  • the distance correction unit 50 corrects the object distance D1 ′ based on the correction amount CA t stored in the correction amount update unit 60. To do.
  • a distance correction unit 50 corrects the distance D1 'of the object based on the correction amount CA t calculated by the correction amount calculation unit 40 Also good.
  • FIG. 3 is a flowchart showing an example of processing for measuring the distance of an object by the vehicle object detection device 100 of the present embodiment.
  • a series of processing from the distance detection processing S1 to the distance output processing S6 shown in FIG. 3 is repeatedly executed at a predetermined cycle, for example.
  • a scene is assumed in which two other vehicles OV exist in front of a vehicle V on which the vehicle object detection device 100 is mounted.
  • the first vehicle OV in front of the vehicle V is located, for example, in an overlapping region R3 where the first detection range R1 of the first detection unit 10 and the second detection range R2 of the second detection unit 20 overlap.
  • the second vehicle OV is located only in the second detection range R2 of the second detection unit 20.
  • the vehicle object detection device 100 first executes a distance detection process S1.
  • the first detection unit 10 and the second detection unit 20 detect the distances D1 and D1 ′ of the first vehicle OV that are the same object existing in the overlapping region R3, and the second detection unit 20 Only the distance D2 ′ of the second vehicle OV existing in the second detection range R2 is detected.
  • the vehicle object detection device 100 executes an error amount calculation process S2.
  • the error amount calculation unit 30 compares the distances D1 and D1 'of the same object detected by the first detection unit 10 and the second detection unit 20, and calculates an error amount ⁇ D.
  • a ratio D1 / D1 ′ between the distance D1 and the distance D1 ′ is calculated by the error amount calculation unit 30 as the error amount ⁇ D.
  • the detection accuracy of the distance D1 by the first detection unit 10 is higher than the detection accuracy of the distance D1 ′ by the second detection unit 20.
  • the 1st detection part 10 is a millimeter wave sensor, for example, and the 2nd detection part 20 is comprised by the stereo camera, for example.
  • the millimeter wave sensor measures the distance D1 based on the millimeter wave TOF
  • the stereo camera measures the distance D1 'based on the parallax of the images taken by the left and right cameras.
  • distance measurement based on millimeter wave TOF is more accurate than distance measurement using an imaging unit.
  • the first detection unit 10 that is, for example, a millimeter wave sensor
  • the detection accuracy of the object distances D1 'and D2' in the second detection unit 20 depends on the accuracy of the mounting position of the imaging unit, for example.
  • the attachment position of the imaging unit changes with time due to the influence of vibration, inertial force, thermal stress, etc. acting on the imaging unit, and the detection accuracy of the object distances D1 ′ and D2 ′ in the second detection unit 20 decreases. There is a case.
  • the vehicle object detection device 100 next executes a correction amount calculation process S3.
  • the correction amount calculation process S3, the correction amount calculation unit 40, the correction amount CA t for correcting the distances D1 'of the detected object by the second detecting unit 20 is calculated on the basis of the error amount [Delta] D.
  • the correction amount calculation unit 40 uses, for example, the ratio D1 / D1 ′ of the distance D1 and the distance D1 ′ as the error amount ⁇ D calculated by the error amount calculation unit 30 in the latest processing, as the correction amount CA in the latest processing. Calculate as t .
  • the vehicle object detection device 100 includes the correction amount update unit 60
  • the vehicle amount detection device 100 executes a correction amount update process S4.
  • the correction amount updating processing S4 the correction amount updating unit 60 stores the correction amount CA t in modern processing calculated by the correction amount calculation unit 40.
  • the correction value update section 60 a correction amount CA t-n, which is updated and stored in the processing of past time t-n, to update the correction amount CA t in the processing of the most recent time t.
  • the correction value update section 60 performs for example the following process.
  • the difference ⁇ CA between the correction amount CA t ⁇ 1 and the latest correction amount CA t is divided by the update gain N with respect to the previous correction amount CA t ⁇ 1 stored in the correction amount update unit 60. by adding the value may be asymptotic gradually correct value the latest correction amount CA t.
  • the latest correction amount CA t calculated by the correction amount calculation unit 40 even suddenly it becomes extremely large by accidental disturbances, the most recent to be updated and stored in the correction value update section 60 it is possible to significantly reduce the influence of disturbance to the correction amount CA t.
  • the vehicle object detection device 100 executes a distance correction process S5.
  • the distance correction processing S5, the distance correction unit 50, the second detecting unit 20 a distance of the detected object by D1 ', D2', and based on the updated and stored correction amount CA t in the correction value update section 60 corrects To do. More specifically, the distance correction unit 50 'adds the correction amount CA t, the distance D1' distance D1 of the first vehicle OV detected by the second detection unit 20 is corrected.
  • the distance correction unit 50 adds the correction amount CA t, the distance D2' distance D2 of the second vehicle OV detected by the second detection unit 20 is corrected.
  • the distance correction unit 50 calculates the object distances D1 ′ and D2 ′ detected by the second detection unit 20 as the correction amount calculation unit. it may be corrected on the basis of the latest correction amount CA t calculated by 40.
  • the vehicle object detection device 100 executes the distance output process S6.
  • the distance correction unit 50 outputs the object distances D ⁇ b> 1 ′ and D ⁇ b> 2 ′ detected by the second detection unit 20 and corrected by the distance correction unit 50. More specifically, the distance D1 '+ CA t of the first vehicle OV corrected by the distance correction unit 50 is detected by the second detection unit 20 is output from the distance correction unit 50. The distance D2 '+ CA t of the second vehicle OV corrected by being detected distance correction unit 50 by the second detection unit 20 is output from the distance correction unit 50.
  • the vehicle object detection device 100 of the present embodiment is a device that detects the distance between an object around the vehicle V and the vehicle V, and includes the first detection unit 10, the second detection unit 20, and the like. , An error amount calculation unit 30, a correction amount calculation unit 40, and a distance correction unit 50.
  • the first detection unit 10 detects the distance D1 of the object existing in the first detection range R1.
  • the second detection unit 20 detects the distances D1 ′ and D2 ′ of objects existing in the second detection range R2 including at least a part of the first detection range R1.
  • the error amount calculation unit 30 calculates the error amount ⁇ D by comparing the distances D1 and D1 ′ of the same object detected by the first detection unit 10 and the second detection unit 20.
  • Correction amount calculation unit 40 calculates based on the correction amount CA t for correcting the distances D1 'of the detected object by the second detecting unit 20 to the error amount [Delta] D.
  • Distance correcting unit 50 the distance of an object detected by the second detection unit 20 D1 ', D2' is corrected based on the correction amount CA t a.
  • the second detection unit 20 can detect not only the distance D1 ′ of the object existing in the overlapping region R3 but also the distance D2 ′ of the object existing only in the second detection range R2. Then, the distances D1 ′ and D2 ′ of the objects detected by the second detection unit 20 can be corrected to the more accurate distances D1 ′ + CA t and D2 ′ + CA t that are close to the actual object distance. Thereby, even when an error with time occurs in the distances D1 ′ and D2 ′ of the object detected by the second detection unit 20, the second detection unit 20 can accurately measure the object. Therefore, according to the present embodiment, it is possible to provide the vehicle object detection device 100 that can perform distance measurement more reliably than in the past.
  • the first distance between the first detection range R1 of the first detection unit 10 and the second detection range R2 of the second detection unit 20 is determined based on the accurate distance D1, D1 ′ + CA t of the object existing in the overlapping region R3. It can be detected by the unit 10 and the second detection unit 20. Therefore, the weak point of the 1st detection part 10 and the 2nd detection part 20 can mutually be complemented, and the vehicle object detection apparatus 100 with higher redundancy with respect to ranging than before can be provided.
  • the detection accuracy of the distance D1 by the first detection unit 10 is higher than the detection accuracy of the distance D1 ′ by the second detection unit 20. Therefore, it is possible to calculate the error amount ⁇ D and correction amount CA t of based on the distance D1 sensed, detected by the second detecting unit 20 a distance D1 'by the first detection unit 10.
  • the vehicle object detecting device 100 of this embodiment includes a correction amount updating unit 60 that stores and updates the correction amount CA t.
  • the distance correction unit 50 the object distance based on the stored in the correction amount updating unit 60 corrects the amount CA t D1 ', D2' corrected.
  • the correction amount updating unit 60 can update little by little the correction amount CA t for each predetermined period. Therefore, while using the distance D1 ′ detected by the second detection unit 20 in the latest processing, the distance D1 ′ can be gradually adjusted to the distance D1 detected by the first detection unit 10 serving as a reference. It becomes possible. As a result, it is possible to effectively use the detection results of the first detection unit 10 and the second detection unit 20 while eliminating the stationary error that the second detection unit 20 has.
  • the error amount calculation unit 30 is a ratio D1 / D1 of the distances D1, D1 ′ of the same object detected by the first detection unit 10 and the second detection unit 20. 'Is calculated as an error amount ⁇ D.
  • the error amount ⁇ D of the distance D1 ′ detected by the second detection unit 20 with respect to the distance D1 detected by the first detection unit 10 can be easily calculated.
  • the second detection unit 20 includes one or a plurality of imaging units, and detects the distance of the object based on the image of the object photographed by the imaging unit.
  • the second detection unit 20 can detect not only the distance of the object but also features such as the color and shape of the object.
  • produced in the imaging part of the 2nd detection part 20 can be correct
  • the vehicle object detection device 100 that can perform distance measurement more reliably than before and has high redundancy for distance measurement.
  • the vehicle object detection device according to the present disclosure is not limited to the configuration of the vehicle object detection device 100 according to the present embodiment.
  • modified examples of the vehicle object detection device 100 of the present embodiment will be described.
  • FIG. 4 is a plan view of a second detection range R2 according to a modification of the vehicle object detection device 100 shown in FIG.
  • the correction amount update unit 60 includes, for example, a plurality of values corresponding to each position from the position R211 to the position R267 of the second detection range R2 by the second detection unit 20. It is configured to store and update the correction amount CA t.
  • the distance correction unit 50 is configured to correct based on distance of an object detected by the second detection unit 20 to the correction amount CA t corresponding to each position.
  • the correction value update section 60 includes a table of a plurality of correction amount CA t set for each position of the second detection range R2, the distance correction unit 50, the object detected by the second detection unit 20 distance is configured to correct, based on the table of the correction amount CA t a.
  • an error of the second detection unit 20 that varies depending on each position of the second detection range R2, such as an error caused by distortion of a lens of the imaging unit that constitutes the second detection unit 20, is detected in the second detection range R2. it can be corrected by the correction amount CA t corresponding to each position.
  • FIG. 5 is a block diagram of the vehicle object detection device 100A according to the second embodiment.
  • the vehicle object detection device 100A according to the present embodiment is different from the vehicle object detection device 100 according to the first embodiment described above mainly in that the determination unit 70 is provided. Since the other points of the vehicle object detection device 100A of the present embodiment are the same as those of the vehicle object detection device 100 according to the above-described first embodiment, the same parts are denoted by the same reference numerals and description thereof is omitted. To do.
  • the determination unit 70 is, for example, the vehicle V, similarly to the error amount calculation unit 30, the correction amount calculation unit 40, the distance correction unit 50, and the correction amount update unit 60 described above. It is comprised by a part of ECU concerning ADAS.
  • the determination unit 70 is configured to determine whether the error amount ⁇ D can be calculated by the error amount calculation unit 30. Further, in the vehicle object detection device 100A of the present embodiment, the error amount calculation unit 30 is configured to calculate the error amount ⁇ D based on the determination result of the determination unit 70.
  • the determination unit 70 calculates the error amount when, for example, one or more of the following conditions (A) to (C) are satisfied. It may be configured to determine that the error amount ⁇ D by the unit 30 can be calculated.
  • the condition (A) is that the same object detected by the first detection unit 10 and the second detection unit 20 is present in a predetermined error amount calculation range R4 (see FIG. 2).
  • the vehicle object detection device 100A of the present embodiment can be configured such that the determination unit 70 determines that the error amount ⁇ D can be calculated.
  • the error amount calculation range R4 for example, as indicated by dot-shaped hatching in FIG. 2, from the overlapping region R3 where the first detection range R1 and the second detection range R2 overlap, The area
  • the condition (B) is that the environment around the vehicle V matches a predetermined error calculation condition.
  • the vehicle object detection device 100A of the present embodiment can be configured such that the determination unit 70 determines that the error amount ⁇ D can be calculated.
  • error calculation conditions for example, (b1) No bad weather such as rainfall, snowfall, dense fog, etc. (b2) Illuminance conditions such as nighttime, tunnel, building, backlight, etc. are not bad, (b3) tunnel
  • the conditions such as that the road conditions around the vehicle V including the above are not conditions that affect the distance measurement principle of the first detection unit 10 and the second detection unit 20 can be exemplified.
  • the determination as to whether or not the error calculation condition is satisfied includes, for example, an image of the imaging unit that constitutes the second detection unit 20, an operation status of the wiper, determination of rainfall and snowfall by the raindrop sensor, and a tunnel based on map information of the car navigation system Or based on the judgment of the building.
  • the condition (C) is that the vehicle V is started and stopped.
  • the vehicle object detection device 100A of the present embodiment can be configured such that the determination unit 70 determines that the error amount ⁇ D can be calculated. That is, only when the vehicle V is in a stop state immediately after being started, the determination unit 70 determines that the error amount ⁇ D can be calculated, and the error amount ⁇ D is calculated by the error amount calculation unit 30 and corrected by the correction amount calculation unit 40. calculation of the amount CA t is executed.
  • the determination unit 70 can be configured to determine that the error amount ⁇ D by the error amount calculation unit 30 can be calculated, for example, when all of the following conditions (D) to (G) are satisfied.
  • the condition (D) is a parameter used by the error amount calculation unit 30 in calculating the object distances D1 ′ and D2 ′ based on the image captured by the imaging unit constituting the second detection unit 20 in the vehicle object detection device 100A.
  • the amount of change from the initial value is calculated as the error amount ⁇ D.
  • the parameters of the imaging unit constituting the second detection unit 20 the base line length of the stereo camera (the distance between the left and right cameras), the direction of the optical axis of the left and right cameras, the center position of the lenses of the left and right cameras, The position and posture of the camera including the above can be exemplified.
  • the condition (E) includes a determination unit 70 that determines whether the vehicle object detection device 100A can calculate the error amount ⁇ D that is a change amount from the initial value of the parameter of the imaging unit calculated by the error amount calculation unit 30. That is.
  • the condition (F) is that the second detection unit 20 has the self-correction unit 21 that corrects the parameters of the imaging unit so as to reduce the error amount ⁇ D that is the amount of change from the initial value of the parameters of the imaging unit. is there.
  • the condition (G) is that the parameters are not corrected by the self-correcting unit 21 over a predetermined period.
  • the determination unit 70 determines that the error amount ⁇ D can be calculated, and the error amount calculation unit 30 determines the error based on the determination result of the determination unit 70. It can be configured to calculate the quantity ⁇ D.
  • FIG. 6 is a flowchart showing an example of processing for measuring the distance of an object by the vehicle object detection device 100A of the present embodiment shown in FIG.
  • the processes from the distance detection process S1 to the distance output process S6 shown in FIG. 6 are repeatedly executed at a predetermined cycle, for example.
  • the vehicle object detection device 100A first executes the distance detection process S1 in the same manner as the vehicle object detection device 100 according to the first embodiment described above.
  • the vehicle object detection device 100A executes a determination process S7.
  • the determination unit 70 determines whether the error amount calculation unit 30 can calculate the error amount ⁇ D. More specifically, in the determination process S7, the determination unit 70 determines the error amount ⁇ D by the error amount calculation unit 30 when, for example, any one or more of the conditions (A) to (C) described above is satisfied. It is determined that calculation is possible (YES). For example, the determination unit 70 determines that the error amount ⁇ D by the error amount calculation unit 30 can be calculated (YES) when all of the above-described conditions (D) to (G) are satisfied.
  • the vehicle object detection device 100A of the present embodiment performs the error amount calculation processing S2, the correction amount calculation processing S3, and the correction amount update processing S4 in the same manner as the vehicle object detection device 100 according to Embodiment 1 described above. Then, the error amount ⁇ D and the correction amount CAt are calculated, and the correction amount CAt is updated and stored.
  • the determination process S7 if all of the above conditions (A) to (C) are not satisfied, or if any one or more of the above conditions (D) to (G) is not satisfied, The unit 70 determines that the calculation of the error amount ⁇ D by the error amount calculation unit 30 is no (NO).
  • the vehicle object detection device 100A of the present embodiment does not execute the error amount calculation process S2, the correction amount calculation process S3, and the correction amount update process S4. Therefore, it stored in the correction amount updating unit 60 correction amount CA t is maintained without being updated.
  • Object detection apparatus 100A for a vehicle then, based on the stored correction amount CA t the correction amount updating unit 60, similarly to the vehicle object detection apparatus 100 according to the first embodiment described above, the distance correction process S5 and The distance output process S6 is executed.
  • the vehicle object detection device 100A of the present embodiment includes the determination unit 70 that determines whether the error amount ⁇ D can be calculated by the error amount calculation unit 30, and the error amount calculation unit 30 includes the determination unit 70.
  • An error amount ⁇ D is calculated based on the determination result. This configuration only when appropriate conditions are satisfied, the correction amount CA t is stored is updated. Therefore, it is possible to prevent the correction amount CA t under inappropriate conditions are updated, it is possible to perform distance measurement by the second detection unit 20 more reliably and accurately.
  • the determination unit 70 determines in advance the condition (A) described above, that is, the same object detected by the first detection unit 10 and the second detection unit 20 is determined in advance. If the error amount is within the error amount calculation range R4, it is determined that the error amount ⁇ D can be calculated. Accordingly, it is possible to correct the distance D1 'of the same object detected by the second detection unit 20 based on the distance D1 of the object detected by the first detection unit 10.
  • the determination unit 70 for example, when the condition (B) described above is satisfied, that is, when the environment around the vehicle V matches a predetermined error calculation condition, It is determined that the error amount ⁇ D can be calculated.
  • the correction amount CA t is prevented from being updated, the distance measurement by the second detection unit 20 more reliably and accurately It can be carried out.
  • the determination unit 70 can calculate the error amount ⁇ D, for example, when the condition (C) described above is satisfied, that is, when the vehicle V is started and stopped. Is determined. Accordingly, only it is possible to update the correction amount CA t is stopped without being affected by variations in the detection environment of the first detecting section 10 and the second detection unit 20 by the running of the vehicle V, the distance measurement by the second detection unit 20 Can be performed more reliably and accurately.
  • the vehicle object detection device 100A determines that the error amount ⁇ D by the error amount calculation unit 30 can be calculated by the determination unit 70 when the following conditions (D) to (G) are satisfied. To do. (D) The error amount calculation unit 30 calculates, as the error amount ⁇ D, the amount of change from the initial value of the parameter used for calculating the distance of the object based on the image captured by the imaging unit constituting the second detection unit 20. . (E) The vehicle object detection device 100A includes a determination unit 70 that determines whether the error amount ⁇ D can be calculated. (F) The second detection unit 20 includes a self-correction unit 21 that corrects the parameters of the imaging unit so as to reduce the error amount ⁇ D. (G) The parameters of the imaging unit have not been corrected by the self-correcting unit 21 over a predetermined period.
  • the self-correcting unit 21 of the second detection unit 20 performs regular self-correction or internal calibration for correcting the parameters of the imaging unit after a certain time
  • the correction amount CA t becomes excessive Is prevented. Therefore, the distances D1 ′ and D2 ′ detected by the second detection unit 20 are prevented from being excessively corrected, and the object can be accurately measured by the second detection unit 20.
  • accurate distance measurement by the second detection unit 20 can be performed regardless of temporal changes in the imaging unit and the mounting unit constituting the second detection unit 20.
  • the determination unit 70 can perform the determination of (G) by receiving a signal transmitted when the self-correction unit 21 corrects the parameters of the imaging unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Measurement Of Optical Distance (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

本発明は、従来よりも確実に測距を行うことができ、測距に対する冗長性の高い車両用物体検知装置を提供する。本発明は、第1検知部10と、第2検知部20と、誤差量算出部30と、補正量算出部40と、距離補正部50と、を備える車両用物体検知装置100。誤差量算出部30は、第1検知部10および第2検知部20によって検知された同一の物体の距離D1,D1'を比較して誤差量ΔDを算出する。補正量算出部40は、誤差量ΔDに基づいて、補正量CAを算出する。距離補正部50は、第2検知部20によって検知された物体の距離D1',D2'を、補正量CAに基づいて補正する。

Description

車両用物体検知装置
 本開示は、車両用物体検知装置に関する。
 従来から三次元空間上で特定の物体を認識して距離を測定する測距方式に関する発明が知られている(下記特許文献1を参照)。特許文献1に記載された測距方式は、1または複数の撮像手段と、画像処理手段と、レーザ測距手段とを備え、三次元空間上の特定の点を高速かつ高精度で測距することを特徴とする(同文献、特許請求の範囲、(1)を参照)。
 上記撮像手段は、視野に入る対象範囲を撮像して画像データを出力する。上記画像処理手段は、撮像手段から得られた画像データに画像処理を施して注視すべき特徴点を抽出する。上記レーザ測距手段は、上下左右にレーザビームを移動制御できる機構を有し、画像処理手段から得られた特徴点にターゲットを合わせて特徴点までの距離を測距する。
 この従来の発明によれば、TVカメラで捉えた画像の画像処理により注目すべき特定点(特定領域)を認識して抽出し、この特定点に対しレーザ測距を行うことで、対象物の認識と対象物までの距離の測定を高速かつ高精度に行うことができ、たとえば道路上の障害物と障害物までの距離を即座に判断して自律走行する視覚システムに適用することができる(同文献、第5頁、発明の効果等を参照。)。
特開平4-155211号公報
 上記従来の発明に係る測距方式では、撮像手段によって特徴点を抽出し、その特徴点までの距離をレーザ測距手段によって測距する。この方式では、撮像手段では測距を行わず、レーザ測距手段によって測距を行うため、レーザ測距に適しない対象物、環境、または範囲において測距が困難となり、測距に対する冗長性が低いという課題がある。
 本開示は、従来よりも確実に測距を行うことができ、測距に対する冗長性の高い車両用物体検知装置を提供する。
 本開示の一態様は、車両の周囲の物体の距離を検知する車両用物体検知装置であって、第1検知範囲に存在する物体の距離を検知する第1検知部と、前記第1検知範囲の少なくとも一部を含む第2検知範囲に存在する物体の距離を検知する第2検知部と、前記第1検知部および前記第2検知部によって検知された同一の物体の距離を比較して誤差量を算出する誤差量算出部と、前記第2検知部によって検知された物体の距離を補正するための補正量を前記誤差量に基づいて算出する補正量算出部と、前記第2検知部によって検知された物体の距離を前記補正量に基づいて補正する距離補正部と、を備えることを特徴とする車両用物体検知装置である。
 本開示の上記一態様によれば、従来よりも確実に測距を行うことができ、測距に対する冗長性の高い車両用物体検知装置を提供することができる。
実施形態1に係る車両用物体検知装置のブロック図。 図1に示す第1検知部および第2検知部の検知範囲の一例を示す平面図。 図1に示す車両用物体検知装置による処理の一例を示すフロー図。 図1に示す車両用物体検知装置の変形例に係る第2検知範囲の平面図。 実施形態2に係る車両用物体検知装置のブロック図。 図5に示す車両用物体検知装置による処理の一例を示すフロー図。
 以下、図面を参照して本開示の車両用物体検知装置の実施形態を説明する。
 [実施形態1]
  図1は、実施形態1に係る車両用物体検知装置100のブロック図である。図2は、図1に示す車両用物体検知装置100の第1検知部10および第2検知部20の検知範囲の一例を示す平面図である。詳細については後述するが、本実施形態に係る車両用物体検知装置100は、以下の構成を主な特徴としている。
 車両用物体検知装置100は、たとえば自動車などの車両Vに搭載されて車両Vの周囲の物体と車両Vとの距離を検知する装置であって、第1検知部10と、第2検知部20と、誤差量算出部30と、補正量算出部40と、距離補正部50と、を備えている。第1検知部10は、第1検知範囲R1に存在する物体の距離D1を検知するように構成されている。第2検知部20は、第1検知範囲R1の少なくとも一部を含む第2検知範囲R2に存在する物体の距離D1,D2を検知するように構成されている。誤差量算出部30は、第1検知部10および第2検知部20によって検知された同一の物体の距離D1,D1’を比較して誤差量ΔDを算出するように構成されている。補正量算出部40は、第2検知部20によって検知された物体の距離D1’を補正するための補正量CAを誤差量ΔDに基づいて算出するように構成されている。距離補正部50は、第2検知部20によって検知された物体の距離D1’,D2’を補正量CAに基づいて補正するように構成されている。
 以下、本実施形態に係る車両用物体検知装置100の構成をより詳細に説明する。車両用物体検知装置100は、前述の第1検知部10、第2検知部20、誤差量算出部30、補正量算出部40、および距離補正部50に加えて、たとえば、補正量更新部60を備えている。誤差量算出部30、補正量算出部40、距離補正部50、および補正量更新部60は、たとえば、車両Vの先進運転支援システム(ADAS:Advanced Driver Assistance Systems)に係る電子制御ユニット(ECU:Electronic Control Unit )の一部によって構成されている。
 第1検知部10は、たとえばミリ波センサであり、電磁波信号を送信し、その経路上にある物体が反射した信号を受信し、物体の距離、速度、角度を判定することが可能なレーダシステムを構成している。ここで、ミリ波とは、たとえば、周波数が30GHzから300GHz、波長が1mmから1cmまでの電波である。図2に示す例において、第1検知部10は、車両Vの前方の物体の距離を検知するように設けられている。
 なお、車両用物体検知装置100は、車両Vの後方の物体や車両Vの側方の物体の距離を検知する複数の第1検知部10を備えてもよい。また、第1検知部10は、ミリ波センサに限定されず、たとえば、単眼カメラや超音波センサであってもよい。また、第1検知部10によって検出される物体は、車両Vの周囲の他の車両OV、歩行者、障害物、建造物、ガードレール、標識、電柱、信号などを含む。
 第2検知部20は、たとえば、単数または複数の撮像部を有し、その撮像部によって撮影した物体の画像に基づいてその物体の距離を検知する。すなわち、撮像部は、たとえば距離測定用の単眼カメラやステレオカメラである。第2検知部20は、たとえば、距離画像を取得するためのフィルタを装着した単眼カメラによって撮影した物体の画像に基づいて、その物体の距離を検知する。また、第2検知部20は、たとえば、ステレオカメラによって撮影した物体の複数の画像に基づいて三角法によってその物体の距離を検知する。
  第2検知部20は、撮像部を有する場合、物体の距離D1’,D2’だけでなく、物体の位置、形状、大きさ、色などの特徴を検知するように構成されていてもよい。
 なお、車両用物体検知装置100は、車両Vの後方の物体や車両Vの側方の物体の距離を検知する複数の第2検知部20を備えてもよい。また、第2検知部20は、撮像部を備える構成に限定されず、たとえば、LIDAR(Laser Imaging Detection and Ranging)であってもよい。LIDARは、パルス状に発光するレーザ照射に対する散乱光を測定し、物体までの距離やその物体の性質を分析する装置である。
 本実施形態に係る車両用物体検知装置100において、第1検知部10による距離D1の検知精度は、たとえば、第2検知部20による距離D1’の検知精度よりも高くなっている。より具体的には、たとえば、第1検知部10がミリ波センサであり、第2検知部20がステレオカメラによって構成されている場合を想定する。この場合、ミリ波を用いたTOF(Time Of Flight)方式の第1検知部10の距離D1の検知精度は、ステレオカメラの視差に基づく第2検知部20の距離D1’の検知精度よりも高くなる傾向がある。
 また、本実施形態に係る車両用物体検知装置100において、第1検知部10の視野角θ1すなわち物体の距離を検出可能な角度範囲は、たとえば、第2検知部20の視野角θ2すなわち物体の距離を検出可能な角度範囲よりも狭くなっている。また、本実施形態に係る車両用物体検知装置100において、第1検知部10は、たとえば、第2検知部20よりも遠方の物体の距離を検知することが可能である。また、本実施形態に係る車両用物体検知装置100において、第1検知部10の第1検知範囲R1の一部が第2検知部20の第2検知範囲R2に含まれているが、第1検知部10の第1検知範囲R1の全体が第2検知部20の第2検知範囲R2に含まれていてもよい。
 誤差量算出部30は、前述のように、第1検知部10および第2検知部20によって検知された同一の物体(たとえば他の車両OV)の距離D1,D1’を比較して誤差量ΔDを算出する。ここで、誤差量算出部30によって算出する誤差量ΔDは、特に限定されないが、たとえば、第1検知部10によって検知された前方の車両OVの距離D1と、第2検知部20によって検知された同一の車両OVの距離D1’との差分である。また、誤差量ΔDは、距離D1と距離D1’の比D1/D1’であってもよい。すなわち、誤差量算出部30は、第1検知部10および第2検知部20によって検知された同一の物体の距離D1,D1’の比D1/D1’を、誤差量ΔDとして算出することができる。
 補正量算出部40は、前述のように、第2検知部20によって検知された物体の距離D1’を補正するための補正量CAを誤差量ΔDに基づいて算出する。たとえば、誤差量算出部30によって、第1検知部10により検知された前方の車両OVの距離D1と、第2検知部20により検知された同一の車両OVの距離D1’との差分D1-D1’が、誤差量ΔDとして算出されているとする。この場合、補正量算出部40は、この誤差量ΔD=D1-D1’を補正量CAとして算出する。また、たとえば、誤差量算出部30によって距離D1と距離D1’の比D1/D1’が誤差量ΔDとして算出されている場合、補正量算出部40は、この誤差量ΔD=D1/D1’を補正量CAとして算出する。
 また、本実施形態の車両用物体検知装置100は、前述のように、補正量更新部60を備えている。補正量更新部60は、補正量算出部40によって算出された補正量CAを保存および更新する。補正量更新部60は、たとえばハードディスクやメモリなどの記憶装置を備え、記憶装置に保存された補正量CAを所定の周期毎に微小量ずつ更新するように構成することができる。
 より具体的には、補正量更新部60は、たとえば時刻t-nの過去の処理において更新されて保存された補正量CAt-nと、時刻tの最新の処理において保存された補正量CAとの差分ΔCA=CA-CAt-nを算出する。さらに、補正量更新部60は、たとえば、以下の式(1)に基づいて、時刻tの補正量CAを更新して保存する。なお、以下の式(1)において、Nは更新ゲインであり、1以上の数である。
   CA=CAt-n+ΔCA/N   …(1)
 距離補正部50は、前述のように、第2検知部20によって検知された物体の距離D1’,D2’を補正量CAに基づいて補正する。前述のように、車両用物体検知装置100が補正量更新部60を有する場合、距離補正部50は、補正量更新部60に保存された補正量CAに基づいて物体の距離D1’を補正する。なお、車両用物体検知装置100が補正量更新部60を有しない場合、距離補正部50は、補正量算出部40によって算出された補正量CAに基づいて物体の距離D1’を補正してもよい。
 次に、本実施形態の車両用物体検知装置100の動作について説明する。図3は、本実施形態の車両用物体検知装置100によって物体の距離を計測する処理の一例を示すフロー図である。なお、車両用物体検知装置100において、図3に示す距離検知処理S1から距離出力処理S6までの一連の処理は、たとえば、所定の周期で繰り返し実行される。
 たとえば、図2に示すように、車両用物体検知装置100が搭載された車両Vの前方に2台の他の車両OVが存在する場面を想定する。車両Vの前方の第1の車両OVは、たとえば、第1検知部10の第1検知範囲R1と第2検知部20の第2検知範囲R2とが重複した重複領域R3に位置している。第2の車両OVは、第2検知部20の第2検知範囲R2のみに位置している。
 このような状況において、車両用物体検知装置100は、まず距離検知処理S1を実行する。距離検知処理S1では、第1検知部10および第2検知部20によって、重複領域R3に存在する同一の物体である第1の車両OVの距離D1,D1’が検知され、第2検知部20のみによって、第2検知範囲R2に存在する第2の車両OVの距離D2’が検知される。
 車両用物体検知装置100は、次に、誤差量算出処理S2を実行する。誤差量算出処理S2では、誤差量算出部30によって、第1検知部10および第2検知部20により検知された同一の物体の距離D1,D1’が比較され、誤差量ΔDが算出される。ここでは、誤差量算出部30により、誤差量ΔDとして、たとえば距離D1と距離D1’の比D1/D1’が算出される。
 ここで、本実施形態の車両用物体検知装置100は、たとえば、前述のように、第1検知部10による距離D1の検知精度が、第2検知部20による距離D1’の検知精度よりも高い。より具体的には、第1検知部10は、たとえばミリ波センサであり、第2検知部20は、たとえばステレオカメラによって構成されている。ミリ波センサは、前述のように、ミリ波のTOFに基づいて距離D1を測定し、ステレオカメラは左右のカメラによって撮影された画像の視差に基づいて距離D1’を測定する。
 一般に、ミリ波のTOFに基づく距離の測定は、撮像部を用いた距離の測定よりも高精度である。また、たとえばミリ波センサである第1検知部10では、検知される物体の距離D1の経時的な検知精度の低下が発生し難い。一方、撮像部を用いた距離の測定では、たとえば撮像部の取り付け位置の精度によって、第2検知部20における物体の距離D1’,D2’の検知精度が左右される。また、たとえば撮像部に作用する振動、慣性力、熱応力などの影響により撮像部の取り付け位置が経時的に変化し、第2検知部20における物体の距離D1’,D2’の検知精度が低下する場合がある。
 そこで、車両用物体検知装置100は、次に、補正量算出処理S3を実行する。補正量算出処理S3では、補正量算出部40によって、第2検知部20により検知された物体の距離D1’を補正するための補正量CAが誤差量ΔDに基づいて算出される。ここでは、補正量算出部40は、たとえば最新の処理において誤差量算出部30により算出された誤差量ΔDとしての距離D1と距離D1’の比D1/D1’を、最新の処理における補正量CAとして算出する。
 また、車両用物体検知装置100は、補正量更新部60を備える場合、次に、補正量更新処理S4を実行する。補正量更新処理S4では、補正量更新部60によって、補正量算出部40により算出された最新の処理における補正量CAを保存する。また、補正量更新部60によって、過去の時刻t-nの処理において更新および保存された補正量CAt-nを、最新の時刻tの処理における補正量CAに更新する。
 たとえば、前述のように、補正量更新部60が補正量CAを所定の周期ごとに微小量ずつ更新するように構成されている場合、補正量更新部60は、たとえば以下の処理を行う。補正量更新部60は、まず、前回の時刻t-1の処理において更新されて保存された補正量CAt-1と、最新の時刻tの処理において保存された補正量CAとの差分ΔCA=CA-CAt-1を算出する。さらに、補正量更新部60は、前記した式(1)に基づいて、前回の補正量CAt-1に対し、上記の差分ΔCA=CA-CAt-1を更新ゲインNで除した値を加算した値を最新の補正量CAとし、前回の補正量CAt-1を最新の補正量CAに更新して保存する。
 このように、補正量更新部60に保存された前回の補正量CAt-1に対して、その補正量CAt-1と最新の補正量CAとの差分ΔCAを更新ゲインNで除した値を加算することで、最新の補正量CAを徐々に正しい値に漸近させることができる。これにより、たとえば、補正量算出部40によって算出された最新の補正量CAが、偶発的な外乱によって突発的に極端に大きくなっても、補正量更新部60において更新および保存される最新の補正量CAに対する外乱の影響を大幅に低減することができる。
 車両用物体検知装置100は、次に、距離補正処理S5を実行する。距離補正処理S5では、距離補正部50によって、第2検知部20により検知された物体の距離D1’,D2’を、補正量更新部60において更新および保存された補正量CAに基づいて補正する。より具体的には、距離補正部50は、第2検知部20により検知された第1の車両OVの距離D1’に補正量CAを加算して、距離D1’を補正する。
 また、距離補正部50は、第2検知部20により検知された第2の車両OVの距離D2’に補正量CAを加算して、距離D2’を補正する。なお、車両用物体検知装置100が補正量更新部60を備えていない場合は、距離補正部50によって、第2検知部20により検知された物体の距離D1’,D2’を、補正量算出部40により算出された最新の補正量CAに基づいて補正してもよい。
 車両用物体検知装置100は、最後に距離出力処理S6を実行する。距離出力処理S6では、第2検知部20によって検出されて距離補正部50によって補正された物体の距離D1’,D2’が、距離補正部50によって出力される。より具体的には、第2検知部20により検出されて距離補正部50により補正された第1の車両OVの距離D1’+CAが、距離補正部50から出力される。また、第2検知部20により検出されて距離補正部50により補正された第2の車両OVの距離D2’+CAが、距離補正部50から出力される。
 以上のように、本実施形態の車両用物体検知装置100は、車両Vの周囲の物体と車両Vとの距離を検知する装置であって、第1検知部10と、第2検知部20と、誤差量算出部30と、補正量算出部40と、距離補正部50と、を備えている。第1検知部10は、第1検知範囲R1に存在する物体の距離D1を検知する。第2検知部20は、第1検知範囲R1の少なくとも一部を含む第2検知範囲R2に存在する物体の距離D1’,D2’を検知する。誤差量算出部30は、第1検知部10および第2検知部20によって検知された同一の物体の距離D1,D1’を比較して誤差量ΔDを算出する。補正量算出部40は、第2検知部20によって検知された物体の距離D1’を補正するための補正量CAを誤差量ΔDに基づいて算出する。距離補正部50は、第2検知部20によって検知された物体の距離D1’,D2’を補正量CAに基づいて補正する。
 この構成により、重複領域R3に存在する物体の距離D1’だけでなく、第2検知範囲R2のみに存在する物体の距離D2’を第2検知部20によって検知することができる。
  そして、第2検知部20によって検知された物体の距離D1’,D2’を実際の物体の距離に近いより正確な距離D1’+CA,D2’+CAに補正することができる。これにより、第2検知部20によって検出される物体の距離D1’,D2’に経時的な誤差が生じた場合でも、第2検知部20によって物体の正確な測距を行うことができる。したがって、本実施形態によれば、従来よりも確実に測距を行うことが可能な車両用物体検知装置100を提供することができる。
 また、第1検知部10の第1検知範囲R1と第2検知部20の第2検知範囲R2が重複する重複領域R3に存在する物体の正確な距離D1,D1’+CAを、第1検知部10および第2検知部20によって検知することができる。したがって、第1検知部10および第2検知部20の弱点を相互に補完することができ、従来よりも測距に対する冗長性の高い車両用物体検知装置100を提供することができる。
 また、第1検知部10および第2検知部20によって重複領域R3に存在する同一の物体の正確な距離D1,D1’+CAを測定することができる。これにより、第1検知部10および第2検知部20によって検知された同一の物体を識別するグルーピングが容易になる。したがって、車両用物体検知装置100において、複数のセンサの情報を統合するセンサフュージョンを容易にすることができる。
 また、本実施形態の車両用物体検知装置100において、第1検知部10による距離D1の検知精度は、第2検知部20による距離D1’の検知精度よりも高い。そのため、第1検知部10によって検知された距離D1に基づいて、第2検知部20によって検知された距離D1’の誤差量ΔDおよび補正量CAを算出することができる。
 また、本実施形態の車両用物体検知装置100は、補正量CAを保存および更新する補正量更新部60を備えている。そして、距離補正部50は、補正量更新部60に保存された補正量CAに基づいて物体の距離D1’,D2’を補正する。これにより、前述のように、補正量更新部60において、補正量CAを所定の周期ごとに微小量ずつ更新することができる。そのため、直近の処理において第2検知部20によって検知された距離D1’を活用しつつ、その距離D1’を基準となる第1検知部10によって検知された距離D1に徐々に合わせていくことが可能となる。その結果、第2検知部20が有している定常的な誤差を排除しつつ、第1検知部10および第2検知部20の検知結果を有効に利用することが可能となる。
 また、本実施形態の車両用物体検知装置100において、誤差量算出部30は、第1検知部10および第2検知部20によって検知された同一の物体の距離D1,D1’の比D1/D1’を、誤差量ΔDとして算出する。これにより、第1検知部10によって検知された距離D1に対する、第2検知部20によって検知された距離D1’の誤差量ΔDを、容易に算出することができる。
 また、本実施形態の車両用物体検知装置100において、第2検知部20は、単数または複数の撮像部を有し、その撮像部によって撮影した物体の画像に基づいて物体の距離を検知する。この構成により、第2検知部20によって物体の距離だけでなく、物体の色や形状などの特徴を検知することができる。また、上記構成によれば、第2検知部20の撮像部において発生した経時的な誤差を補正することができ、第2検知部20における画像の取得と正確な物体の距離の計測を両立させることが可能になる。
 以上説明したように、本実施形態によれば、従来よりも確実に測距を行うことができ、測距に対する冗長性の高い車両用物体検知装置100を提供することができる。なお、本開示に係る車両用物体検知装置は、本実施形態に係る車両用物体検知装置100の構成に限定されない。以下、本実施形態の車両用物体検知装置100の変形例について説明する。
 図4は、図1に示す車両用物体検知装置100の変形例に係る第2検知範囲R2の平面図である。図4に示す変形例の車両用物体検知装置100において、補正量更新部60は、たとえば、第2検知部20による第2検知範囲R2の位置R211から位置R267までの各位置に応じた複数の補正量CAを保存および更新するように構成されている。また、距離補正部50は、第2検知部20によって検知された物体の距離を各位置に応じた補正量CAに基づいて補正するように構成されている。
 換言すると、補正量更新部60は、第2検知範囲R2の位置ごとに設定された複数の補正量CAのテーブルを備え、距離補正部50は、第2検知部20によって検知された物体の距離を補正量CAのテーブルに基づいて補正するように構成されている。この構成により、たとえば第2検知部20を構成する撮像部のレンズの歪みに起因する誤差など、第2検知範囲R2の各位置によって異なる第2検知部20の誤差を、第2検知範囲R2の各位置に応じた補正量CAによって補正することができる。
 また、前述の誤差量算出処理S2、補正量算出処理S3および補正量更新処理S4において、補正量CAの更新処理を行う際には、物体が第2検知範囲R2の位置R211から位置R267までのどの位置に存在するかを特定する。そして、特定された位置に対応する補正量CAを更新および保存する。これにより、第2検知部20の距離の検知誤差が第2検知範囲R2の全体で一定でない場合においても、第2検知範囲R2の各位置に応じた補正量CAを更新することができる。
 [実施形態2]
  次に、本開示に係る車両用物体検知装置の実施形態2を説明する。図5は、実施形態2に係る車両用物体検知装置100Aのブロック図である。
 本実施形態の車両用物体検知装置100Aは、主に、判定部70を備える点で、前述の実施形態1に係る車両用物体検知装置100と異なっている。本実施形態の車両用物体検知装置100Aのその他の点は、前述の実施形態1に係る車両用物体検知装置100と同様であるので、同様の部分には同一の符号を付して説明を省略する。
 本実施形態の車両用物体検知装置100Aにおいて、判定部70は、たとえば、前述の誤差量算出部30、補正量算出部40、距離補正部50、および補正量更新部60と同様に、車両VのADASに係るECUの一部によって構成されている。判定部70は、誤差量算出部30による誤差量ΔDの算出可否を判定するように構成されている。また、本実施形態の車両用物体検知装置100Aにおいて、誤差量算出部30は、判定部70の判定結果に基づいて誤差量ΔDを算出するように構成されている。
 より具体的には、本実施形態の車両用物体検知装置100Aにおいて、判定部70は、たとえば、以下の(A)から(C)までのいずれか一以上の条件を満たす場合に、誤差量算出部30による誤差量ΔDを算出可と判定するように構成することができる。
 条件(A)は、第1検知部10および第2検知部20によって検知された同一の物体が、あらかじめ定められた誤差量算出範囲R4(図2参照)に存在することである。この条件(A)を満たす場合に、本実施形態の車両用物体検知装置100Aは、判定部70が誤差量ΔDを算出可と判定するように構成することができる。誤差量算出範囲R4としては、たとえば、図2にドット状のハッチングで示すように、第1検知範囲R1と第2検知範囲R2とが重なった重複領域R3から、第1検知部10による物体の距離の検知精度が低下する車両Vの近傍領域R5を除いた領域を例示することができる。
 条件(B)は、車両Vの周囲の環境が予め定められた誤差算出条件に一致することである。この条件(B)を満たす場合に、本実施形態の車両用物体検知装置100Aは、判定部70が誤差量ΔDを算出可と判定するように構成することができる。誤差算出条件としては、たとえば、(b1)降雨、降雪、濃霧などの悪天候でないこと、(b2)夜間、トンネル内、建造物内、逆光など、照度の条件が不良ではないこと、(b3)トンネルなどを含む車両Vの周囲の道路状況が第1検知部10や第2検知部20の距離の測定原理に影響を与える条件ではないこと、などの条件を例示することができる。誤差算出条件に合致するか否かの判定は、たとえば、第2検知部20を構成する撮像部の画像、ワイパーの作動状況、雨滴センサによる降雨および降雪の判定、カーナビゲーションシステムの地図情報によるトンネルや建造物の判定などに基づいて行うことができる。
 条件(C)は、車両Vが始動されかつ停止した状態であることである。この条件(C)を満たす場合に、本実施形態の車両用物体検知装置100Aは、判定部70が誤差量ΔDを算出可と判定するように構成することができる。すなわち車両Vが始動された直後の停止状態にあるときのみ、判定部70が誤差量ΔDを算出可と判定し、誤差量算出部30による誤差量ΔDの算出と、補正量算出部40による補正量CAの算出が実行される。
 また、判定部70は、たとえば、以下の(D)から(G)のすべての条件を満たす場合に、誤差量算出部30による誤差量ΔDを算出可と判定するように構成することができる。
 条件(D)は、車両用物体検知装置100Aにおいて、誤差量算出部30が、第2検知部20を構成する撮像部によって撮影した画像に基づく物体の距離D1’,D2’の計算に用いるパラメータの初期値からの変化量を、誤差量ΔDとして算出することである。ここで、第2検知部20を構成する撮像部の上記パラメータとしては、ステレオカメラの基線長(左右のカメラの間隔)、左右のカメラの光軸の方向、左右のカメラのレンズの中心位置、などを含むカメラの位置と姿勢を例示することができる。
 条件(E)は、車両用物体検知装置100Aが、誤差量算出部30によって算出された撮像部のパラメータの初期値からの変化量である誤差量ΔDの算出可否を判定する判定部70を備えることである。条件(F)は、第2検知部20が、撮像部のパラメータの初期値からの変化量である誤差量ΔDを減少させるように、撮像部のパラメータを補正する自己補正部21を有することである。条件(G)は、あらかじめ定められた期間にわたって自己補正部21によるパラメータの補正がされていないことである。以上の(D)から(G)までの条件をすべて満たす場合に、判定部70は、誤差量ΔDを算出可と判定し、誤差量算出部30は、判定部70の判定結果に基づいて誤差量ΔDを算出するように構成することができる。
 次に、本実施形態の車両用物体検知装置100Aの動作について説明する。図6は、図5に示す本実施形態の車両用物体検知装置100Aによって物体の距離を計測する処理の一例を示すフロー図である。なお、車両用物体検知装置100Aにおいて、図6に示す距離検知処理S1から距離出力処理S6までの処理は、たとえば、所定の周期で繰り返し実行される。
 たとえば、図2に示すように、車両用物体検知装置100Aが搭載された車両Vの前方に2台の他の車両OVが存在する場面を想定する。このような状況において、車両用物体検知装置100Aは、まず、前述の実施形態1に係る車両用物体検知装置100と同様に距離検知処理S1を実行する。
 車両用物体検知装置100Aは、次に、判定処理S7を実行する。判定処理S7では、判定部70によって、誤差量算出部30による誤差量ΔDの算出可否が判定される。より具体的には、判定処理S7において、判定部70は、たとえば、前述の(A)から(C)までのいずれか一以上の条件を満たす場合に、誤差量算出部30による誤差量ΔDを算出可(YES)と判定する。また、判定部70は、たとえば、前述の(D)から(G)までの条件をすべて満たす場合に、誤差量算出部30による誤差量ΔDを算出可(YES)と判定する。
 すると、本実施形態の車両用物体検知装置100Aは、前述の実施形態1に係る車両用物体検知装置100と同様に、誤差量算出処理S2、補正量算出処理S3、および補正量更新処理S4を行って、誤差量ΔDおよび補正量CAtを算出し、補正量CAtを更新および保存する。一方、判定処理S7において、前述の(A)から(C)までの条件をすべて満たさない場合、または、前述の(D)から(G)までの条件のいずれか一以上を満たさない場合、判定部70は、誤差量算出部30による誤差量ΔDの算出を否(NO)と判定する。
 すると、本実施形態の車両用物体検知装置100Aは、誤差量算出処理S2、補正量算出処理S3、および補正量更新処理S4を実行しない。したがって、補正量更新部60に保存された補正量CAは、更新されずに維持される。車両用物体検知装置100Aは、次に、補正量更新部60に保存された補正量CAに基づいて、前述の実施形態1に係る車両用物体検知装置100と同様に、距離補正処理S5および距離出力処理S6を実行する。
 以上説明したように、本実施形態の車両用物体検知装置100Aは、誤差量算出部30による誤差量ΔDの算出可否を判定する判定部70を備え、誤差量算出部30は、判定部70の判定結果に基づいて誤差量ΔDを算出するように構成されている。この構成により、適切な条件を満たす場合のみ、補正量CAが更新されて保存される。したがって、不適切な条件で補正量CAが更新されることが防止され、第2検知部20による測距をより確実かつ正確に行うことができる。
 たとえば、車両用物体検知装置100Aにおいて、判定部70は、前述の(A)の条件を満たす場合、すなわち、第1検知部10および第2検知部20によって検知された同一の物体があらかじめ定められた誤差量算出範囲R4に存在する場合に、誤差量ΔDを算出可と判定する。これにより、第1検知部10によって検知された物体の距離D1に基づいて、第2検知部20によって検知された同一の物体の距離D1’を補正することが可能になる。
 また、車両用物体検知装置100Aにおいて、判定部70は、たとえば、前述の(B)の条件を満たす場合、すなわち、車両Vの周囲の環境が予め定められた誤差算出条件に一致する場合に、誤差量ΔDを算出可と判定する。これにより、第1検知部10または第2検知部20の検知精度が低下した状態で、補正量CAが更新されることが防止され、第2検知部20による測距をより確実かつ正確に行うことができる。
 また、車両用物体検知装置100Aにおいて、判定部70は、たとえば、前述の(C)の条件を満たす場合、すなわち、車両Vが始動されかつ停止した状態である場合に、誤差量ΔDを算出可と判定する。これにより、車両Vの走行による第1検知部10および第2検知部20の検知環境の変動に影響されない停止状態でのみ補正量CAを更新することができ、第2検知部20による測距をより確実かつ正確に行うことができる。
 また、車両用物体検知装置100Aは、前述のように、次の(D)から(G)の条件を満たす場合に、判定部70によって、誤差量算出部30による誤差量ΔDを算出可と判定する。(D)誤差量算出部30が、第2検知部20を構成する撮像部によって撮影した画像に基づく物体の距離の計算に用いるパラメータの初期値からの変化量を、誤差量ΔDとして算出すること。(E)車両用物体検知装置100Aが、誤差量ΔDの算出可否を判定する判定部70を備えること。(F)第2検知部20が、誤差量ΔDを減少させるように撮像部のパラメータを補正する自己補正部21を有すること。(G)あらかじめ定められた期間にわたって自己補正部21による撮像部のパラメータの補正がされていないこと。
 これにより、たとえば第2検知部20の自己補正部21が一定時間の経過後に定期的に撮像部のパラメータを補正する自己補正すなわち内部キャリブレーションを行う場合に、補正量CAが過大になることが防止される。したがって、第2検知部20によって検知された距離D1’,D2’が過剰に補正されることが防止され、第2検知部20によって物体の測距を正確に行うことができる。また、第2検知部20を構成する撮像部やその取り付け部の経時的な変化によらず、第2検知部20による正確な測距を行うことができる。なお、判定部70は、自己補正部21が撮像部のパラメータの補正を行った場合に発信する信号を受信することで、上記(G)の判定を行うことができる。
 以上、図面を用いて本開示に係る車両用物体検知装置の実施形態を詳述してきたが、具体的な構成は前述の実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。
10 第1検知部、20 第2検知部、21 自己補正部、30 誤差量算出部、40 補正量算出部、50 距離補正部、60 補正量更新部、70 判定部、100 車両用物体検知装置、100A 車両用物体検知装置、CAt 補正量、D1 距離、D1’ 距離、D2 距離、D2’ 距離、OV 車両(物体)、R1 第1検知範囲、R2 第2検知範囲、R4 誤差量算出範囲、V 車両、ΔD 誤差量。

Claims (12)

  1.  車両の周囲の物体の距離を検知する車両用物体検知装置であって、
     第1検知範囲に存在する物体の距離を検知する第1検知部と、
     前記第1検知範囲の少なくとも一部を含む第2検知範囲に存在する物体の距離を検知する第2検知部と、
     前記第1検知部および前記第2検知部によって検知された同一の物体の距離を比較して誤差量を算出する誤差量算出部と、
     前記第2検知部によって検知された物体の距離を補正するための補正量を前記誤差量に基づいて算出する補正量算出部と、
     前記第2検知部によって検知された物体の距離を前記補正量に基づいて補正する距離補正部と、
     を備えることを特徴とする車両用物体検知装置。
  2.  前記第1検知部による距離の検知精度は、前記第2検知部による距離の検知精度よりも高いことを特徴とする請求項1に記載の車両用物体検知装置。
  3.  前記補正量を保存および更新する補正量更新部を備え、
     前記距離補正部は、前記補正量更新部に保存された前記補正量に基づいて前記物体の距離を補正することを特徴とする請求項2に記載の車両用物体検知装置。
  4.  前記誤差量算出部は、前記第1検知部および前記第2検知部によって検知された同一の物体の距離の比を、前記誤差量として算出することを特徴とする請求項1に記載の車両用物体検知装置。
  5.  前記第2検知部は、単数または複数の撮像部を有し、該撮像部によって撮影した物体の画像に基づいて該物体の距離を検知することを特徴とする請求項1から請求項3のいずれか一項に記載の車両用物体検知装置。
  6.  前記誤差量算出部は、前記撮像部によって撮影した画像に基づく物体の距離の計算に用いるパラメータの初期値からの変化量を、前記誤差量として算出することを特徴とする請求項5に記載の車両用物体検知装置。
  7.  前記誤差量算出部による前記誤差量の算出可否を判定する判定部を備え、
     前記第2検知部は、前記誤差量を減少させるように前記パラメータを補正する自己補正部を有し、
     前記判定部は、あらかじめ定められた期間にわたって前記自己補正部による前記パラメータの補正がされていない場合に、前記誤差量を算出可と判定し、
     前記誤差量算出部は、前記判定部の判定結果に基づいて前記誤差量を算出することを特徴とする請求項6に記載の車両用物体検知装置。
  8.  前記誤差量算出部による前記誤差量の算出可否を判定する判定部を備え、
     前記誤差量算出部は、前記判定部の判定結果に基づいて前記誤差量を算出することを特徴とする請求項1に記載の車両用物体検知装置。
  9.  前記判定部は、前記第1検知部および前記第2検知部によって検知された同一の物体があらかじめ定められた誤差量算出範囲に存在する場合に、前記誤差量を算出可と判定することを特徴とする請求項8に記載の車両用物体検知装置。
  10.  前記判定部は、前記車両の周囲の環境が予め定められた誤差算出条件に一致する場合に、前記誤差量を算出可と判定することを特徴とする請求項8に記載の車両用物体検知装置。
  11.  前記判定部は、前記車両が始動されかつ停止した状態である場合に、前記誤差量を算出可と判定することを特徴とする請求項8に記載の車両用物体検知装置。
  12.  前記補正量更新部は、前記第2検知範囲の位置に応じた複数の前記補正量を保存および更新し、
     前記距離補正部は、前記第2検知部によって検知された物体の距離を前記位置に応じた前記補正量に基づいて補正することを特徴とする請求項3に記載の車両用物体検知装置。
PCT/JP2019/019220 2018-06-15 2019-05-15 車両用物体検知装置 WO2019239775A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/054,240 US11914028B2 (en) 2018-06-15 2019-05-15 Object detection device for vehicle
DE112019002050.1T DE112019002050T5 (de) 2018-06-15 2019-05-15 Gegenstandsdetektionsvorrichtung für ein Fahrzeug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114468A JP7152884B2 (ja) 2018-06-15 2018-06-15 車両用物体検知装置
JP2018-114468 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019239775A1 true WO2019239775A1 (ja) 2019-12-19

Family

ID=68843223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019220 WO2019239775A1 (ja) 2018-06-15 2019-05-15 車両用物体検知装置

Country Status (4)

Country Link
US (1) US11914028B2 (ja)
JP (1) JP7152884B2 (ja)
DE (1) DE112019002050T5 (ja)
WO (1) WO2019239775A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135183A (zh) * 2020-01-20 2021-07-20 本田技研工业株式会社 车辆的控制系统、车辆的控制系统的控制方法、车辆以及计算机可读记录介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148746A (ja) * 2020-03-23 2021-09-27 株式会社リコー 測距装置及び測距方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230115A (ja) * 1993-02-01 1994-08-19 Toyota Motor Corp 車間距離検出装置
JP2004028727A (ja) * 2002-06-25 2004-01-29 Fuji Heavy Ind Ltd 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法
JP2004347471A (ja) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd 先行車両検出装置
JP2007024590A (ja) * 2005-07-13 2007-02-01 Toyota Motor Corp 物体検出装置
JP2010091426A (ja) * 2008-10-08 2010-04-22 Toyota Central R&D Labs Inc 距離計測装置及びプログラム
JP2016008847A (ja) * 2014-06-23 2016-01-18 株式会社日本自動車部品総合研究所 測距補正装置
JP2017040549A (ja) * 2015-08-19 2017-02-23 シャープ株式会社 画像処理装置および誤差判定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155211A (ja) 1990-10-18 1992-05-28 Fujitsu Ltd 測距方式
US10551509B2 (en) * 2017-06-30 2020-02-04 GM Global Technology Operations LLC Methods and systems for vehicle localization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230115A (ja) * 1993-02-01 1994-08-19 Toyota Motor Corp 車間距離検出装置
JP2004028727A (ja) * 2002-06-25 2004-01-29 Fuji Heavy Ind Ltd 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法
JP2004347471A (ja) * 2003-05-22 2004-12-09 Fuji Heavy Ind Ltd 先行車両検出装置
JP2007024590A (ja) * 2005-07-13 2007-02-01 Toyota Motor Corp 物体検出装置
JP2010091426A (ja) * 2008-10-08 2010-04-22 Toyota Central R&D Labs Inc 距離計測装置及びプログラム
JP2016008847A (ja) * 2014-06-23 2016-01-18 株式会社日本自動車部品総合研究所 測距補正装置
JP2017040549A (ja) * 2015-08-19 2017-02-23 シャープ株式会社 画像処理装置および誤差判定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113135183A (zh) * 2020-01-20 2021-07-20 本田技研工业株式会社 车辆的控制系统、车辆的控制系统的控制方法、车辆以及计算机可读记录介质
US11814081B2 (en) 2020-01-20 2023-11-14 Honda Motor Co., Ltd. Control system, control method, vehicle, and computer-readable storage medium
CN113135183B (zh) * 2020-01-20 2023-12-29 本田技研工业株式会社 车辆的控制系统、车辆的控制系统的控制方法、车辆以及计算机可读记录介质

Also Published As

Publication number Publication date
DE112019002050T5 (de) 2021-01-07
JP2019219180A (ja) 2019-12-26
US20210141079A1 (en) 2021-05-13
US11914028B2 (en) 2024-02-27
JP7152884B2 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
EP3792660B1 (en) Method, apparatus and system for measuring distance
US11340071B2 (en) Calibration system and calibration apparatus
US20230079730A1 (en) Control device, scanning system, control method, and program
US9151626B1 (en) Vehicle position estimation system
CN110361014B (zh) 本车位置推断装置
CN107122770B (zh) 多目相机系统、智能驾驶系统、汽车、方法和存储介质
US20090122136A1 (en) Object detection device
JP6458651B2 (ja) 路面標示検出装置及び路面標示検出方法
CN113514806A (zh) 自动驾驶过程中障碍物确定方法、装置及电子设备
CN109839636B (zh) 物体识别装置
KR102431904B1 (ko) 정밀지도를 이용한 라이다 센서 캘리브레이션 방법
WO2019239775A1 (ja) 車両用物体検知装置
JP2006011570A (ja) カメラキャリブレーション方法及びカメラキャリブレーション装置
US20220365193A1 (en) Method for estimating correction angles in a radar sensor for motor vehicles
KR102343020B1 (ko) 노면 영상정보를 이용한 자율주행 차량의 위치신호 보정장치
JP6920159B2 (ja) 車両の周辺監視装置と周辺監視方法
CN111989541A (zh) 立体摄像机装置
US11645782B2 (en) Method and device for checking a calibration of environment sensors
US10643077B2 (en) Image processing device, imaging device, equipment control system, equipment, image processing method, and recording medium storing program
US10249056B2 (en) Vehicle position estimation system
JP6604052B2 (ja) 走路境界推定装置及び走路境界推定方法
JP2009031299A (ja) 周辺監視センサ
GB2406948A (en) Target detection apparatus for a vehicle
US12018946B2 (en) Apparatus, method, and computer program for identifying road being traveled
US20240020868A1 (en) Vehicle and method of controlling the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819558

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19819558

Country of ref document: EP

Kind code of ref document: A1