WO2019239468A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2019239468A1 WO2019239468A1 PCT/JP2018/022278 JP2018022278W WO2019239468A1 WO 2019239468 A1 WO2019239468 A1 WO 2019239468A1 JP 2018022278 W JP2018022278 W JP 2018022278W WO 2019239468 A1 WO2019239468 A1 WO 2019239468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- light emitting
- region
- electrode
- liquid crystal
- Prior art date
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 137
- 239000000758 substrate Substances 0.000 claims abstract description 92
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000010410 layer Substances 0.000 claims description 416
- 239000011247 coating layer Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 8
- 238000005192 partition Methods 0.000 claims description 5
- 239000010408 film Substances 0.000 description 195
- 239000000463 material Substances 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000007789 sealing Methods 0.000 description 12
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000002131 composite material Substances 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000011368 organic material Substances 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- 229910019015 Mg-Ag Inorganic materials 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000000059 patterning Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005525 hole transport Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002668 Pd-Cu Inorganic materials 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133553—Reflecting elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/1368—Active matrix addressed cells in which the switching element is a three-electrode device
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133345—Insulating layers
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/302—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/30—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
- G09F9/35—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/40—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one beside the other, e.g. on a common carrier plate
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
- G09F9/46—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
- H10K50/818—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/868—Arrangements for polarized light emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/124—Insulating layers formed between TFT elements and OLED elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/50—OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
- H10K59/80518—Reflective anodes, e.g. ITO combined with thick metallic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/87—Passivation; Containers; Encapsulations
- H10K59/873—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8793—Arrangements for polarized light emission
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/44—Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers
Definitions
- the present invention relates to a composite (hybrid) display device in which a reflective liquid crystal display element and a light emitting element such as an organic EL display element are combined.
- a liquid crystal display element a reflective liquid crystal display element that uses external light without a backlight may be used.
- a display element using external light such as a reflective liquid crystal display element, has a problem that it cannot be displayed at night or in a room with little external light.
- a display device in which a reflective liquid crystal display element and an organic EL display element with low power consumption are used in combination has been considered (for example, see Patent Document 1).
- This display device has a structure as shown in a sectional view in FIG. 5, for example. That is, a TFT 82 for a liquid crystal display element, a TFT 83 for an organic EL display element, a bus line (not shown) and the like are formed on an insulating substrate 81, and a planarizing film 84 is formed on the surface thereof. Then, as shown in FIG. 5, the light-reflective anode electrode 91 for the organic EL display element 90 is formed on the planarizing film 84 in the transmissive region Q, which is divided into a reflective region P and a transmissive region Q.
- the organic EL display element 90 is formed by forming the insulating layer 92, the organic light emitting layer 93, the cathode electrode 94, and the transparent insulating layer 95.
- a reflective electrode (pixel electrode) 85, a liquid crystal layer 86, a counter electrode 87, and a counter substrate 88 are provided on the transparent insulating layer 95, and a polarizing plate 89 is formed on the outer surface thereof.
- a reflective liquid crystal display element 80 is formed.
- the polarizing plate 89 is a circularly polarizing plate by overlapping a quarter-wave retardation plate 89b on a linear polarizing plate 89a.
- the cathode electrode 94 and the transparent insulating layer 95 of the organic EL display element 90 are also formed toward the reflective region P, and the liquid crystal layer 86 for the liquid crystal display element 80, the counter electrode 87, the counter substrate 88, and the polarizing plate. 89 and the like are also formed in the transmissive region Q as they are.
- a color filter layer 88 a is formed between the counter electrode 87 and the counter substrate 88.
- the cathode electrode 94, the transparent insulating layer 95, and the liquid crystal display element 80 of the organic EL display element 90 are used.
- the liquid crystal layer 86, the counter electrode 87, the counter substrate 88, and the polarizing plate 89 are each formed so as to extend to the counterpart region. This is because even if each of the layers extends to the counterpart region, there is no adverse effect, and it is difficult to form the liquid crystal layer 86 only in the reflective region P of the liquid crystal display element 80, and the thickness of the liquid crystal layer 86.
- the cathode electrode 94 for the organic EL display element 90 and the transparent insulating layer 95 formed on the surface thereof are also formed in the reflection region P of the liquid crystal display element 80.
- an insulating layer 95 made of an inorganic film made of tantalum pentoxide or the like is formed on the outermost surface of the organic EL display element 90 to prevent moisture from entering.
- this is due to insufficient prevention of moisture ingress.
- the present invention has been made to solve such problems.
- the light emitting element such as an organic EL display element is a liquid crystal display element.
- the cathode electrode and the light-emitting layer of the light-emitting element can be reliably shut out from entering water, oxygen, and the like.
- a display device includes a TFT substrate having an insulating layer formed on a driving element, a liquid crystal layer containing a liquid crystal composition, and a transparent electrode facing the TFT substrate via the liquid crystal layer. And a polarizing plate provided on a surface opposite to the surface facing the liquid crystal layer of the counter substrate, wherein the display device includes a first region and a second region adjacent to each other in the display region.
- the first region includes a reflective electrode above the insulating layer of the TFT substrate, and the second region includes a first electrode on the insulating layer of the TFT substrate.
- a light-emitting element including an electrode, a light-emitting layer, and a second electrode is provided, and at least in the second region, the first surface of the insulating layer facing the counter substrate is connected to the first inorganic insulating film and the TFT And the first inorganic insulating film
- the light-emitting element has a coating layer including at least a second inorganic insulating film that covers the entire light-emitting region of the display device.
- the light emitting layer and the second electrode are sealed by the first inorganic insulating film of the insulating layer and the second inorganic insulating film of the covering layer by bonding the edge of the layer to the insulating layer. ing.
- the second electrode and the light emitting layer of the light emitting element are embedded in the coating layer made of the second inorganic insulating film, the upper surface of the first insulating film, and the contact hole of the insulating layer, Sealing (sealing) is performed by bonding each inorganic film to the first surface of the insulating layer formed by the metal film bonded on the upper surface of the first inorganic insulating film. Therefore, the penetration of moisture and oxygen into the light emitting layer and the second electrode of the light emitting element is completely prevented, and the reliability is improved.
- FIG. 2 is an equivalent circuit diagram of TFTs and wirings formed on the TFT substrate of FIG. 1. It is sectional drawing which shows the manufacturing process of the display apparatus of FIG. It is sectional drawing which shows the manufacturing process of the display apparatus of FIG. It is sectional drawing which shows the manufacturing process of the display apparatus of FIG. It is sectional drawing which shows the manufacturing process of the display apparatus of FIG. It is sectional drawing which shows the manufacturing process of the display apparatus of FIG. It is sectional drawing which shows the manufacturing process of the display apparatus of FIG.
- FIG. 1A is a schematic cross-sectional view of one pixel of the display device of one embodiment
- FIG. 1B is a diagram illustrating the light-emitting element sealing structure of FIG. 1A
- FIG. 2 is an equivalent circuit of the drive element portion of FIG.
- FIGS. 3A to 3G and FIGS. 4A to 4G show sectional views and plan views of the manufacturing process, respectively.
- a display device includes a TFT 11 (see FIG. 2), a TFT substrate 20 in which an insulating layer 25 is formed on a driving element, as shown in FIG. 1A and FIG.
- a liquid crystal layer 32 containing a liquid crystal composition a counter substrate 50 having a transparent electrode 33 facing the TFT substrate 20 through the liquid crystal layer 32, and a surface opposite to the surface facing the liquid crystal layer 32 of the counter substrate 50 are provided.
- a polarizing plate 34 is provided.
- the display region has a plurality of pixels each composed of a first region R and a second region T adjacent to each other.
- the first region R includes a reflective electrode 31 above the insulating layer 25 of the TFT substrate 20.
- the second region T includes a light emitting element 40 in which a first electrode 41, a light emitting layer 43, and a second electrode 44 are stacked on the insulating layer 25 of the TFT substrate 20. At least in the second region T, the first surface of the insulating layer 25 facing the counter substrate 50 is connected to the first inorganic insulating film 25b, the TFT 11 (see FIG. 2), the TFTs 12 and 13, and the first inorganic insulation.
- the light emitting element 40 is formed of a metal film (contacts 41a, 41, 18c2) provided in contact with the surface of the film 25b facing the counter substrate 50, and the light emitting element 40 covers the entire light emitting region of the display device.
- the light emitting layer 43 and the second electrode 44 are sealed by bonding the edge of the cover layer 45 to the first inorganic insulating film 25b.
- the light emitting element 40 is particularly effective in the case of an organic EL display element, but is not limited thereto, and includes a quantum dot LED (QLED), a micro LED, an inorganic LED, and the like. In the following description, the light emitting element 40 may be used in the meaning of an organic EL display element.
- the light emitting layer 43 includes not only a light emitting layer but also a layer for promoting light emission above and below the light emitting layer 43.
- sealing means that sealing is performed without room for gas and liquid to invade the light emitting layer such as moisture and oxygen and the second electrode to enter.
- the light emitting element 40 is sealed by the surface of the inorganic film formed by bonding such as 18c2, that is, the first surface of the insulating layer 25 facing the counter substrate 50, so that the light emitting layer 43 and the second electrode 44 are not deteriorated by moisture or the like. I mean.
- through holes such as contact holes are not formed in the inorganic film covering the light emitting element 40, and that there are no contact holes that are completely sealed inside the bonded inorganic film.
- a contact hole or the like is formed above the upper surface (first surface) of the insulating layer 25 (for example, 42c in FIG. 1A)
- the contact hole 42c is formed. This is because the light emitting layer 43 or the like is deteriorated by moisture, and even when the contact hole 42c or the like is formed before the light emitting layer 43 or the like is formed, moisture or the like at the time of formation may remain.
- the edge means a portion joined to the insulating layer 25 such as a peripheral portion of the covering layer 45.
- the insulating layer 25 is formed of a laminated film of an organic insulating film 25a and a first inorganic insulating film 25b, and its upper surface is The first inorganic insulating film 25b is formed. Then, the light emitting element 40 is formed on the upper surface of the insulating layer 25 on which the first inorganic insulating film 25b such as Si 3 N 4 is formed on the upper surface (the surface facing the counter substrate 50), and the coating formed around the light emitting element 40
- the edge of the layer 45 is bonded to the first inorganic insulating film 25b.
- the coating layer 45 is formed by a CVD method, a plasma CVD method, a sputtering method, or the like, and if the underlying layer is an inorganic film such as Si 3 N 4 of the same type, it is formed in close contact without any gap. Moreover, the contact holes 25c2 and 25c3 penetrating the first inorganic insulating film 25b are filled with the metallized films 41a (41) and 18c2, and the peripheral portions thereof are bonded to the first inorganic insulating film 25b. Therefore, the light emitting element 40 is sealed by the bonded inorganic films 45, 25b, 41, and 18c2.
- the organic insulating film When the organic insulating film is part of the sealing film, it is easy to absorb moisture, and even when bonded to the inorganic film, moisture easily enters through the interface or the inside of the organic insulating film. However, if it is an inorganic film, as described above, it is formed by the CVD method or the like, so there is no absorption of moisture, etc., and the interface is also firmly adhered and bonded, so that the entry of moisture etc. is ensured. Can be shut out.
- the inorganic film is not limited to the inorganic insulating film, and the metal film has the same properties as the inorganic insulating film, and is surrounded by the metal film and the inorganic insulating film, so that the light emitting element 40 included therein is included. Is very reliable.
- the inventors of the present invention have an organic light emitting layer due to the intrusion of moisture even though the transparent insulating layer 95 made of an inorganic film is formed on the surface. 93 was found to deteriorate.
- the reflection electrode (pixel electrode) 85 of the liquid crystal display element 80 and the TFT 82 for the liquid crystal display element 80 It has been found that moisture permeates when forming the contact 85a for connecting to the drain. That is, contact holes are also formed in the transparent insulating layer 95 and the cathode electrode 94 in order to form the contacts 85a.
- the cathode electrode 94 of the organic EL display element 90 is not limited to Mg—Ag and is easily corroded by moisture, and is generated when a contact hole is formed. The present inventors have found that this corrosion spreads over the entire layer of the cathode electrode 94 and causes the organic light emitting layer 93 to deteriorate.
- a reflective liquid crystal display element 30 is formed in a first region R of one pixel, and an organic EL display element is formed in a second region T adjacent to the first region R of one pixel.
- a light emitting element 40 is formed.
- the first region R and the second region T are adjacent to each other in a plane, and do not overlap with each other in the vertical relationship with the plane.
- the reflective liquid crystal display element 30 includes a reflective electrode 31, a liquid crystal layer 32, a transparent electrode 33, and a polarizing plate 34.
- the liquid crystal layer 32, the counter substrate 50 including the transparent electrode 33, and the polarizing plate 34 extend to the second region T and are formed in the entire display device.
- the light emitting element 40 includes a second insulating layer 42 called a so-called insulating bank that defines a light emitting region with the first electrode 41, a light emitting layer 43, a second electrode 44, and a covering layer 45 covering the periphery thereof. Is included.
- the second insulating layer 42 is also formed on the insulating layer 25 in the first region R with the same material and substantially the same thickness, but a second insulating layer called a so-called insulating bank in the second region T. Therefore, the second insulating layer in the first region R is referred to as a third insulating layer 42a.
- the covering layer 45 of the light emitting element 40 is covered so as to include the light emitting layer 43 (organic light emitting layer) and the second electrode 44 in the case of an organic EL display element, and the edge of the covering layer 45 is the insulating layer 25. Bonded to the first surface. Since at least the first surface (upper surface) of the insulating layer 25 is formed by the first inorganic insulating film 25b, the covering layer 45 made of the second inorganic insulating film and the inorganic film are joined to each other.
- the second electrode (cathode electrode) 44 of the light emitting element 40 is in the second region T.
- the light emitting element 40 is covered with a light emitting layer 43 by a coating layer (TFE; Thin Film Film Encapsulation) 45 formed on the upper layer of the light emitting element 40.
- TFE Thin Film Film Encapsulation
- the edge of the covering layer 45 is bonded to the first inorganic insulating film 25b, which is the upper surface of the insulating layer 25, as described above.
- the first inorganic insulating film 25b metal films 41a (41) and 18c2 embedded in the contact holes 25c2 and 25c3 formed in the insulating layer 25 are embedded, and the peripheral edges of the metal films 41a (41) and 18c2 are embedded.
- the portions are bonded to the upper surface of the first inorganic insulating film 25b of the insulating layer 25, respectively.
- the light emitting layer 43 and the second electrode 44 of the light emitting element 40 are completely composed of the first inorganic insulating film 25b, the first surface of the insulating layer 25 made of the metal films 41a (41) and 18c2, and the covering layer 45. It is sealed (sealed).
- the covering layer 45 and the first inorganic insulating film 25b, and the first inorganic insulating film 25b and the metal films 41a (41) and 18c2 are the bonds between the inorganic films, they are sufficient to withstand sealing. It is joined to.
- sealing means sealing so as to completely prevent intrusion of moisture or the like, and contact holes or the like penetrating the inorganic film covering the light emitting element 40 are formed. Needless to say, it is preferable not to include a contact hole or the like that does not penetrate the inorganic film to be coated and is completed inside. That is, for example, if the coating layer 45 is formed so as to cover the drain third contact 13d3 connected to the reflective electrode 31 in the first region R shown in FIG. 1A, even if the coating layer 45 and the first inorganic insulation are formed.
- the second electrode 44 is formed so as to surround the periphery of the second insulating layer (insulating bank) 42, and the covering layer 45 covers the second electrode 44 on the outer surface thereof. It is preferable that the edge is bonded to the first inorganic insulating film 25b of the insulating layer 25. Since the light emitting layer 43 and the second electrode 44 that need to be protected can be enclosed in a minimum space, the reliability of the light emitting element 40 can be improved.
- the insulating layer 25 is formed of only an organic insulating film and the edge of the covering layer 45 is sealed by being bonded to, for example, the substrate 21, an insulating layer made of an organic insulating film is provided inside the insulating layer 25.
- the TFT 12 including the contact, the cathode bus line (wiring) 18 and the like are included, and the source contact 12s1 of the TFT 12, the cathode first contact 18c1 of the cathode bus line 18 and the cathode bus line 18 are included.
- moisture or the like at the time of forming these contact holes may remain, and there is a concern about intrusion into the light emitting layer 43 or the like.
- the light emitting element 40 is sealed by the upper surface of the insulating layer 25 on which the first electrode 41 of the light emitting element 40 is formed and the covering layer 45 formed on the second electrode 44. As such, it does not include any such gas source. As a result, only the light emitting element 40 including the light emitting layer 43 and the second electrode 44 is sealed with the inorganic film. In addition, since the partner to which the edge of the coating layer 45 is bonded is the upper surface of the insulating layer 25 and the surface on which the first electrode 41 of the light emitting element 40 is formed, the bonding surface for bonding the coating layer 45 is exposed. Etching is also very easy.
- the insulating layer 25 has a two-layer structure of an organic insulating film 25a and a first inorganic insulating film 25b. It is preferable.
- the organic insulating film 25a makes the surface of the TFT substrate 20 with uneven surface due to the formation of TFTs and the like flat, and the surface of the organic insulating film 25a is formed by CVD, plasma CVD, sputtering. This is because the first inorganic insulating film 25b made of Si 3 N 4 or the like can be formed.
- the surface can be easily flattened with the liquid organic insulating material, and can be flattened in a shorter time than the flattening with only the first inorganic insulating film 25b.
- the thickness of the organic insulating film 25a is about 2 ⁇ m or more and 4 ⁇ m or less
- the thickness of the first inorganic insulating film 25b is about 200 nm or more and 1000 nm or less. Since the organic insulating film 25a is formed by applying and curing a liquid resin, even a thick film can be formed in a short time, so that the insulating layer 25 having a planarized surface can be formed in a very short time.
- the insulating layer 25 is not limited to the laminated structure of the organic insulating film 25a and the first inorganic insulating film 25b.
- an inorganic insulating film formed by SOG or CVD may be used, or a combination of three or more layers may be formed.
- an inorganic insulating film may be formed on the upper surface.
- the first inorganic insulating film 25b is formed on the upper surface of the organic insulating film 25a, as described above, the first inorganic insulating film 25b is formed by a plasma CVD method or the like. In close contact.
- the first inorganic insulating film 25b is formed to a thickness of 200 nm or more and 1000 nm or less, it exhibits a sufficient barrier effect, and moisture that has entered through the organic insulating film 25a also travels toward the light emitting element 40. Can be prevented.
- the thickness of the liquid crystal layer 32 is not so different between the first region R and the second region T. Therefore, as shown in FIG. 1A, when the second insulating layer 42 that defines the light emitting region of the light emitting element 40 is formed, an insulating layer of the same material as the second insulating layer 42 is also formed in the first region R. Has been. However, in the example shown in FIG. 1A, the second insulating layer 42 is divided at the boundary between the first region R and the second region T, and a groove is formed therebetween to form the first surface of the insulating layer 25 ( The top surface is exposed. The edge of the covering layer 45 and the edge of the reflective electrode 31 are joined to the exposed first surface of the insulating layer 25.
- the covering layer 45 completely encloses the second insulating layer 42 to seal the light emitting element 40.
- the layer made of the same material as the second insulating layer 42 on the first region R side is called a third insulating layer 42a.
- the third insulating layer 42a is also formed in the first region R, so that the height of the lower layer of the liquid crystal layer 32 is made closer between the two regions R and T (strictly, the thickness of the coating layer 45).
- the difference between the second insulating layer 42 and the third insulating layer 42a is that the insulating layer 25 is exposed and the covering layer 45 and the insulating layer 25 are easily joined. As a result, the light emitting layer 43 and the second electrode 44 can be easily sealed by the covering layer 45.
- the boundary between the second insulating layer 42 and the third insulating layer 42 a is not limited to the boundary portion between the first region R and the second region T. As described above, for example, any portion may be used as long as the portion for forming the contact hole 42c for the reflective electrode 31 and the drain third contact 13d3 for connection is on the third insulating layer 42a side.
- the TFT substrate 20 has, for example, a driving TFT (thin film transistor, hereinafter simply referred to as TFT) 11, a current supply TFT 12, a switching TFT 13 (see FIG. 2), etc. on one surface of an insulating substrate 21 made of a resin film such as a glass substrate or polyimide.
- TFT driving TFT
- TFT current supply TFT
- switching TFT 13 switching TFT 13
- an insulating substrate 21 made of a resin film such as a glass substrate or polyimide.
- a TFT or a wiring such as a bus line
- an insulating layer 25 called a so-called flattening film is formed to flatten the surface.
- the insulating layer 25 is preferably formed of an organic material such as polyimide because the purpose is to eliminate unevenness between a portion where a TFT or the like is formed and a portion where the TFT or the like is not formed so as to have a flat surface.
- the first inorganic insulating film 25b may be provided on at least the upper surface of the insulating layer 25 which is a bonding surface with the coating layer 45 in consideration of the bonding with the coating layer 45 for sealing. I need it. Therefore, in the example shown in FIGS. 1A and 1B, the insulating layer 25 is formed of a composite film of an organic insulating film 25a and a first inorganic insulating film 25b. As described above, the insulating layer 25 may be formed of only an inorganic material.
- the insulating layer 25 is formed of an inorganic material such as SiO 2 or SiN x by a CVD method or the like, a thickness of several ⁇ m is required for flattening, so that the film formation time becomes long. However, it can be easily planarized by SOG (spin on glass) or the like. In the diagram shown in FIG. 1A, the structure of the element is conceptually shown, and not all of the elements are accurately described.
- the organic insulating film 25a is easily several ⁇ m by applying and curing a liquid resin such as polyimide resin or acrylic resin. The thickness is formed. As a coating method, it is applied by a dispenser, spin coating or printing.
- the first inorganic insulating film 25b is made of silicon oxide SiO 2 , silicon nitride SiN x , alumina Al 2 O 3 , tantalum pentoxide Ta 2 O 5 or the like with a thickness of 200 nm or more and 1000 nm or less by plasma CVD method, sputtering method, or the like. Formed.
- the barrier property such as moisture cannot be sufficiently exhibited. Further, even if the thickness exceeds 1000 nm, the barrier property is not further improved. On the other hand, the film stress increases and the substrate is warped. As a result, the characteristics of the drive circuit and the light emitting element 40 may be deteriorated depending on circumstances.
- a drain second contact 13d2 connected to the drain first contact 13d1 connected to the drain 13d of the TFT 13 is formed on the upper surface of the insulating layer 25, as shown in FIG. 1A.
- These contacts 13d2, 41a, and 18c2 are respectively formed with contact holes 25c1, 25c2, and 25c3 in the insulating layer 25, and then titanium / aluminum / titanium or the like in the contact holes 25c1, 25c2, and 25c3 by sputtering or electroplating. It is formed of a metal film embedded with a metal.
- the electrode contact 41a and the first electrode 41 may be formed of the same material or different materials, as will be described later. Therefore, in the case of the same material, there is no boundary.
- the contact holes 25c1, 25c2, and 25c3 are still before the light emitting layer 43 and the second electrode 44 of the light emitting element 40 are formed, etching or the like may be performed.
- the metal film embedded in the contact holes 25c1, 25c2, and 25c3 is an inorganic film as described above, it is bonded to the first inorganic insulating film 25b on the upper surface of the insulating layer 25 with excellent adhesion. . Accordingly, even if moisture remains in the contact holes 25c1, 25c2, and 25c3, the contact holes 25c1, 25c2, and 25c3 do not ooze into the upper surface of the first inorganic insulating film 25b of the insulating layer 25. That is, the upper surface of the insulating layer 25 is sealed by the first inorganic insulating film 25b and the metal films 41a (41) and 18c2 which are contacts.
- the circuit for driving the liquid crystal display element 30 and the light emitting element 40 has a configuration as shown in an equivalent circuit diagram in FIG. 2, for example. That is, the gate of the driving TFT 11 is connected to the gate bus line 16, and a gate signal (selection signal) is applied to the gate bus line 16, so that a row of pixels arranged side by side can be selected. Further, the source of the driving TFT 11 is connected to the source bus line 15 so that a data signal can be input to a column of pixels arranged vertically. Only the pixels intersecting the gate bus line 16 to which the selection signal is applied and the source bus line 15 to which the data signal is applied can be displayed based on the applied data signal.
- the drain of the driving TFT 11 is connected to the gate of the current supply TFT 12, and the current flowing through the light emitting element 40 is controlled corresponding to the display information.
- the drain of the driving TFT 11 is connected to the liquid crystal layer 32 and the liquid crystal auxiliary capacitor 14 via the switching TFT 13.
- the liquid crystal layer 32 is electrically shown as an equivalent circuit in which a capacitor and a resistor are connected in parallel as shown in FIG.
- the auxiliary capacitor 14 connected in parallel with the liquid crystal layer 32 is formed so as to hold the voltage of the reflective electrode 31 when scanning in the active matrix display.
- the second gate bus line 19 is connected to the gate of the switching TFT 13 and controls on / off of the operation of the switching TFT 13.
- the source of the switching TFT 13 is connected to the drain of the driving TFT 11, that is, the gate of the current supply TFT 12.
- the drain of the current supply TFT 12 is connected to the current bus line 17, and its source is connected to the anode electrode of the light emitting element 40.
- the cathode electrode 44 of the light emitting element 40 is connected to the cathode bus line 18 by a contact H (18c1, 18c2).
- the switch TFT 13 is provided to switch between the display by the liquid crystal display element 30 and the display by the light emitting element 40. That is, when the pixel is selected by the driving TFT 11 and the switching TFT 13 is turned on by a signal applied to the second gate bus line 19 connected to the gate of the switching TFT 13, the source bus line 15 is connected to the liquid crystal layer 32. And an image is displayed by the liquid crystal display element 30.
- the switching TFT 13 is on, the current bus line 17 is turned off so that no current flows through the current supply TFT 12.
- the driving TFT 11 is selected and the switching TFT 13 is off, the driving TFT 11 is not connected to the liquid crystal layer 32, the current supply TFT 12 is turned on, and an image is displayed by the light emitting element 40.
- the switch TFT 13 is for enabling the liquid crystal display element 30 and the light emitting element 40 to be driven independently. That is, the light emitting element 40 often has a wide color reproduction range of 100% in terms of NTSC ratio. However, the reflective liquid crystal display element 30 is often designed to display a bright display with a narrow color reproduction range. Therefore, if the liquid crystal display element 30 and the light emitting element 40 are displayed simultaneously, the display of the light emitting display element 40 will be inhibited. Therefore, the liquid crystal display element 30 is prevented from operating during the operation of the light emitting element 40.
- the liquid crystal display element 30 includes a reflective electrode 31, a liquid crystal layer 32, a counter electrode 33, and a polarizing plate 34 formed on the entire surface of the first region R, which is about half of one pixel. It is formed as an element.
- the liquid crystal layer 32 is difficult to form only in the first region R, and is formed on the entire surface including the second region T together with the counter electrode 33.
- the color filter 35 is formed between the insulating substrate 51 of the counter substrate 50 and the counter electrode 33.
- a liquid crystal alignment layer is formed on the surface of the counter substrate 50 in contact with the liquid crystal layer 32.
- the reflective electrode 31 is a so-called pixel electrode and is formed on almost the entire surface of the first region R.
- the reflective electrode 31 is formed on the first region R side on the first region R side, which is formed simultaneously with the same material as the second insulating layer 42 serving as an insulating bank that defines the light emitting region of the light emitting device 40 in each pixel of the light emitting device 40 described later. It is formed on the three insulating layers 42a.
- the reflective electrode 31 is connected to the drain first contact 13d1 of the switching TFT 13 via the drain third contact 13d3 formed on the third insulating layer 42a and the drain second contact 13d2 formed on the insulating layer 25. Connected through.
- the reflective electrode 31 is formed of, for example, a laminated film of Al (aluminum) of 0.05 ⁇ m or more and 0.2 ⁇ m or less and IZO (Indium Zinc Oxide) of 0.01 ⁇ m or more and 0.05 ⁇ m or less.
- the liquid crystal layer 32 includes a liquid crystal composition containing a desired liquid crystal material, and for example, a liquid crystal material applied to various display modes such as an ECB (Electrically Controlled Birefringence) mode can be used.
- ECB Electro Mechanical Controlled Birefringence
- a guest / host liquid crystal material may be used.
- the liquid crystal layer 32 blocks / passes incident light for each pixel according to on / off of the voltage between both the reflective electrode 31 and the counter electrode 33 in cooperation with the polarizing plate 34.
- a liquid crystal alignment layer (not shown) is formed on both surfaces of the liquid crystal layer 32, that is, the outermost surface facing the liquid crystal layer 32 of the TFT substrate 20 and the outermost surface facing the liquid crystal layer 32 of the counter substrate 50.
- This liquid crystal alignment layer regulates the orientation of liquid crystal molecules, and its orientation direction is regulated by ultraviolet irradiation or rubbing.
- the alignment of the liquid crystal layer is controlled by the liquid crystal alignment layer.
- the liquid crystal alignment layer is controlled so that the liquid crystal molecules are vertically aligned in a state where no voltage is applied to both surfaces of the liquid crystal layer 32.
- black display that is, normally black become.
- the light emitting element 40 is formed on the liquid crystal alignment layer on the TFT substrate 20 side, it is difficult to perform rubbing or ultraviolet irradiation.
- a pretilt angle (tilt) is not formed, and the alignment is substantially vertical, but it is preferable that a pretilt angle of 80 ° to 89.9 ° is formed in the liquid crystal alignment layer on the counter substrate 50 side.
- a pretilt angle 80 ° to 89.9 ° is formed in the liquid crystal alignment layer on the counter substrate 50 side.
- the polarizing plate 34 is a circular polarizing plate in the example shown in FIG. 1A.
- the circularly polarizing plate is formed by a combination of a linearly polarizing plate and a quarter wavelength retardation plate. Furthermore, a half-wave plate may be used in combination so as to show a quarter-wave condition for a wide range of wavelengths.
- the retardation plate is made of an optical film that is uniaxially stretched. The light that has passed through the linearly polarizing plate is phase-shifted by 1 ⁇ 4 wavelength, for example, right-polarized light by the retardation plate.
- the liquid crystal molecules are horizontally aligned, and the external light is further shifted in phase by a quarter wavelength in the liquid crystal layer 32.
- the phase difference is 1 ⁇ 2 wavelength and reflected as linearly polarized light.
- the external light passes through a path opposite to that at the time of incidence, so that it passes through the polarizing plate and becomes a white display.
- the polarizing plate 34 is not limited to a circularly polarizing plate, and may be a linear polarizing plate depending on the display mode.
- the counter electrode 33 is an electrode common to all the pixels for applying or not applying a voltage to each pixel of the liquid crystal layer 32. Therefore, it is formed on the entire surface of the display screen, and is also formed in the second region T where the light emitting element 40 described later is formed. Since the counter electrode 33 needs to transmit light, it is formed of a light-transmitting (transparent) conductive film. For example, it is formed of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
- the light-emitting element 40 As described above, various light-emitting elements can be applied to the light-emitting element 40. In particular, in the case of an organic EL display element, the light-emitting layer 43 and the second electrode are easily affected by moisture and the effect of the present embodiment is achieved. large. Therefore, an example of an organic EL display element will be described as the light emitting element 40.
- the light emitting element 40 is formed in the second region T of one pixel. As shown in FIG. 1A, the light emitting element 40 is formed around the first electrode 41 formed on the upper surface of the second region T of the insulating layer 25 and the periphery thereof.
- the second insulating layer 42, the light emitting layer 43 (organic light emitting layer) formed on the first electrode (anode electrode) 41 surrounded by the second insulating layer 42, and the light emitting element 40 on the light emitting layer 43 are almost all over the surface.
- a second electrode (cathode electrode) 44 to be formed and a coating layer 45 covering the periphery thereof are formed.
- the covering layer 45 is formed of a second inorganic insulating film composed of one layer or a plurality of layers.
- the first electrode 41 is formed as an anode electrode, for example. As shown in FIG. 1A, the first electrode 41 is formed continuously and simultaneously with the electrode contact 41a. However, it may be formed of a material different from the electrode contact 41a. When formed of another material, it is preferable that the first electrode 41 is formed so as to cover the electrode contact 41 a and the peripheral edge thereof is bonded to the upper surface of the insulating layer 25. In the case of this embodiment, since the display screen is viewed from the upper side of FIG. 1A, the first electrode 41 is formed as a reflective electrode, and has a structure that radiates all emitted light upward.
- the material is a light-reflective material, and the material is selected depending on the work function relationship with the light emitting layer 43 and the like in contact with the electrode 41.
- the surface and the lowermost layer are formed of an ITO film, and an ITO / Ag or APC / ITO laminated film in which Ag or APC is sandwiched therebetween.
- the ITO film is also an inorganic film and can be handled in the same way as a metal film.
- Ag or APC is formed to a thickness of about 100 nm.
- the ITO film is formed to a thickness of about 300 nm to 1 ⁇ m.
- the second insulating layer 42 is also called an insulating bank or a partition, and is formed to demarcate the light emitting region of the light emitting element 40 and prevent the anode electrode 41 and the cathode electrode 44 from being in contact with each other.
- a light emitting layer 43 is stacked on the first electrode 41 surrounded by the second insulating layer 42.
- the second insulating layer 42 is made of a resin such as polyimide or acrylic resin. As described above, the second insulating layer 42 is also formed in the first region R of the liquid crystal display element 30 in order to match the heights of the first region R and the second region T.
- a liquid resin is applied to the entire surface, and then patterned to form the second insulating layer 42 around the first electrode 41 of the light emitting element 40 and the third insulating layer 42a in the first region R.
- this patterning is based on dry etching, there is no risk of moisture remaining.
- the second insulating layer 42 on the light emitting element 40 side and the third insulating layer 42a on the liquid crystal display element 30 side are divided, and the insulating layer 25 can be exposed in a groove formed therebetween.
- the organic light emitting layer (light emitting layer 43) and the second electrode (cathode electrode) 44 of the organic EL display element (light emitting element 40) to be completely covered and sealed by the covering layer 45.
- the location of the division need not be the boundary between the first region R and the second region T, and may be a position where the second insulating layer 42 does not include the contact hole.
- the light emitting layer 43 is laminated on the first electrode 41 which is exposed by being surrounded by the second insulating layer 42. Although the light emitting layer 43 is shown as a single layer in FIG. 1A and the like, various layers are laminated to form a plurality of layers. In addition, since the light emitting layer 43 is weak against moisture and cannot be patterned after being formed on the entire surface, an evaporated or sublimated organic material is selectively deposited only on necessary portions using a deposition mask. It is formed.
- a hole injection layer made of a material having a good ionization energy consistency that improves the hole injection property
- a hole transport layer capable of improving the stable transport of holes and confining electrons (energy barrier) in the light emitting layer is formed of, for example, an amine material.
- a light emitting layer selected on the basis of the light emission wavelength is formed by doping Alq 3 with red or green organic fluorescent material for red, green, for example.
- a DSA organic material is used.
- the light emitting layer can be formed of the same material without doping.
- an electron transport layer that further improves the electron injection property and stably transports electrons is formed of Alq 3 or the like.
- a laminated film of the light emitting layer 43 is formed by laminating each of these layers by several tens of nm.
- An electron injection layer that improves the electron injection property such as LiF or Liq may be provided between the light emitting layer 43 and the second electrode 44.
- the light emitting layer 43 can include these light emitting layers and inorganic layers.
- the light emitting layer may be deposited with a light emitting layer of a material corresponding to each color of RGB.
- the light emitting layer is formed of the same organic material, and the light emission color is specified by the color filter 35.
- the hole transport layer, the electron transport layer, and the like are preferably deposited separately using a material suitable for the light emitting layer if the light emitting performance is important.
- the material cost there are cases where two or three colors of RGB are laminated with the same material.
- the second electrode 44 is formed on the surface thereof. Specifically, the second electrode (for example, cathode electrode) 44 is formed on the light emitting element 40.
- the second electrode 44 may also be formed to extend to the first region R as in the bank layer described above, but it is necessary to be completely covered with the coating layer 45 up to a place where the contact hole is not formed. is there. This is because the second electrode 44 is formed of a translucent material, for example, a thin Mg—Ag eutectic film, and is easily corroded by moisture.
- a coating layer 45 made of an inorganic insulating film such as Si 3 N 4 or SiO 2 is formed by a single layer or a stacked layer of two or more layers.
- the thickness of one layer is about 0.01 ⁇ m to 1.0 ⁇ m, and preferably, it is formed of a laminated film of about two layers.
- the covering layer 45 is preferably formed in multiple layers with different materials.
- the covering layer 45 may be a single layer made of an inorganic insulating film. However, even if a pinhole is formed by being formed of a plurality of layers, the positions of the pinholes are almost the same in a plurality of layers. There is no, completely shut off from the outside air.
- the covering layer 45 may be formed in a three-layer structure in which an organic film is interposed between inorganic insulating films instead of a plurality of layers including only an inorganic insulating film.
- an organic film 45b is formed on the second inorganic insulating film 45a, and an extremely thin third inorganic insulating film 45c is formed on the organic film 45b. May be.
- the third inorganic insulating film 45c is preferably thin.
- the organic film 45b does not need to be continuously formed on the upper part of the second inorganic insulating film 45a formed on the light emitting element 40, and may be formed to be localized in some places.
- the edge of the third inorganic insulating film 45c is also preferably joined to the first inorganic insulating film 25b on the upper surface of the insulating layer 25 as shown in FIG. 3D.
- this bonding is performed by being deposited on the upper surface of the insulating layer 25 so as to be closely bonded.
- the covering layer 45 is formed so as to completely seal the light emitting layer 43 and the second electrode 44.
- the light emitting element 40 is formed.
- the liquid crystal layer 32 and the counter electrode 33 are also formed on the light emitting element 40. This is because it is difficult to form the liquid crystal layer 32 only in the first region R as described above.
- the electrode is only the counter electrode, and there is no electrode corresponding to the reflective electrode (pixel electrode) 31. Therefore, the situation is the same as when the voltage applied to both surfaces of the liquid crystal layer 32 is off.
- the light emitted from the light emitting element 40 is normally black with respect to outside light, but the liquid crystal layer 32 is the same as the liquid crystal layer 32 without the liquid crystal layer 32 because of the vertical alignment. Passes through the polarizing plate 34. And since the light which passed the circularly-polarizing plate 34 is visually recognized as it is, the image displayed by light emission with the light emitting element 40 is visually recognized as it is from the front side.
- the circularly polarizing plate 34 is preferably formed also in the second region T. The reason for this is that when external light enters from the front, the first electrode 41 of the light emitting element 40 is formed of a light reflective material as described above. If the light is reflected off the first electrode 41 or the like and goes out, the display screen becomes very difficult to see.
- the circularly polarizing plate 34 if there is the circularly polarizing plate 34, if the light is reflected by the first electrode 41 or the like as described above, the rotation direction of the circularly polarized light is reversed, so that the reflected light cannot pass through the circularly polarizing plate. As a result, the reflected light can be cut.
- the light emitting element 40 is not operated, but reflected light is generated regardless of whether the light emitting element 40 is in operation or not even when the liquid crystal display element 30 is in operation. If the plate 34 is not in the second region T, the visual characteristics of the liquid crystal display element are significantly degraded.
- the counter substrate 50 includes a color filter 35 and a counter electrode 33 formed on a substrate such as glass or a transparent (translucent) film.
- the color filter 35 forms pixels of three primary colors of red (R), green (G), and blue (B) for each pixel.
- the light emitting element 40 side can also perform color display using a color filter. However, by selecting the material of the light emitting layer, red (R), green (G), and blue (B) light can be directly emitted. In the case of emitting light, a color filter is unnecessary.
- the counter substrate 50 is provided with a liquid crystal alignment layer on the surface facing the liquid crystal layer 32 and subjected to rubbing or the like.
- the counter substrate 50 and the TFT substrate 20 on which the light emitting element 40 and the like are formed are bonded with a sealant layer (not shown) around the periphery with a certain gap so that the reflective electrode 31 and the counter electrode 33 face each other. Is done.
- the liquid crystal composition 32 is formed by injecting a liquid crystal composition into the gap.
- the aforementioned circularly polarizing plate 34 is provided on the surface of the counter substrate 50 opposite to the liquid crystal layer 32.
- TFT substrate and light emitting device manufacturing method Next, the manufacturing process of the TFT substrate 20 and the light emitting element 40 formed thereon will be described with reference to FIGS. 3A to 3G and FIGS. 4A to 4G.
- a semiconductor layer 22 and a cathode bus line 18 are formed on an insulating substrate 21, and a gate insulating film 23 made of SiO 2 or the like is formed thereon. Then, impurities are doped in predetermined regions of the semiconductor layer 22 to form the source 13s and drain 13d (see FIG. 1A) of the switching TFT 13 and the drain 12d and source 12s (see FIG. 1A) of the current supply TFT 12, respectively.
- the On the gate insulating film 23, the gate electrode 13g of the switching TFT 13, the gate electrode 12g of the current supply TFT 12, and the electrode 14d for the auxiliary capacitor 14 are formed.
- a passivation film 24 made of SiN x or the like is formed on the surface.
- a source contact 13s1, a drain first contact 13d1 of the switching TFT 13, a source contact 12s1, a drain contact 12d1, a cathode first contact 18c1, and the like of the current supply TFT 12 are formed, and an insulating layer 25 that flattens the surface is formed.
- an organic insulating film 25a made of polyimide or the like and a first inorganic insulating film 25b made of SiN x or the like.
- the insulating layer 25 may be formed of a single layer of an inorganic film such as SOG.
- a plan view showing the arrangement of the TFTs and bus lines is shown in FIG. 4A.
- a drain second contact 13d2 is formed on the insulating layer 25 so as to be connected to the drain first contact 13d1.
- the electrode contact 41a connected to the source contact 12s1, the first electrode 41 of the light emitting element 40, and the cathode second contact 18c2 connected to the cathode first contact 18c1 are formed in the insulating layer 25, respectively.
- contact holes 25c1, 25c2, and 25c3 are formed in the insulating layer 25, and a metal film is embedded therein by plating or the like, and a collar portion that joins the upper surface of the insulating layer 25 is formed on the surface.
- the insulating layer 25 is bonded to the upper surface. At least the peripheral part of these metal films can be sealed with the first inorganic insulating film 25b on the upper surface of the insulating layer 25 to seal the upper part thereof.
- the liquid crystal drain second contact 13d2 is formed by forming a contact hole 25c1 and embedding a conductive layer such as copper, etc.
- the first electrode (anode electrode) for the light emitting element 40 is formed as described above.
- the light emitting layer 43 is formed by a laminated film of ITO / APC (Ag—Pd—Cu alloy) / ITO. A plan view at this time is shown in FIG. 4B.
- the second insulating layer 42 is formed of polyimide, acrylic resin, or the like.
- the second insulating layer 42 divides each pixel of the light emitting element 40 and is formed to have a convex portion around the first electrode 41.
- the second insulating layer 42 is made of the resin described above. Therefore, a resin film is formed on the entire surface in a liquid state, and then formed in a desired shape at a desired position by patterning. In this embodiment, it is applied to the entire surface of the TFT substrate 20 with a thickness that matches the height of the protrusions formed around the first electrode 41, and is patterned with the first electrode 41 and the third insulating layer 42a. The boundary is exposed.
- the third insulating layer 42a is also formed in the first region R, but at least the drain second contact 13d2 for connecting to the pixel electrode 31 in the first region R is the third insulating layer on the first region R side.
- the second insulating layer 42 and the third insulating layer 42a are separated so as to become the layer 42a, and the insulating layer 25 is exposed therebetween.
- the coating layer 45 formed thereon can completely cover the light emitting layer 43 of the light emitting element 40 and the second electrode 44 thereon.
- a contact hole (not shown) connected to the drain first contact 13d1 in the first region R is formed, and a drain third contact 13d3 is formed.
- the second insulating layer 42 and the third insulating layer 42a for example, as shown in FIG. 4C, the second insulating layer 42 is formed around the first electrode 41, and the second insulating layer 42 is formed on the outer periphery thereof.
- a third insulating layer 42a is formed so as to be spaced apart from each other.
- the drain third contact 13d3 connected to the drain of the driving TFT 11 is exposed at a part of the third insulating layer 42a.
- the light emitting layer 43 is formed. Since the light emitting layer 43 is weak to moisture and oxygen and cannot be patterned, the light emitting layer 43 is deposited only in a necessary region using a deposition mask. That is, the vapor deposition mask is arranged on the convex portion of the second insulating layer 42 in FIG. 3D, and the organic material sublimated or vaporized from the crucible or the like is only on the first electrode 41 surrounded by the second insulating layer 42. Is laminated. As described above, this organic material is laminated with various materials.
- a second electrode 44 serving as a cathode electrode is formed on almost the entire surface of the light emitting element 40 including the light emitting layer 43 and the convex portions of the second insulating layer 42.
- the second electrode 44 is made of, for example, an Mg—Ag alloy and is formed by vapor deposition using a vapor deposition mask.
- the second electrode 44 is formed so that the second insulating layer 42 remains around, but a part thereof is formed beyond the second insulating layer 42. Even in this case, the third insulating layer 42a is formed so as to have a certain distance (the insulating layer 25 is exposed).
- the covering layer 45 is a layer for protecting the light emitting layer 43 from moisture and oxygen, and is formed of an inorganic film such as SiN x or SiO 2 .
- the covering layer 45 is formed by a CVD method, an ALD (Atomic Layer Deposition) method, or the like.
- the covering layer 45 may be laminated in multiple layers with different materials. For example, as shown in FIG. 4F, the covering layer 45 is formed on the light emitting element 40, but may be formed to extend to the liquid crystal display element 30 side that is the first region.
- drain third contact 13d3 it is necessary not to straddle the drain third contact 13d3. If it is formed also on the drain third contact 13d3, it is necessary to form a through hole for contact in the covering layer 45. This is because when the contact hole is formed in the coating layer 45, moisture enters, and the moisture enters the second electrode 44 and the light emitting layer 43 side along the inner surface.
- the coating layer 45 may be formed by etching and then patterned by etching. This is because the covering layer 45 is bonded to the insulating layer 25 and prevents moisture from entering. However, it is also possible to deposit only at the desired location using a mask. The latter is preferable from the viewpoint of preventing moisture from entering.
- a reflective electrode (pixel electrode) 31 for the liquid crystal display element 30 is formed on the surface of the third insulating layer 42a in the first region R.
- the reflective electrode 31 is also electrically connected to the drain third contact 13d3.
- the reflective electrode 31 is made of, for example, Al and IZO.
- the reflective electrode 31 is also formed on almost the entire surface of one pixel except for the entire surface of the light emitting element 40.
- the reflective film formed on the entire surface by vapor deposition or the like may be formed by patterning. This is because the light emitting layer 43 and the like are completely covered with the covering layer 45. However, it may be formed only in a desired region by covering the mask. Thereby, the elements of the first region R and the second region T on the TFT substrate 20 side are formed. Thereafter, although not shown, a liquid crystal alignment layer is formed on the entire surface.
- an insulating substrate 51 such as a glass plate or a resin film, a translucent counter electrode 33 and, if necessary, a color filter 35 or a liquid crystal alignment layer (not shown).
- a polarizing plate 34 is provided on the surface of the insulating substrate 51 opposite to the counter electrode 33.
- the polarizing plate 34 is a circularly polarizing plate, a quarter-wave retardation layer is disposed on the insulating substrate side, and a linear polarizing plate is disposed thereon.
- the TFT substrate 20 on which the light emitting element 40 and the like are formed and the counter substrate 50 are bonded together with a sealant layer at a certain gap so that the electrodes face each other.
- the liquid crystal layer 32 is formed by filling the gap portion with the liquid crystal composition.
- a reflective liquid crystal display element 30 is formed in the first region where the reflective electrode 31 is formed, and a light emitting element 40 is formed in the second region T, thereby obtaining a display device that constitutes one pixel.
- the display device of the present embodiment when there is sufficient external light such as daytime, the display device operates as a reflective liquid crystal display element. An image is displayed by the element. As a result, a display device that is very power-saving and consumes less battery power can be obtained. Therefore, it can be conveniently used for portable devices such as mobile phones and personal digital assistants (PDAs).
- PDAs personal digital assistants
- the area available for display is about 80%, excluding the space between pixels from the entire display area.
- the area of the light emitting layer 43 (inside the second insulating layer 42) must be about 30% or less when the light emitting layer is formed by vapor deposition, and the remaining 50% can be used as the reflective display region R.
- the reflectance of the reflective display portion is about 8%, but when the illuminance of outside light is 30,000 lux (cloudy sky), the reflective display portion is 800 cd / m 2 , and a sufficiently bright display can be realized.
- the luminance of the light emitting element 40 is usually about 500 cd / m 2 , for the purpose of making it visible under external light. In the present embodiment, it is not necessary to increase the brightness so much due to the effect of the reflective display section. In addition, there is a merit that a light emitting material in which reliability is more important than luminance can be selected.
- a display device includes a TFT substrate in which an insulating layer is formed on a driving element; A liquid crystal layer comprising a liquid crystal composition; A counter substrate having a transparent electrode facing the TFT substrate through the liquid crystal layer; A polarizing plate provided on a surface opposite to the surface facing the liquid crystal layer of the counter substrate;
- the display device includes a plurality of pixels including a first region and a second region adjacent to each other in a display region, The first region includes a reflective electrode above the insulating layer of the TFT substrate, The second region includes a light emitting element in which a first electrode, a light emitting layer, and a second electrode are stacked on the insulating layer of the TFT substrate, At least in the second region, the first surface of the insulating layer facing the counter substrate is connected to the first inorganic insulating film and the TFT, and the surface of the first inorganic insulating film faces the counter substrate Formed by a metal film
- the upper surface of the insulating layer for flattening the surface of the TFT substrate is formed of the inorganic insulating film, and the edge of the coating layer is bonded to the surface.
- the light emitting layer and the second electrode of the light emitting element are completely sealed by the inorganic film of the metal film in which the contact hole of the covering layer, the insulating layer, and the insulating layer are embedded. Since the light-emitting element is formed over the insulating layer, the light-emitting element is sealed with an inorganic film in a very narrow space. Therefore, intrusion of moisture and the like can be effectively prevented, and the reliability of the light emitting element is greatly improved.
- the organic light-emitting layer of the organic EL display element is particularly effective because it is vulnerable to moisture.
- the coating layer is made of a laminated film of a plurality of inorganic insulating films and organic films, and the respective edges of the second inorganic insulating film and the third inorganic insulating film made of the plurality of inorganic insulating films are the first inorganic It is preferable that the light emitting layer and the second electrode be sealed by bonding with an insulating film, since elasticity can be maintained while ensuring sealing.
- the contact hole is not included above the insulating layer.
- the insulating layer includes an organic insulating film on the surface opposite to the first surface of the first inorganic insulating film. However, it is preferable because the upper surface of the insulating layer is easily formed with an inorganic insulating film.
- the insulating layer may be formed only of the first inorganic insulating film.
- the upper surface can be formed as an inorganic insulating film while being planarized in a short time.
- the first surface of the TFT substrate further includes a second insulating layer that partitions the light emitting region of the light emitting element, and the second insulating layer is also formed on the first region on the insulating layer.
- the first inorganic insulating film and the second inorganic insulating film are joined in a groove formed by arranging and dividing between the first region and the second region. preferable.
- the height of the stacked structure can be approximated between the first region and the second region while the second insulating layer is separated from the first region side.
- the performance of the liquid crystal display element and the light emitting element can be improved and the reliability with respect to moisture can be improved.
- the first surface of the TFT substrate further includes a second insulating layer that partitions the light emitting region of the light emitting element, and the second insulating layer is also formed on the first region on the insulating layer. It is preferable that the edge of the reflective electrode is bonded to the first inorganic insulating film in the groove formed by being arranged and divided between the first region and the second region. . The first region and the second region can be reliably divided.
- the reflective electrode and the TFT are electrically connected via a contact hole, and the contact hole includes the first insulating film sealing the light emitting layer and the second electrode of the light emitting element, and the first electrode. It is preferable that the light emitting element is sealed only with an inorganic film to be formed outside the joint portion with the two insulating films.
- a switching TFT for switching between the display in the first region and the display in the second region is formed on the TFT substrate. This is because each light emission (display) is performed without interference.
- the liquid crystal layer is aligned in normally black, the polarizing plate is a circularly polarizing plate, and is also formed on the second region. This is because the reflected light of the external light in the second region can be cut by the circularly polarizing plate.
- the TFT substrate has a first liquid crystal alignment layer on a surface facing the liquid crystal layer
- the counter substrate has a second liquid crystal alignment layer on a surface facing the liquid crystal layer
- the liquid crystal layer It is preferable that the liquid crystal molecules are substantially vertically aligned in the vicinity of the TFT substrate and have a pretilt with respect to the surface of the counter substrate. This is because normally black is not affected at all by the light emission of the light emitting element even if the liquid crystal layer is interposed on the light emitting element side.
- the pretilt angle is preferably 80 ° to 89.9 ° with respect to the surface of the counter substrate. This is because the transition to the horizontal orientation becomes smooth.
- Driving TFT Current supply TFT 12s1 source contact (metal film) 13 TFT for switch 18 Cathode bus line 18c2 Cathode second contact (metal film) 20 TFT substrate 25 Insulating layer (flattening film) 25a Organic insulating film 25b First inorganic insulating film 30 Liquid crystal display element 31 Reflecting electrode (pixel electrode) 32 Liquid crystal layer 33 Counter electrode 40 Light emitting element 41 First electrode (metal film) 41a Electrode contact (metal film) 42 second insulating layer 42a third insulating layer 43 light emitting layer 44 second electrode 45 coating layer 45a second inorganic insulating film 45b organic film 45c third inorganic insulating film 50 counter substrate R first region T second region
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- Optics & Photonics (AREA)
- Theoretical Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
TFT基板(20)の第一領域(R)で、少なくとも上面が無機絶縁膜(25b)からなる絶縁層(25)の上方に形成され、反射電極(31)、液晶層(32)、及び対向電極(33)を有する反射型液晶表示素子(30)と、TFT基板(20)の絶縁層(25)の上の第二領域(T)に形成され、第一電極(41)、発光層(43)、及び第二電極(44)を有する発光素子(40)とを有している。そして、発光素子は、各画素の発光領域毎に全体を覆う被覆層(45)を有し、被覆層の辺縁が絶縁層の無機絶縁膜(25b)と接合されることによって、絶縁層(25)の上面、絶縁層のコンタクト孔を塞ぐ金属膜(41a、41、18c2)、及び被覆層(45)の各無機膜同士の接合で、発光層及び第二電極が完全に封止されている。
Description
本発明は、反射型液晶表示素子と有機EL表示素子などの発光素子とを組み合せた複合型(ハイブリッド型)の表示装置に関する。
近年、携帯電話をはじめとして、携帯情報端末(PDA)などの携帯機器が広く普及している。このような携帯機器では、特に電池の消耗の少ないことが要求されている。そのため、例えば液晶表示素子においては、バックライトを有しないで、外光を利用する反射型の液晶表示素子が利用される場合がある。しかし、反射型液晶表示素子のように、外光を利用する表示素子においては、夜間とか、外光の少ない室内では、表示できないという問題がある。そこで、反射型液晶表示素子と、消費電力の少ない有機EL表示素子とを併用した表示装置が考えられている(例えば特許文献1参照)。
この表示装置は、例えば図5にその断面図が示されるような構造になっている。すなわち、絶縁性基板81に液晶表示素子用TFT82、有機EL表示素子用TFT83、図示しないバスラインなどが形成され、その表面に平坦化膜84が形成されている。そして、図5に示されるように、反射領域Pと透過領域Qとに区分され、透過領域Qの平坦化膜84の上に有機EL表示素子90用の光反射性のアノード電極91が形成される。そして、絶縁層92、有機発光層93、カソード電極94、及び透明絶縁層95が形成されることによって、有機EL表示素子90が形成されている。また、反射領域Pでは、透明絶縁層95の上に、反射電極(画素電極)85、液晶層86、対向電極87及び対向基板88が設けられ、その外面に偏光板89が形成されることによって、反射型の液晶表示素子80が形成されている。この例では、偏光板89は直線偏光板89aに1/4波長の位相差板89bが重ねられることによって円偏光板とされている。この際、有機EL表示素子90のカソード電極94や透明絶縁層95は、反射領域Pの方にも形成され、液晶表示素子80用の液晶層86、対向電極87、対向基板88、及び偏光板89等は透過領域Qにもそのまま延長して形成されている。また、対向電極87と対向基板88との間にカラーフィルタ層88aが形成されている。
前述のように、従来の反射型液晶表示素子80と有機EL表示素子90とを組み合せた複合型の表示装置では、有機EL表示素子90のカソード電極94や透明絶縁層95、液晶表示素子80用の液晶層86、対向電極87、対向基板88、及び偏光板89は、それぞれ相手方の領域にも延びて形成されている。これは、それぞれ相手方の領域まで延長して形成されても、悪影響を及ぼさないこと、及び液晶層86を液晶表示素子80の反射領域Pのみに形成することは難しいこと、液晶層86の厚さが反射領域P及び透過領域Qでほぼ同じになっていることが好ましく、その下の層の高さをほぼ同じにする必要があることなどに基づいていると考えられる。そのため、有機EL表示素子90用のカソード電極94やその表面に形成される透明絶縁層95も、液晶表示素子80の反射領域Pにも形成されていると考えられる。
しかし、このような複合型の表示装置では、有機EL表示素子90の寿命が短く、短時間で有機EL表示素子90の出力などの性能が劣化しやすいという問題がある。本発明者らが鋭意検討を重ねてその原因を調べた結果、有機EL表示素子90の最表面には五酸化タンタルなどからなる無機膜の絶縁層95が形成されて水分の浸入の防止が図られているが、その水分の浸入の防止が十分ではないことに起因していることが見出された。
本発明は、このような問題を解決するためになされたもので、液晶表示素子と有機EL表示素子とを有する複合型の表示装置において、有機EL表示素子などの発光素子が、液晶表示素子とは独立して、しかも発光素子の近傍の部分のみが無機膜によって完全に封止され、発光素子のカソード電極及び発光層への水分及び酸素などの浸入を確実にシャットアウトすることができる構造の複合型の表示装置を提供することを目的とする。
本発明の一実施形態の表示装置は、駆動素子上に絶縁層を形成したTFT基板と、液晶組成物を含む液晶層と、前記液晶層を介して前記TFT基板に対向する、透明電極を備えた対向基板と、前記対向基板の前記液晶層に対向する面と反対面に設けた偏光板と、を有する表示装置において、前記表示装置は、表示領域内に互いに隣接する第一領域と第二領域からなる複数個の画素を有し、前記第一領域は、前記TFT基板の前記絶縁層の上方に反射電極を備え、前記第二領域は、前記TFT基板の前記絶縁層の上に第一電極、発光層、及び第二電極を積層した発光素子を備え、少なくとも前記第二領域において、前記絶縁層の前記対向基板を向く第一面が、第一無機絶縁膜、及び、前記TFTと接続され、かつ、前記第一無機絶縁膜の前記対向基板を向く面と接合して設けられた金属膜によって形成され、前記発光素子は、前記表示装置の発光領域毎に全体を覆う第二無機絶縁膜を少なくとも含む被覆層を有し、前記被覆層の辺縁が前記絶縁層と接合されることによって、前記絶縁層の前記第一無機絶縁膜、及び前記被覆層の第二無機絶縁膜によって、前記発光層及び前記第二電極が封止されている。
本発明の一実施形態によれば、発光素子の第二電極及び発光層の部分は、第二無機絶縁膜からなる被覆層と、第一絶縁被膜の上面及び絶縁層のコンタクト孔に埋め込まれ、第一無機絶縁膜の上面で接合された金属膜によって形成された絶縁層の第一面との各無機膜の接合によって、封止(シール)されている。そのため、発光素子の発光層及び第二電極への水分及び酸素などの浸入が完全に阻止され、信頼性が向上する。
次に、図面を参照しながら本発明の第一実施形態である表示装置が説明される。図1Aに一実施形態の表示装置の一画素分の概略の断面図が、図1Bに図1Aの発光素子封止構造を説明する図が、図2に図1Aの駆動素子部の等価回路が、図3A~3G及び図4A~4Gにその製造工程の断面図及び平面図が、それぞれ示されている。
本発明の一実施形態の表示装置は、図1A及び図1Bにその断面の説明図が示されるように、TFT11(図2参照)、駆動素子上に絶縁層25を形成したTFT基板20と、液晶組成物を含む液晶層32と、液晶層32を介してTFT基板20に対向する、透明電極33を備えた対向基板50と、対向基板50の液晶層32に対向する面と反対面に設けた偏光板34と、を有している。そして、表示領域内に互いに隣接する第一領域Rと第二領域Tとからなる複数個の画素を有し、第一領域Rは、TFT基板20の絶縁層25の上方に反射電極31を備え、第二領域Tは、TFT基板20の絶縁層25の上に第一電極41、発光層43、及び第二電極44を積層した発光素子40を備えている。少なくとも第二領域Tにおいて、絶縁層25の対向基板50を向く第一面が、第一無機絶縁膜25b、及び、TFT11(図2参照)、TFT12、13と接続され、かつ、第一無機絶縁膜25bの対向基板50を向く面と接合して設けられた金属膜(コンタクト41a、41、18c2)によって形成され、発光素子40は、表示装置の発光領域毎に全体を覆う第二無機絶縁膜からなる被覆層45を有し、被覆層45の辺縁が第一無機絶縁膜25bと接合されることによって、発光層43及び第二電極44が封止されている。なお、発光素子40は、有機EL表示素子の場合に特に効果が大きいが、それに限らず、量子ドットLED(QLED)、マイクロLED、及び無機のLEDなどを含む。以下の説明では、発光素子40を有機EL表示素子の意味で使用する場合もある。また、発光層43は、発光する層だけではなく、その上下の発光を助長するための層も含む。
ここに「封止」とは、水分及び酸素などの発光層及び第二電極などに害を与える気体及び液体が浸入する余地がなくシールされることを意味する。具体的には、本実施形態で、被覆層45、絶縁層25の表面の第一無機絶縁膜25b及び第一無機絶縁膜25bに形成されたコンタクト孔を塞ぐ金属膜(コンタクト)41a、41、18c2などの接合による無機膜による面、すなわち絶縁層25の対向基板50を向く第一面によって発光素子40が封入され、発光層43及び第二電極44が水分などによって劣化しない状態にすることを意味している。従って、発光素子40を被覆する無機膜にコンタクト孔などの貫通孔が形成されないことはもちろん、接合された無機膜によってシールされた内部で完結しているコンタクト孔なども存在しないことが好ましい。絶縁層25の上面(第一面)よりも上でコンタクト孔などが形成される(例えば図1Aの42c)と、発光層43などが形成されていれば、このコンタクト孔42cの形成の際に水分によって発光層43などが劣化するし、発光層43などが形成される前にコンタクト孔42cなどが形成されても、その形成の際の水分などが残留する可能性があるからである。また、辺縁とは、被覆層45の周縁部など、絶縁層25と接合される部分を意味する。
すなわち、例えば図1Aの発光素子40の部分の拡大図が図1Bに示されるように、例えば絶縁層25が有機絶縁膜25aと第一無機絶縁膜25bとの積層膜で形成され、その上面が第一無機絶縁膜25bで形成されている。そして、Si3N4などの第一無機絶縁膜25bが上面(対向基板50を向く面)に形成された絶縁層25の上面に発光素子40が形成されると共に、その周囲に形成される被覆層45の辺縁が第一無機絶縁膜25bに接合されていることに本実施形態の特徴がある。この被覆層45は、CVD法、プラズマCVD法、スパッタリング法などによって形成され、しかもその下地が同種のSi3N4などの無機膜であれば、非常に隙間なく密着して形成される。しかも、第一無機絶縁膜25bを貫通するコンタクト孔25c2、25c3は金蔵膜41a(41)、18c2が埋め込まれ、その周縁部は第一無機絶縁膜25bと接合している。そのため、接合された無機膜45、25b、41、18c2によって発光素子40が封止されている。封止膜の一部に有機絶縁膜があると、水分を吸収しやすく、無機膜と接合しても、その界面又は有機絶縁膜の内部を通って水分が浸入しやすい。しかし、無機膜であれば、前述したように、CVD法などによって形成されるので、水分などの吸収も無く、また、界面も確実に密着して接合されるので、水分などの浸入を確実にシャットアウトすることができる。この無機膜は、無機絶縁膜に限らず、金属膜でも無機絶縁膜と同様の性質を有しており、金属膜と無機絶縁膜とで囲まれることによって、その内部に包含される発光素子40は、非常に信頼性が向上する。
前述のように、本発明者らは、図5に示される従来の表示装置では、無機膜からなる透明絶縁層95が表面に形成されているにもかかわらず、水分の浸入によって、有機発光層93が劣化することを見出した。そして、本発明者らが、さらに鋭意検討を重ねて調べた結果、図5に示される従来の構造では、液晶表示素子80の反射電極(画素電極)85と、液晶表示素子80用のTFT82のドレインとを接続するためのコンタクト85aを形成する際に水分が浸入することを見出した。すなわち、コンタクト85aを形成するために、透明絶縁層95及びカソード電極94にもコンタクト孔が形成される。そのため、このコンタクト孔の形成の際に水分が浸入し、その水分が有機発光層93まで達して有機発光層93を劣化させていることを見出した。特に、カソード電極94として、光を透過させるMg-Agが代表的に用いられるが、有機EL表示素子90のカソード電極94はMg-Agに限らず水分で腐食しやすく、コンタクト孔の形成時に発生した腐食はカソード電極94の層全体に拡がり、有機発光層93の劣化を引き起こすことを本発明者らは見出した。
そこで、本発明者らは、発光素子40が有機EL表示素子のように水分などに弱い素子であっても、水分などから完全にシールされる構造を検討し、上記構成を考え出した。本実施形態の表示装置は、一画素の第一領域Rに反射型の液晶表示素子30が形成され、一画素の第一領域Rと隣接する第二領域Tに例えば有機EL表示素子のような発光素子40が形成されている。この第一領域Rと第二領域Tとは、平面的に隣接しており、平面と垂直方向の上下関係では重なっていない。反射型の液晶表示素子30は、反射電極31と液晶層32と透明電極33と偏光板34とで構成されている。この液晶層32、透明電極33を含む対向基板50、及び偏光板34は、第二領域Tの方まで延びて、表示装置の全体に形成されている。また、発光素子40は、第一電極41と発光領域を画定する、いわゆる絶縁バンクと呼ばれる第二絶縁層42と、発光層43と、第二電極44と、その周囲を被覆する被覆層45とを含んでいる。
第二絶縁層42は、第一領域Rの絶縁層25の上にも同じ材料で、かつ、ほぼ同じ厚さに形成されているが、第二領域Tのいわゆる絶縁バンクと呼ばれる第二絶縁層42とは分離されているので、第一領域Rでの第二絶縁層は第三絶縁層42aと称される。本実施形態では、この発光素子40の被覆層45が有機EL表示素子の場合の発光層43(有機発光層)及び第二電極44を包含するように被覆してその辺縁が絶縁層25の第一面と接合している。この絶縁層25の少なくとも第一面(上面)が第一無機絶縁膜25bによって形成されているので、第二無機絶縁膜からなる被覆層45と無機膜同士の接合になっている。
発光素子40の構成は後で詳述されるが、本実施形態では、図1A及び図1Bに示されるように、発光素子40の第二電極(カソード電極)44は、第二領域T内の発光素子40の上層に形成された被覆層(TFE;Thin Film Encapsulation)45によって、発光層43と共に被覆されている。しかも、その被覆層45の辺縁は、前述したように、絶縁層25の上面である第一無機絶縁膜25bに接合されている。この第一無機絶縁膜25bには、絶縁層25に形成されたコンタクト孔25c2、25c3に埋め込まれた金属膜41a(41)、18c2が埋め込まれて、その金属膜41a(41)、18c2の周縁部は、それぞれ絶縁層25の第一無機絶縁膜25bの上面に接合されている。その結果、発光素子40の発光層43及び第二電極44は、第一無機絶縁膜25bと、金属膜41a(41)、18c2からなる絶縁層25の第一面、及び被覆層45とで完全に封止(シール)されている。前述したように、被覆層45と第一無機絶縁膜25b、第一無機絶縁膜25bと金属膜41a(41)、18c2はそれぞれ無機膜同士の接合であるため、封止に耐え得るように十分に接合している。
前述したように、封止ということは、水分などの浸入を完全に阻止し得るようにシールされることを意味しており、この発光素子40を被覆する無機膜を貫通するコンタクト孔などが形成されていないことはもちろん、被覆する無機膜を貫通しないで、その内部で完結するコンタクト孔なども含まないことが好ましい。すなわち、例えば図1Aに示される第一領域Rの反射電極31と接続されるドレイン第三コンタクト13d3を含んで被覆するように被覆層45が形成されると、たとえ被覆層45と第一無機絶縁膜25bなどとで発光素子40の発光層43などが封入されていても、反射電極31と接続されるドレイン第三コンタクト13d3のためのコンタクト孔42cを形成する際に、発光層43などを害する危険性があるからである。発光層43などを形成する前にコンタクト孔42cが形成されても、水分などが残留しやすい。
図1A及び図1Bに示されるように、第二電極44が第二絶縁層(絶縁バンク)42の周囲を取り囲むように形成され、さらにその外表面に被覆層45が第二電極44を覆うように形成され、その辺縁が絶縁層25の第一無機絶縁膜25bに接合されることが好ましい。保護の必要な発光層43及び第二電極44を最小のスペースで封入することができるので、発光素子40の信頼性を向上させ得る。すなわち、もし絶縁層25が有機絶縁膜のみで形成され、被覆層45の辺縁が、例えば基板21と接合されることによって封止されても、その内部には、有機絶縁膜からなる絶縁層25、コンタクトを含むTFT12、カソードバスライン(配線)18などを包含することになり、TFT12のソースコンタクト12s1、カソードバスライン18のカソード第一コンタクト18c1、カソードバスライン18などを内包することになり、これらのコンタクト孔を形成した際の水分などが残留する可能性もあり、発光層43などへの浸入が懸念され得る。しかし、本実施形態によれば、発光素子40の第一電極41が形成される絶縁層25の上面と第二電極44の上に形成される被覆層45とによって、発光素子40が封止されているので、そのようなガス源を一切包含しない。その結果、発光層43及び第二電極44を含む発光素子40のみが無機膜によって封止される。また、被覆層45の辺縁が接合される相手が絶縁層25の上面であり、発光素子40の第一電極41の形成される面であるため、被覆層45を接合する接合面を露出させるためのエッチングも非常に容易である。
絶縁層25の上面を第一無機絶縁膜25bにするには、例えば図1A及び図1Bに示されるように、絶縁層25を有機絶縁膜25aと第一無機絶縁膜25bの2層構造にされることが好ましい。このような構造にすることで、有機絶縁膜25aによって、TFTなどの形成による表面が凸凹のTFT基板20の表面を平坦にし、その有機絶縁膜25aの表面にCVD法、プラズマCVD法、スパッタリング法などによって、Si3N4などの第一無機絶縁膜25bが形成され得るからである。その結果、液状の有機絶縁材料によって容易に表面の平坦化をすることができ、第一無機絶縁膜25bのみで平坦化するよりも短時間で平坦化することができる。この場合、有機絶縁膜25aの厚さは、2μm以上、4μm以下程度であり、第一無機絶縁膜25bの厚さは200nm以上、1000nm以下程度である。有機絶縁膜25aの形成は、液状樹脂の塗布と硬化によって形成されるので、厚い膜でも短時間で形成できるので、非常に短時間で表面を平坦化した絶縁層25が形成され得る。
しかし、絶縁層25は、有機絶縁膜25aと第一無機絶縁膜25bの積層構造には限定されない。例えばSOG又はCVD法などによって形成された無機絶縁膜だけでもよいし、3層以上の組合せによって形成されてもよい。要は、上面に無機絶縁膜が形成されていればよい。なお、有機絶縁膜25aの上面に第一無機絶縁膜25bが形成された場合、前述したように、第一無機絶縁膜25bはプラズマCVD法などによって形成されるので、有機絶縁膜25aともしっかりと密着する。また、第一無機絶縁膜25bは200nm以上、1000nm以下の厚さに形成されているので、十分なバリア効果を発揮し、有機絶縁膜25aを伝って浸入した水分なども発光素子40の方への浸入を防止することができる。
前述のように、液晶層32は、第一領域Rと第二領域Tとでその厚さがあまり異ならないことが好ましい。そこで、図1Aに示されるように、発光素子40の発光領域を画定する第二絶縁層42が形成される際に、第一領域Rにも第二絶縁層42と同じ材料の絶縁層が形成されている。しかし、図1Aに示される例では、この第二絶縁層42が、第一領域Rと第二領域Tとの境界部で分断され、その間に溝部が形成されて絶縁層25の第一面(上面)が露出している。その露出した絶縁層25の第一面に被覆層45の辺縁及び反射電極31の辺縁がそれぞれ接合されている。その結果、被覆層45は、第二絶縁層42も完全に内包して発光素子40を封止している。なお、第一領域R側における、第二絶縁層42と同じ材料の層は第三絶縁層42aと呼ばれる。このように、第一領域Rにも第三絶縁層42aが形成されることによって、液晶層32の下層の高さを二つの領域R、T間で近づけながら(厳密には被覆層45の厚さ、約1μmの差がある)、第二絶縁層42と第三絶縁層42aとの分断によって、絶縁層25を露出させ、被覆層45と絶縁層25との接合が容易にされている。その結果、被覆層45によって、発光層43、及び第二電極44が容易に封止され得る。この第二絶縁層42と第三絶縁層42aとの境界は、第一領域Rと第二領域Tとの境界部に限定されない。前述のように、例えば反射電極31と接続用のドレイン第三コンタクト13d3用のコンタクト孔42cを形成する部分が第三絶縁層42a側になるように分断されれば、どこでもよい。
(TFT基板20)
TFT基板20は、例えばガラス基板又はポリイミドなどの樹脂フィルムなどからなる絶縁基板21の一面に駆動用TFT(薄膜トランジスタ、以下単にTFTという)11、電流供給用TFT12、スイッチ用TFT13(図2参照)などのTFTや、バスラインなどの配線が形成され、その表面を平坦にする、いわゆる平坦化膜と呼ばれる絶縁層25が形成されている。絶縁層25は、TFTなどが形成された部分と形成されない部分との凹凸をなくして表面を平坦にすることが目的であるため、ポリイミドなどの有機材料で形成されることが好ましい。しかし、前述のように、封止のために被覆層45との接合を考慮して、少なくとも被覆層45との接合面である絶縁層25の上面には第一無機絶縁膜25bを有することが必要になる。そのため、図1A及び図1Bに示される例では、この絶縁層25が有機絶縁膜25aと第一無機絶縁膜25bとの複合膜で形成されている。前述したように、この絶縁層25は、無機材料だけで形成されてもよい。絶縁層25がSiO2やSiNxなどの無機材料でCVD法などによって形成される場合、平坦化するのに数μmの厚さが必要となるので、成膜時間が長くなる。しかし、SOG(スピンオングラス)などにより容易に平坦化することはできる。なお、図1Aに示される図では、素子の構造が概念的に示され、各素子の全てが、正確には記載されていない。
TFT基板20は、例えばガラス基板又はポリイミドなどの樹脂フィルムなどからなる絶縁基板21の一面に駆動用TFT(薄膜トランジスタ、以下単にTFTという)11、電流供給用TFT12、スイッチ用TFT13(図2参照)などのTFTや、バスラインなどの配線が形成され、その表面を平坦にする、いわゆる平坦化膜と呼ばれる絶縁層25が形成されている。絶縁層25は、TFTなどが形成された部分と形成されない部分との凹凸をなくして表面を平坦にすることが目的であるため、ポリイミドなどの有機材料で形成されることが好ましい。しかし、前述のように、封止のために被覆層45との接合を考慮して、少なくとも被覆層45との接合面である絶縁層25の上面には第一無機絶縁膜25bを有することが必要になる。そのため、図1A及び図1Bに示される例では、この絶縁層25が有機絶縁膜25aと第一無機絶縁膜25bとの複合膜で形成されている。前述したように、この絶縁層25は、無機材料だけで形成されてもよい。絶縁層25がSiO2やSiNxなどの無機材料でCVD法などによって形成される場合、平坦化するのに数μmの厚さが必要となるので、成膜時間が長くなる。しかし、SOG(スピンオングラス)などにより容易に平坦化することはできる。なお、図1Aに示される図では、素子の構造が概念的に示され、各素子の全てが、正確には記載されていない。
絶縁層25が有機絶縁膜25aと第一無機絶縁膜25bとで形成される場合、有機絶縁膜25aは、ポリイミド樹脂、アクリル樹脂などの液状の樹脂を塗布して硬化させることによって容易に数μmの厚さに形成される。塗布の方法としては、ディスペンサ、スピンコート又は印刷などによって塗布される。第一無機絶縁膜25bは、酸化シリコンSiO2、窒化シリコンSiNx、アルミナAl2O3、五酸化タンタルTa2O5などが、プラズマCVD法、スパッタリング法などによって、200nm以上、1000nm以下の厚さに形成される。200nm未満であると、水分等のバリア性が十分に発揮できない可能性が高くなる。また、1000nmを超える厚さにしても、バリア性がさらに向上するというものではなく、一方で、膜応力が大きくなり、基板の反りを生じさせたりする。その結果、場合によっては、駆動回路や発光素子40の特性を低下させる恐れが生じ得る。
絶縁層25の上面には、図1Aに示されるように、第一領域Rでは、TFT13のドレイン13dと接続されたドレイン第一コンタクト13d1に接続するドレイン第二コンタクト13d2が形成されている。また、第二領域Tでは、TFT12のソース12sに接続されたソースコンタクト12s1と接続された電極コンタクト41a、及びカソードバスライン18と接続されたカソード第一コンタクト18c1と接続されたカソード第二コンタクト18c2が形成されている。これらのコンタクト13d2、41a、18c2は、それぞれ絶縁層25にコンタクト孔25c1、25c2、25c3が形成され、その後に、スパッタリング又は電気メッキなどによってコンタクト孔25c1、25c2、25c3内にチタン/アルミニウム/チタンなどの金属が埋め込まれた金属膜によって形成されている。なお、電極コンタクト41aと第一電極41とは、後述されるように、同じ材料で形成されてもよいし、異なる材料で形成されてもよい。従って、同じ材料の場合には、その境界はない。
しかし、このコンタクト孔25c1、25c2、25c3は、未だ発光素子40の発光層43及び第二電極44などが形成される前であるため、エッチングなどが行われても差し支えない。しかも、このコンタクト孔25c1、25c2、25c3内に埋め込まれる金属膜は、前述したように、無機膜であるため、絶縁層25の上面の第一無機絶縁膜25bと優れた密着性で接合される。従って、たとえコンタクト孔25c1、25c2、25c3内に、水分の残留があっても、絶縁層25の第一無機絶縁膜25bの上面に浸み出すことはない。すなわち、絶縁層25の上面は、第一無機絶縁膜25bと、コンタクトである金属膜41a(41)、18c2によってシールされている。
液晶表示素子30及び発光素子40の駆動用の回路は、例えば図2に等価回路図で示されるような構成になっている。すなわち、駆動用TFT11のゲートがゲートバスライン16に接続され、ゲートバスライン16にゲート信号(選択信号)が印加されることによって横に並ぶ一行の画素が選択され得る。また、駆動用TFT11のソースがソースバスライン15に接続されて縦に並ぶ一列の画素にデータ信号が入力され得る状態になっている。そして、選択信号が与えられたゲートバスライン16とデータ信号が与えられたソースバスライン15の交差する画素のみが、与えられたデータ信号に基づいて表示できるようになっている。駆動用TFT11のドレインが電流供給用TFT12のゲートに接続され、表示情報に対応して発光素子40に流れる電流が制御される。また、駆動用TFT11のドレインは、スイッチ用TFT13を介して、液晶層32及び液晶用補助容量14に接続されている。液晶層32は、電気的にはキャパシタと抵抗とが並列接続された等価回路で図2のように示される。なお、この液晶層32と並列に接続される補助容量14は、アクティブマトリクス表示でスキャンする際の反射電極31の電圧を保持するように形成されている。
第二ゲートバスライン19は、スイッチ用TFT13のゲートに接続され、スイッチ用TFT13の動作のオンオフを制御する。スイッチ用TFT13のソースは、駆動用TFT11のドレイン、すなわち電流供給用TFT12のゲートに接続されている。電流供給用TFT12のドレインは、電流バスライン17に接続され、そのソースは発光素子40のアノード電極に接続されている。この発光素子40のカソード電極44は、コンタクトH(18c1、18c2)でカソードバスライン18に接続されている。
スイッチ用TFT13は、液晶表示素子30による表示と、発光素子40による表示とを切り替えるために設けられている。すなわち、駆動用TFT11によってその画素が選択されており、スイッチ用TFT13のゲートに接続される第二ゲートバスライン19に与えられる信号によってスイッチ用TFT13がオンになると、ソースバスライン15が液晶層32に接続され、液晶表示素子30によって画像が表示される。このスイッチ用TFT13がオンの場合、電流供給用TFT12に電流を流さないように、電流バスライン17がオフにされる。駆動用TFT11が選択され、スイッチ用TFT13がオフの場合には、駆動用TFT11は液晶層32には接続されず、電流供給用TFT12をオンにし、発光素子40によって画像が表示される。
このスイッチ用TFT13は、液晶表示素子30と発光素子40とを独立して駆動し得るようにするためのものである。すなわち、発光素子40は、NTSC比で100%という広い色再現範囲を有することが多い。しかし、反射型液晶表示素子30は、色再現範囲が狭く明るい表示ができるように設計されることが多い。そのため、液晶表示素子30と発光素子40とを同時に表示すると発光表示素子40の表示が阻害されてしまう。そのため、発光素子40の動作の際には、液晶表示素子30が動作しないようにされている。
(液晶表示素子30)
液晶表示素子30は、一画素のうち、半分程度の第一領域Rの全面に形成された反射電極31と、液晶層32と、対向電極33と、偏光板34とで、反射型の液晶表示素子として形成されている。液晶層32は、第一領域Rのみに形成することは難しく、対向電極33と共に第二領域Tも含めた全面に形成されている。図1Aに示される例では、カラーフィルタ35が対向基板50の絶縁基板51と対向電極33との間に形成されている。図示されていないが、この対向基板50の液晶層32と接する面には、液晶配向層が形成される。
液晶表示素子30は、一画素のうち、半分程度の第一領域Rの全面に形成された反射電極31と、液晶層32と、対向電極33と、偏光板34とで、反射型の液晶表示素子として形成されている。液晶層32は、第一領域Rのみに形成することは難しく、対向電極33と共に第二領域Tも含めた全面に形成されている。図1Aに示される例では、カラーフィルタ35が対向基板50の絶縁基板51と対向電極33との間に形成されている。図示されていないが、この対向基板50の液晶層32と接する面には、液晶配向層が形成される。
この反射電極31は、いわゆる画素電極で第一領域Rのほぼ全面に形成されている。この反射電極31は、後述される発光素子40の各画素において、発光素子40の発光領域を画定する絶縁バンクとなる第二絶縁層42と同じ材料で同時に形成される第一領域R側の第三絶縁層42aの上に形成されている。反射電極31は、この第三絶縁層42aに形成されるドレイン第三コンタクト13d3及び絶縁層25に形成されるドレイン第二コンタクト13d2を介して前述のスイッチ用TFT13のドレイン13dにドレイン第一コンタクト13d1を介して接続されている。反射電極31は、例えば0.05μm以上で、0.2μm以下のAl(アルミニウム)と0.01μm以上で、0.05μm以下のIZO(インジウム・ジンク・オキサイド)との積層膜で形成される。
液晶層32は、所望の液晶材料を含有する液晶組成物を含み、例えばECB(Electrically Controlled Birefringence)モードなどの種々の表示モードに適用される液晶材料が用いられ得る。偏光板を設けずに表示を行う場合には、ゲスト・ホスト型の液晶材料が用いられ得る。液晶層32は、偏光板34との協働で、反射電極31と対向電極33との両電極間の電圧のオンオフに応じて入射光を画素ごとに遮断/通過させる。ECBモードであれば、光が液晶層32を透過し反射電極31に到達するまでに、電圧オン時に、1/4波長の位相差を生じる厚さに形成されることが好ましい。液晶層32の両面、すなわち、TFT基板20の液晶層32に面する最表面、及び対向基板50の液晶層32に面する最表面には、図示しない液晶配向層が形成されている。この液晶配向層は、液晶分子の配向を規制するもので、紫外線照射やラビング加工によってその配向方向が規制される。
この液晶配向層により、液晶層の配向が制御されるが、例えば液晶層32の両面に電圧が印加されない状態で、液晶分子が垂直に配列されるように液晶配向層が制御される。そうすることにより、後述されるように、反射電極31と対向電極33との間にしきい値以上の電圧が印加されない状態で外光の反射光は外に出ず、黒色表示、すなわちノーマリブラックになる。この場合、TFT基板20側の液晶配向層は、発光素子40が形成されているので、ラビング加工や紫外線照射を行い難い。そのため、プレチルト角(傾き)は形成されず、実質的に垂直配向になるが、対向基板50側の液晶配向層には、80°から89.9°のプレチルト角が形成されることが好ましい。この程度のプレチルト角が形成されることにより、両電極間に電圧が印加された際に主にセル厚み方向の中央付近の液晶分子が水平配向に移行しやすい。
偏光板34は、図1Aに示される例では、円偏光板が用いられている。円偏光板は、直線偏光板と1/4波長の位相差板との組み合せで形成される。さらに、幅広い波長に対して1/4波長条件を示すように、1/2波長板が併用される場合もある。位相差板は、一軸延伸された光学フィルムからなっている。この直線偏光板を通過した光は、位相差板によって直線偏光の位相が1/4波長ずれ、例えば右偏光となる。前述のように、液晶層32の両面に設けられる反射電極31と対向電極33にしきい値以上の電圧が印加されないで、液晶層32が垂直配向であれば、外光はそのまま液晶層32を通過して、反射電極31で反射することにより偏光が右円偏光から左円偏光に逆転する。このため、入射方向を逆進して偏光板34に戻った外光は直線偏光板の透過軸と90°直交した角度の直線偏光となり、偏光板34を通ることができなくなり、黒色表示となる。一方、液晶層32の両面の電極にしきい値以上の電圧が印加されることによって、液晶分子が水平配向となり、外光は液晶層32でさらに1/4波長の位相がずれるため、反射電極31に到達する際には、1/2波長の位相差になり、直線偏光として反射する。反射した後、外光は入射のときと逆の経路を経るため、偏光板を透過して白色表示となる。なお、偏光板34は、円偏光板に限定されるものではなく、表示モードに応じて直線偏光板でもよい。
対向電極33は、前述のように、液晶層32の画素ごとに電圧を印加したり、しなかったりするための全画素に共通の電極である。そのため、表示画面の全面に形成され、後述される発光素子40が形成される第二領域Tにも形成されている。この対向電極33は、光を透過させる必要があるため、透光性(透明)の導電膜によって形成される。例えば、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などによって形成される。
(発光素子)
発光素子40は、前述したように、種々の発光素子を適用できるが、特に有機EL表示素子の場合に、その発光層43及び第二電極が水分などに侵されやすく、本実施形態の効果が大きい。そのため、発光素子40として、有機EL表示素子の例で説明される。発光素子40は、一画素の第二領域Tに形成され、図1Aに示されるように、絶縁層25の第二領域Tの上面に形成される第一電極41と、その周囲に形成される第二絶縁層42と、その第二絶縁層42で囲まれる第一電極(アノード電極)41の上に形成される発光層43(有機発光層)と、その上の発光素子40のほぼ全面に形成される第二電極(カソード電極)44と、その周囲を被覆する被覆層45とで形成されている。被覆層45は一層又は複数層からなる第二無機絶縁膜によって形成されている。
発光素子40は、前述したように、種々の発光素子を適用できるが、特に有機EL表示素子の場合に、その発光層43及び第二電極が水分などに侵されやすく、本実施形態の効果が大きい。そのため、発光素子40として、有機EL表示素子の例で説明される。発光素子40は、一画素の第二領域Tに形成され、図1Aに示されるように、絶縁層25の第二領域Tの上面に形成される第一電極41と、その周囲に形成される第二絶縁層42と、その第二絶縁層42で囲まれる第一電極(アノード電極)41の上に形成される発光層43(有機発光層)と、その上の発光素子40のほぼ全面に形成される第二電極(カソード電極)44と、その周囲を被覆する被覆層45とで形成されている。被覆層45は一層又は複数層からなる第二無機絶縁膜によって形成されている。
第一電極41は、例えばアノード電極として形成される。この第一電極41は、図1Aに示されるように、電極コンタクト41aと連続的に同時に形成されている。しかし、電極コンタクト41aとは別に異なる材料によって形成されてもよい。別の材料で形成される場合、第一電極41が電極コンタクト41aを被覆するように形成され、その周縁部が絶縁層25の上面と接合されることが好ましい。本実施形態の場合、図1Aの上側から表示画面を見ることになるため、第一電極41は反射電極として形成され、発光した光を全て上方に放射する構造になっている。そのため、光反射性の材料で、この電極41と接する発光層43などとの仕事関数の関係などによりその材料が選定される。例えば、表面と最下層がITO膜で、その間にAg又はAPCがサンドイッチされたITO/Ag又はAPC/ITOの積層膜などにより形成される。なお、ITO膜も無機膜であり、金属膜と同等に扱える。Ag又はAPCは100nm程度の厚さに形成される。ボトムエミッション型の場合には、ITO膜が300nm~1μm程度の厚さに形成される。
第二絶縁層42は、絶縁バンク又は隔壁とも呼ばれるもので、発光素子40の発光領域を画定すると共に、アノード電極41とカソード電極44とが接触して導通することを防ぐために形成されている。この第二絶縁層42で囲まれた第一電極41の上に発光層43が積層される。この第二絶縁層42は、例えばポリイミドやアクリル樹脂などの樹脂で形成される。この第二絶縁層42は、前述のように、第一領域Rと第二領域Tの高さを合せる意味からも、液晶表示素子30の第一領域Rにも形成される。すなわち、液状の樹脂が全面に塗布され、その後にパターニングされて発光素子40の第一電極41の周囲の第二絶縁層42及び第一領域Rの第三絶縁層42aが形成される。なお、このパターニングはドライエッチングによれれば、水分を残留させる恐れも無い。この際、発光素子40側の第二絶縁層42と、液晶表示素子30側の第三絶縁層42aとが分断されてその間に形成される溝内に絶縁層25を露出させることができる。有機EL表示素子(発光素子40)の有機発光層(発光層43)や第二電極(カソード電極)44が被覆層45によって完全に被覆されて封止されるのに都合がよい。この分断の場所は、前述のように、第一領域Rと第二領域Tとの境界である必要はなく、第二絶縁層42がコンタクト孔を含まない位置であればよい。
発光層43は、第二絶縁層42に囲われて露出する第一電極41の上に積層される。この発光層43は、図1Aなどでは一層で示されているが、種々の材料が積層されて複数層で形成される。また、この発光層43は水分に弱く全面に形成してからパターニングをすることができないため、蒸着マスクを用いて、蒸発又は昇華させた有機材料を選択的に必要な部分のみに蒸着することによって形成される。
具体的には、例えば第一電極(アノード電極)41に接する層として、正孔の注入性を向上させるイオン化エネルギーの整合性の良い材料からなる正孔注入層が設けられる場合がある。この正孔注入層上に、正孔の安定な輸送を向上させると共に、発光層への電子の閉じ込め(エネルギー障壁)が可能な正孔輸送層が、例えばアミン系材料により形成される。さらに、その上に発光波長に応じて選択される発光層が、例えば赤色、緑色に対してはAlq3に赤色又は緑色の有機物蛍光材料がドーピングされて形成される。また、青色系の材料としては、DSA系の有機材料が用いられる。一方、カラーフィルタ35で着色される場合には、発光層は全てドーピングすることなく同じ材料で形成され得る。発光層の上には、さらに電子の注入性を向上させると共に、電子を安定に輸送する電子輸送層が、Alq3などにより形成される。これらの各層がそれぞれ数十nm程度ずつ積層されることにより発光層43の積層膜が形成されている。なお、この発光層43と第二電極44との間にLiFやLiqなどの電子の注入性を向上させる電子注入層が設けられることもある。本実施形態では、発光層43はこれら各発光層及び無機層を含み得る。
前述のように、発光層43の積層膜のうち、発光層は、RGBの各色に応じた材料の発光層が堆積されてもよい。図1Aに示される例では、発光層が同じ有機材料で形成され、カラーフィルタ35により発光色が特定されている。また、正孔輸送層、電子輸送層などは、発光性能を重視すれば、発光層に適した材料で別々に堆積されることが好ましい。しかし、材料コストの面を勘案して、RGBの2色又は3色に共通して同じ材料で積層される場合もある。
このLiF層などの電子注入層などを含む全ての発光層43の積層膜が形成された後に、その表面に第二電極44が形成される。具体的には、第二電極(例えばカソード電極)44が発光素子40の上に形成される。この第二電極44も、前述のバンク層と同様に、第一領域Rまで延びて形成されてもよいが、コンタクト孔が形成されない場所までで、しかも被覆層45によって完全に被覆される必要がある。第二電極44は透光性の材料、例えば、薄膜のMg-Ag共晶膜により形成され、水分で腐食しやすいからである。
この第二電極44の表面には、例えばSi3N4、SiO2など無機絶縁膜からなる被覆層45が一層、又は二層以上の積層膜によって形成される。例えば一層の厚さが0.01μmから1.0μm程度で、好ましくは二層程度の積層膜で形成される。この被覆層45は、異なる材料で多層に形成されるのが好ましい。被覆層45は、無機絶縁膜による単層であってもよいが、複数層で形成されることによって、ピンホールなどができても、複数層でピンホールの箇所が完全に一致することは殆ど無く、外気から完全に遮断する。この被覆層45は、無機絶縁膜のみの複数層ではなく、無機絶縁膜の間に有機膜を介在させた3層構造に形成されてもよい。
すなわち、図1Cに示されるように、第二無機絶縁膜45aの上に、有機膜45bが形成され、さらにその上に極めて薄い第三無機絶縁膜45cが形成されることで、被覆層45とされてもよい。無機絶縁膜のみで厚くなると、弾力性が無くなるが、有機膜が介在することによって、弾力性が増し、柔軟性に優れた被覆層45となり、信頼性が向上する。柔軟性を得るため、第三無機絶縁膜45cは薄い方が好ましい。ただし、有機膜45bは、発光素子40上に形成された第二無機絶縁膜45aの上部に連続的に形成される必要はなく、所々局在するように形成されていてもよい。なお、この第三無機絶縁膜45cの辺縁も、図3Dに示されるように、絶縁層25の上面の第一無機絶縁膜25bに接合されていることが好ましい。この接合は、例えば被覆層45の第二無機絶縁膜45a又は第三無機絶縁膜45cがプラズマCVD法によって形成される際に、絶縁層25の上面に堆積されることで、密着して接合される。これによって、前述のように、この被覆層45は、発光層43及び第二電極44を完全に封止するように形成される。
以上により発光素子40が形成される。図1Aに示されるように、この発光素子40の上にも液晶層32や対向電極33が形成されている。前述のように、液晶層32を第一領域Rのみに形成することは難しいからである。しかし、電極は対向電極だけであり、反射電極(画素電極)31に対応する電極はない。そのため、前述の液晶層32の両面に印加される電圧がオフの場合と同じ状況になる。すなわち、外光に対してはノーマリブラックになるが、発光素子40で発光する光は、液晶層32は垂直配向のため、液晶層32がないのと同じであり、何の変化もなく円偏光板34を通過する。そして円偏光板34を通過した光は、そのまま視認されるので、発光素子40で発光により表示される画像は、そのまま正面側から視認される。
なお、発光素子40で発光した光は、円偏光板34を通ることによって、円偏光板で半分ぐらいに減衰する。しかし、この円偏光板34は第二領域Tにも形成されることが好ましい。その理由は、外光が正面から入る場合に、発光素子40の第一電極41が前述のように、光反射性の材料で形成されていることから、正面から入射した光が、発光素子40内の第一電極41などで反射して外に出ると表示画面が非常に見難くなる。しかし、円偏光板34があれば、前述のように第一電極41などで反射すると、円偏光の回転方向が逆転するため、反射光は円偏光板を通ることができなくなる。その結果、反射光をカットすることができる。外光の多いときは、発光素子40は動作させないが、液晶表示素子30の動作中でも、発光素子40の動作の有無にかかわらず、反射光は発生するので、液晶表示素子の動作中でも、円偏光板34が第二領域Tにないと液晶表示素子の視認特性が大幅に低下する。
(対向基板)
対向基板50は、例えばガラス又は透明(透光性)フィルムなどの基板に、カラーフィルタ35と対向電極33とが形成される。液晶表示素子30では、表示画面をカラーにするには種々の方法があるが、カラーフィルタ35で、画素ごとに赤(R)、緑(G)、青(B)の三原色の画素を形成するために設けられる。発光素子40側でも、前述のように、カラーフィルタを用いてカラー表示がされ得るが、発光層の材料を選択することによって直接赤(R)、緑(G)、青(B)の光を発光させる場合には、カラーフィルタは不要になる。この対向基板50には、図示されていないが、液晶層32と対向する面に液晶配向層が形成され、ラビング加工などがなされる。
対向基板50は、例えばガラス又は透明(透光性)フィルムなどの基板に、カラーフィルタ35と対向電極33とが形成される。液晶表示素子30では、表示画面をカラーにするには種々の方法があるが、カラーフィルタ35で、画素ごとに赤(R)、緑(G)、青(B)の三原色の画素を形成するために設けられる。発光素子40側でも、前述のように、カラーフィルタを用いてカラー表示がされ得るが、発光層の材料を選択することによって直接赤(R)、緑(G)、青(B)の光を発光させる場合には、カラーフィルタは不要になる。この対向基板50には、図示されていないが、液晶層32と対向する面に液晶配向層が形成され、ラビング加工などがなされる。
この対向基板50と、発光素子40などが形成されたTFT基板20とが、反射電極31と対向電極33とが対向するように一定の間隙をあけて、周囲で、図示しないシール剤層により接着される。そして、その間隙部に液晶組成物が注入されることによって、前述の液晶層32が形成されている。そして、対向基板50の液晶層32と反対側の面に前述の円偏光板34が設けられている。
(TFT基板及び発光素子の製造方法)
次に、TFT基板20及びその上に形成される発光素子40の製造工程が、図3A~3G及び図4A~4Gを参照しながら説明される。
次に、TFT基板20及びその上に形成される発光素子40の製造工程が、図3A~3G及び図4A~4Gを参照しながら説明される。
まず、図3Aに示されるように、絶縁基板21の上に半導体層22及びカソードバスライン18が形成され、その上にSiO2などからなるゲート絶縁膜23が形成される。そして、半導体層22の所定の領域に不純物がドープされて、スイッチ用TFT13のソース13s、ドレイン13d(図1A参照)、電流供給用TFT12のドレイン12d、ソース12s(図1A参照)がそれぞれ形成される。そして、ゲート絶縁膜23の上に、スイッチ用TFT13のゲート電極13g、電流供給用TFT12のゲート電極12g、及び補助容量14用の電極14dが形成される。その表面にSiNxなどからなるパシベーション膜24が形成される。そして、スイッチ用TFT13のソースコンタクト13s1、ドレイン第一コンタクト13d1、電流供給用TFT12のソースコンタクト12s1、ドレインコンタクト12d1、及びカソード第一コンタクト18c1などが形成され、その表面を平坦にする絶縁層25が、例えばポリイミドなどからなる有機絶縁膜25aと、SiNxなどからなる第一無機絶縁膜25bの複層によって形成されている。この絶縁層25は、前述のように、SOGなどの無機膜の一層で形成されてもよい。このTFTやバスラインの配置を示す平面図が図4Aに示されている。
次に、図3Bに示されるように、スイッチ用TFT13のドレイン13d(図1A参照)と接続するため、ドレイン第二コンタクト13d2がドレイン第一コンタクト13d1と接続されるように絶縁層25に形成されている。そして、ソースコンタクト12s1と接続する電極コンタクト41aと発光素子40の第一電極41、及びカソード第一コンタクト18c1と接続するカソード第二コンタクト18c2が、それぞれ絶縁層25に形成されている。これらのコンタクトは、絶縁層25にコンタクト孔25c1、25c2、25c3を形成して、その中に金属膜をメッキなどによって埋め込むと共に、その表面に絶縁層25の上面と接合する鍔部が形成されることによって、絶縁層25の上面に接合されている。これらの金属膜の少なくとも周縁部は、絶縁層25の上面の第一無機絶縁膜25bと接合されることによって、その上部を封止し得る。この液晶用のドレイン第二コンタクト13d2は、コンタクト孔25c1を形成して銅などの導電層などの埋め込みによって形成されるが、発光素子40用の第一電極(アノード電極)は、前述のように、発光層43との関連があり、ITO/APC(Ag-Pd-Cu合金)/ITOの積層膜によって形成される。このときの平面図が図4Bに示されている。
次に、図3Cに示されるように、ポリイミド、アクリル樹脂などによって第二絶縁層42が形成される。第二絶縁層42は、発光素子40の各画素を区分するもので、第一電極41の周囲に凸部を有するように形成される。この第二絶縁層42は、前述の樹脂で形成される。従って、液状の状態で全面に樹脂膜が形成され、その後、パターニングにより、所望の位置に所望の形状で形成される。本実施形態では、TFT基板20の全面に、第一電極41の周囲に形成される凸部の高さに合せた厚さで塗布され、パターニングによって第一電極41や第三絶縁層42aとの境界部などを露出させている。この際、第一領域Rにも第三絶縁層42aが形成されるが、少なくとも第一領域Rの画素電極31と接続するためのドレイン第二コンタクト13d2は、第一領域R側の第三絶縁層42aになるように、第二絶縁層42と第三絶縁層42aとが分離され、その間に絶縁層25が露出するように形成される。前述のように、この上に形成される被覆層45が発光素子40の発光層43やその上の第二電極44を完全に被覆し得るようにするためである。
この第二絶縁層42のパターニングの際に、第一領域Rのドレイン第一コンタクト13d1と接続するコンタクト孔(図示せず)が形成され、ドレイン第三コンタクト13d3が形成される。その結果、この第二絶縁層42及び第三絶縁層42aは、例えば図4Cに示されるように、第二絶縁層42が第一電極41の周囲に形成され、その外周に第二絶縁層42と離間して第三絶縁層42aが形成されている。そして、第三絶縁層42aの一部に駆動用TFT11のドレインに接続されたドレイン第三コンタクト13d3が露出している。
その後、図3D及び図4Dに示されるように、発光層43が形成される。この発光層43は、水分や酸素に弱くパターニングすることができないため、蒸着マスクを用いて、必要な領域のみに蒸着される。すなわち、図3Dの第二絶縁層42の凸部上に合せて蒸着マスクが配置され、るつぼなどから昇華又は気化された有機材料が第二絶縁層42により囲まれた第一電極41の上のみに積層される。この有機材料は、前述のように、種々の材料で積層される。
次に、図3E及び図4Eに示されるように、カソード電極となる第二電極44が発光層43及び第二絶縁層42の凸部を含めた発光素子40のほぼ全面に形成される。この第二電極44は、例えばMg-Ag合金が用いられ、蒸着マスクを用いた蒸着により形成される。この第二電極44は、図4Eに平面図が示されるように、第二絶縁層42が周囲に残るように形成されるが、一部は第二絶縁層42を超えて形成される。この場合でも、第三絶縁層42aとの間には一定の間隔を有する(絶縁層25が露出する)ように形成される。
その後、図3F及び図4Fに示されるように、被覆層45が形成される。この被覆層45は、発光層43を水分や酸素から保護するための層で、SiNxやSiO2などの無機膜で形成される。しかも、成膜の際にピンホールが形成される場合があり得るため、少なくとも二層を有する多層膜で形成されることが好ましい。この被覆層45は、CVD法、又はALD(Atomic Layer Deposition)法などによって形成される。被覆層45は、異なる材料で多層に積層されてもよい。この被覆層45は、例えば図4Fに示されるように、発光素子40の上に形成されるが、第一領域である液晶表示素子30側に延びて形成されていてもよい。但し、ドレイン第三コンタクト13d3を跨がないようにする必要がある。ドレイン第三コンタクト13d3の上にも形成されると、被覆層45にコンタクトのための貫通孔を形成する必要が生じる。被覆層45にコンタクト孔が形成さると、水分の浸入を招き、その内面を伝って、第二電極44や発光層43側に水分が浸入するからである。
この被覆層45は、全面に形成されてから、エッチングによりパターニングされてもよい。被覆層45が絶縁層25と接合していて、水分の浸入を阻止するからである。しかし、マスクを用いて、所望の場所のみに堆積することもできる。後者の方が、水分の浸入を防止するという観点からは好ましい。
その後、図3G及び図4Gに示されるように、第一領域Rの第三絶縁層42aの表面に液晶表示素子30用の反射電極(画素電極)31が形成される。その結果、反射電極31は、ドレイン第三コンタクト13d3と電気的にも接続される。この反射電極31は、例えばAlとIZOで形成される。この反射電極31も、発光素子40の全面を除いた一画素のほぼ全面に形成される。この場合も、全面に蒸着などによって形成された反射膜をパターニングにより形成されてもよい。被覆層45によって完全に発光層43などが被覆されているからである。しかし、マスクを被せて所望の領域のみに形成されてもよい。これにより、TFT基板20側の第一領域R、第二領域Tの素子が形成される。この後、図示されていないが、この表面の全面に液晶配向層が形成される。
一方、対向基板50側は、図1Aに示されるように、ガラス板又は樹脂フィルムなどの絶縁基板51に透光性の対向電極33及び必要な場合には、カラーフィルタ35や図示しない液晶配向層が重ね合せて形成される。絶縁基板51の対向電極33と反対面には、偏光板34が設けられる。偏光板34が円偏光板の場合には、絶縁基板側に1/4波長の位相差坂、その上に直線偏光板が重ねて配置される。
そして、発光素子40などが形成されたTFT基板20と対向基板50とがその電極が対向するように一定間隙をもって周囲でシール剤層によって貼り合される。その後に、その間隙部に液晶組成物が充填されることによって、液晶層32が形成される。その結果、反射電極31が形成された第一領域に反射型の液晶表示素子30が形成され、第二領域Tに発光素子40が形成されて一画素を構成する表示装置が得られる。
(表示装置の動作)
この表示装置で、外光の明るいときは、第二ゲートバスライン19に信号を送ってスイッチ用TFT13を動作せると共に、ゲートバスライン16への選択信号と、ソースバスライン15へのデータ信号によって、駆動用TFT11が選択されることにより、第一領域Rの液晶表示素子30がソースバスライン15へのデータ信号に応じた画像を表示する。一方、夜間又は室内などの暗い場所では、第二ゲートバスライン19への信号がオフにされ、スイッチ用TFT13がオフになる。同時に電流バスライン17が接続され、駆動用TFT11でこの画素が選択されている場合には、電流供給用TFT12がオンになり、ソースバスライン15へのデータ信号に応じて、発光素子40の点灯が制御され、画面の全体によって画像が表示される。
この表示装置で、外光の明るいときは、第二ゲートバスライン19に信号を送ってスイッチ用TFT13を動作せると共に、ゲートバスライン16への選択信号と、ソースバスライン15へのデータ信号によって、駆動用TFT11が選択されることにより、第一領域Rの液晶表示素子30がソースバスライン15へのデータ信号に応じた画像を表示する。一方、夜間又は室内などの暗い場所では、第二ゲートバスライン19への信号がオフにされ、スイッチ用TFT13がオフになる。同時に電流バスライン17が接続され、駆動用TFT11でこの画素が選択されている場合には、電流供給用TFT12がオンになり、ソースバスライン15へのデータ信号に応じて、発光素子40の点灯が制御され、画面の全体によって画像が表示される。
以上のように、本実施形態の表示装置によれば、昼間など外光が十分にある場合には、反射型液晶表示素子として動作し、外光が暗くなったら、消費電力が比較的少ない発光素子によって画像が表示される。その結果、非常に省電力で、電池消耗の少ない表示装置が得られる。そのため、携帯電話や携帯情報端末(PDA)などの携帯機器などに便利に使用し得る。
通常、表示に利用可能な面積は、表示面積全体から画素間のスペースを除いた約80%である。発光層43の面積(第二絶縁層42の内側)は、蒸着法により発光層を成膜する場合、約30%以下にせざるを得ず、残りの50%が反射表示領域Rとして利用できる。この時、反射表示部の反射率は約8%となるが、外光照度が3万ルクス(曇り空)の下では、反射表示部は800cd/m2となり、充分に明るい表示が実現できる。
発光素子40の輝度は、通常500cd/m2程度であるが、この理由は、外光下で視認できる様にするためである。本実施形態では、反射表示部の効果により、そこまで高輝度にする必要がない。また、輝度よりも信頼性を重視した発光材料の選定ができるというメリットも有している。
(まとめ)
(1)本発明の一実施形態に係る表示装置は、駆動素子上に絶縁層を形成したTFT基板と、
液晶組成物を含む液晶層と、
前記液晶層を介して前記TFT基板に対向する、透明電極を備えた対向基板と、
前記対向基板の前記液晶層に対向する面と反対面に設けた偏光板と、
を有する表示装置において、
前記表示装置は、表示領域内に互いに隣接する第一領域と第二領域からなる複数個の画素を有し、
前記第一領域は、前記TFT基板の前記絶縁層の上方に反射電極を備え、
前記第二領域は、前記TFT基板の前記絶縁層の上に第一電極、発光層、及び第二電極を積層した発光素子を備え、
少なくとも前記第二領域において、前記絶縁層の前記対向基板を向く第一面が、第一無機絶縁膜、及び、前記TFTと接続され、かつ、前記第一無機絶縁膜の前記対向基板を向く面と接合して設けられた金属膜によって形成され、
前記発光素子は、前記表示装置の発光領域毎に全体を覆う第二無機絶縁膜を少なくとも含む被覆層を有し、
前記被覆層の辺縁が前記絶縁層と接合されることによって、前記絶縁層の前記第一無機絶縁膜、及び前記被覆層の第二無機絶縁膜によって、前記発光層及び前記第二電極が封止されている。
(1)本発明の一実施形態に係る表示装置は、駆動素子上に絶縁層を形成したTFT基板と、
液晶組成物を含む液晶層と、
前記液晶層を介して前記TFT基板に対向する、透明電極を備えた対向基板と、
前記対向基板の前記液晶層に対向する面と反対面に設けた偏光板と、
を有する表示装置において、
前記表示装置は、表示領域内に互いに隣接する第一領域と第二領域からなる複数個の画素を有し、
前記第一領域は、前記TFT基板の前記絶縁層の上方に反射電極を備え、
前記第二領域は、前記TFT基板の前記絶縁層の上に第一電極、発光層、及び第二電極を積層した発光素子を備え、
少なくとも前記第二領域において、前記絶縁層の前記対向基板を向く第一面が、第一無機絶縁膜、及び、前記TFTと接続され、かつ、前記第一無機絶縁膜の前記対向基板を向く面と接合して設けられた金属膜によって形成され、
前記発光素子は、前記表示装置の発光領域毎に全体を覆う第二無機絶縁膜を少なくとも含む被覆層を有し、
前記被覆層の辺縁が前記絶縁層と接合されることによって、前記絶縁層の前記第一無機絶縁膜、及び前記被覆層の第二無機絶縁膜によって、前記発光層及び前記第二電極が封止されている。
本実施形態によれば、TFT基板の表面を平坦化する絶縁層の上面が無機絶縁膜で形成されて、その表面に被覆層の辺縁が接合されているので、有機EL表示素子などからなる発光素子の発光層及び第二電極が被覆層と絶縁層及び絶縁層のコンタクト孔を埋め込んだ金属膜の無機膜によって完全に封止されている。発光素子は、絶縁層の上に形成されているため、非常に狭い空間で発光素子が無機膜によって封入されている。従って、水分などの浸入を有効に阻止することができ、発光素子の信頼性が大幅に向上する。
(2)前記発光素子が有機EL表示素子である場合に、有機EL表示素子の有機発光層は特に水分などに弱いため効果的である。
(3)前記被覆層が複数の無機絶縁膜と有機膜の積層膜からなり、前記複数の無機絶縁膜からなる第二無機絶縁膜及び第三無機絶縁膜のそれぞれの辺縁が前記第一無機絶縁膜との接合で、前記発光層及び前記第二電極が封止されていることにより、封止を確実にしながら、弾力性を維持することができるので好ましい。
(4)前記発光素子が形成される第二領域において、前記絶縁層より上層にコンタクト孔を含まないことが、発光素子の信頼性を向上させる観点から好ましい。
(5)前記絶縁層がが、前記第一無機絶縁膜の前記第一面と反対面に有機絶縁膜を含んでいることが、TFTが点在して形成された表面の平坦化を短時間で行いながら、絶縁層の上面を無機絶縁膜で形成しやすいので好ましい。
(6)前記絶縁層が前記第一無機絶縁膜のみによって形成されていてもよい。例えばSOGなどで形成すれば、短時間で平坦化できながら、その上面を無機絶縁膜にすることができる。
(7)前記TFT基板の前記第一面に、前記発光素子の前記発光領域を区画する第二絶縁層をさらに備え、前記第二絶縁層は、前記絶縁層の上の前記第一領域にも配置し、かつ、前記第一領域と前記第二領域との間で分断されることで形成された溝において、前記第一無機絶縁膜と前記第二無機絶縁膜とが接合されていることが好ましい。結果的に、第二絶縁層は第一領域側とは分離されながら、第一領域と第二領域とで、積層構造の高さを近似させ得る。その結果、液晶表示素子と発光素子の性能の向上及び水分などに対する信頼性の向上が図られる。
(8)前記TFT基板の前記第一面に、前記発光素子の前記発光領域を区画する第二絶縁層をさらに備え、前記第二絶縁層は、前記絶縁層の上の前記第一領域にも配置し、かつ、前記第一領域と前記第二領域との間で分断されることで形成された溝において、前記反射電極の辺縁が前記第一無機絶縁膜と接合されていることが好ましい。第一領域と第二領域とが確実に分断され得る。
(9)前記反射電極と前記TFTとがコンタクト孔を介して電気的に接続され、前記コンタクト孔は、前記発光素子の発光層及び前記第二電極を封止する前記第一絶縁膜と前記第二絶縁膜との接合部の外側に形成されていることが、発光素子を無機膜のみで封止するという観点から好ましい。
(10)前記第一領域の表示と前記第二領域の表示とを切り替えるスイッチ用TFTが前記TFT基板に形成されていることが好ましい。それぞれの発光(表示)が干渉することなく行われるからである。
(11)前記液晶層がノーマリブラックに配向され、前記偏光板が円偏光板からなり、前記第二領域の上にも形成されていることが好ましい。第二領域での外光の反射光を円偏光板によってカットされ得るからである。
(12)前記TFT基板は前記液晶層と対向する表面に第一液晶配向層を有し、かつ、前記対向基板は前記液晶層と対向する表面に第二液晶配向層を有し、前記液晶層の液晶分子は、前記TFT基板の近傍で実質的に垂直配向をなし、かつ、前記対向基板の表面に対してプレチルトを有することが好ましい。ノーマリブラックであれば、発光素子側で液晶層を介在していても、発光素子の発光に何ら影響を受けないからである。
(13)前記プレチルトの角度が、前記対向基板の表面に対して、80°から89.9°であることが好ましい。水平配向への移行がスムーズになるからである。
11 駆動用TFT
12 電流供給用TFT
12s1 ソースコンタクト(金属膜)
13 スイッチ用TFT
18 カソードバスライン
18c2 カソード第二コンタクト(金属膜)
20 TFT基板
25 絶縁層(平坦化膜)
25a 有機絶縁膜
25b 第一無機絶縁膜
30 液晶表示素子
31 反射電極(画素電極)
32 液晶層
33 対向電極
40 発光素子
41 第一電極(金属膜)
41a 電極コンタクト(金属膜)
42 第二絶縁層
42a 第三絶縁層
43 発光層
44 第二電極
45 被覆層
45a 第二無機絶縁膜
45b 有機膜
45c 第三無機絶縁膜
50 対向基板
R 第一領域
T 第二領域
12 電流供給用TFT
12s1 ソースコンタクト(金属膜)
13 スイッチ用TFT
18 カソードバスライン
18c2 カソード第二コンタクト(金属膜)
20 TFT基板
25 絶縁層(平坦化膜)
25a 有機絶縁膜
25b 第一無機絶縁膜
30 液晶表示素子
31 反射電極(画素電極)
32 液晶層
33 対向電極
40 発光素子
41 第一電極(金属膜)
41a 電極コンタクト(金属膜)
42 第二絶縁層
42a 第三絶縁層
43 発光層
44 第二電極
45 被覆層
45a 第二無機絶縁膜
45b 有機膜
45c 第三無機絶縁膜
50 対向基板
R 第一領域
T 第二領域
Claims (13)
- 駆動素子上に絶縁層を形成したTFT基板と、
液晶組成物を含む液晶層と、
前記液晶層を介して前記TFT基板に対向する、透明電極を備えた対向基板と、
前記対向基板の前記液晶層に対向する面と反対面に設けた偏光板と、
を有する表示装置において、
前記表示装置は、表示領域内に互いに隣接する第一領域と第二領域からなる複数個の画素を有し、
前記第一領域は、前記TFT基板の前記絶縁層の上方に反射電極を備え、
前記第二領域は、前記TFT基板の前記絶縁層の上に第一電極、発光層、及び第二電極を積層した発光素子を備え、
少なくとも前記第二領域において、前記絶縁層の前記対向基板を向く第一面が、第一無機絶縁膜、及び、前記TFTと接続され、かつ、前記第一無機絶縁膜の前記対向基板を向く面と接合して設けられた金属膜によって形成され、
前記発光素子は、前記表示装置の発光領域毎に全体を覆う第二無機絶縁膜を少なくとも含む被覆層を有し、
前記被覆層の辺縁が前記絶縁層と接合されることによって、前記絶縁層の前記第一無機絶縁膜、及び前記被覆層の第二無機絶縁膜によって、前記発光層及び前記第二電極が封止されている、表示装置。 - 前記発光素子が有機EL表示素子である、請求項1に記載の表示装置。
- 前記被覆層が複数の無機絶縁膜と有機膜の積層膜からなり、前記複数の無機絶縁膜からなる第二無機絶縁膜及び第三無機絶縁膜のそれぞれの辺縁が前記第一無機絶縁膜との接合で、前記発光層及び前記第二電極が封止されている、請求項1又は2に記載の表示装置。
- 前記発光素子が形成される第二領域において、前記絶縁層より上層にコンタクト孔を含まない、請求項1~3のいずれか1項に記載の表示装置。
- 前記絶縁層が、前記第一無機絶縁膜の前記第一面と反対面に有機絶縁膜を含んでいる、請求項1~4のいずれか1項に記載の表示装置。
- 前記絶縁層が前記第一無機絶縁膜のみによって形成されている、請求項1~4のいずれか1項に記載の表示装置。
- 前記TFT基板の前記第一面に、前記発光素子の前記発光領域を区画する第二絶縁層をさらに備え、
前記第二絶縁層は、前記絶縁層の上の前記第一領域にも配置し、かつ、
前記第一領域と前記第二領域との間で分断されることで形成された溝において、前記第一無機絶縁膜と前記第二無機絶縁膜とが接合されている、請求項1~6のいずれか1項に記載の表示装置。 - 前記TFT基板の前記第一面に、前記発光素子の前記発光領域を区画する第二絶縁層をさらに備え、
前記第二絶縁層は、前記絶縁層の上の前記第一領域にも配置し、かつ、
前記第一領域と前記第二領域との間で分断されることで形成された溝において、前記反射電極の辺縁が前記第一無機絶縁膜と接合されている、請求項1~6のいずれか1項に記載の表示装置。 - 前記反射電極と前記TFTとがコンタクト孔を介して電気的に接続され、前記コンタクト孔は、前記発光素子の発光層及び前記第二電極を封止する前記第一絶縁膜と前記第二絶縁膜との接合部の外側に形成されている、請求項1~8のいずれか1項に記載の表示装置。
- 前記第一領域の表示と前記第二領域の表示とを切り替えるスイッチ用TFTが前記TFT基板に形成されている、請求項1~9のいずれか1項に記載の表示装置。
- 前記液晶層がノーマリブラックに配向され、前記偏光板が円偏光板からなり、前記第二領域の上にも形成されている、請求項1~10のいずれか1項に記載の表示装置。
- 前記TFT基板は前記液晶層と対向する表面に第一液晶配向層を有し、かつ、
前記対向基板は前記液晶層と対向する表面に第二液晶配向層を有し、
前記液晶層の液晶分子は、前記TFT基板の近傍で実質的に垂直配向をなし、かつ、前記対向基板の表面に対してプレチルトを有する、請求項1~11のいずれか1項に記載の表示装置。 - 前記プレチルトの角度が、前記対向基板の表面に対して、80°から89.9°である、請求項12に記載の表示装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/972,859 US11143927B2 (en) | 2018-06-11 | 2018-06-11 | Display device |
PCT/JP2018/022278 WO2019239468A1 (ja) | 2018-06-11 | 2018-06-11 | 表示装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/022278 WO2019239468A1 (ja) | 2018-06-11 | 2018-06-11 | 表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019239468A1 true WO2019239468A1 (ja) | 2019-12-19 |
Family
ID=68842560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/022278 WO2019239468A1 (ja) | 2018-06-11 | 2018-06-11 | 表示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US11143927B2 (ja) |
WO (1) | WO2019239468A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115176300A (zh) * | 2020-03-04 | 2022-10-11 | 夏普株式会社 | 显示装置、显示装置的制造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102708648B1 (ko) * | 2019-11-07 | 2024-09-23 | 삼성디스플레이 주식회사 | 표시 장치 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002140022A (ja) * | 2000-11-01 | 2002-05-17 | Matsushita Electric Ind Co Ltd | 表示装置および表示装置の製造方法 |
JP2007108771A (ja) * | 2006-11-20 | 2007-04-26 | Sharp Corp | 表示装置 |
JP2009266922A (ja) * | 2008-04-23 | 2009-11-12 | Canon Inc | 有機発光装置 |
JP2016136515A (ja) * | 2015-01-14 | 2016-07-28 | パナソニックIpマネジメント株式会社 | 発光デバイス |
US20170278920A1 (en) * | 2016-03-22 | 2017-09-28 | Samsung Display Co., Ltd. | Display apparatus |
JP6345900B1 (ja) * | 2017-03-31 | 2018-06-20 | 堺ディスプレイプロダクト株式会社 | 表示装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3898012B2 (ja) | 2001-09-06 | 2007-03-28 | シャープ株式会社 | 表示装置 |
KR102716926B1 (ko) * | 2016-12-26 | 2024-10-11 | 엘지디스플레이 주식회사 | 터치 스크린 일체형 표시장치 |
JP2018170326A (ja) * | 2017-03-29 | 2018-11-01 | 株式会社ジャパンディスプレイ | 表示装置 |
KR102406305B1 (ko) * | 2017-05-15 | 2022-06-09 | 삼성디스플레이 주식회사 | 유기 전계 발광 표시 장치 |
KR102438256B1 (ko) * | 2017-06-07 | 2022-08-30 | 엘지디스플레이 주식회사 | 터치 스크린을 갖는 유기 발광 표시 장치 및 이의 제조 방법 |
WO2019123649A1 (ja) * | 2017-12-22 | 2019-06-27 | 堺ディスプレイプロダクト株式会社 | 封止構造体、有機el表示装置、表示装置及び表示装置の製造方法 |
-
2018
- 2018-06-11 US US16/972,859 patent/US11143927B2/en active Active
- 2018-06-11 WO PCT/JP2018/022278 patent/WO2019239468A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002140022A (ja) * | 2000-11-01 | 2002-05-17 | Matsushita Electric Ind Co Ltd | 表示装置および表示装置の製造方法 |
JP2007108771A (ja) * | 2006-11-20 | 2007-04-26 | Sharp Corp | 表示装置 |
JP2009266922A (ja) * | 2008-04-23 | 2009-11-12 | Canon Inc | 有機発光装置 |
JP2016136515A (ja) * | 2015-01-14 | 2016-07-28 | パナソニックIpマネジメント株式会社 | 発光デバイス |
US20170278920A1 (en) * | 2016-03-22 | 2017-09-28 | Samsung Display Co., Ltd. | Display apparatus |
JP6345900B1 (ja) * | 2017-03-31 | 2018-06-20 | 堺ディスプレイプロダクト株式会社 | 表示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115176300A (zh) * | 2020-03-04 | 2022-10-11 | 夏普株式会社 | 显示装置、显示装置的制造方法 |
CN115176300B (zh) * | 2020-03-04 | 2023-08-15 | 夏普株式会社 | 显示装置、显示装置的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210247637A1 (en) | 2021-08-12 |
US11143927B2 (en) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6345900B1 (ja) | 表示装置 | |
KR102146070B1 (ko) | 유기 발광 표시 장치 | |
KR20240130063A (ko) | 유기 발광 표시 장치 | |
US20040164292A1 (en) | Transflective display having an OLED backlight | |
KR20170055587A (ko) | 유기 발광 표시 장치 | |
JP4454262B2 (ja) | エレクトロルミネッセンス表示装置 | |
US9246130B2 (en) | Organic electroluminescence display device | |
US10504978B2 (en) | Electroluminescent display device | |
KR20140069710A (ko) | 표시 장치 및 유기 발광 표시 장치 | |
US11145764B2 (en) | Display device | |
JP2002299044A (ja) | エレクトロルミネッセンス表示装置 | |
KR20180047560A (ko) | 유기 발광 표시 장치 및 그의 제조 방법 | |
KR100529846B1 (ko) | 듀얼패널타입 유기전계발광 소자 및 그 제조방법 | |
JP2008218391A (ja) | 有機発光表示装置 | |
EP1677274A1 (en) | Display | |
KR20160096783A (ko) | 유기 발광 디스플레이 장치 | |
JP2015216083A (ja) | 有機el発光装置 | |
KR20170012664A (ko) | 박막 트랜지스터 어레이 기판 및 이를 포함하는 유기발광 표시장치 | |
KR101874863B1 (ko) | 유기발광소자 | |
WO2019239468A1 (ja) | 表示装置 | |
JP6499790B2 (ja) | 表示装置 | |
KR101861309B1 (ko) | 하이브리드 디스플레이 장치 | |
KR101957145B1 (ko) | 유기발광소자표시장치 및 그 제조방법 | |
KR100557236B1 (ko) | 듀얼패널타입 유기전계발광 소자 및 그 제조방법 | |
KR101952191B1 (ko) | 유기전계발광표시장치 및 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18922683 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18922683 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |